1 /*-------------------------------------------------------------------------
4 * routines supporting merge joins
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
11 * src/backend/executor/nodeMergejoin.c
13 *-------------------------------------------------------------------------
17 * ExecMergeJoin mergejoin outer and inner relations.
18 * ExecInitMergeJoin creates and initializes run time states
19 * ExecEndMergeJoin cleans up the node.
23 * Merge-join is done by joining the inner and outer tuples satisfying
24 * join clauses of the form ((= outerKey innerKey) ...).
25 * The join clause list is provided by the query planner and may contain
26 * more than one (= outerKey innerKey) clause (for composite sort key).
28 * However, the query executor needs to know whether an outer
29 * tuple is "greater/smaller" than an inner tuple so that it can
30 * "synchronize" the two relations. For example, consider the following
33 * outer: (0 ^1 1 2 5 5 5 6 6 7) current tuple: 1
34 * inner: (1 ^3 5 5 5 5 6) current tuple: 3
36 * To continue the merge-join, the executor needs to scan both inner
37 * and outer relations till the matching tuples 5. It needs to know
38 * that currently inner tuple 3 is "greater" than outer tuple 1 and
39 * therefore it should scan the outer relation first to find a
40 * matching tuple and so on.
42 * Therefore, rather than directly executing the merge join clauses,
43 * we evaluate the left and right key expressions separately and then
44 * compare the columns one at a time (see MJCompare). The planner
45 * passes us enough information about the sort ordering of the inputs
46 * to allow us to determine how to make the comparison. We may use the
47 * appropriate btree comparison function, since Postgres' only notion
48 * of ordering is specified by btree opfamilies.
51 * Consider the above relations and suppose that the executor has
52 * just joined the first outer "5" with the last inner "5". The
53 * next step is of course to join the second outer "5" with all
54 * the inner "5's". This requires repositioning the inner "cursor"
55 * to point at the first inner "5". This is done by "marking" the
56 * first inner 5 so we can restore the "cursor" to it before joining
57 * with the second outer 5. The access method interface provides
58 * routines to mark and restore to a tuple.
61 * Essential operation of the merge join algorithm is as follows:
64 * get initial outer and inner tuples INITIALIZE
66 * while (outer != inner) { SKIP_TEST
68 * advance outer SKIPOUTER_ADVANCE
70 * advance inner SKIPINNER_ADVANCE
72 * mark inner position SKIP_TEST
74 * while (outer == inner) {
75 * join tuples JOINTUPLES
76 * advance inner position NEXTINNER
78 * advance outer position NEXTOUTER
79 * if (outer == mark) TESTOUTER
80 * restore inner position to mark TESTOUTER
82 * break // return to top of outer loop
87 * The merge join operation is coded in the fashion
88 * of a state machine. At each state, we do something and then
89 * proceed to another state. This state is stored in the node's
90 * execution state information and is preserved across calls to
91 * ExecMergeJoin. -cim 10/31/89
95 #include "access/nbtree.h"
96 #include "executor/execdebug.h"
97 #include "executor/nodeMergejoin.h"
98 #include "miscadmin.h"
99 #include "utils/lsyscache.h"
103 * States of the ExecMergeJoin state machine
105 #define EXEC_MJ_INITIALIZE_OUTER 1
106 #define EXEC_MJ_INITIALIZE_INNER 2
107 #define EXEC_MJ_JOINTUPLES 3
108 #define EXEC_MJ_NEXTOUTER 4
109 #define EXEC_MJ_TESTOUTER 5
110 #define EXEC_MJ_NEXTINNER 6
111 #define EXEC_MJ_SKIP_TEST 7
112 #define EXEC_MJ_SKIPOUTER_ADVANCE 8
113 #define EXEC_MJ_SKIPINNER_ADVANCE 9
114 #define EXEC_MJ_ENDOUTER 10
115 #define EXEC_MJ_ENDINNER 11
118 * Runtime data for each mergejoin clause
120 typedef struct MergeJoinClauseData
122 /* Executable expression trees */
123 ExprState
*lexpr
; /* left-hand (outer) input expression */
124 ExprState
*rexpr
; /* right-hand (inner) input expression */
127 * If we have a current left or right input tuple, the values of the
128 * expressions are loaded into these fields:
130 Datum ldatum
; /* current left-hand value */
131 Datum rdatum
; /* current right-hand value */
132 bool lisnull
; /* and their isnull flags */
136 * Everything we need to know to compare the left and right values is
139 SortSupportData ssup
;
140 } MergeJoinClauseData
;
142 /* Result type for MJEvalOuterValues and MJEvalInnerValues */
145 MJEVAL_MATCHABLE
, /* normal, potentially matchable tuple */
146 MJEVAL_NONMATCHABLE
, /* tuple cannot join because it has a null */
147 MJEVAL_ENDOFJOIN
, /* end of input (physical or effective) */
151 #define MarkInnerTuple(innerTupleSlot, mergestate) \
152 ExecCopySlot((mergestate)->mj_MarkedTupleSlot, (innerTupleSlot))
158 * This deconstructs the list of mergejoinable expressions, which is given
159 * to us by the planner in the form of a list of "leftexpr = rightexpr"
160 * expression trees in the order matching the sort columns of the inputs.
161 * We build an array of MergeJoinClause structs containing the information
162 * we will need at runtime. Each struct essentially tells us how to compare
163 * the two expressions from the original clause.
165 * In addition to the expressions themselves, the planner passes the btree
166 * opfamily OID, collation OID, btree strategy number (BTLessStrategyNumber or
167 * BTGreaterStrategyNumber), and nulls-first flag that identify the intended
168 * sort ordering for each merge key. The mergejoinable operator is an
169 * equality operator in the opfamily, and the two inputs are guaranteed to be
170 * ordered in either increasing or decreasing (respectively) order according
171 * to the opfamily and collation, with nulls at the indicated end of the range.
172 * This allows us to obtain the needed comparison function from the opfamily.
174 static MergeJoinClause
175 MJExamineQuals(List
*mergeclauses
,
177 Oid
*mergecollations
,
178 bool *mergereversals
,
179 bool *mergenullsfirst
,
182 MergeJoinClause clauses
;
183 int nClauses
= list_length(mergeclauses
);
187 clauses
= (MergeJoinClause
) palloc0(nClauses
* sizeof(MergeJoinClauseData
));
190 foreach(cl
, mergeclauses
)
192 OpExpr
*qual
= (OpExpr
*) lfirst(cl
);
193 MergeJoinClause clause
= &clauses
[iClause
];
194 Oid opfamily
= mergefamilies
[iClause
];
195 Oid collation
= mergecollations
[iClause
];
196 bool reversed
= mergereversals
[iClause
];
197 bool nulls_first
= mergenullsfirst
[iClause
];
203 if (!IsA(qual
, OpExpr
))
204 elog(ERROR
, "mergejoin clause is not an OpExpr");
207 * Prepare the input expressions for execution.
209 clause
->lexpr
= ExecInitExpr((Expr
*) linitial(qual
->args
), parent
);
210 clause
->rexpr
= ExecInitExpr((Expr
*) lsecond(qual
->args
), parent
);
212 /* Set up sort support data */
213 clause
->ssup
.ssup_cxt
= CurrentMemoryContext
;
214 clause
->ssup
.ssup_collation
= collation
;
215 clause
->ssup
.ssup_reverse
= reversed
;
216 clause
->ssup
.ssup_nulls_first
= nulls_first
;
218 /* Extract the operator's declared left/right datatypes */
219 get_op_opfamily_properties(qual
->opno
, opfamily
, false,
223 if (op_strategy
!= BTEqualStrategyNumber
) /* should not happen */
224 elog(ERROR
, "cannot merge using non-equality operator %u",
228 * sortsupport routine must know if abbreviation optimization is
229 * applicable in principle. It is never applicable for merge joins
230 * because there is no convenient opportunity to convert to
231 * alternative representation.
233 clause
->ssup
.abbreviate
= false;
235 /* And get the matching support or comparison function */
236 Assert(clause
->ssup
.comparator
== NULL
);
237 sortfunc
= get_opfamily_proc(opfamily
,
241 if (OidIsValid(sortfunc
))
243 /* The sort support function can provide a comparator */
244 OidFunctionCall1(sortfunc
, PointerGetDatum(&clause
->ssup
));
246 if (clause
->ssup
.comparator
== NULL
)
248 /* support not available, get comparison func */
249 sortfunc
= get_opfamily_proc(opfamily
,
253 if (!OidIsValid(sortfunc
)) /* should not happen */
254 elog(ERROR
, "missing support function %d(%u,%u) in opfamily %u",
255 BTORDER_PROC
, op_lefttype
, op_righttype
, opfamily
);
256 /* We'll use a shim to call the old-style btree comparator */
257 PrepareSortSupportComparisonShim(sortfunc
, &clause
->ssup
);
269 * Compute the values of the mergejoined expressions for the current
270 * outer tuple. We also detect whether it's impossible for the current
271 * outer tuple to match anything --- this is true if it yields a NULL
272 * input, since we assume mergejoin operators are strict. If the NULL
273 * is in the first join column, and that column sorts nulls last, then
274 * we can further conclude that no following tuple can match anything
275 * either, since they must all have nulls in the first column. However,
276 * that case is only interesting if we're not in FillOuter mode, else
277 * we have to visit all the tuples anyway.
279 * For the convenience of callers, we also make this routine responsible
280 * for testing for end-of-input (null outer tuple), and returning
281 * MJEVAL_ENDOFJOIN when that's seen. This allows the same code to be used
282 * for both real end-of-input and the effective end-of-input represented by
283 * a first-column NULL.
285 * We evaluate the values in OuterEContext, which can be reset each
286 * time we move to a new tuple.
289 MJEvalOuterValues(MergeJoinState
*mergestate
)
291 ExprContext
*econtext
= mergestate
->mj_OuterEContext
;
292 MJEvalResult result
= MJEVAL_MATCHABLE
;
294 MemoryContext oldContext
;
296 /* Check for end of outer subplan */
297 if (TupIsNull(mergestate
->mj_OuterTupleSlot
))
298 return MJEVAL_ENDOFJOIN
;
300 ResetExprContext(econtext
);
302 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
304 econtext
->ecxt_outertuple
= mergestate
->mj_OuterTupleSlot
;
306 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
308 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
310 clause
->ldatum
= ExecEvalExpr(clause
->lexpr
, econtext
,
314 /* match is impossible; can we end the join early? */
315 if (i
== 0 && !clause
->ssup
.ssup_nulls_first
&&
316 !mergestate
->mj_FillOuter
)
317 result
= MJEVAL_ENDOFJOIN
;
318 else if (result
== MJEVAL_MATCHABLE
)
319 result
= MJEVAL_NONMATCHABLE
;
323 MemoryContextSwitchTo(oldContext
);
331 * Same as above, but for the inner tuple. Here, we have to be prepared
332 * to load data from either the true current inner, or the marked inner,
333 * so caller must tell us which slot to load from.
336 MJEvalInnerValues(MergeJoinState
*mergestate
, TupleTableSlot
*innerslot
)
338 ExprContext
*econtext
= mergestate
->mj_InnerEContext
;
339 MJEvalResult result
= MJEVAL_MATCHABLE
;
341 MemoryContext oldContext
;
343 /* Check for end of inner subplan */
344 if (TupIsNull(innerslot
))
345 return MJEVAL_ENDOFJOIN
;
347 ResetExprContext(econtext
);
349 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
351 econtext
->ecxt_innertuple
= innerslot
;
353 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
355 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
357 clause
->rdatum
= ExecEvalExpr(clause
->rexpr
, econtext
,
361 /* match is impossible; can we end the join early? */
362 if (i
== 0 && !clause
->ssup
.ssup_nulls_first
&&
363 !mergestate
->mj_FillInner
)
364 result
= MJEVAL_ENDOFJOIN
;
365 else if (result
== MJEVAL_MATCHABLE
)
366 result
= MJEVAL_NONMATCHABLE
;
370 MemoryContextSwitchTo(oldContext
);
378 * Compare the mergejoinable values of the current two input tuples
379 * and return 0 if they are equal (ie, the mergejoin equalities all
380 * succeed), >0 if outer > inner, <0 if outer < inner.
382 * MJEvalOuterValues and MJEvalInnerValues must already have been called
383 * for the current outer and inner tuples, respectively.
386 MJCompare(MergeJoinState
*mergestate
)
389 bool nulleqnull
= false;
390 ExprContext
*econtext
= mergestate
->js
.ps
.ps_ExprContext
;
392 MemoryContext oldContext
;
395 * Call the comparison functions in short-lived context, in case they leak
398 ResetExprContext(econtext
);
400 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
402 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
404 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
407 * Special case for NULL-vs-NULL, else use standard comparison.
409 if (clause
->lisnull
&& clause
->risnull
)
411 nulleqnull
= true; /* NULL "=" NULL */
415 result
= ApplySortComparator(clause
->ldatum
, clause
->lisnull
,
416 clause
->rdatum
, clause
->risnull
,
424 * If we had any NULL-vs-NULL inputs, we do not want to report that the
425 * tuples are equal. Instead, if result is still 0, change it to +1. This
426 * will result in advancing the inner side of the join.
428 * Likewise, if there was a constant-false joinqual, do not report
429 * equality. We have to check this as part of the mergequals, else the
430 * rescan logic will do the wrong thing.
433 (nulleqnull
|| mergestate
->mj_ConstFalseJoin
))
436 MemoryContextSwitchTo(oldContext
);
443 * Generate a fake join tuple with nulls for the inner tuple,
444 * and return it if it passes the non-join quals.
446 static TupleTableSlot
*
447 MJFillOuter(MergeJoinState
*node
)
449 ExprContext
*econtext
= node
->js
.ps
.ps_ExprContext
;
450 ExprState
*otherqual
= node
->js
.ps
.qual
;
452 ResetExprContext(econtext
);
454 econtext
->ecxt_outertuple
= node
->mj_OuterTupleSlot
;
455 econtext
->ecxt_innertuple
= node
->mj_NullInnerTupleSlot
;
457 if (ExecQual(otherqual
, econtext
))
460 * qualification succeeded. now form the desired projection tuple and
461 * return the slot containing it.
463 MJ_printf("ExecMergeJoin: returning outer fill tuple\n");
465 return ExecProject(node
->js
.ps
.ps_ProjInfo
);
468 InstrCountFiltered2(node
, 1);
474 * Generate a fake join tuple with nulls for the outer tuple,
475 * and return it if it passes the non-join quals.
477 static TupleTableSlot
*
478 MJFillInner(MergeJoinState
*node
)
480 ExprContext
*econtext
= node
->js
.ps
.ps_ExprContext
;
481 ExprState
*otherqual
= node
->js
.ps
.qual
;
483 ResetExprContext(econtext
);
485 econtext
->ecxt_outertuple
= node
->mj_NullOuterTupleSlot
;
486 econtext
->ecxt_innertuple
= node
->mj_InnerTupleSlot
;
488 if (ExecQual(otherqual
, econtext
))
491 * qualification succeeded. now form the desired projection tuple and
492 * return the slot containing it.
494 MJ_printf("ExecMergeJoin: returning inner fill tuple\n");
496 return ExecProject(node
->js
.ps
.ps_ProjInfo
);
499 InstrCountFiltered2(node
, 1);
506 * Check that a qual condition is constant true or constant false.
507 * If it is constant false (or null), set *is_const_false to true.
509 * Constant true would normally be represented by a NIL list, but we allow an
510 * actual bool Const as well. We do expect that the planner will have thrown
511 * away any non-constant terms that have been ANDed with a constant false.
514 check_constant_qual(List
*qual
, bool *is_const_false
)
520 Const
*con
= (Const
*) lfirst(lc
);
522 if (!con
|| !IsA(con
, Const
))
524 if (con
->constisnull
|| !DatumGetBool(con
->constvalue
))
525 *is_const_false
= true;
531 /* ----------------------------------------------------------------
534 * This function is called through the MJ_dump() macro
535 * when EXEC_MERGEJOINDEBUG is defined
536 * ----------------------------------------------------------------
538 #ifdef EXEC_MERGEJOINDEBUG
541 ExecMergeTupleDumpOuter(MergeJoinState
*mergestate
)
543 TupleTableSlot
*outerSlot
= mergestate
->mj_OuterTupleSlot
;
545 printf("==== outer tuple ====\n");
546 if (TupIsNull(outerSlot
))
549 MJ_debugtup(outerSlot
);
553 ExecMergeTupleDumpInner(MergeJoinState
*mergestate
)
555 TupleTableSlot
*innerSlot
= mergestate
->mj_InnerTupleSlot
;
557 printf("==== inner tuple ====\n");
558 if (TupIsNull(innerSlot
))
561 MJ_debugtup(innerSlot
);
565 ExecMergeTupleDumpMarked(MergeJoinState
*mergestate
)
567 TupleTableSlot
*markedSlot
= mergestate
->mj_MarkedTupleSlot
;
569 printf("==== marked tuple ====\n");
570 if (TupIsNull(markedSlot
))
573 MJ_debugtup(markedSlot
);
577 ExecMergeTupleDump(MergeJoinState
*mergestate
)
579 printf("******** ExecMergeTupleDump ********\n");
581 ExecMergeTupleDumpOuter(mergestate
);
582 ExecMergeTupleDumpInner(mergestate
);
583 ExecMergeTupleDumpMarked(mergestate
);
585 printf("********\n");
589 /* ----------------------------------------------------------------
591 * ----------------------------------------------------------------
593 static TupleTableSlot
*
594 ExecMergeJoin(PlanState
*pstate
)
596 MergeJoinState
*node
= castNode(MergeJoinState
, pstate
);
598 ExprState
*otherqual
;
601 PlanState
*innerPlan
;
602 TupleTableSlot
*innerTupleSlot
;
603 PlanState
*outerPlan
;
604 TupleTableSlot
*outerTupleSlot
;
605 ExprContext
*econtext
;
609 CHECK_FOR_INTERRUPTS();
612 * get information from node
614 innerPlan
= innerPlanState(node
);
615 outerPlan
= outerPlanState(node
);
616 econtext
= node
->js
.ps
.ps_ExprContext
;
617 joinqual
= node
->js
.joinqual
;
618 otherqual
= node
->js
.ps
.qual
;
619 doFillOuter
= node
->mj_FillOuter
;
620 doFillInner
= node
->mj_FillInner
;
623 * Reset per-tuple memory context to free any expression evaluation
624 * storage allocated in the previous tuple cycle.
626 ResetExprContext(econtext
);
629 * ok, everything is setup.. let's go to work
636 * get the current state of the join and do things accordingly.
638 switch (node
->mj_JoinState
)
641 * EXEC_MJ_INITIALIZE_OUTER means that this is the first time
642 * ExecMergeJoin() has been called and so we have to fetch the
643 * first matchable tuple for both outer and inner subplans. We
644 * do the outer side in INITIALIZE_OUTER state, then advance
645 * to INITIALIZE_INNER state for the inner subplan.
647 case EXEC_MJ_INITIALIZE_OUTER
:
648 MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_OUTER\n");
650 outerTupleSlot
= ExecProcNode(outerPlan
);
651 node
->mj_OuterTupleSlot
= outerTupleSlot
;
653 /* Compute join values and check for unmatchability */
654 switch (MJEvalOuterValues(node
))
656 case MJEVAL_MATCHABLE
:
657 /* OK to go get the first inner tuple */
658 node
->mj_JoinState
= EXEC_MJ_INITIALIZE_INNER
;
660 case MJEVAL_NONMATCHABLE
:
661 /* Stay in same state to fetch next outer tuple */
665 * Generate a fake join tuple with nulls for the
666 * inner tuple, and return it if it passes the
669 TupleTableSlot
*result
;
671 result
= MJFillOuter(node
);
676 case MJEVAL_ENDOFJOIN
:
677 /* No more outer tuples */
678 MJ_printf("ExecMergeJoin: nothing in outer subplan\n");
682 * Need to emit right-join tuples for remaining
683 * inner tuples. We set MatchedInner = true to
684 * force the ENDOUTER state to advance inner.
686 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
687 node
->mj_MatchedInner
= true;
690 /* Otherwise we're done. */
695 case EXEC_MJ_INITIALIZE_INNER
:
696 MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_INNER\n");
698 innerTupleSlot
= ExecProcNode(innerPlan
);
699 node
->mj_InnerTupleSlot
= innerTupleSlot
;
701 /* Compute join values and check for unmatchability */
702 switch (MJEvalInnerValues(node
, innerTupleSlot
))
704 case MJEVAL_MATCHABLE
:
707 * OK, we have the initial tuples. Begin by skipping
708 * non-matching tuples.
710 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
712 case MJEVAL_NONMATCHABLE
:
713 /* Mark before advancing, if wanted */
714 if (node
->mj_ExtraMarks
)
715 ExecMarkPos(innerPlan
);
716 /* Stay in same state to fetch next inner tuple */
720 * Generate a fake join tuple with nulls for the
721 * outer tuple, and return it if it passes the
724 TupleTableSlot
*result
;
726 result
= MJFillInner(node
);
731 case MJEVAL_ENDOFJOIN
:
732 /* No more inner tuples */
733 MJ_printf("ExecMergeJoin: nothing in inner subplan\n");
737 * Need to emit left-join tuples for all outer
738 * tuples, including the one we just fetched. We
739 * set MatchedOuter = false to force the ENDINNER
740 * state to emit first tuple before advancing
743 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
744 node
->mj_MatchedOuter
= false;
747 /* Otherwise we're done. */
753 * EXEC_MJ_JOINTUPLES means we have two tuples which satisfied
754 * the merge clause so we join them and then proceed to get
755 * the next inner tuple (EXEC_MJ_NEXTINNER).
757 case EXEC_MJ_JOINTUPLES
:
758 MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTUPLES\n");
761 * Set the next state machine state. The right things will
762 * happen whether we return this join tuple or just fall
763 * through to continue the state machine execution.
765 node
->mj_JoinState
= EXEC_MJ_NEXTINNER
;
768 * Check the extra qual conditions to see if we actually want
769 * to return this join tuple. If not, can proceed with merge.
770 * We must distinguish the additional joinquals (which must
771 * pass to consider the tuples "matched" for outer-join logic)
772 * from the otherquals (which must pass before we actually
775 * We don't bother with a ResetExprContext here, on the
776 * assumption that we just did one while checking the merge
777 * qual. One per tuple should be sufficient. We do have to
778 * set up the econtext links to the tuples for ExecQual to
781 outerTupleSlot
= node
->mj_OuterTupleSlot
;
782 econtext
->ecxt_outertuple
= outerTupleSlot
;
783 innerTupleSlot
= node
->mj_InnerTupleSlot
;
784 econtext
->ecxt_innertuple
= innerTupleSlot
;
786 qualResult
= (joinqual
== NULL
||
787 ExecQual(joinqual
, econtext
));
788 MJ_DEBUG_QUAL(joinqual
, qualResult
);
792 node
->mj_MatchedOuter
= true;
793 node
->mj_MatchedInner
= true;
795 /* In an antijoin, we never return a matched tuple */
796 if (node
->js
.jointype
== JOIN_ANTI
)
798 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
803 * If we only need to consider the first matching inner
804 * tuple, then advance to next outer tuple after we've
805 * processed this one.
807 if (node
->js
.single_match
)
808 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
811 * In a right-antijoin, we never return a matched tuple.
812 * If it's not an inner_unique join, we need to stay on
813 * the current outer tuple to continue scanning the inner
816 if (node
->js
.jointype
== JOIN_RIGHT_ANTI
)
819 qualResult
= (otherqual
== NULL
||
820 ExecQual(otherqual
, econtext
));
821 MJ_DEBUG_QUAL(otherqual
, qualResult
);
826 * qualification succeeded. now form the desired
827 * projection tuple and return the slot containing it.
829 MJ_printf("ExecMergeJoin: returning tuple\n");
831 return ExecProject(node
->js
.ps
.ps_ProjInfo
);
834 InstrCountFiltered2(node
, 1);
837 InstrCountFiltered1(node
, 1);
841 * EXEC_MJ_NEXTINNER means advance the inner scan to the next
842 * tuple. If the tuple is not nil, we then proceed to test it
843 * against the join qualification.
845 * Before advancing, we check to see if we must emit an
846 * outer-join fill tuple for this inner tuple.
848 case EXEC_MJ_NEXTINNER
:
849 MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTINNER\n");
851 if (doFillInner
&& !node
->mj_MatchedInner
)
854 * Generate a fake join tuple with nulls for the outer
855 * tuple, and return it if it passes the non-join quals.
857 TupleTableSlot
*result
;
859 node
->mj_MatchedInner
= true; /* do it only once */
861 result
= MJFillInner(node
);
867 * now we get the next inner tuple, if any. If there's none,
868 * advance to next outer tuple (which may be able to join to
869 * previously marked tuples).
871 * NB: must NOT do "extraMarks" here, since we may need to
872 * return to previously marked tuples.
874 innerTupleSlot
= ExecProcNode(innerPlan
);
875 node
->mj_InnerTupleSlot
= innerTupleSlot
;
876 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
877 node
->mj_MatchedInner
= false;
879 /* Compute join values and check for unmatchability */
880 switch (MJEvalInnerValues(node
, innerTupleSlot
))
882 case MJEVAL_MATCHABLE
:
885 * Test the new inner tuple to see if it matches
888 * If they do match, then we join them and move on to
889 * the next inner tuple (EXEC_MJ_JOINTUPLES).
891 * If they do not match then advance to next outer
894 compareResult
= MJCompare(node
);
895 MJ_DEBUG_COMPARE(compareResult
);
897 if (compareResult
== 0)
898 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
899 else if (compareResult
< 0)
900 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
901 else /* compareResult > 0 should not happen */
902 elog(ERROR
, "mergejoin input data is out of order");
904 case MJEVAL_NONMATCHABLE
:
907 * It contains a NULL and hence can't match any outer
908 * tuple, so we can skip the comparison and assume the
909 * new tuple is greater than current outer.
911 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
913 case MJEVAL_ENDOFJOIN
:
916 * No more inner tuples. However, this might be only
917 * effective and not physical end of inner plan, so
918 * force mj_InnerTupleSlot to null to make sure we
919 * don't fetch more inner tuples. (We need this hack
920 * because we are not transiting to a state where the
921 * inner plan is assumed to be exhausted.)
923 node
->mj_InnerTupleSlot
= NULL
;
924 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
929 /*-------------------------------------------
930 * EXEC_MJ_NEXTOUTER means
933 * outer tuple - 5 5 - marked tuple
938 * we know we just bumped into the
939 * first inner tuple > current outer tuple (or possibly
940 * the end of the inner stream)
941 * so get a new outer tuple and then
942 * proceed to test it against the marked tuple
943 * (EXEC_MJ_TESTOUTER)
945 * Before advancing, we check to see if we must emit an
946 * outer-join fill tuple for this outer tuple.
947 *------------------------------------------------
949 case EXEC_MJ_NEXTOUTER
:
950 MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTOUTER\n");
952 if (doFillOuter
&& !node
->mj_MatchedOuter
)
955 * Generate a fake join tuple with nulls for the inner
956 * tuple, and return it if it passes the non-join quals.
958 TupleTableSlot
*result
;
960 node
->mj_MatchedOuter
= true; /* do it only once */
962 result
= MJFillOuter(node
);
968 * now we get the next outer tuple, if any
970 outerTupleSlot
= ExecProcNode(outerPlan
);
971 node
->mj_OuterTupleSlot
= outerTupleSlot
;
972 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
973 node
->mj_MatchedOuter
= false;
975 /* Compute join values and check for unmatchability */
976 switch (MJEvalOuterValues(node
))
978 case MJEVAL_MATCHABLE
:
979 /* Go test the new tuple against the marked tuple */
980 node
->mj_JoinState
= EXEC_MJ_TESTOUTER
;
982 case MJEVAL_NONMATCHABLE
:
983 /* Can't match, so fetch next outer tuple */
984 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
986 case MJEVAL_ENDOFJOIN
:
987 /* No more outer tuples */
988 MJ_printf("ExecMergeJoin: end of outer subplan\n");
989 innerTupleSlot
= node
->mj_InnerTupleSlot
;
990 if (doFillInner
&& !TupIsNull(innerTupleSlot
))
993 * Need to emit right-join tuples for remaining
996 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
999 /* Otherwise we're done. */
1004 /*--------------------------------------------------------
1005 * EXEC_MJ_TESTOUTER If the new outer tuple and the marked
1006 * tuple satisfy the merge clause then we know we have
1007 * duplicates in the outer scan so we have to restore the
1008 * inner scan to the marked tuple and proceed to join the
1009 * new outer tuple with the inner tuples.
1011 * This is the case when
1013 * 4 5 - marked tuple
1015 * new outer tuple - 5 5
1019 * new outer tuple == marked tuple
1021 * If the outer tuple fails the test, then we are done
1022 * with the marked tuples, and we have to look for a
1023 * match to the current inner tuple. So we will
1024 * proceed to skip outer tuples until outer >= inner
1025 * (EXEC_MJ_SKIP_TEST).
1027 * This is the case when
1030 * 5 5 - marked tuple
1032 * new outer tuple - 6 8 - inner tuple
1035 * new outer tuple > marked tuple
1037 *---------------------------------------------------------
1039 case EXEC_MJ_TESTOUTER
:
1040 MJ_printf("ExecMergeJoin: EXEC_MJ_TESTOUTER\n");
1043 * Here we must compare the outer tuple with the marked inner
1044 * tuple. (We can ignore the result of MJEvalInnerValues,
1045 * since the marked inner tuple is certainly matchable.)
1047 innerTupleSlot
= node
->mj_MarkedTupleSlot
;
1048 (void) MJEvalInnerValues(node
, innerTupleSlot
);
1050 compareResult
= MJCompare(node
);
1051 MJ_DEBUG_COMPARE(compareResult
);
1053 if (compareResult
== 0)
1056 * the merge clause matched so now we restore the inner
1057 * scan position to the first mark, and go join that tuple
1058 * (and any following ones) to the new outer.
1060 * If we were able to determine mark and restore are not
1061 * needed, then we don't have to back up; the current
1062 * inner is already the first possible match.
1064 * NOTE: we do not need to worry about the MatchedInner
1065 * state for the rescanned inner tuples. We know all of
1066 * them will match this new outer tuple and therefore
1067 * won't be emitted as fill tuples. This works *only*
1068 * because we require the extra joinquals to be constant
1069 * when doing a right, right-anti or full join ---
1070 * otherwise some of the rescanned tuples might fail the
1071 * extra joinquals. This obviously won't happen for a
1072 * constant-true extra joinqual, while the constant-false
1073 * case is handled by forcing the merge clause to never
1074 * match, so we never get here.
1076 if (!node
->mj_SkipMarkRestore
)
1078 ExecRestrPos(innerPlan
);
1081 * ExecRestrPos probably should give us back a new
1082 * Slot, but since it doesn't, use the marked slot.
1083 * (The previously returned mj_InnerTupleSlot cannot
1084 * be assumed to hold the required tuple.)
1086 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1087 /* we need not do MJEvalInnerValues again */
1090 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
1092 else if (compareResult
> 0)
1095 * if the new outer tuple didn't match the marked inner
1096 * tuple then we have a case like:
1099 * 4 4 - marked tuple
1104 * which means that all subsequent outer tuples will be
1105 * larger than our marked inner tuples. So we need not
1106 * revisit any of the marked tuples but can proceed to
1107 * look for a match to the current inner. If there's
1108 * no more inners, no more matches are possible.
1111 innerTupleSlot
= node
->mj_InnerTupleSlot
;
1113 /* reload comparison data for current inner */
1114 switch (MJEvalInnerValues(node
, innerTupleSlot
))
1116 case MJEVAL_MATCHABLE
:
1117 /* proceed to compare it to the current outer */
1118 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1120 case MJEVAL_NONMATCHABLE
:
1123 * current inner can't possibly match any outer;
1124 * better to advance the inner scan than the
1127 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1129 case MJEVAL_ENDOFJOIN
:
1130 /* No more inner tuples */
1134 * Need to emit left-join tuples for remaining
1137 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
1140 /* Otherwise we're done. */
1144 else /* compareResult < 0 should not happen */
1145 elog(ERROR
, "mergejoin input data is out of order");
1148 /*----------------------------------------------------------
1149 * EXEC_MJ_SKIP_TEST means compare tuples and if they do not
1150 * match, skip whichever is lesser.
1157 * outer tuple - 6 8 - inner tuple
1161 * we have to advance the outer scan
1162 * until we find the outer 8.
1164 * On the other hand:
1169 * outer tuple - 12 8 - inner tuple
1173 * we have to advance the inner scan
1174 * until we find the inner 12.
1175 *----------------------------------------------------------
1177 case EXEC_MJ_SKIP_TEST
:
1178 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIP_TEST\n");
1181 * before we advance, make sure the current tuples do not
1182 * satisfy the mergeclauses. If they do, then we update the
1183 * marked tuple position and go join them.
1185 compareResult
= MJCompare(node
);
1186 MJ_DEBUG_COMPARE(compareResult
);
1188 if (compareResult
== 0)
1190 if (!node
->mj_SkipMarkRestore
)
1191 ExecMarkPos(innerPlan
);
1193 MarkInnerTuple(node
->mj_InnerTupleSlot
, node
);
1195 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
1197 else if (compareResult
< 0)
1198 node
->mj_JoinState
= EXEC_MJ_SKIPOUTER_ADVANCE
;
1200 /* compareResult > 0 */
1201 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1205 * EXEC_MJ_SKIPOUTER_ADVANCE: advance over an outer tuple that
1206 * is known not to join to any inner tuple.
1208 * Before advancing, we check to see if we must emit an
1209 * outer-join fill tuple for this outer tuple.
1211 case EXEC_MJ_SKIPOUTER_ADVANCE
:
1212 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPOUTER_ADVANCE\n");
1214 if (doFillOuter
&& !node
->mj_MatchedOuter
)
1217 * Generate a fake join tuple with nulls for the inner
1218 * tuple, and return it if it passes the non-join quals.
1220 TupleTableSlot
*result
;
1222 node
->mj_MatchedOuter
= true; /* do it only once */
1224 result
= MJFillOuter(node
);
1230 * now we get the next outer tuple, if any
1232 outerTupleSlot
= ExecProcNode(outerPlan
);
1233 node
->mj_OuterTupleSlot
= outerTupleSlot
;
1234 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
1235 node
->mj_MatchedOuter
= false;
1237 /* Compute join values and check for unmatchability */
1238 switch (MJEvalOuterValues(node
))
1240 case MJEVAL_MATCHABLE
:
1241 /* Go test the new tuple against the current inner */
1242 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1244 case MJEVAL_NONMATCHABLE
:
1245 /* Can't match, so fetch next outer tuple */
1246 node
->mj_JoinState
= EXEC_MJ_SKIPOUTER_ADVANCE
;
1248 case MJEVAL_ENDOFJOIN
:
1249 /* No more outer tuples */
1250 MJ_printf("ExecMergeJoin: end of outer subplan\n");
1251 innerTupleSlot
= node
->mj_InnerTupleSlot
;
1252 if (doFillInner
&& !TupIsNull(innerTupleSlot
))
1255 * Need to emit right-join tuples for remaining
1258 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
1261 /* Otherwise we're done. */
1267 * EXEC_MJ_SKIPINNER_ADVANCE: advance over an inner tuple that
1268 * is known not to join to any outer tuple.
1270 * Before advancing, we check to see if we must emit an
1271 * outer-join fill tuple for this inner tuple.
1273 case EXEC_MJ_SKIPINNER_ADVANCE
:
1274 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPINNER_ADVANCE\n");
1276 if (doFillInner
&& !node
->mj_MatchedInner
)
1279 * Generate a fake join tuple with nulls for the outer
1280 * tuple, and return it if it passes the non-join quals.
1282 TupleTableSlot
*result
;
1284 node
->mj_MatchedInner
= true; /* do it only once */
1286 result
= MJFillInner(node
);
1291 /* Mark before advancing, if wanted */
1292 if (node
->mj_ExtraMarks
)
1293 ExecMarkPos(innerPlan
);
1296 * now we get the next inner tuple, if any
1298 innerTupleSlot
= ExecProcNode(innerPlan
);
1299 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1300 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
1301 node
->mj_MatchedInner
= false;
1303 /* Compute join values and check for unmatchability */
1304 switch (MJEvalInnerValues(node
, innerTupleSlot
))
1306 case MJEVAL_MATCHABLE
:
1307 /* proceed to compare it to the current outer */
1308 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1310 case MJEVAL_NONMATCHABLE
:
1313 * current inner can't possibly match any outer;
1314 * better to advance the inner scan than the outer.
1316 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1318 case MJEVAL_ENDOFJOIN
:
1319 /* No more inner tuples */
1320 MJ_printf("ExecMergeJoin: end of inner subplan\n");
1321 outerTupleSlot
= node
->mj_OuterTupleSlot
;
1322 if (doFillOuter
&& !TupIsNull(outerTupleSlot
))
1325 * Need to emit left-join tuples for remaining
1328 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
1331 /* Otherwise we're done. */
1337 * EXEC_MJ_ENDOUTER means we have run out of outer tuples, but
1338 * are doing a right/right-anti/full join and therefore must
1339 * null-fill any remaining unmatched inner tuples.
1341 case EXEC_MJ_ENDOUTER
:
1342 MJ_printf("ExecMergeJoin: EXEC_MJ_ENDOUTER\n");
1344 Assert(doFillInner
);
1346 if (!node
->mj_MatchedInner
)
1349 * Generate a fake join tuple with nulls for the outer
1350 * tuple, and return it if it passes the non-join quals.
1352 TupleTableSlot
*result
;
1354 node
->mj_MatchedInner
= true; /* do it only once */
1356 result
= MJFillInner(node
);
1361 /* Mark before advancing, if wanted */
1362 if (node
->mj_ExtraMarks
)
1363 ExecMarkPos(innerPlan
);
1366 * now we get the next inner tuple, if any
1368 innerTupleSlot
= ExecProcNode(innerPlan
);
1369 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1370 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
1371 node
->mj_MatchedInner
= false;
1373 if (TupIsNull(innerTupleSlot
))
1375 MJ_printf("ExecMergeJoin: end of inner subplan\n");
1379 /* Else remain in ENDOUTER state and process next tuple. */
1383 * EXEC_MJ_ENDINNER means we have run out of inner tuples, but
1384 * are doing a left/full join and therefore must null- fill
1385 * any remaining unmatched outer tuples.
1387 case EXEC_MJ_ENDINNER
:
1388 MJ_printf("ExecMergeJoin: EXEC_MJ_ENDINNER\n");
1390 Assert(doFillOuter
);
1392 if (!node
->mj_MatchedOuter
)
1395 * Generate a fake join tuple with nulls for the inner
1396 * tuple, and return it if it passes the non-join quals.
1398 TupleTableSlot
*result
;
1400 node
->mj_MatchedOuter
= true; /* do it only once */
1402 result
= MJFillOuter(node
);
1408 * now we get the next outer tuple, if any
1410 outerTupleSlot
= ExecProcNode(outerPlan
);
1411 node
->mj_OuterTupleSlot
= outerTupleSlot
;
1412 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
1413 node
->mj_MatchedOuter
= false;
1415 if (TupIsNull(outerTupleSlot
))
1417 MJ_printf("ExecMergeJoin: end of outer subplan\n");
1421 /* Else remain in ENDINNER state and process next tuple. */
1425 * broken state value?
1428 elog(ERROR
, "unrecognized mergejoin state: %d",
1429 (int) node
->mj_JoinState
);
1434 /* ----------------------------------------------------------------
1436 * ----------------------------------------------------------------
1439 ExecInitMergeJoin(MergeJoin
*node
, EState
*estate
, int eflags
)
1441 MergeJoinState
*mergestate
;
1442 TupleDesc outerDesc
,
1444 const TupleTableSlotOps
*innerOps
;
1446 /* check for unsupported flags */
1447 Assert(!(eflags
& (EXEC_FLAG_BACKWARD
| EXEC_FLAG_MARK
)));
1449 MJ1_printf("ExecInitMergeJoin: %s\n",
1450 "initializing node");
1453 * create state structure
1455 mergestate
= makeNode(MergeJoinState
);
1456 mergestate
->js
.ps
.plan
= (Plan
*) node
;
1457 mergestate
->js
.ps
.state
= estate
;
1458 mergestate
->js
.ps
.ExecProcNode
= ExecMergeJoin
;
1459 mergestate
->js
.jointype
= node
->join
.jointype
;
1460 mergestate
->mj_ConstFalseJoin
= false;
1463 * Miscellaneous initialization
1465 * create expression context for node
1467 ExecAssignExprContext(estate
, &mergestate
->js
.ps
);
1470 * we need two additional econtexts in which we can compute the join
1471 * expressions from the left and right input tuples. The node's regular
1472 * econtext won't do because it gets reset too often.
1474 mergestate
->mj_OuterEContext
= CreateExprContext(estate
);
1475 mergestate
->mj_InnerEContext
= CreateExprContext(estate
);
1478 * initialize child nodes
1480 * inner child must support MARK/RESTORE, unless we have detected that we
1481 * don't need that. Note that skip_mark_restore must never be set if
1482 * there are non-mergeclause joinquals, since the logic wouldn't work.
1484 Assert(node
->join
.joinqual
== NIL
|| !node
->skip_mark_restore
);
1485 mergestate
->mj_SkipMarkRestore
= node
->skip_mark_restore
;
1487 outerPlanState(mergestate
) = ExecInitNode(outerPlan(node
), estate
, eflags
);
1488 outerDesc
= ExecGetResultType(outerPlanState(mergestate
));
1489 innerPlanState(mergestate
) = ExecInitNode(innerPlan(node
), estate
,
1490 mergestate
->mj_SkipMarkRestore
?
1492 (eflags
| EXEC_FLAG_MARK
));
1493 innerDesc
= ExecGetResultType(innerPlanState(mergestate
));
1496 * For certain types of inner child nodes, it is advantageous to issue
1497 * MARK every time we advance past an inner tuple we will never return to.
1498 * For other types, MARK on a tuple we cannot return to is a waste of
1499 * cycles. Detect which case applies and set mj_ExtraMarks if we want to
1500 * issue "unnecessary" MARK calls.
1502 * Currently, only Material wants the extra MARKs, and it will be helpful
1503 * only if eflags doesn't specify REWIND.
1505 * Note that for IndexScan and IndexOnlyScan, it is *necessary* that we
1506 * not set mj_ExtraMarks; otherwise we might attempt to set a mark before
1507 * the first inner tuple, which they do not support.
1509 if (IsA(innerPlan(node
), Material
) &&
1510 (eflags
& EXEC_FLAG_REWIND
) == 0 &&
1511 !mergestate
->mj_SkipMarkRestore
)
1512 mergestate
->mj_ExtraMarks
= true;
1514 mergestate
->mj_ExtraMarks
= false;
1517 * Initialize result slot, type and projection.
1519 ExecInitResultTupleSlotTL(&mergestate
->js
.ps
, &TTSOpsVirtual
);
1520 ExecAssignProjectionInfo(&mergestate
->js
.ps
, NULL
);
1523 * tuple table initialization
1525 innerOps
= ExecGetResultSlotOps(innerPlanState(mergestate
), NULL
);
1526 mergestate
->mj_MarkedTupleSlot
= ExecInitExtraTupleSlot(estate
, innerDesc
,
1530 * initialize child expressions
1532 mergestate
->js
.ps
.qual
=
1533 ExecInitQual(node
->join
.plan
.qual
, (PlanState
*) mergestate
);
1534 mergestate
->js
.joinqual
=
1535 ExecInitQual(node
->join
.joinqual
, (PlanState
*) mergestate
);
1536 /* mergeclauses are handled below */
1539 * detect whether we need only consider the first matching inner tuple
1541 mergestate
->js
.single_match
= (node
->join
.inner_unique
||
1542 node
->join
.jointype
== JOIN_SEMI
);
1544 /* set up null tuples for outer joins, if needed */
1545 switch (node
->join
.jointype
)
1549 mergestate
->mj_FillOuter
= false;
1550 mergestate
->mj_FillInner
= false;
1554 mergestate
->mj_FillOuter
= true;
1555 mergestate
->mj_FillInner
= false;
1556 mergestate
->mj_NullInnerTupleSlot
=
1557 ExecInitNullTupleSlot(estate
, innerDesc
, &TTSOpsVirtual
);
1560 case JOIN_RIGHT_ANTI
:
1561 mergestate
->mj_FillOuter
= false;
1562 mergestate
->mj_FillInner
= true;
1563 mergestate
->mj_NullOuterTupleSlot
=
1564 ExecInitNullTupleSlot(estate
, outerDesc
, &TTSOpsVirtual
);
1567 * Can't handle right, right-anti or full join with non-constant
1568 * extra joinclauses. This should have been caught by planner.
1570 if (!check_constant_qual(node
->join
.joinqual
,
1571 &mergestate
->mj_ConstFalseJoin
))
1573 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1574 errmsg("RIGHT JOIN is only supported with merge-joinable join conditions")));
1577 mergestate
->mj_FillOuter
= true;
1578 mergestate
->mj_FillInner
= true;
1579 mergestate
->mj_NullOuterTupleSlot
=
1580 ExecInitNullTupleSlot(estate
, outerDesc
, &TTSOpsVirtual
);
1581 mergestate
->mj_NullInnerTupleSlot
=
1582 ExecInitNullTupleSlot(estate
, innerDesc
, &TTSOpsVirtual
);
1585 * Can't handle right, right-anti or full join with non-constant
1586 * extra joinclauses. This should have been caught by planner.
1588 if (!check_constant_qual(node
->join
.joinqual
,
1589 &mergestate
->mj_ConstFalseJoin
))
1591 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1592 errmsg("FULL JOIN is only supported with merge-joinable join conditions")));
1595 elog(ERROR
, "unrecognized join type: %d",
1596 (int) node
->join
.jointype
);
1600 * preprocess the merge clauses
1602 mergestate
->mj_NumClauses
= list_length(node
->mergeclauses
);
1603 mergestate
->mj_Clauses
= MJExamineQuals(node
->mergeclauses
,
1604 node
->mergeFamilies
,
1605 node
->mergeCollations
,
1606 node
->mergeReversals
,
1607 node
->mergeNullsFirst
,
1608 (PlanState
*) mergestate
);
1611 * initialize join state
1613 mergestate
->mj_JoinState
= EXEC_MJ_INITIALIZE_OUTER
;
1614 mergestate
->mj_MatchedOuter
= false;
1615 mergestate
->mj_MatchedInner
= false;
1616 mergestate
->mj_OuterTupleSlot
= NULL
;
1617 mergestate
->mj_InnerTupleSlot
= NULL
;
1620 * initialization successful
1622 MJ1_printf("ExecInitMergeJoin: %s\n",
1623 "node initialized");
1628 /* ----------------------------------------------------------------
1632 * frees storage allocated through C routines.
1633 * ----------------------------------------------------------------
1636 ExecEndMergeJoin(MergeJoinState
*node
)
1638 MJ1_printf("ExecEndMergeJoin: %s\n",
1639 "ending node processing");
1642 * shut down the subplans
1644 ExecEndNode(innerPlanState(node
));
1645 ExecEndNode(outerPlanState(node
));
1647 MJ1_printf("ExecEndMergeJoin: %s\n",
1648 "node processing ended");
1652 ExecReScanMergeJoin(MergeJoinState
*node
)
1654 PlanState
*outerPlan
= outerPlanState(node
);
1655 PlanState
*innerPlan
= innerPlanState(node
);
1657 ExecClearTuple(node
->mj_MarkedTupleSlot
);
1659 node
->mj_JoinState
= EXEC_MJ_INITIALIZE_OUTER
;
1660 node
->mj_MatchedOuter
= false;
1661 node
->mj_MatchedInner
= false;
1662 node
->mj_OuterTupleSlot
= NULL
;
1663 node
->mj_InnerTupleSlot
= NULL
;
1666 * if chgParam of subnodes is not null then plans will be re-scanned by
1667 * first ExecProcNode.
1669 if (outerPlan
->chgParam
== NULL
)
1670 ExecReScan(outerPlan
);
1671 if (innerPlan
->chgParam
== NULL
)
1672 ExecReScan(innerPlan
);