nbtree: fix read page recheck typo.
[pgsql.git] / src / backend / executor / nodeSetOp.c
bloba8ac68b4826012dc9965b17ded06bda7bc4d8f52
1 /*-------------------------------------------------------------------------
3 * nodeSetOp.c
4 * Routines to handle INTERSECT and EXCEPT selection
6 * The input of a SetOp node consists of tuples from two relations,
7 * which have been combined into one dataset, with a junk attribute added
8 * that shows which relation each tuple came from. In SETOP_SORTED mode,
9 * the input has furthermore been sorted according to all the grouping
10 * columns (ie, all the non-junk attributes). The SetOp node scans each
11 * group of identical tuples to determine how many came from each input
12 * relation. Then it is a simple matter to emit the output demanded by the
13 * SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL.
15 * In SETOP_HASHED mode, the input is delivered in no particular order,
16 * except that we know all the tuples from one input relation will come before
17 * all the tuples of the other. The planner guarantees that the first input
18 * relation is the left-hand one for EXCEPT, and tries to make the smaller
19 * input relation come first for INTERSECT. We build a hash table in memory
20 * with one entry for each group of identical tuples, and count the number of
21 * tuples in the group from each relation. After seeing all the input, we
22 * scan the hashtable and generate the correct output using those counts.
23 * We can avoid making hashtable entries for any tuples appearing only in the
24 * second input relation, since they cannot result in any output.
26 * This node type is not used for UNION or UNION ALL, since those can be
27 * implemented more cheaply (there's no need for the junk attribute to
28 * identify the source relation).
30 * Note that SetOp does no qual checking nor projection. The delivered
31 * output tuples are just copies of the first-to-arrive tuple in each
32 * input group.
35 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
36 * Portions Copyright (c) 1994, Regents of the University of California
39 * IDENTIFICATION
40 * src/backend/executor/nodeSetOp.c
42 *-------------------------------------------------------------------------
45 #include "postgres.h"
47 #include "access/htup_details.h"
48 #include "executor/executor.h"
49 #include "executor/nodeSetOp.h"
50 #include "miscadmin.h"
51 #include "utils/memutils.h"
55 * SetOpStatePerGroupData - per-group working state
57 * These values are working state that is initialized at the start of
58 * an input tuple group and updated for each input tuple.
60 * In SETOP_SORTED mode, we need only one of these structs, and it's kept in
61 * the plan state node. In SETOP_HASHED mode, the hash table contains one
62 * of these for each tuple group.
64 typedef struct SetOpStatePerGroupData
66 long numLeft; /* number of left-input dups in group */
67 long numRight; /* number of right-input dups in group */
68 } SetOpStatePerGroupData;
71 static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate);
72 static void setop_fill_hash_table(SetOpState *setopstate);
73 static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);
77 * Initialize state for a new group of input values.
79 static inline void
80 initialize_counts(SetOpStatePerGroup pergroup)
82 pergroup->numLeft = pergroup->numRight = 0;
86 * Advance the appropriate counter for one input tuple.
88 static inline void
89 advance_counts(SetOpStatePerGroup pergroup, int flag)
91 if (flag)
92 pergroup->numRight++;
93 else
94 pergroup->numLeft++;
98 * Fetch the "flag" column from an input tuple.
99 * This is an integer column with value 0 for left side, 1 for right side.
101 static int
102 fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot)
104 SetOp *node = (SetOp *) setopstate->ps.plan;
105 int flag;
106 bool isNull;
108 flag = DatumGetInt32(slot_getattr(inputslot,
109 node->flagColIdx,
110 &isNull));
111 Assert(!isNull);
112 Assert(flag == 0 || flag == 1);
113 return flag;
117 * Initialize the hash table to empty.
119 static void
120 build_hash_table(SetOpState *setopstate)
122 SetOp *node = (SetOp *) setopstate->ps.plan;
123 ExprContext *econtext = setopstate->ps.ps_ExprContext;
124 TupleDesc desc = ExecGetResultType(outerPlanState(setopstate));
126 Assert(node->strategy == SETOP_HASHED);
127 Assert(node->numGroups > 0);
129 setopstate->hashtable = BuildTupleHashTableExt(&setopstate->ps,
130 desc,
131 node->numCols,
132 node->dupColIdx,
133 setopstate->eqfuncoids,
134 setopstate->hashfunctions,
135 node->dupCollations,
136 node->numGroups,
138 setopstate->ps.state->es_query_cxt,
139 setopstate->tableContext,
140 econtext->ecxt_per_tuple_memory,
141 false);
145 * We've completed processing a tuple group. Decide how many copies (if any)
146 * of its representative row to emit, and store the count into numOutput.
147 * This logic is straight from the SQL92 specification.
149 static void
150 set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup)
152 SetOp *plannode = (SetOp *) setopstate->ps.plan;
154 switch (plannode->cmd)
156 case SETOPCMD_INTERSECT:
157 if (pergroup->numLeft > 0 && pergroup->numRight > 0)
158 setopstate->numOutput = 1;
159 else
160 setopstate->numOutput = 0;
161 break;
162 case SETOPCMD_INTERSECT_ALL:
163 setopstate->numOutput =
164 (pergroup->numLeft < pergroup->numRight) ?
165 pergroup->numLeft : pergroup->numRight;
166 break;
167 case SETOPCMD_EXCEPT:
168 if (pergroup->numLeft > 0 && pergroup->numRight == 0)
169 setopstate->numOutput = 1;
170 else
171 setopstate->numOutput = 0;
172 break;
173 case SETOPCMD_EXCEPT_ALL:
174 setopstate->numOutput =
175 (pergroup->numLeft < pergroup->numRight) ?
176 0 : (pergroup->numLeft - pergroup->numRight);
177 break;
178 default:
179 elog(ERROR, "unrecognized set op: %d", (int) plannode->cmd);
180 break;
185 /* ----------------------------------------------------------------
186 * ExecSetOp
187 * ----------------------------------------------------------------
189 static TupleTableSlot * /* return: a tuple or NULL */
190 ExecSetOp(PlanState *pstate)
192 SetOpState *node = castNode(SetOpState, pstate);
193 SetOp *plannode = (SetOp *) node->ps.plan;
194 TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot;
196 CHECK_FOR_INTERRUPTS();
199 * If the previously-returned tuple needs to be returned more than once,
200 * keep returning it.
202 if (node->numOutput > 0)
204 node->numOutput--;
205 return resultTupleSlot;
208 /* Otherwise, we're done if we are out of groups */
209 if (node->setop_done)
210 return NULL;
212 /* Fetch the next tuple group according to the correct strategy */
213 if (plannode->strategy == SETOP_HASHED)
215 if (!node->table_filled)
216 setop_fill_hash_table(node);
217 return setop_retrieve_hash_table(node);
219 else
220 return setop_retrieve_direct(node);
224 * ExecSetOp for non-hashed case
226 static TupleTableSlot *
227 setop_retrieve_direct(SetOpState *setopstate)
229 PlanState *outerPlan;
230 SetOpStatePerGroup pergroup;
231 TupleTableSlot *outerslot;
232 TupleTableSlot *resultTupleSlot;
233 ExprContext *econtext = setopstate->ps.ps_ExprContext;
236 * get state info from node
238 outerPlan = outerPlanState(setopstate);
239 pergroup = (SetOpStatePerGroup) setopstate->pergroup;
240 resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
243 * We loop retrieving groups until we find one we should return
245 while (!setopstate->setop_done)
248 * If we don't already have the first tuple of the new group, fetch it
249 * from the outer plan.
251 if (setopstate->grp_firstTuple == NULL)
253 outerslot = ExecProcNode(outerPlan);
254 if (!TupIsNull(outerslot))
256 /* Make a copy of the first input tuple */
257 setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
259 else
261 /* outer plan produced no tuples at all */
262 setopstate->setop_done = true;
263 return NULL;
268 * Store the copied first input tuple in the tuple table slot reserved
269 * for it. The tuple will be deleted when it is cleared from the
270 * slot.
272 ExecStoreHeapTuple(setopstate->grp_firstTuple,
273 resultTupleSlot,
274 true);
275 setopstate->grp_firstTuple = NULL; /* don't keep two pointers */
277 /* Initialize working state for a new input tuple group */
278 initialize_counts(pergroup);
280 /* Count the first input tuple */
281 advance_counts(pergroup,
282 fetch_tuple_flag(setopstate, resultTupleSlot));
285 * Scan the outer plan until we exhaust it or cross a group boundary.
287 for (;;)
289 outerslot = ExecProcNode(outerPlan);
290 if (TupIsNull(outerslot))
292 /* no more outer-plan tuples available */
293 setopstate->setop_done = true;
294 break;
298 * Check whether we've crossed a group boundary.
300 econtext->ecxt_outertuple = resultTupleSlot;
301 econtext->ecxt_innertuple = outerslot;
303 if (!ExecQualAndReset(setopstate->eqfunction, econtext))
306 * Save the first input tuple of the next group.
308 setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
309 break;
312 /* Still in same group, so count this tuple */
313 advance_counts(pergroup,
314 fetch_tuple_flag(setopstate, outerslot));
318 * Done scanning input tuple group. See if we should emit any copies
319 * of result tuple, and if so return the first copy.
321 set_output_count(setopstate, pergroup);
323 if (setopstate->numOutput > 0)
325 setopstate->numOutput--;
326 return resultTupleSlot;
330 /* No more groups */
331 ExecClearTuple(resultTupleSlot);
332 return NULL;
336 * ExecSetOp for hashed case: phase 1, read input and build hash table
338 static void
339 setop_fill_hash_table(SetOpState *setopstate)
341 SetOp *node = (SetOp *) setopstate->ps.plan;
342 PlanState *outerPlan;
343 int firstFlag;
344 bool in_first_rel PG_USED_FOR_ASSERTS_ONLY;
345 ExprContext *econtext = setopstate->ps.ps_ExprContext;
348 * get state info from node
350 outerPlan = outerPlanState(setopstate);
351 firstFlag = node->firstFlag;
352 /* verify planner didn't mess up */
353 Assert(firstFlag == 0 ||
354 (firstFlag == 1 &&
355 (node->cmd == SETOPCMD_INTERSECT ||
356 node->cmd == SETOPCMD_INTERSECT_ALL)));
359 * Process each outer-plan tuple, and then fetch the next one, until we
360 * exhaust the outer plan.
362 in_first_rel = true;
363 for (;;)
365 TupleTableSlot *outerslot;
366 int flag;
367 TupleHashEntryData *entry;
368 bool isnew;
370 outerslot = ExecProcNode(outerPlan);
371 if (TupIsNull(outerslot))
372 break;
374 /* Identify whether it's left or right input */
375 flag = fetch_tuple_flag(setopstate, outerslot);
377 if (flag == firstFlag)
379 /* (still) in first input relation */
380 Assert(in_first_rel);
382 /* Find or build hashtable entry for this tuple's group */
383 entry = LookupTupleHashEntry(setopstate->hashtable, outerslot,
384 &isnew, NULL);
386 /* If new tuple group, initialize counts */
387 if (isnew)
389 entry->additional = (SetOpStatePerGroup)
390 MemoryContextAlloc(setopstate->hashtable->tablecxt,
391 sizeof(SetOpStatePerGroupData));
392 initialize_counts((SetOpStatePerGroup) entry->additional);
395 /* Advance the counts */
396 advance_counts((SetOpStatePerGroup) entry->additional, flag);
398 else
400 /* reached second relation */
401 in_first_rel = false;
403 /* For tuples not seen previously, do not make hashtable entry */
404 entry = LookupTupleHashEntry(setopstate->hashtable, outerslot,
405 NULL, NULL);
407 /* Advance the counts if entry is already present */
408 if (entry)
409 advance_counts((SetOpStatePerGroup) entry->additional, flag);
412 /* Must reset expression context after each hashtable lookup */
413 ResetExprContext(econtext);
416 setopstate->table_filled = true;
417 /* Initialize to walk the hash table */
418 ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter);
422 * ExecSetOp for hashed case: phase 2, retrieving groups from hash table
424 static TupleTableSlot *
425 setop_retrieve_hash_table(SetOpState *setopstate)
427 TupleHashEntryData *entry;
428 TupleTableSlot *resultTupleSlot;
431 * get state info from node
433 resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
436 * We loop retrieving groups until we find one we should return
438 while (!setopstate->setop_done)
440 CHECK_FOR_INTERRUPTS();
443 * Find the next entry in the hash table
445 entry = ScanTupleHashTable(setopstate->hashtable, &setopstate->hashiter);
446 if (entry == NULL)
448 /* No more entries in hashtable, so done */
449 setopstate->setop_done = true;
450 return NULL;
454 * See if we should emit any copies of this tuple, and if so return
455 * the first copy.
457 set_output_count(setopstate, (SetOpStatePerGroup) entry->additional);
459 if (setopstate->numOutput > 0)
461 setopstate->numOutput--;
462 return ExecStoreMinimalTuple(entry->firstTuple,
463 resultTupleSlot,
464 false);
468 /* No more groups */
469 ExecClearTuple(resultTupleSlot);
470 return NULL;
473 /* ----------------------------------------------------------------
474 * ExecInitSetOp
476 * This initializes the setop node state structures and
477 * the node's subplan.
478 * ----------------------------------------------------------------
480 SetOpState *
481 ExecInitSetOp(SetOp *node, EState *estate, int eflags)
483 SetOpState *setopstate;
484 TupleDesc outerDesc;
486 /* check for unsupported flags */
487 Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
490 * create state structure
492 setopstate = makeNode(SetOpState);
493 setopstate->ps.plan = (Plan *) node;
494 setopstate->ps.state = estate;
495 setopstate->ps.ExecProcNode = ExecSetOp;
497 setopstate->eqfuncoids = NULL;
498 setopstate->hashfunctions = NULL;
499 setopstate->setop_done = false;
500 setopstate->numOutput = 0;
501 setopstate->pergroup = NULL;
502 setopstate->grp_firstTuple = NULL;
503 setopstate->hashtable = NULL;
504 setopstate->tableContext = NULL;
507 * create expression context
509 ExecAssignExprContext(estate, &setopstate->ps);
512 * If hashing, we also need a longer-lived context to store the hash
513 * table. The table can't just be kept in the per-query context because
514 * we want to be able to throw it away in ExecReScanSetOp.
516 if (node->strategy == SETOP_HASHED)
517 setopstate->tableContext =
518 AllocSetContextCreate(CurrentMemoryContext,
519 "SetOp hash table",
520 ALLOCSET_DEFAULT_SIZES);
523 * initialize child nodes
525 * If we are hashing then the child plan does not need to handle REWIND
526 * efficiently; see ExecReScanSetOp.
528 if (node->strategy == SETOP_HASHED)
529 eflags &= ~EXEC_FLAG_REWIND;
530 outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags);
531 outerDesc = ExecGetResultType(outerPlanState(setopstate));
534 * Initialize result slot and type. Setop nodes do no projections, so
535 * initialize projection info for this node appropriately.
537 ExecInitResultTupleSlotTL(&setopstate->ps,
538 node->strategy == SETOP_HASHED ?
539 &TTSOpsMinimalTuple : &TTSOpsHeapTuple);
540 setopstate->ps.ps_ProjInfo = NULL;
543 * Precompute fmgr lookup data for inner loop. We need both equality and
544 * hashing functions to do it by hashing, but only equality if not
545 * hashing.
547 if (node->strategy == SETOP_HASHED)
548 execTuplesHashPrepare(node->numCols,
549 node->dupOperators,
550 &setopstate->eqfuncoids,
551 &setopstate->hashfunctions);
552 else
553 setopstate->eqfunction =
554 execTuplesMatchPrepare(outerDesc,
555 node->numCols,
556 node->dupColIdx,
557 node->dupOperators,
558 node->dupCollations,
559 &setopstate->ps);
561 if (node->strategy == SETOP_HASHED)
563 build_hash_table(setopstate);
564 setopstate->table_filled = false;
566 else
568 setopstate->pergroup =
569 (SetOpStatePerGroup) palloc0(sizeof(SetOpStatePerGroupData));
572 return setopstate;
575 /* ----------------------------------------------------------------
576 * ExecEndSetOp
578 * This shuts down the subplan and frees resources allocated
579 * to this node.
580 * ----------------------------------------------------------------
582 void
583 ExecEndSetOp(SetOpState *node)
585 /* free subsidiary stuff including hashtable */
586 if (node->tableContext)
587 MemoryContextDelete(node->tableContext);
589 ExecEndNode(outerPlanState(node));
593 void
594 ExecReScanSetOp(SetOpState *node)
596 PlanState *outerPlan = outerPlanState(node);
598 ExecClearTuple(node->ps.ps_ResultTupleSlot);
599 node->setop_done = false;
600 node->numOutput = 0;
602 if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
605 * In the hashed case, if we haven't yet built the hash table then we
606 * can just return; nothing done yet, so nothing to undo. If subnode's
607 * chgParam is not NULL then it will be re-scanned by ExecProcNode,
608 * else no reason to re-scan it at all.
610 if (!node->table_filled)
611 return;
614 * If we do have the hash table and the subplan does not have any
615 * parameter changes, then we can just rescan the existing hash table;
616 * no need to build it again.
618 if (outerPlan->chgParam == NULL)
620 ResetTupleHashIterator(node->hashtable, &node->hashiter);
621 return;
625 /* Release first tuple of group, if we have made a copy */
626 if (node->grp_firstTuple != NULL)
628 heap_freetuple(node->grp_firstTuple);
629 node->grp_firstTuple = NULL;
632 /* Release any hashtable storage */
633 if (node->tableContext)
634 MemoryContextReset(node->tableContext);
636 /* And rebuild empty hashtable if needed */
637 if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
639 ResetTupleHashTable(node->hashtable);
640 node->table_filled = false;
644 * if chgParam of subnode is not null then plan will be re-scanned by
645 * first ExecProcNode.
647 if (outerPlan->chgParam == NULL)
648 ExecReScan(outerPlan);