nbtree: fix read page recheck typo.
[pgsql.git] / src / backend / statistics / dependencies.c
blob8d01a93b309673e38e2599dbffdc97d70502c3f9
1 /*-------------------------------------------------------------------------
3 * dependencies.c
4 * POSTGRES functional dependencies
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
9 * IDENTIFICATION
10 * src/backend/statistics/dependencies.c
12 *-------------------------------------------------------------------------
14 #include "postgres.h"
16 #include "access/htup_details.h"
17 #include "catalog/pg_statistic_ext.h"
18 #include "catalog/pg_statistic_ext_data.h"
19 #include "lib/stringinfo.h"
20 #include "nodes/nodeFuncs.h"
21 #include "nodes/nodes.h"
22 #include "nodes/pathnodes.h"
23 #include "optimizer/clauses.h"
24 #include "optimizer/optimizer.h"
25 #include "parser/parsetree.h"
26 #include "statistics/extended_stats_internal.h"
27 #include "statistics/statistics.h"
28 #include "utils/fmgroids.h"
29 #include "utils/fmgrprotos.h"
30 #include "utils/lsyscache.h"
31 #include "utils/memutils.h"
32 #include "utils/selfuncs.h"
33 #include "utils/syscache.h"
34 #include "utils/typcache.h"
35 #include "varatt.h"
37 /* size of the struct header fields (magic, type, ndeps) */
38 #define SizeOfHeader (3 * sizeof(uint32))
40 /* size of a serialized dependency (degree, natts, atts) */
41 #define SizeOfItem(natts) \
42 (sizeof(double) + sizeof(AttrNumber) * (1 + (natts)))
44 /* minimal size of a dependency (with two attributes) */
45 #define MinSizeOfItem SizeOfItem(2)
47 /* minimal size of dependencies, when all deps are minimal */
48 #define MinSizeOfItems(ndeps) \
49 (SizeOfHeader + (ndeps) * MinSizeOfItem)
52 * Internal state for DependencyGenerator of dependencies. Dependencies are similar to
53 * k-permutations of n elements, except that the order does not matter for the
54 * first (k-1) elements. That is, (a,b=>c) and (b,a=>c) are equivalent.
56 typedef struct DependencyGeneratorData
58 int k; /* size of the dependency */
59 int n; /* number of possible attributes */
60 int current; /* next dependency to return (index) */
61 AttrNumber ndependencies; /* number of dependencies generated */
62 AttrNumber *dependencies; /* array of pre-generated dependencies */
63 } DependencyGeneratorData;
65 typedef DependencyGeneratorData *DependencyGenerator;
67 static void generate_dependencies_recurse(DependencyGenerator state,
68 int index, AttrNumber start, AttrNumber *current);
69 static void generate_dependencies(DependencyGenerator state);
70 static DependencyGenerator DependencyGenerator_init(int n, int k);
71 static void DependencyGenerator_free(DependencyGenerator state);
72 static AttrNumber *DependencyGenerator_next(DependencyGenerator state);
73 static double dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency);
74 static bool dependency_is_fully_matched(MVDependency *dependency,
75 Bitmapset *attnums);
76 static bool dependency_is_compatible_clause(Node *clause, Index relid,
77 AttrNumber *attnum);
78 static bool dependency_is_compatible_expression(Node *clause, Index relid,
79 List *statlist, Node **expr);
80 static MVDependency *find_strongest_dependency(MVDependencies **dependencies,
81 int ndependencies, Bitmapset *attnums);
82 static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
83 int varRelid, JoinType jointype,
84 SpecialJoinInfo *sjinfo,
85 MVDependency **dependencies,
86 int ndependencies,
87 AttrNumber *list_attnums,
88 Bitmapset **estimatedclauses);
90 static void
91 generate_dependencies_recurse(DependencyGenerator state, int index,
92 AttrNumber start, AttrNumber *current)
95 * The generator handles the first (k-1) elements differently from the
96 * last element.
98 if (index < (state->k - 1))
100 AttrNumber i;
103 * The first (k-1) values have to be in ascending order, which we
104 * generate recursively.
107 for (i = start; i < state->n; i++)
109 current[index] = i;
110 generate_dependencies_recurse(state, (index + 1), (i + 1), current);
113 else
115 int i;
118 * the last element is the implied value, which does not respect the
119 * ascending order. We just need to check that the value is not in the
120 * first (k-1) elements.
123 for (i = 0; i < state->n; i++)
125 int j;
126 bool match = false;
128 current[index] = i;
130 for (j = 0; j < index; j++)
132 if (current[j] == i)
134 match = true;
135 break;
140 * If the value is not found in the first part of the dependency,
141 * we're done.
143 if (!match)
145 state->dependencies = (AttrNumber *) repalloc(state->dependencies,
146 state->k * (state->ndependencies + 1) * sizeof(AttrNumber));
147 memcpy(&state->dependencies[(state->k * state->ndependencies)],
148 current, state->k * sizeof(AttrNumber));
149 state->ndependencies++;
155 /* generate all dependencies (k-permutations of n elements) */
156 static void
157 generate_dependencies(DependencyGenerator state)
159 AttrNumber *current = (AttrNumber *) palloc0(sizeof(AttrNumber) * state->k);
161 generate_dependencies_recurse(state, 0, 0, current);
163 pfree(current);
167 * initialize the DependencyGenerator of variations, and prebuild the variations
169 * This pre-builds all the variations. We could also generate them in
170 * DependencyGenerator_next(), but this seems simpler.
172 static DependencyGenerator
173 DependencyGenerator_init(int n, int k)
175 DependencyGenerator state;
177 Assert((n >= k) && (k > 0));
179 /* allocate the DependencyGenerator state */
180 state = (DependencyGenerator) palloc0(sizeof(DependencyGeneratorData));
181 state->dependencies = (AttrNumber *) palloc(k * sizeof(AttrNumber));
183 state->ndependencies = 0;
184 state->current = 0;
185 state->k = k;
186 state->n = n;
188 /* now actually pre-generate all the variations */
189 generate_dependencies(state);
191 return state;
194 /* free the DependencyGenerator state */
195 static void
196 DependencyGenerator_free(DependencyGenerator state)
198 pfree(state->dependencies);
199 pfree(state);
202 /* generate next combination */
203 static AttrNumber *
204 DependencyGenerator_next(DependencyGenerator state)
206 if (state->current == state->ndependencies)
207 return NULL;
209 return &state->dependencies[state->k * state->current++];
214 * validates functional dependency on the data
216 * An actual work horse of detecting functional dependencies. Given a variation
217 * of k attributes, it checks that the first (k-1) are sufficient to determine
218 * the last one.
220 static double
221 dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency)
223 int i,
224 nitems;
225 MultiSortSupport mss;
226 SortItem *items;
227 AttrNumber *attnums_dep;
229 /* counters valid within a group */
230 int group_size = 0;
231 int n_violations = 0;
233 /* total number of rows supporting (consistent with) the dependency */
234 int n_supporting_rows = 0;
236 /* Make sure we have at least two input attributes. */
237 Assert(k >= 2);
239 /* sort info for all attributes columns */
240 mss = multi_sort_init(k);
243 * Translate the array of indexes to regular attnums for the dependency
244 * (we will need this to identify the columns in StatsBuildData).
246 attnums_dep = (AttrNumber *) palloc(k * sizeof(AttrNumber));
247 for (i = 0; i < k; i++)
248 attnums_dep[i] = data->attnums[dependency[i]];
251 * Verify the dependency (a,b,...)->z, using a rather simple algorithm:
253 * (a) sort the data lexicographically
255 * (b) split the data into groups by first (k-1) columns
257 * (c) for each group count different values in the last column
259 * We use the column data types' default sort operators and collations;
260 * perhaps at some point it'd be worth using column-specific collations?
263 /* prepare the sort function for the dimensions */
264 for (i = 0; i < k; i++)
266 VacAttrStats *colstat = data->stats[dependency[i]];
267 TypeCacheEntry *type;
269 type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
270 if (type->lt_opr == InvalidOid) /* shouldn't happen */
271 elog(ERROR, "cache lookup failed for ordering operator for type %u",
272 colstat->attrtypid);
274 /* prepare the sort function for this dimension */
275 multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
279 * build an array of SortItem(s) sorted using the multi-sort support
281 * XXX This relies on all stats entries pointing to the same tuple
282 * descriptor. For now that assumption holds, but it might change in the
283 * future for example if we support statistics on multiple tables.
285 items = build_sorted_items(data, &nitems, mss, k, attnums_dep);
288 * Walk through the sorted array, split it into rows according to the
289 * first (k-1) columns. If there's a single value in the last column, we
290 * count the group as 'supporting' the functional dependency. Otherwise we
291 * count it as contradicting.
294 /* start with the first row forming a group */
295 group_size = 1;
297 /* loop 1 beyond the end of the array so that we count the final group */
298 for (i = 1; i <= nitems; i++)
301 * Check if the group ended, which may be either because we processed
302 * all the items (i==nitems), or because the i-th item is not equal to
303 * the preceding one.
305 if (i == nitems ||
306 multi_sort_compare_dims(0, k - 2, &items[i - 1], &items[i], mss) != 0)
309 * If no violations were found in the group then track the rows of
310 * the group as supporting the functional dependency.
312 if (n_violations == 0)
313 n_supporting_rows += group_size;
315 /* Reset counters for the new group */
316 n_violations = 0;
317 group_size = 1;
318 continue;
320 /* first columns match, but the last one does not (so contradicting) */
321 else if (multi_sort_compare_dim(k - 1, &items[i - 1], &items[i], mss) != 0)
322 n_violations++;
324 group_size++;
327 /* Compute the 'degree of validity' as (supporting/total). */
328 return (n_supporting_rows * 1.0 / data->numrows);
332 * detects functional dependencies between groups of columns
334 * Generates all possible subsets of columns (variations) and computes
335 * the degree of validity for each one. For example when creating statistics
336 * on three columns (a,b,c) there are 9 possible dependencies
338 * two columns three columns
339 * ----------- -------------
340 * (a) -> b (a,b) -> c
341 * (a) -> c (a,c) -> b
342 * (b) -> a (b,c) -> a
343 * (b) -> c
344 * (c) -> a
345 * (c) -> b
347 MVDependencies *
348 statext_dependencies_build(StatsBuildData *data)
350 int i,
353 /* result */
354 MVDependencies *dependencies = NULL;
355 MemoryContext cxt;
357 Assert(data->nattnums >= 2);
359 /* tracks memory allocated by dependency_degree calls */
360 cxt = AllocSetContextCreate(CurrentMemoryContext,
361 "dependency_degree cxt",
362 ALLOCSET_DEFAULT_SIZES);
365 * We'll try build functional dependencies starting from the smallest ones
366 * covering just 2 columns, to the largest ones, covering all columns
367 * included in the statistics object. We start from the smallest ones
368 * because we want to be able to skip already implied ones.
370 for (k = 2; k <= data->nattnums; k++)
372 AttrNumber *dependency; /* array with k elements */
374 /* prepare a DependencyGenerator of variation */
375 DependencyGenerator DependencyGenerator = DependencyGenerator_init(data->nattnums, k);
377 /* generate all possible variations of k values (out of n) */
378 while ((dependency = DependencyGenerator_next(DependencyGenerator)))
380 double degree;
381 MVDependency *d;
382 MemoryContext oldcxt;
384 /* release memory used by dependency degree calculation */
385 oldcxt = MemoryContextSwitchTo(cxt);
387 /* compute how valid the dependency seems */
388 degree = dependency_degree(data, k, dependency);
390 MemoryContextSwitchTo(oldcxt);
391 MemoryContextReset(cxt);
394 * if the dependency seems entirely invalid, don't store it
396 if (degree == 0.0)
397 continue;
399 d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
400 + k * sizeof(AttrNumber));
402 /* copy the dependency (and keep the indexes into stxkeys) */
403 d->degree = degree;
404 d->nattributes = k;
405 for (i = 0; i < k; i++)
406 d->attributes[i] = data->attnums[dependency[i]];
408 /* initialize the list of dependencies */
409 if (dependencies == NULL)
411 dependencies
412 = (MVDependencies *) palloc0(sizeof(MVDependencies));
414 dependencies->magic = STATS_DEPS_MAGIC;
415 dependencies->type = STATS_DEPS_TYPE_BASIC;
416 dependencies->ndeps = 0;
419 dependencies->ndeps++;
420 dependencies = (MVDependencies *) repalloc(dependencies,
421 offsetof(MVDependencies, deps)
422 + dependencies->ndeps * sizeof(MVDependency *));
424 dependencies->deps[dependencies->ndeps - 1] = d;
428 * we're done with variations of k elements, so free the
429 * DependencyGenerator
431 DependencyGenerator_free(DependencyGenerator);
434 MemoryContextDelete(cxt);
436 return dependencies;
441 * Serialize list of dependencies into a bytea value.
443 bytea *
444 statext_dependencies_serialize(MVDependencies *dependencies)
446 int i;
447 bytea *output;
448 char *tmp;
449 Size len;
451 /* we need to store ndeps, with a number of attributes for each one */
452 len = VARHDRSZ + SizeOfHeader;
454 /* and also include space for the actual attribute numbers and degrees */
455 for (i = 0; i < dependencies->ndeps; i++)
456 len += SizeOfItem(dependencies->deps[i]->nattributes);
458 output = (bytea *) palloc0(len);
459 SET_VARSIZE(output, len);
461 tmp = VARDATA(output);
463 /* Store the base struct values (magic, type, ndeps) */
464 memcpy(tmp, &dependencies->magic, sizeof(uint32));
465 tmp += sizeof(uint32);
466 memcpy(tmp, &dependencies->type, sizeof(uint32));
467 tmp += sizeof(uint32);
468 memcpy(tmp, &dependencies->ndeps, sizeof(uint32));
469 tmp += sizeof(uint32);
471 /* store number of attributes and attribute numbers for each dependency */
472 for (i = 0; i < dependencies->ndeps; i++)
474 MVDependency *d = dependencies->deps[i];
476 memcpy(tmp, &d->degree, sizeof(double));
477 tmp += sizeof(double);
479 memcpy(tmp, &d->nattributes, sizeof(AttrNumber));
480 tmp += sizeof(AttrNumber);
482 memcpy(tmp, d->attributes, sizeof(AttrNumber) * d->nattributes);
483 tmp += sizeof(AttrNumber) * d->nattributes;
485 /* protect against overflow */
486 Assert(tmp <= ((char *) output + len));
489 /* make sure we've produced exactly the right amount of data */
490 Assert(tmp == ((char *) output + len));
492 return output;
496 * Reads serialized dependencies into MVDependencies structure.
498 MVDependencies *
499 statext_dependencies_deserialize(bytea *data)
501 int i;
502 Size min_expected_size;
503 MVDependencies *dependencies;
504 char *tmp;
506 if (data == NULL)
507 return NULL;
509 if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
510 elog(ERROR, "invalid MVDependencies size %zu (expected at least %zu)",
511 VARSIZE_ANY_EXHDR(data), SizeOfHeader);
513 /* read the MVDependencies header */
514 dependencies = (MVDependencies *) palloc0(sizeof(MVDependencies));
516 /* initialize pointer to the data part (skip the varlena header) */
517 tmp = VARDATA_ANY(data);
519 /* read the header fields and perform basic sanity checks */
520 memcpy(&dependencies->magic, tmp, sizeof(uint32));
521 tmp += sizeof(uint32);
522 memcpy(&dependencies->type, tmp, sizeof(uint32));
523 tmp += sizeof(uint32);
524 memcpy(&dependencies->ndeps, tmp, sizeof(uint32));
525 tmp += sizeof(uint32);
527 if (dependencies->magic != STATS_DEPS_MAGIC)
528 elog(ERROR, "invalid dependency magic %d (expected %d)",
529 dependencies->magic, STATS_DEPS_MAGIC);
531 if (dependencies->type != STATS_DEPS_TYPE_BASIC)
532 elog(ERROR, "invalid dependency type %d (expected %d)",
533 dependencies->type, STATS_DEPS_TYPE_BASIC);
535 if (dependencies->ndeps == 0)
536 elog(ERROR, "invalid zero-length item array in MVDependencies");
538 /* what minimum bytea size do we expect for those parameters */
539 min_expected_size = SizeOfItem(dependencies->ndeps);
541 if (VARSIZE_ANY_EXHDR(data) < min_expected_size)
542 elog(ERROR, "invalid dependencies size %zu (expected at least %zu)",
543 VARSIZE_ANY_EXHDR(data), min_expected_size);
545 /* allocate space for the MCV items */
546 dependencies = repalloc(dependencies, offsetof(MVDependencies, deps)
547 + (dependencies->ndeps * sizeof(MVDependency *)));
549 for (i = 0; i < dependencies->ndeps; i++)
551 double degree;
552 AttrNumber k;
553 MVDependency *d;
555 /* degree of validity */
556 memcpy(&degree, tmp, sizeof(double));
557 tmp += sizeof(double);
559 /* number of attributes */
560 memcpy(&k, tmp, sizeof(AttrNumber));
561 tmp += sizeof(AttrNumber);
563 /* is the number of attributes valid? */
564 Assert((k >= 2) && (k <= STATS_MAX_DIMENSIONS));
566 /* now that we know the number of attributes, allocate the dependency */
567 d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
568 + (k * sizeof(AttrNumber)));
570 d->degree = degree;
571 d->nattributes = k;
573 /* copy attribute numbers */
574 memcpy(d->attributes, tmp, sizeof(AttrNumber) * d->nattributes);
575 tmp += sizeof(AttrNumber) * d->nattributes;
577 dependencies->deps[i] = d;
579 /* still within the bytea */
580 Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
583 /* we should have consumed the whole bytea exactly */
584 Assert(tmp == ((char *) data + VARSIZE_ANY(data)));
586 return dependencies;
590 * dependency_is_fully_matched
591 * checks that a functional dependency is fully matched given clauses on
592 * attributes (assuming the clauses are suitable equality clauses)
594 static bool
595 dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums)
597 int j;
600 * Check that the dependency actually is fully covered by clauses. We have
601 * to translate all attribute numbers, as those are referenced
603 for (j = 0; j < dependency->nattributes; j++)
605 int attnum = dependency->attributes[j];
607 if (!bms_is_member(attnum, attnums))
608 return false;
611 return true;
615 * statext_dependencies_load
616 * Load the functional dependencies for the indicated pg_statistic_ext tuple
618 MVDependencies *
619 statext_dependencies_load(Oid mvoid, bool inh)
621 MVDependencies *result;
622 bool isnull;
623 Datum deps;
624 HeapTuple htup;
626 htup = SearchSysCache2(STATEXTDATASTXOID,
627 ObjectIdGetDatum(mvoid),
628 BoolGetDatum(inh));
629 if (!HeapTupleIsValid(htup))
630 elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
632 deps = SysCacheGetAttr(STATEXTDATASTXOID, htup,
633 Anum_pg_statistic_ext_data_stxddependencies, &isnull);
634 if (isnull)
635 elog(ERROR,
636 "requested statistics kind \"%c\" is not yet built for statistics object %u",
637 STATS_EXT_DEPENDENCIES, mvoid);
639 result = statext_dependencies_deserialize(DatumGetByteaPP(deps));
641 ReleaseSysCache(htup);
643 return result;
647 * pg_dependencies_in - input routine for type pg_dependencies.
649 * pg_dependencies is real enough to be a table column, but it has no operations
650 * of its own, and disallows input too
652 Datum
653 pg_dependencies_in(PG_FUNCTION_ARGS)
656 * pg_node_list stores the data in binary form and parsing text input is
657 * not needed, so disallow this.
659 ereport(ERROR,
660 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
661 errmsg("cannot accept a value of type %s", "pg_dependencies")));
663 PG_RETURN_VOID(); /* keep compiler quiet */
667 * pg_dependencies - output routine for type pg_dependencies.
669 Datum
670 pg_dependencies_out(PG_FUNCTION_ARGS)
672 bytea *data = PG_GETARG_BYTEA_PP(0);
673 MVDependencies *dependencies = statext_dependencies_deserialize(data);
674 int i,
676 StringInfoData str;
678 initStringInfo(&str);
679 appendStringInfoChar(&str, '{');
681 for (i = 0; i < dependencies->ndeps; i++)
683 MVDependency *dependency = dependencies->deps[i];
685 if (i > 0)
686 appendStringInfoString(&str, ", ");
688 appendStringInfoChar(&str, '"');
689 for (j = 0; j < dependency->nattributes; j++)
691 if (j == dependency->nattributes - 1)
692 appendStringInfoString(&str, " => ");
693 else if (j > 0)
694 appendStringInfoString(&str, ", ");
696 appendStringInfo(&str, "%d", dependency->attributes[j]);
698 appendStringInfo(&str, "\": %f", dependency->degree);
701 appendStringInfoChar(&str, '}');
703 PG_RETURN_CSTRING(str.data);
707 * pg_dependencies_recv - binary input routine for type pg_dependencies.
709 Datum
710 pg_dependencies_recv(PG_FUNCTION_ARGS)
712 ereport(ERROR,
713 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
714 errmsg("cannot accept a value of type %s", "pg_dependencies")));
716 PG_RETURN_VOID(); /* keep compiler quiet */
720 * pg_dependencies_send - binary output routine for type pg_dependencies.
722 * Functional dependencies are serialized in a bytea value (although the type
723 * is named differently), so let's just send that.
725 Datum
726 pg_dependencies_send(PG_FUNCTION_ARGS)
728 return byteasend(fcinfo);
732 * dependency_is_compatible_clause
733 * Determines if the clause is compatible with functional dependencies
735 * Only clauses that have the form of equality to a pseudoconstant, or can be
736 * interpreted that way, are currently accepted. Furthermore the variable
737 * part of the clause must be a simple Var belonging to the specified
738 * relation, whose attribute number we return in *attnum on success.
740 static bool
741 dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum)
743 Var *var;
744 Node *clause_expr;
746 if (IsA(clause, RestrictInfo))
748 RestrictInfo *rinfo = (RestrictInfo *) clause;
750 /* Pseudoconstants are not interesting (they couldn't contain a Var) */
751 if (rinfo->pseudoconstant)
752 return false;
754 /* Clauses referencing multiple, or no, varnos are incompatible */
755 if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
756 return false;
758 clause = (Node *) rinfo->clause;
761 if (is_opclause(clause))
763 /* If it's an opclause, check for Var = Const or Const = Var. */
764 OpExpr *expr = (OpExpr *) clause;
766 /* Only expressions with two arguments are candidates. */
767 if (list_length(expr->args) != 2)
768 return false;
770 /* Make sure non-selected argument is a pseudoconstant. */
771 if (is_pseudo_constant_clause(lsecond(expr->args)))
772 clause_expr = linitial(expr->args);
773 else if (is_pseudo_constant_clause(linitial(expr->args)))
774 clause_expr = lsecond(expr->args);
775 else
776 return false;
779 * If it's not an "=" operator, just ignore the clause, as it's not
780 * compatible with functional dependencies.
782 * This uses the function for estimating selectivity, not the operator
783 * directly (a bit awkward, but well ...).
785 * XXX this is pretty dubious; probably it'd be better to check btree
786 * or hash opclass membership, so as not to be fooled by custom
787 * selectivity functions, and to be more consistent with decisions
788 * elsewhere in the planner.
790 if (get_oprrest(expr->opno) != F_EQSEL)
791 return false;
793 /* OK to proceed with checking "var" */
795 else if (IsA(clause, ScalarArrayOpExpr))
797 /* If it's a scalar array operator, check for Var IN Const. */
798 ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
801 * Reject ALL() variant, we only care about ANY/IN.
803 * XXX Maybe we should check if all the values are the same, and allow
804 * ALL in that case? Doesn't seem very practical, though.
806 if (!expr->useOr)
807 return false;
809 /* Only expressions with two arguments are candidates. */
810 if (list_length(expr->args) != 2)
811 return false;
814 * We know it's always (Var IN Const), so we assume the var is the
815 * first argument, and pseudoconstant is the second one.
817 if (!is_pseudo_constant_clause(lsecond(expr->args)))
818 return false;
820 clause_expr = linitial(expr->args);
823 * If it's not an "=" operator, just ignore the clause, as it's not
824 * compatible with functional dependencies. The operator is identified
825 * simply by looking at which function it uses to estimate
826 * selectivity. That's a bit strange, but it's what other similar
827 * places do.
829 if (get_oprrest(expr->opno) != F_EQSEL)
830 return false;
832 /* OK to proceed with checking "var" */
834 else if (is_orclause(clause))
836 BoolExpr *bool_expr = (BoolExpr *) clause;
837 ListCell *lc;
839 /* start with no attribute number */
840 *attnum = InvalidAttrNumber;
842 foreach(lc, bool_expr->args)
844 AttrNumber clause_attnum;
847 * Had we found incompatible clause in the arguments, treat the
848 * whole clause as incompatible.
850 if (!dependency_is_compatible_clause((Node *) lfirst(lc),
851 relid, &clause_attnum))
852 return false;
854 if (*attnum == InvalidAttrNumber)
855 *attnum = clause_attnum;
857 /* ensure all the variables are the same (same attnum) */
858 if (*attnum != clause_attnum)
859 return false;
862 /* the Var is already checked by the recursive call */
863 return true;
865 else if (is_notclause(clause))
868 * "NOT x" can be interpreted as "x = false", so get the argument and
869 * proceed with seeing if it's a suitable Var.
871 clause_expr = (Node *) get_notclausearg(clause);
873 else
876 * A boolean expression "x" can be interpreted as "x = true", so
877 * proceed with seeing if it's a suitable Var.
879 clause_expr = (Node *) clause;
883 * We may ignore any RelabelType node above the operand. (There won't be
884 * more than one, since eval_const_expressions has been applied already.)
886 if (IsA(clause_expr, RelabelType))
887 clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
889 /* We only support plain Vars for now */
890 if (!IsA(clause_expr, Var))
891 return false;
893 /* OK, we know we have a Var */
894 var = (Var *) clause_expr;
896 /* Ensure Var is from the correct relation */
897 if (var->varno != relid)
898 return false;
900 /* We also better ensure the Var is from the current level */
901 if (var->varlevelsup != 0)
902 return false;
904 /* Also ignore system attributes (we don't allow stats on those) */
905 if (!AttrNumberIsForUserDefinedAttr(var->varattno))
906 return false;
908 *attnum = var->varattno;
909 return true;
913 * find_strongest_dependency
914 * find the strongest dependency on the attributes
916 * When applying functional dependencies, we start with the strongest
917 * dependencies. That is, we select the dependency that:
919 * (a) has all attributes covered by equality clauses
921 * (b) has the most attributes
923 * (c) has the highest degree of validity
925 * This guarantees that we eliminate the most redundant conditions first
926 * (see the comment in dependencies_clauselist_selectivity).
928 static MVDependency *
929 find_strongest_dependency(MVDependencies **dependencies, int ndependencies,
930 Bitmapset *attnums)
932 int i,
934 MVDependency *strongest = NULL;
936 /* number of attnums in clauses */
937 int nattnums = bms_num_members(attnums);
940 * Iterate over the MVDependency items and find the strongest one from the
941 * fully-matched dependencies. We do the cheap checks first, before
942 * matching it against the attnums.
944 for (i = 0; i < ndependencies; i++)
946 for (j = 0; j < dependencies[i]->ndeps; j++)
948 MVDependency *dependency = dependencies[i]->deps[j];
951 * Skip dependencies referencing more attributes than available
952 * clauses, as those can't be fully matched.
954 if (dependency->nattributes > nattnums)
955 continue;
957 if (strongest)
959 /* skip dependencies on fewer attributes than the strongest. */
960 if (dependency->nattributes < strongest->nattributes)
961 continue;
963 /* also skip weaker dependencies when attribute count matches */
964 if (strongest->nattributes == dependency->nattributes &&
965 strongest->degree > dependency->degree)
966 continue;
970 * this dependency is stronger, but we must still check that it's
971 * fully matched to these attnums. We perform this check last as
972 * it's slightly more expensive than the previous checks.
974 if (dependency_is_fully_matched(dependency, attnums))
975 strongest = dependency; /* save new best match */
979 return strongest;
983 * clauselist_apply_dependencies
984 * Apply the specified functional dependencies to a list of clauses and
985 * return the estimated selectivity of the clauses that are compatible
986 * with any of the given dependencies.
988 * This will estimate all not-already-estimated clauses that are compatible
989 * with functional dependencies, and which have an attribute mentioned by any
990 * of the given dependencies (either as an implying or implied attribute).
992 * Given (lists of) clauses on attributes (a,b) and a functional dependency
993 * (a=>b), the per-column selectivities P(a) and P(b) are notionally combined
994 * using the formula
996 * P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
998 * where 'f' is the degree of dependency. This reflects the fact that we
999 * expect a fraction f of all rows to be consistent with the dependency
1000 * (a=>b), and so have a selectivity of P(a), while the remaining rows are
1001 * treated as independent.
1003 * In practice, we use a slightly modified version of this formula, which uses
1004 * a selectivity of Min(P(a), P(b)) for the dependent rows, since the result
1005 * should obviously not exceed either column's individual selectivity. I.e.,
1006 * we actually combine selectivities using the formula
1008 * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
1010 * This can make quite a difference if the specific values matching the
1011 * clauses are not consistent with the functional dependency.
1013 static Selectivity
1014 clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
1015 int varRelid, JoinType jointype,
1016 SpecialJoinInfo *sjinfo,
1017 MVDependency **dependencies, int ndependencies,
1018 AttrNumber *list_attnums,
1019 Bitmapset **estimatedclauses)
1021 Bitmapset *attnums;
1022 int i;
1023 int j;
1024 int nattrs;
1025 Selectivity *attr_sel;
1026 int attidx;
1027 int listidx;
1028 ListCell *l;
1029 Selectivity s1;
1032 * Extract the attnums of all implying and implied attributes from all the
1033 * given dependencies. Each of these attributes is expected to have at
1034 * least 1 not-already-estimated compatible clause that we will estimate
1035 * here.
1037 attnums = NULL;
1038 for (i = 0; i < ndependencies; i++)
1040 for (j = 0; j < dependencies[i]->nattributes; j++)
1042 AttrNumber attnum = dependencies[i]->attributes[j];
1044 attnums = bms_add_member(attnums, attnum);
1049 * Compute per-column selectivity estimates for each of these attributes,
1050 * and mark all the corresponding clauses as estimated.
1052 nattrs = bms_num_members(attnums);
1053 attr_sel = (Selectivity *) palloc(sizeof(Selectivity) * nattrs);
1055 attidx = 0;
1056 i = -1;
1057 while ((i = bms_next_member(attnums, i)) >= 0)
1059 List *attr_clauses = NIL;
1060 Selectivity simple_sel;
1062 listidx = -1;
1063 foreach(l, clauses)
1065 Node *clause = (Node *) lfirst(l);
1067 listidx++;
1068 if (list_attnums[listidx] == i)
1070 attr_clauses = lappend(attr_clauses, clause);
1071 *estimatedclauses = bms_add_member(*estimatedclauses, listidx);
1075 simple_sel = clauselist_selectivity_ext(root, attr_clauses, varRelid,
1076 jointype, sjinfo, false);
1077 attr_sel[attidx++] = simple_sel;
1081 * Now combine these selectivities using the dependency information. For
1082 * chains of dependencies such as a -> b -> c, the b -> c dependency will
1083 * come before the a -> b dependency in the array, so we traverse the
1084 * array backwards to ensure such chains are computed in the right order.
1086 * As explained above, pairs of selectivities are combined using the
1087 * formula
1089 * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
1091 * to ensure that the combined selectivity is never greater than either
1092 * individual selectivity.
1094 * Where multiple dependencies apply (e.g., a -> b -> c), we use
1095 * conditional probabilities to compute the overall result as follows:
1097 * P(a,b,c) = P(c|a,b) * P(a,b) = P(c|a,b) * P(b|a) * P(a)
1099 * so we replace the selectivities of all implied attributes with
1100 * conditional probabilities, that are conditional on all their implying
1101 * attributes. The selectivities of all other non-implied attributes are
1102 * left as they are.
1104 for (i = ndependencies - 1; i >= 0; i--)
1106 MVDependency *dependency = dependencies[i];
1107 AttrNumber attnum;
1108 Selectivity s2;
1109 double f;
1111 /* Selectivity of all the implying attributes */
1112 s1 = 1.0;
1113 for (j = 0; j < dependency->nattributes - 1; j++)
1115 attnum = dependency->attributes[j];
1116 attidx = bms_member_index(attnums, attnum);
1117 s1 *= attr_sel[attidx];
1120 /* Original selectivity of the implied attribute */
1121 attnum = dependency->attributes[j];
1122 attidx = bms_member_index(attnums, attnum);
1123 s2 = attr_sel[attidx];
1126 * Replace s2 with the conditional probability s2 given s1, computed
1127 * using the formula P(b|a) = P(a,b) / P(a), which simplifies to
1129 * P(b|a) = f * Min(P(a), P(b)) / P(a) + (1-f) * P(b)
1131 * where P(a) = s1, the selectivity of the implying attributes, and
1132 * P(b) = s2, the selectivity of the implied attribute.
1134 f = dependency->degree;
1136 if (s1 <= s2)
1137 attr_sel[attidx] = f + (1 - f) * s2;
1138 else
1139 attr_sel[attidx] = f * s2 / s1 + (1 - f) * s2;
1143 * The overall selectivity of all the clauses on all these attributes is
1144 * then the product of all the original (non-implied) probabilities and
1145 * the new conditional (implied) probabilities.
1147 s1 = 1.0;
1148 for (i = 0; i < nattrs; i++)
1149 s1 *= attr_sel[i];
1151 CLAMP_PROBABILITY(s1);
1153 pfree(attr_sel);
1154 bms_free(attnums);
1156 return s1;
1160 * dependency_is_compatible_expression
1161 * Determines if the expression is compatible with functional dependencies
1163 * Similar to dependency_is_compatible_clause, but doesn't enforce that the
1164 * expression is a simple Var. On success, return the matching statistics
1165 * expression into *expr.
1167 static bool
1168 dependency_is_compatible_expression(Node *clause, Index relid, List *statlist, Node **expr)
1170 ListCell *lc,
1171 *lc2;
1172 Node *clause_expr;
1174 if (IsA(clause, RestrictInfo))
1176 RestrictInfo *rinfo = (RestrictInfo *) clause;
1178 /* Pseudoconstants are not interesting (they couldn't contain a Var) */
1179 if (rinfo->pseudoconstant)
1180 return false;
1182 /* Clauses referencing multiple, or no, varnos are incompatible */
1183 if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
1184 return false;
1186 clause = (Node *) rinfo->clause;
1189 if (is_opclause(clause))
1191 /* If it's an opclause, check for Var = Const or Const = Var. */
1192 OpExpr *expr = (OpExpr *) clause;
1194 /* Only expressions with two arguments are candidates. */
1195 if (list_length(expr->args) != 2)
1196 return false;
1198 /* Make sure non-selected argument is a pseudoconstant. */
1199 if (is_pseudo_constant_clause(lsecond(expr->args)))
1200 clause_expr = linitial(expr->args);
1201 else if (is_pseudo_constant_clause(linitial(expr->args)))
1202 clause_expr = lsecond(expr->args);
1203 else
1204 return false;
1207 * If it's not an "=" operator, just ignore the clause, as it's not
1208 * compatible with functional dependencies.
1210 * This uses the function for estimating selectivity, not the operator
1211 * directly (a bit awkward, but well ...).
1213 * XXX this is pretty dubious; probably it'd be better to check btree
1214 * or hash opclass membership, so as not to be fooled by custom
1215 * selectivity functions, and to be more consistent with decisions
1216 * elsewhere in the planner.
1218 if (get_oprrest(expr->opno) != F_EQSEL)
1219 return false;
1221 /* OK to proceed with checking "var" */
1223 else if (IsA(clause, ScalarArrayOpExpr))
1225 /* If it's a scalar array operator, check for Var IN Const. */
1226 ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
1229 * Reject ALL() variant, we only care about ANY/IN.
1231 * FIXME Maybe we should check if all the values are the same, and
1232 * allow ALL in that case? Doesn't seem very practical, though.
1234 if (!expr->useOr)
1235 return false;
1237 /* Only expressions with two arguments are candidates. */
1238 if (list_length(expr->args) != 2)
1239 return false;
1242 * We know it's always (Var IN Const), so we assume the var is the
1243 * first argument, and pseudoconstant is the second one.
1245 if (!is_pseudo_constant_clause(lsecond(expr->args)))
1246 return false;
1248 clause_expr = linitial(expr->args);
1251 * If it's not an "=" operator, just ignore the clause, as it's not
1252 * compatible with functional dependencies. The operator is identified
1253 * simply by looking at which function it uses to estimate
1254 * selectivity. That's a bit strange, but it's what other similar
1255 * places do.
1257 if (get_oprrest(expr->opno) != F_EQSEL)
1258 return false;
1260 /* OK to proceed with checking "var" */
1262 else if (is_orclause(clause))
1264 BoolExpr *bool_expr = (BoolExpr *) clause;
1266 /* start with no expression (we'll use the first match) */
1267 *expr = NULL;
1269 foreach(lc, bool_expr->args)
1271 Node *or_expr = NULL;
1274 * Had we found incompatible expression in the arguments, treat
1275 * the whole expression as incompatible.
1277 if (!dependency_is_compatible_expression((Node *) lfirst(lc), relid,
1278 statlist, &or_expr))
1279 return false;
1281 if (*expr == NULL)
1282 *expr = or_expr;
1284 /* ensure all the expressions are the same */
1285 if (!equal(or_expr, *expr))
1286 return false;
1289 /* the expression is already checked by the recursive call */
1290 return true;
1292 else if (is_notclause(clause))
1295 * "NOT x" can be interpreted as "x = false", so get the argument and
1296 * proceed with seeing if it's a suitable Var.
1298 clause_expr = (Node *) get_notclausearg(clause);
1300 else
1303 * A boolean expression "x" can be interpreted as "x = true", so
1304 * proceed with seeing if it's a suitable Var.
1306 clause_expr = (Node *) clause;
1310 * We may ignore any RelabelType node above the operand. (There won't be
1311 * more than one, since eval_const_expressions has been applied already.)
1313 if (IsA(clause_expr, RelabelType))
1314 clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
1317 * Search for a matching statistics expression.
1319 foreach(lc, statlist)
1321 StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
1323 /* ignore stats without dependencies */
1324 if (info->kind != STATS_EXT_DEPENDENCIES)
1325 continue;
1327 foreach(lc2, info->exprs)
1329 Node *stat_expr = (Node *) lfirst(lc2);
1331 if (equal(clause_expr, stat_expr))
1333 *expr = stat_expr;
1334 return true;
1339 return false;
1343 * dependencies_clauselist_selectivity
1344 * Return the estimated selectivity of (a subset of) the given clauses
1345 * using functional dependency statistics, or 1.0 if no useful functional
1346 * dependency statistic exists.
1348 * 'estimatedclauses' is an input/output argument that gets a bit set
1349 * corresponding to the (zero-based) list index of each clause that is included
1350 * in the estimated selectivity.
1352 * Given equality clauses on attributes (a,b) we find the strongest dependency
1353 * between them, i.e. either (a=>b) or (b=>a). Assuming (a=>b) is the selected
1354 * dependency, we then combine the per-clause selectivities using the formula
1356 * P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
1358 * where 'f' is the degree of the dependency. (Actually we use a slightly
1359 * modified version of this formula -- see clauselist_apply_dependencies()).
1361 * With clauses on more than two attributes, the dependencies are applied
1362 * recursively, starting with the widest/strongest dependencies. For example
1363 * P(a,b,c) is first split like this:
1365 * P(a,b,c) = f * P(a,b) + (1-f) * P(a,b) * P(c)
1367 * assuming (a,b=>c) is the strongest dependency.
1369 Selectivity
1370 dependencies_clauselist_selectivity(PlannerInfo *root,
1371 List *clauses,
1372 int varRelid,
1373 JoinType jointype,
1374 SpecialJoinInfo *sjinfo,
1375 RelOptInfo *rel,
1376 Bitmapset **estimatedclauses)
1378 Selectivity s1 = 1.0;
1379 ListCell *l;
1380 Bitmapset *clauses_attnums = NULL;
1381 AttrNumber *list_attnums;
1382 int listidx;
1383 MVDependencies **func_dependencies;
1384 int nfunc_dependencies;
1385 int total_ndeps;
1386 MVDependency **dependencies;
1387 int ndependencies;
1388 int i;
1389 AttrNumber attnum_offset;
1390 RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
1392 /* unique expressions */
1393 Node **unique_exprs;
1394 int unique_exprs_cnt;
1396 /* check if there's any stats that might be useful for us. */
1397 if (!has_stats_of_kind(rel->statlist, STATS_EXT_DEPENDENCIES))
1398 return 1.0;
1400 list_attnums = (AttrNumber *) palloc(sizeof(AttrNumber) *
1401 list_length(clauses));
1404 * We allocate space as if every clause was a unique expression, although
1405 * that's probably overkill. Some will be simple column references that
1406 * we'll translate to attnums, and there might be duplicates. But it's
1407 * easier and cheaper to just do one allocation than repalloc later.
1409 unique_exprs = (Node **) palloc(sizeof(Node *) * list_length(clauses));
1410 unique_exprs_cnt = 0;
1413 * Pre-process the clauses list to extract the attnums seen in each item.
1414 * We need to determine if there's any clauses which will be useful for
1415 * dependency selectivity estimations. Along the way we'll record all of
1416 * the attnums for each clause in a list which we'll reference later so we
1417 * don't need to repeat the same work again. We'll also keep track of all
1418 * attnums seen.
1420 * We also skip clauses that we already estimated using different types of
1421 * statistics (we treat them as incompatible).
1423 * To handle expressions, we assign them negative attnums, as if it was a
1424 * system attribute (this is fine, as we only allow extended stats on user
1425 * attributes). And then we offset everything by the number of
1426 * expressions, so that we can store the values in a bitmapset.
1428 listidx = 0;
1429 foreach(l, clauses)
1431 Node *clause = (Node *) lfirst(l);
1432 AttrNumber attnum;
1433 Node *expr = NULL;
1435 /* ignore clause by default */
1436 list_attnums[listidx] = InvalidAttrNumber;
1438 if (!bms_is_member(listidx, *estimatedclauses))
1441 * If it's a simple column reference, just extract the attnum. If
1442 * it's an expression, assign a negative attnum as if it was a
1443 * system attribute.
1445 if (dependency_is_compatible_clause(clause, rel->relid, &attnum))
1447 list_attnums[listidx] = attnum;
1449 else if (dependency_is_compatible_expression(clause, rel->relid,
1450 rel->statlist,
1451 &expr))
1453 /* special attnum assigned to this expression */
1454 attnum = InvalidAttrNumber;
1456 Assert(expr != NULL);
1458 /* If the expression is duplicate, use the same attnum. */
1459 for (i = 0; i < unique_exprs_cnt; i++)
1461 if (equal(unique_exprs[i], expr))
1463 /* negative attribute number to expression */
1464 attnum = -(i + 1);
1465 break;
1469 /* not found in the list, so add it */
1470 if (attnum == InvalidAttrNumber)
1472 unique_exprs[unique_exprs_cnt++] = expr;
1474 /* after incrementing the value, to get -1, -2, ... */
1475 attnum = (-unique_exprs_cnt);
1478 /* remember which attnum was assigned to this clause */
1479 list_attnums[listidx] = attnum;
1483 listidx++;
1486 Assert(listidx == list_length(clauses));
1489 * How much we need to offset the attnums? If there are no expressions,
1490 * then no offset is needed. Otherwise we need to offset enough for the
1491 * lowest value (-unique_exprs_cnt) to become 1.
1493 if (unique_exprs_cnt > 0)
1494 attnum_offset = (unique_exprs_cnt + 1);
1495 else
1496 attnum_offset = 0;
1499 * Now that we know how many expressions there are, we can offset the
1500 * values just enough to build the bitmapset.
1502 for (i = 0; i < list_length(clauses); i++)
1504 AttrNumber attnum;
1506 /* ignore incompatible or already estimated clauses */
1507 if (list_attnums[i] == InvalidAttrNumber)
1508 continue;
1510 /* make sure the attnum is in the expected range */
1511 Assert(list_attnums[i] >= (-unique_exprs_cnt));
1512 Assert(list_attnums[i] <= MaxHeapAttributeNumber);
1514 /* make sure the attnum is positive (valid AttrNumber) */
1515 attnum = list_attnums[i] + attnum_offset;
1518 * Either it's a regular attribute, or it's an expression, in which
1519 * case we must not have seen it before (expressions are unique).
1521 * XXX Check whether it's a regular attribute has to be done using the
1522 * original attnum, while the second check has to use the value with
1523 * an offset.
1525 Assert(AttrNumberIsForUserDefinedAttr(list_attnums[i]) ||
1526 !bms_is_member(attnum, clauses_attnums));
1529 * Remember the offset attnum, both for attributes and expressions.
1530 * We'll pass list_attnums to clauselist_apply_dependencies, which
1531 * uses it to identify clauses in a bitmap. We could also pass the
1532 * offset, but this is more convenient.
1534 list_attnums[i] = attnum;
1536 clauses_attnums = bms_add_member(clauses_attnums, attnum);
1540 * If there's not at least two distinct attnums and expressions, then
1541 * reject the whole list of clauses. We must return 1.0 so the calling
1542 * function's selectivity is unaffected.
1544 if (bms_membership(clauses_attnums) != BMS_MULTIPLE)
1546 bms_free(clauses_attnums);
1547 pfree(list_attnums);
1548 return 1.0;
1552 * Load all functional dependencies matching at least two parameters. We
1553 * can simply consider all dependencies at once, without having to search
1554 * for the best statistics object.
1556 * To not waste cycles and memory, we deserialize dependencies only for
1557 * statistics that match at least two attributes. The array is allocated
1558 * with the assumption that all objects match - we could grow the array to
1559 * make it just the right size, but it's likely wasteful anyway thanks to
1560 * moving the freed chunks to freelists etc.
1562 func_dependencies = (MVDependencies **) palloc(sizeof(MVDependencies *) *
1563 list_length(rel->statlist));
1564 nfunc_dependencies = 0;
1565 total_ndeps = 0;
1567 foreach(l, rel->statlist)
1569 StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
1570 int nmatched;
1571 int nexprs;
1572 int k;
1573 MVDependencies *deps;
1575 /* skip statistics that are not of the correct type */
1576 if (stat->kind != STATS_EXT_DEPENDENCIES)
1577 continue;
1579 /* skip statistics with mismatching stxdinherit value */
1580 if (stat->inherit != rte->inh)
1581 continue;
1584 * Count matching attributes - we have to undo the attnum offsets. The
1585 * input attribute numbers are not offset (expressions are not
1586 * included in stat->keys, so it's not necessary). But we need to
1587 * offset it before checking against clauses_attnums.
1589 nmatched = 0;
1590 k = -1;
1591 while ((k = bms_next_member(stat->keys, k)) >= 0)
1593 AttrNumber attnum = (AttrNumber) k;
1595 /* skip expressions */
1596 if (!AttrNumberIsForUserDefinedAttr(attnum))
1597 continue;
1599 /* apply the same offset as above */
1600 attnum += attnum_offset;
1602 if (bms_is_member(attnum, clauses_attnums))
1603 nmatched++;
1606 /* count matching expressions */
1607 nexprs = 0;
1608 for (i = 0; i < unique_exprs_cnt; i++)
1610 ListCell *lc;
1612 foreach(lc, stat->exprs)
1614 Node *stat_expr = (Node *) lfirst(lc);
1616 /* try to match it */
1617 if (equal(stat_expr, unique_exprs[i]))
1618 nexprs++;
1623 * Skip objects matching fewer than two attributes/expressions from
1624 * clauses.
1626 if (nmatched + nexprs < 2)
1627 continue;
1629 deps = statext_dependencies_load(stat->statOid, rte->inh);
1632 * The expressions may be represented by different attnums in the
1633 * stats, we need to remap them to be consistent with the clauses.
1634 * That will make the later steps (e.g. picking the strongest item and
1635 * so on) much simpler and cheaper, because it won't need to care
1636 * about the offset at all.
1638 * When we're at it, we can ignore dependencies that are not fully
1639 * matched by clauses (i.e. referencing attributes or expressions that
1640 * are not in the clauses).
1642 * We have to do this for all statistics, as long as there are any
1643 * expressions - we need to shift the attnums in all dependencies.
1645 * XXX Maybe we should do this always, because it also eliminates some
1646 * of the dependencies early. It might be cheaper than having to walk
1647 * the longer list in find_strongest_dependency later, especially as
1648 * we need to do that repeatedly?
1650 * XXX We have to do this even when there are no expressions in
1651 * clauses, otherwise find_strongest_dependency may fail for stats
1652 * with expressions (due to lookup of negative value in bitmap). So we
1653 * need to at least filter out those dependencies. Maybe we could do
1654 * it in a cheaper way (if there are no expr clauses, we can just
1655 * discard all negative attnums without any lookups).
1657 if (unique_exprs_cnt > 0 || stat->exprs != NIL)
1659 int ndeps = 0;
1661 for (i = 0; i < deps->ndeps; i++)
1663 bool skip = false;
1664 MVDependency *dep = deps->deps[i];
1665 int j;
1667 for (j = 0; j < dep->nattributes; j++)
1669 int idx;
1670 Node *expr;
1671 AttrNumber unique_attnum = InvalidAttrNumber;
1672 AttrNumber attnum;
1674 /* undo the per-statistics offset */
1675 attnum = dep->attributes[j];
1678 * For regular attributes we can simply check if it
1679 * matches any clause. If there's no matching clause, we
1680 * can just ignore it. We need to offset the attnum
1681 * though.
1683 if (AttrNumberIsForUserDefinedAttr(attnum))
1685 dep->attributes[j] = attnum + attnum_offset;
1687 if (!bms_is_member(dep->attributes[j], clauses_attnums))
1689 skip = true;
1690 break;
1693 continue;
1697 * the attnum should be a valid system attnum (-1, -2,
1698 * ...)
1700 Assert(AttributeNumberIsValid(attnum));
1703 * For expressions, we need to do two translations. First
1704 * we have to translate the negative attnum to index in
1705 * the list of expressions (in the statistics object).
1706 * Then we need to see if there's a matching clause. The
1707 * index of the unique expression determines the attnum
1708 * (and we offset it).
1710 idx = -(1 + attnum);
1712 /* Is the expression index is valid? */
1713 Assert((idx >= 0) && (idx < list_length(stat->exprs)));
1715 expr = (Node *) list_nth(stat->exprs, idx);
1717 /* try to find the expression in the unique list */
1718 for (int m = 0; m < unique_exprs_cnt; m++)
1721 * found a matching unique expression, use the attnum
1722 * (derived from index of the unique expression)
1724 if (equal(unique_exprs[m], expr))
1726 unique_attnum = -(m + 1) + attnum_offset;
1727 break;
1732 * Found no matching expression, so we can simply skip
1733 * this dependency, because there's no chance it will be
1734 * fully covered.
1736 if (unique_attnum == InvalidAttrNumber)
1738 skip = true;
1739 break;
1742 /* otherwise remap it to the new attnum */
1743 dep->attributes[j] = unique_attnum;
1746 /* if found a matching dependency, keep it */
1747 if (!skip)
1749 /* maybe we've skipped something earlier, so move it */
1750 if (ndeps != i)
1751 deps->deps[ndeps] = deps->deps[i];
1753 ndeps++;
1757 deps->ndeps = ndeps;
1761 * It's possible we've removed all dependencies, in which case we
1762 * don't bother adding it to the list.
1764 if (deps->ndeps > 0)
1766 func_dependencies[nfunc_dependencies] = deps;
1767 total_ndeps += deps->ndeps;
1768 nfunc_dependencies++;
1772 /* if no matching stats could be found then we've nothing to do */
1773 if (nfunc_dependencies == 0)
1775 pfree(func_dependencies);
1776 bms_free(clauses_attnums);
1777 pfree(list_attnums);
1778 pfree(unique_exprs);
1779 return 1.0;
1783 * Work out which dependencies we can apply, starting with the
1784 * widest/strongest ones, and proceeding to smaller/weaker ones.
1786 dependencies = (MVDependency **) palloc(sizeof(MVDependency *) *
1787 total_ndeps);
1788 ndependencies = 0;
1790 while (true)
1792 MVDependency *dependency;
1793 AttrNumber attnum;
1795 /* the widest/strongest dependency, fully matched by clauses */
1796 dependency = find_strongest_dependency(func_dependencies,
1797 nfunc_dependencies,
1798 clauses_attnums);
1799 if (!dependency)
1800 break;
1802 dependencies[ndependencies++] = dependency;
1804 /* Ignore dependencies using this implied attribute in later loops */
1805 attnum = dependency->attributes[dependency->nattributes - 1];
1806 clauses_attnums = bms_del_member(clauses_attnums, attnum);
1810 * If we found applicable dependencies, use them to estimate all
1811 * compatible clauses on attributes that they refer to.
1813 if (ndependencies != 0)
1814 s1 = clauselist_apply_dependencies(root, clauses, varRelid, jointype,
1815 sjinfo, dependencies, ndependencies,
1816 list_attnums, estimatedclauses);
1818 /* free deserialized functional dependencies (and then the array) */
1819 for (i = 0; i < nfunc_dependencies; i++)
1820 pfree(func_dependencies[i]);
1822 pfree(dependencies);
1823 pfree(func_dependencies);
1824 bms_free(clauses_attnums);
1825 pfree(list_attnums);
1826 pfree(unique_exprs);
1828 return s1;