nbtree: fix read page recheck typo.
[pgsql.git] / src / backend / statistics / mcv.c
blobb0e9aead84e976473e48a7fb987f4f495d9248bb
1 /*-------------------------------------------------------------------------
3 * mcv.c
4 * POSTGRES multivariate MCV lists
7 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/statistics/mcv.c
13 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include <math.h>
19 #include "access/htup_details.h"
20 #include "catalog/pg_statistic_ext.h"
21 #include "catalog/pg_statistic_ext_data.h"
22 #include "fmgr.h"
23 #include "funcapi.h"
24 #include "nodes/nodeFuncs.h"
25 #include "statistics/extended_stats_internal.h"
26 #include "statistics/statistics.h"
27 #include "utils/array.h"
28 #include "utils/builtins.h"
29 #include "utils/fmgrprotos.h"
30 #include "utils/lsyscache.h"
31 #include "utils/selfuncs.h"
32 #include "utils/syscache.h"
33 #include "utils/typcache.h"
36 * Computes size of a serialized MCV item, depending on the number of
37 * dimensions (columns) the statistic is defined on. The datum values are
38 * stored in a separate array (deduplicated, to minimize the size), and
39 * so the serialized items only store uint16 indexes into that array.
41 * Each serialized item stores (in this order):
43 * - indexes to values (ndim * sizeof(uint16))
44 * - null flags (ndim * sizeof(bool))
45 * - frequency (sizeof(double))
46 * - base_frequency (sizeof(double))
48 * There is no alignment padding within an MCV item.
49 * So in total each MCV item requires this many bytes:
51 * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
53 #define ITEM_SIZE(ndims) \
54 ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
57 * Used to compute size of serialized MCV list representation.
59 #define MinSizeOfMCVList \
60 (VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber))
63 * Size of the serialized MCV list, excluding the space needed for
64 * deduplicated per-dimension values. The macro is meant to be used
65 * when it's not yet safe to access the serialized info about amount
66 * of data for each column.
68 #define SizeOfMCVList(ndims,nitems) \
69 ((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \
70 ((ndims) * sizeof(DimensionInfo)) + \
71 ((nitems) * ITEM_SIZE(ndims)))
73 static MultiSortSupport build_mss(StatsBuildData *data);
75 static SortItem *build_distinct_groups(int numrows, SortItem *items,
76 MultiSortSupport mss, int *ndistinct);
78 static SortItem **build_column_frequencies(SortItem *groups, int ngroups,
79 MultiSortSupport mss, int *ncounts);
81 static int count_distinct_groups(int numrows, SortItem *items,
82 MultiSortSupport mss);
85 * Compute new value for bitmap item, considering whether it's used for
86 * clauses connected by AND/OR.
88 #define RESULT_MERGE(value, is_or, match) \
89 ((is_or) ? ((value) || (match)) : ((value) && (match)))
92 * When processing a list of clauses, the bitmap item may get set to a value
93 * such that additional clauses can't change it. For example, when processing
94 * a list of clauses connected to AND, as soon as the item gets set to 'false'
95 * then it'll remain like that. Similarly clauses connected by OR and 'true'.
97 * Returns true when the value in the bitmap can't change no matter how the
98 * remaining clauses are evaluated.
100 #define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value)))
103 * get_mincount_for_mcv_list
104 * Determine the minimum number of times a value needs to appear in
105 * the sample for it to be included in the MCV list.
107 * We want to keep only values that appear sufficiently often in the
108 * sample that it is reasonable to extrapolate their sample frequencies to
109 * the entire table. We do this by placing an upper bound on the relative
110 * standard error of the sample frequency, so that any estimates the
111 * planner generates from the MCV statistics can be expected to be
112 * reasonably accurate.
114 * Since we are sampling without replacement, the sample frequency of a
115 * particular value is described by a hypergeometric distribution. A
116 * common rule of thumb when estimating errors in this situation is to
117 * require at least 10 instances of the value in the sample, in which case
118 * the distribution can be approximated by a normal distribution, and
119 * standard error analysis techniques can be applied. Given a sample size
120 * of n, a population size of N, and a sample frequency of p=cnt/n, the
121 * standard error of the proportion p is given by
122 * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
123 * where the second term is the finite population correction. To get
124 * reasonably accurate planner estimates, we impose an upper bound on the
125 * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
126 * error bound is fairly arbitrary, but has been found empirically to work
127 * well. Rearranging this formula gives a lower bound on the number of
128 * instances of the value seen:
129 * cnt > n*(N-n) / (N-n+0.04*n*(N-1))
130 * This bound is at most 25, and approaches 0 as n approaches 0 or N. The
131 * case where n approaches 0 cannot happen in practice, since the sample
132 * size is at least 300. The case where n approaches N corresponds to
133 * sampling the whole table, in which case it is reasonable to keep
134 * the whole MCV list (have no lower bound), so it makes sense to apply
135 * this formula for all inputs, even though the above derivation is
136 * technically only valid when the right hand side is at least around 10.
138 * An alternative way to look at this formula is as follows -- assume that
139 * the number of instances of the value seen scales up to the entire
140 * table, so that the population count is K=N*cnt/n. Then the distribution
141 * in the sample is a hypergeometric distribution parameterised by N, n
142 * and K, and the bound above is mathematically equivalent to demanding
143 * that the standard deviation of that distribution is less than 20% of
144 * its mean. Thus the relative errors in any planner estimates produced
145 * from the MCV statistics are likely to be not too large.
147 static double
148 get_mincount_for_mcv_list(int samplerows, double totalrows)
150 double n = samplerows;
151 double N = totalrows;
152 double numer,
153 denom;
155 numer = n * (N - n);
156 denom = N - n + 0.04 * n * (N - 1);
158 /* Guard against division by zero (possible if n = N = 1) */
159 if (denom == 0.0)
160 return 0.0;
162 return numer / denom;
166 * Builds MCV list from the set of sampled rows.
168 * The algorithm is quite simple:
170 * (1) sort the data (default collation, '<' for the data type)
172 * (2) count distinct groups, decide how many to keep
174 * (3) build the MCV list using the threshold determined in (2)
176 * (4) remove rows represented by the MCV from the sample
179 MCVList *
180 statext_mcv_build(StatsBuildData *data, double totalrows, int stattarget)
182 int i,
183 numattrs,
184 numrows,
185 ngroups,
186 nitems;
187 double mincount;
188 SortItem *items;
189 SortItem *groups;
190 MCVList *mcvlist = NULL;
191 MultiSortSupport mss;
193 /* comparator for all the columns */
194 mss = build_mss(data);
196 /* sort the rows */
197 items = build_sorted_items(data, &nitems, mss,
198 data->nattnums, data->attnums);
200 if (!items)
201 return NULL;
203 /* for convenience */
204 numattrs = data->nattnums;
205 numrows = data->numrows;
207 /* transform the sorted rows into groups (sorted by frequency) */
208 groups = build_distinct_groups(nitems, items, mss, &ngroups);
211 * The maximum number of MCV items to store, based on the statistics
212 * target we computed for the statistics object (from the target set for
213 * the object itself, attributes and the system default). In any case, we
214 * can't keep more groups than we have available.
216 nitems = stattarget;
217 if (nitems > ngroups)
218 nitems = ngroups;
221 * Decide how many items to keep in the MCV list. We can't use the same
222 * algorithm as per-column MCV lists, because that only considers the
223 * actual group frequency - but we're primarily interested in how the
224 * actual frequency differs from the base frequency (product of simple
225 * per-column frequencies, as if the columns were independent).
227 * Using the same algorithm might exclude items that are close to the
228 * "average" frequency of the sample. But that does not say whether the
229 * observed frequency is close to the base frequency or not. We also need
230 * to consider unexpectedly uncommon items (again, compared to the base
231 * frequency), and the single-column algorithm does not have to.
233 * We simply decide how many items to keep by computing the minimum count
234 * using get_mincount_for_mcv_list() and then keep all items that seem to
235 * be more common than that.
237 mincount = get_mincount_for_mcv_list(numrows, totalrows);
240 * Walk the groups until we find the first group with a count below the
241 * mincount threshold (the index of that group is the number of groups we
242 * want to keep).
244 for (i = 0; i < nitems; i++)
246 if (groups[i].count < mincount)
248 nitems = i;
249 break;
254 * At this point, we know the number of items for the MCV list. There
255 * might be none (for uniform distribution with many groups), and in that
256 * case, there will be no MCV list. Otherwise, construct the MCV list.
258 if (nitems > 0)
260 int j;
261 SortItem key;
262 MultiSortSupport tmp;
264 /* frequencies for values in each attribute */
265 SortItem **freqs;
266 int *nfreqs;
268 /* used to search values */
269 tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup)
270 + sizeof(SortSupportData));
272 /* compute frequencies for values in each column */
273 nfreqs = (int *) palloc0(sizeof(int) * numattrs);
274 freqs = build_column_frequencies(groups, ngroups, mss, nfreqs);
277 * Allocate the MCV list structure, set the global parameters.
279 mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
280 sizeof(MCVItem) * nitems);
282 mcvlist->magic = STATS_MCV_MAGIC;
283 mcvlist->type = STATS_MCV_TYPE_BASIC;
284 mcvlist->ndimensions = numattrs;
285 mcvlist->nitems = nitems;
287 /* store info about data type OIDs */
288 for (i = 0; i < numattrs; i++)
289 mcvlist->types[i] = data->stats[i]->attrtypid;
291 /* Copy the first chunk of groups into the result. */
292 for (i = 0; i < nitems; i++)
294 /* just point to the proper place in the list */
295 MCVItem *item = &mcvlist->items[i];
297 item->values = (Datum *) palloc(sizeof(Datum) * numattrs);
298 item->isnull = (bool *) palloc(sizeof(bool) * numattrs);
300 /* copy values for the group */
301 memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
302 memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
304 /* groups should be sorted by frequency in descending order */
305 Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
307 /* group frequency */
308 item->frequency = (double) groups[i].count / numrows;
310 /* base frequency, if the attributes were independent */
311 item->base_frequency = 1.0;
312 for (j = 0; j < numattrs; j++)
314 SortItem *freq;
316 /* single dimension */
317 tmp->ndims = 1;
318 tmp->ssup[0] = mss->ssup[j];
320 /* fill search key */
321 key.values = &groups[i].values[j];
322 key.isnull = &groups[i].isnull[j];
324 freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j],
325 sizeof(SortItem),
326 multi_sort_compare, tmp);
328 item->base_frequency *= ((double) freq->count) / numrows;
332 pfree(nfreqs);
333 pfree(freqs);
336 pfree(items);
337 pfree(groups);
339 return mcvlist;
343 * build_mss
344 * Build a MultiSortSupport for the given StatsBuildData.
346 static MultiSortSupport
347 build_mss(StatsBuildData *data)
349 int i;
350 int numattrs = data->nattnums;
352 /* Sort by multiple columns (using array of SortSupport) */
353 MultiSortSupport mss = multi_sort_init(numattrs);
355 /* prepare the sort functions for all the attributes */
356 for (i = 0; i < numattrs; i++)
358 VacAttrStats *colstat = data->stats[i];
359 TypeCacheEntry *type;
361 type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
362 if (type->lt_opr == InvalidOid) /* shouldn't happen */
363 elog(ERROR, "cache lookup failed for ordering operator for type %u",
364 colstat->attrtypid);
366 multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
369 return mss;
373 * count_distinct_groups
374 * Count distinct combinations of SortItems in the array.
376 * The array is assumed to be sorted according to the MultiSortSupport.
378 static int
379 count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
381 int i;
382 int ndistinct;
384 ndistinct = 1;
385 for (i = 1; i < numrows; i++)
387 /* make sure the array really is sorted */
388 Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
390 if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
391 ndistinct += 1;
394 return ndistinct;
398 * compare_sort_item_count
399 * Comparator for sorting items by count (frequencies) in descending
400 * order.
402 static int
403 compare_sort_item_count(const void *a, const void *b, void *arg)
405 SortItem *ia = (SortItem *) a;
406 SortItem *ib = (SortItem *) b;
408 if (ia->count == ib->count)
409 return 0;
410 else if (ia->count > ib->count)
411 return -1;
413 return 1;
417 * build_distinct_groups
418 * Build an array of SortItems for distinct groups and counts matching
419 * items.
421 * The 'items' array is assumed to be sorted.
423 static SortItem *
424 build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
425 int *ndistinct)
427 int i,
429 int ngroups = count_distinct_groups(numrows, items, mss);
431 SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
433 j = 0;
434 groups[0] = items[0];
435 groups[0].count = 1;
437 for (i = 1; i < numrows; i++)
439 /* Assume sorted in ascending order. */
440 Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
442 /* New distinct group detected. */
443 if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
445 groups[++j] = items[i];
446 groups[j].count = 0;
449 groups[j].count++;
452 /* ensure we filled the expected number of distinct groups */
453 Assert(j + 1 == ngroups);
455 /* Sort the distinct groups by frequency (in descending order). */
456 qsort_interruptible(groups, ngroups, sizeof(SortItem),
457 compare_sort_item_count, NULL);
459 *ndistinct = ngroups;
460 return groups;
463 /* compare sort items (single dimension) */
464 static int
465 sort_item_compare(const void *a, const void *b, void *arg)
467 SortSupport ssup = (SortSupport) arg;
468 SortItem *ia = (SortItem *) a;
469 SortItem *ib = (SortItem *) b;
471 return ApplySortComparator(ia->values[0], ia->isnull[0],
472 ib->values[0], ib->isnull[0],
473 ssup);
477 * build_column_frequencies
478 * Compute frequencies of values in each column.
480 * This returns an array of SortItems for each attribute the MCV is built
481 * on, with a frequency (number of occurrences) for each value. This is
482 * then used to compute "base" frequency of MCV items.
484 * All the memory is allocated in a single chunk, so that a single pfree
485 * is enough to release it. We do not allocate space for values/isnull
486 * arrays in the SortItems, because we can simply point into the input
487 * groups directly.
489 static SortItem **
490 build_column_frequencies(SortItem *groups, int ngroups,
491 MultiSortSupport mss, int *ncounts)
493 int i,
494 dim;
495 SortItem **result;
496 char *ptr;
498 Assert(groups);
499 Assert(ncounts);
501 /* allocate arrays for all columns as a single chunk */
502 ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) +
503 mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups));
505 /* initial array of pointers */
506 result = (SortItem **) ptr;
507 ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims);
509 for (dim = 0; dim < mss->ndims; dim++)
511 SortSupport ssup = &mss->ssup[dim];
513 /* array of values for a single column */
514 result[dim] = (SortItem *) ptr;
515 ptr += MAXALIGN(sizeof(SortItem) * ngroups);
517 /* extract data for the dimension */
518 for (i = 0; i < ngroups; i++)
520 /* point into the input groups */
521 result[dim][i].values = &groups[i].values[dim];
522 result[dim][i].isnull = &groups[i].isnull[dim];
523 result[dim][i].count = groups[i].count;
526 /* sort the values, deduplicate */
527 qsort_interruptible(result[dim], ngroups, sizeof(SortItem),
528 sort_item_compare, ssup);
531 * Identify distinct values, compute frequency (there might be
532 * multiple MCV items containing this value, so we need to sum counts
533 * from all of them.
535 ncounts[dim] = 1;
536 for (i = 1; i < ngroups; i++)
538 if (sort_item_compare(&result[dim][i - 1], &result[dim][i], ssup) == 0)
540 result[dim][ncounts[dim] - 1].count += result[dim][i].count;
541 continue;
544 result[dim][ncounts[dim]] = result[dim][i];
546 ncounts[dim]++;
550 return result;
554 * statext_mcv_load
555 * Load the MCV list for the indicated pg_statistic_ext_data tuple.
557 MCVList *
558 statext_mcv_load(Oid mvoid, bool inh)
560 MCVList *result;
561 bool isnull;
562 Datum mcvlist;
563 HeapTuple htup = SearchSysCache2(STATEXTDATASTXOID,
564 ObjectIdGetDatum(mvoid), BoolGetDatum(inh));
566 if (!HeapTupleIsValid(htup))
567 elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
569 mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
570 Anum_pg_statistic_ext_data_stxdmcv, &isnull);
572 if (isnull)
573 elog(ERROR,
574 "requested statistics kind \"%c\" is not yet built for statistics object %u",
575 STATS_EXT_MCV, mvoid);
577 result = statext_mcv_deserialize(DatumGetByteaP(mcvlist));
579 ReleaseSysCache(htup);
581 return result;
586 * statext_mcv_serialize
587 * Serialize MCV list into a pg_mcv_list value.
589 * The MCV items may include values of various data types, and it's reasonable
590 * to expect redundancy (values for a given attribute, repeated for multiple
591 * MCV list items). So we deduplicate the values into arrays, and then replace
592 * the values by indexes into those arrays.
594 * The overall structure of the serialized representation looks like this:
596 * +---------------+----------------+---------------------+-------+
597 * | header fields | dimension info | deduplicated values | items |
598 * +---------------+----------------+---------------------+-------+
600 * Where dimension info stores information about the type of the K-th
601 * attribute (e.g. typlen, typbyval and length of deduplicated values).
602 * Deduplicated values store deduplicated values for each attribute. And
603 * items store the actual MCV list items, with values replaced by indexes into
604 * the arrays.
606 * When serializing the items, we use uint16 indexes. The number of MCV items
607 * is limited by the statistics target (which is capped to 10k at the moment).
608 * We might increase this to 65k and still fit into uint16, so there's a bit of
609 * slack. Furthermore, this limit is on the number of distinct values per column,
610 * and we usually have few of those (and various combinations of them for the
611 * those MCV list). So uint16 seems fine for now.
613 * We don't really expect the serialization to save as much space as for
614 * histograms, as we are not doing any bucket splits (which is the source
615 * of high redundancy in histograms).
617 * TODO: Consider packing boolean flags (NULL) for each item into a single char
618 * (or a longer type) instead of using an array of bool items.
620 bytea *
621 statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats)
623 int i;
624 int dim;
625 int ndims = mcvlist->ndimensions;
627 SortSupport ssup;
628 DimensionInfo *info;
630 Size total_length;
632 /* serialized items (indexes into arrays, etc.) */
633 bytea *raw;
634 char *ptr;
635 char *endptr PG_USED_FOR_ASSERTS_ONLY;
637 /* values per dimension (and number of non-NULL values) */
638 Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims);
639 int *counts = (int *) palloc0(sizeof(int) * ndims);
642 * We'll include some rudimentary information about the attribute types
643 * (length, by-val flag), so that we don't have to look them up while
644 * deserializing the MCV list (we already have the type OID in the
645 * header). This is safe because when changing the type of the attribute
646 * the statistics gets dropped automatically. We need to store the info
647 * about the arrays of deduplicated values anyway.
649 info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims);
651 /* sort support data for all attributes included in the MCV list */
652 ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims);
654 /* collect and deduplicate values for each dimension (attribute) */
655 for (dim = 0; dim < ndims; dim++)
657 int ndistinct;
658 TypeCacheEntry *typentry;
661 * Lookup the LT operator (can't get it from stats extra_data, as we
662 * don't know how to interpret that - scalar vs. array etc.).
664 typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
666 /* copy important info about the data type (length, by-value) */
667 info[dim].typlen = stats[dim]->attrtype->typlen;
668 info[dim].typbyval = stats[dim]->attrtype->typbyval;
670 /* allocate space for values in the attribute and collect them */
671 values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems);
673 for (i = 0; i < mcvlist->nitems; i++)
675 /* skip NULL values - we don't need to deduplicate those */
676 if (mcvlist->items[i].isnull[dim])
677 continue;
679 /* append the value at the end */
680 values[dim][counts[dim]] = mcvlist->items[i].values[dim];
681 counts[dim] += 1;
684 /* if there are just NULL values in this dimension, we're done */
685 if (counts[dim] == 0)
686 continue;
688 /* sort and deduplicate the data */
689 ssup[dim].ssup_cxt = CurrentMemoryContext;
690 ssup[dim].ssup_collation = stats[dim]->attrcollid;
691 ssup[dim].ssup_nulls_first = false;
693 PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
695 qsort_interruptible(values[dim], counts[dim], sizeof(Datum),
696 compare_scalars_simple, &ssup[dim]);
699 * Walk through the array and eliminate duplicate values, but keep the
700 * ordering (so that we can do a binary search later). We know there's
701 * at least one item as (counts[dim] != 0), so we can skip the first
702 * element.
704 ndistinct = 1; /* number of distinct values */
705 for (i = 1; i < counts[dim]; i++)
707 /* expect sorted array */
708 Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
710 /* if the value is the same as the previous one, we can skip it */
711 if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
712 continue;
714 values[dim][ndistinct] = values[dim][i];
715 ndistinct += 1;
718 /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
719 Assert(ndistinct <= PG_UINT16_MAX);
722 * Store additional info about the attribute - number of deduplicated
723 * values, and also size of the serialized data. For fixed-length data
724 * types this is trivial to compute, for varwidth types we need to
725 * actually walk the array and sum the sizes.
727 info[dim].nvalues = ndistinct;
729 if (info[dim].typbyval) /* by-value data types */
731 info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
734 * We copy the data into the MCV item during deserialization, so
735 * we don't need to allocate any extra space.
737 info[dim].nbytes_aligned = 0;
739 else if (info[dim].typlen > 0) /* fixed-length by-ref */
742 * We don't care about alignment in the serialized data, so we
743 * pack the data as much as possible. But we also track how much
744 * data will be needed after deserialization, and in that case we
745 * need to account for alignment of each item.
747 * Note: As the items are fixed-length, we could easily compute
748 * this during deserialization, but we do it here anyway.
750 info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
751 info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen);
753 else if (info[dim].typlen == -1) /* varlena */
755 info[dim].nbytes = 0;
756 info[dim].nbytes_aligned = 0;
757 for (i = 0; i < info[dim].nvalues; i++)
759 Size len;
762 * For varlena values, we detoast the values and store the
763 * length and data separately. We don't bother with alignment
764 * here, which means that during deserialization we need to
765 * copy the fields and only access the copies.
767 values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
769 /* serialized length (uint32 length + data) */
770 len = VARSIZE_ANY_EXHDR(values[dim][i]);
771 info[dim].nbytes += sizeof(uint32); /* length */
772 info[dim].nbytes += len; /* value (no header) */
775 * During deserialization we'll build regular varlena values
776 * with full headers, and we need to align them properly.
778 info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len);
781 else if (info[dim].typlen == -2) /* cstring */
783 info[dim].nbytes = 0;
784 info[dim].nbytes_aligned = 0;
785 for (i = 0; i < info[dim].nvalues; i++)
787 Size len;
790 * cstring is handled similar to varlena - first we store the
791 * length as uint32 and then the data. We don't care about
792 * alignment, which means that during deserialization we need
793 * to copy the fields and only access the copies.
796 /* c-strings include terminator, so +1 byte */
797 len = strlen(DatumGetCString(values[dim][i])) + 1;
798 info[dim].nbytes += sizeof(uint32); /* length */
799 info[dim].nbytes += len; /* value */
801 /* space needed for properly aligned deserialized copies */
802 info[dim].nbytes_aligned += MAXALIGN(len);
806 /* we know (count>0) so there must be some data */
807 Assert(info[dim].nbytes > 0);
811 * Now we can finally compute how much space we'll actually need for the
812 * whole serialized MCV list (varlena header, MCV header, dimension info
813 * for each attribute, deduplicated values and items).
815 total_length = (3 * sizeof(uint32)) /* magic + type + nitems */
816 + sizeof(AttrNumber) /* ndimensions */
817 + (ndims * sizeof(Oid)); /* attribute types */
819 /* dimension info */
820 total_length += ndims * sizeof(DimensionInfo);
822 /* add space for the arrays of deduplicated values */
823 for (i = 0; i < ndims; i++)
824 total_length += info[i].nbytes;
827 * And finally account for the items (those are fixed-length, thanks to
828 * replacing values with uint16 indexes into the deduplicated arrays).
830 total_length += mcvlist->nitems * ITEM_SIZE(dim);
833 * Allocate space for the whole serialized MCV list (we'll skip bytes, so
834 * we set them to zero to make the result more compressible).
836 raw = (bytea *) palloc0(VARHDRSZ + total_length);
837 SET_VARSIZE(raw, VARHDRSZ + total_length);
839 ptr = VARDATA(raw);
840 endptr = ptr + total_length;
842 /* copy the MCV list header fields, one by one */
843 memcpy(ptr, &mcvlist->magic, sizeof(uint32));
844 ptr += sizeof(uint32);
846 memcpy(ptr, &mcvlist->type, sizeof(uint32));
847 ptr += sizeof(uint32);
849 memcpy(ptr, &mcvlist->nitems, sizeof(uint32));
850 ptr += sizeof(uint32);
852 memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber));
853 ptr += sizeof(AttrNumber);
855 memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims);
856 ptr += (sizeof(Oid) * ndims);
858 /* store information about the attributes (data amounts, ...) */
859 memcpy(ptr, info, sizeof(DimensionInfo) * ndims);
860 ptr += sizeof(DimensionInfo) * ndims;
862 /* Copy the deduplicated values for all attributes to the output. */
863 for (dim = 0; dim < ndims; dim++)
865 /* remember the starting point for Asserts later */
866 char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
868 for (i = 0; i < info[dim].nvalues; i++)
870 Datum value = values[dim][i];
872 if (info[dim].typbyval) /* passed by value */
874 Datum tmp;
877 * For byval types, we need to copy just the significant bytes
878 * - we can't use memcpy directly, as that assumes
879 * little-endian behavior. store_att_byval does almost what
880 * we need, but it requires a properly aligned buffer - the
881 * output buffer does not guarantee that. So we simply use a
882 * local Datum variable (which guarantees proper alignment),
883 * and then copy the value from it.
885 store_att_byval(&tmp, value, info[dim].typlen);
887 memcpy(ptr, &tmp, info[dim].typlen);
888 ptr += info[dim].typlen;
890 else if (info[dim].typlen > 0) /* passed by reference */
892 /* no special alignment needed, treated as char array */
893 memcpy(ptr, DatumGetPointer(value), info[dim].typlen);
894 ptr += info[dim].typlen;
896 else if (info[dim].typlen == -1) /* varlena */
898 uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value));
900 /* copy the length */
901 memcpy(ptr, &len, sizeof(uint32));
902 ptr += sizeof(uint32);
904 /* data from the varlena value (without the header) */
905 memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len);
906 ptr += len;
908 else if (info[dim].typlen == -2) /* cstring */
910 uint32 len = (uint32) strlen(DatumGetCString(value)) + 1;
912 /* copy the length */
913 memcpy(ptr, &len, sizeof(uint32));
914 ptr += sizeof(uint32);
916 /* value */
917 memcpy(ptr, DatumGetCString(value), len);
918 ptr += len;
921 /* no underflows or overflows */
922 Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes));
925 /* we should get exactly nbytes of data for this dimension */
926 Assert((ptr - start) == info[dim].nbytes);
929 /* Serialize the items, with uint16 indexes instead of the values. */
930 for (i = 0; i < mcvlist->nitems; i++)
932 MCVItem *mcvitem = &mcvlist->items[i];
934 /* don't write beyond the allocated space */
935 Assert(ptr <= (endptr - ITEM_SIZE(dim)));
937 /* copy NULL and frequency flags into the serialized MCV */
938 memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims);
939 ptr += sizeof(bool) * ndims;
941 memcpy(ptr, &mcvitem->frequency, sizeof(double));
942 ptr += sizeof(double);
944 memcpy(ptr, &mcvitem->base_frequency, sizeof(double));
945 ptr += sizeof(double);
947 /* store the indexes last */
948 for (dim = 0; dim < ndims; dim++)
950 uint16 index = 0;
951 Datum *value;
953 /* do the lookup only for non-NULL values */
954 if (!mcvitem->isnull[dim])
956 value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
957 info[dim].nvalues, sizeof(Datum),
958 compare_scalars_simple, &ssup[dim]);
960 Assert(value != NULL); /* serialization or deduplication
961 * error */
963 /* compute index within the deduplicated array */
964 index = (uint16) (value - values[dim]);
966 /* check the index is within expected bounds */
967 Assert(index < info[dim].nvalues);
970 /* copy the index into the serialized MCV */
971 memcpy(ptr, &index, sizeof(uint16));
972 ptr += sizeof(uint16);
975 /* make sure we don't overflow the allocated value */
976 Assert(ptr <= endptr);
979 /* at this point we expect to match the total_length exactly */
980 Assert(ptr == endptr);
982 pfree(values);
983 pfree(counts);
985 return raw;
989 * statext_mcv_deserialize
990 * Reads serialized MCV list into MCVList structure.
992 * All the memory needed by the MCV list is allocated as a single chunk, so
993 * it's possible to simply pfree() it at once.
995 MCVList *
996 statext_mcv_deserialize(bytea *data)
998 int dim,
1000 Size expected_size;
1001 MCVList *mcvlist;
1002 char *raw;
1003 char *ptr;
1004 char *endptr PG_USED_FOR_ASSERTS_ONLY;
1006 int ndims,
1007 nitems;
1008 DimensionInfo *info = NULL;
1010 /* local allocation buffer (used only for deserialization) */
1011 Datum **map = NULL;
1013 /* MCV list */
1014 Size mcvlen;
1016 /* buffer used for the result */
1017 Size datalen;
1018 char *dataptr;
1019 char *valuesptr;
1020 char *isnullptr;
1022 if (data == NULL)
1023 return NULL;
1026 * We can't possibly deserialize a MCV list if there's not even a complete
1027 * header. We need an explicit formula here, because we serialize the
1028 * header fields one by one, so we need to ignore struct alignment.
1030 if (VARSIZE_ANY(data) < MinSizeOfMCVList)
1031 elog(ERROR, "invalid MCV size %zu (expected at least %zu)",
1032 VARSIZE_ANY(data), MinSizeOfMCVList);
1034 /* read the MCV list header */
1035 mcvlist = (MCVList *) palloc0(offsetof(MCVList, items));
1037 /* pointer to the data part (skip the varlena header) */
1038 raw = (char *) data;
1039 ptr = VARDATA_ANY(raw);
1040 endptr = (char *) raw + VARSIZE_ANY(data);
1042 /* get the header and perform further sanity checks */
1043 memcpy(&mcvlist->magic, ptr, sizeof(uint32));
1044 ptr += sizeof(uint32);
1046 memcpy(&mcvlist->type, ptr, sizeof(uint32));
1047 ptr += sizeof(uint32);
1049 memcpy(&mcvlist->nitems, ptr, sizeof(uint32));
1050 ptr += sizeof(uint32);
1052 memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber));
1053 ptr += sizeof(AttrNumber);
1055 if (mcvlist->magic != STATS_MCV_MAGIC)
1056 elog(ERROR, "invalid MCV magic %u (expected %u)",
1057 mcvlist->magic, STATS_MCV_MAGIC);
1059 if (mcvlist->type != STATS_MCV_TYPE_BASIC)
1060 elog(ERROR, "invalid MCV type %u (expected %u)",
1061 mcvlist->type, STATS_MCV_TYPE_BASIC);
1063 if (mcvlist->ndimensions == 0)
1064 elog(ERROR, "invalid zero-length dimension array in MCVList");
1065 else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
1066 (mcvlist->ndimensions < 0))
1067 elog(ERROR, "invalid length (%d) dimension array in MCVList",
1068 mcvlist->ndimensions);
1070 if (mcvlist->nitems == 0)
1071 elog(ERROR, "invalid zero-length item array in MCVList");
1072 else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
1073 elog(ERROR, "invalid length (%u) item array in MCVList",
1074 mcvlist->nitems);
1076 nitems = mcvlist->nitems;
1077 ndims = mcvlist->ndimensions;
1080 * Check amount of data including DimensionInfo for all dimensions and
1081 * also the serialized items (including uint16 indexes). Also, walk
1082 * through the dimension information and add it to the sum.
1084 expected_size = SizeOfMCVList(ndims, nitems);
1087 * Check that we have at least the dimension and info records, along with
1088 * the items. We don't know the size of the serialized values yet. We need
1089 * to do this check first, before accessing the dimension info.
1091 if (VARSIZE_ANY(data) < expected_size)
1092 elog(ERROR, "invalid MCV size %zu (expected %zu)",
1093 VARSIZE_ANY(data), expected_size);
1095 /* Now copy the array of type Oids. */
1096 memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims);
1097 ptr += (sizeof(Oid) * ndims);
1099 /* Now it's safe to access the dimension info. */
1100 info = palloc(ndims * sizeof(DimensionInfo));
1102 memcpy(info, ptr, ndims * sizeof(DimensionInfo));
1103 ptr += (ndims * sizeof(DimensionInfo));
1105 /* account for the value arrays */
1106 for (dim = 0; dim < ndims; dim++)
1109 * XXX I wonder if we can/should rely on asserts here. Maybe those
1110 * checks should be done every time?
1112 Assert(info[dim].nvalues >= 0);
1113 Assert(info[dim].nbytes >= 0);
1115 expected_size += info[dim].nbytes;
1119 * Now we know the total expected MCV size, including all the pieces
1120 * (header, dimension info. items and deduplicated data). So do the final
1121 * check on size.
1123 if (VARSIZE_ANY(data) != expected_size)
1124 elog(ERROR, "invalid MCV size %zu (expected %zu)",
1125 VARSIZE_ANY(data), expected_size);
1128 * We need an array of Datum values for each dimension, so that we can
1129 * easily translate the uint16 indexes later. We also need a top-level
1130 * array of pointers to those per-dimension arrays.
1132 * While allocating the arrays for dimensions, compute how much space we
1133 * need for a copy of the by-ref data, as we can't simply point to the
1134 * original values (it might go away).
1136 datalen = 0; /* space for by-ref data */
1137 map = (Datum **) palloc(ndims * sizeof(Datum *));
1139 for (dim = 0; dim < ndims; dim++)
1141 map[dim] = (Datum *) palloc(sizeof(Datum) * info[dim].nvalues);
1143 /* space needed for a copy of data for by-ref types */
1144 datalen += info[dim].nbytes_aligned;
1148 * Now resize the MCV list so that the allocation includes all the data.
1150 * Allocate space for a copy of the data, as we can't simply reference the
1151 * serialized data - it's not aligned properly, and it may disappear while
1152 * we're still using the MCV list, e.g. due to catcache release.
1154 * We do care about alignment here, because we will allocate all the
1155 * pieces at once, but then use pointers to different parts.
1157 mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1159 /* arrays of values and isnull flags for all MCV items */
1160 mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims);
1161 mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims);
1163 /* we don't quite need to align this, but it makes some asserts easier */
1164 mcvlen += MAXALIGN(datalen);
1166 /* now resize the deserialized MCV list, and compute pointers to parts */
1167 mcvlist = repalloc(mcvlist, mcvlen);
1169 /* pointer to the beginning of values/isnull arrays */
1170 valuesptr = (char *) mcvlist
1171 + MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1173 isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims));
1175 dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims));
1178 * Build mapping (index => value) for translating the serialized data into
1179 * the in-memory representation.
1181 for (dim = 0; dim < ndims; dim++)
1183 /* remember start position in the input array */
1184 char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
1186 if (info[dim].typbyval)
1188 /* for by-val types we simply copy data into the mapping */
1189 for (i = 0; i < info[dim].nvalues; i++)
1191 Datum v = 0;
1193 memcpy(&v, ptr, info[dim].typlen);
1194 ptr += info[dim].typlen;
1196 map[dim][i] = fetch_att(&v, true, info[dim].typlen);
1198 /* no under/overflow of input array */
1199 Assert(ptr <= (start + info[dim].nbytes));
1202 else
1204 /* for by-ref types we need to also make a copy of the data */
1206 /* passed by reference, but fixed length (name, tid, ...) */
1207 if (info[dim].typlen > 0)
1209 for (i = 0; i < info[dim].nvalues; i++)
1211 memcpy(dataptr, ptr, info[dim].typlen);
1212 ptr += info[dim].typlen;
1214 /* just point into the array */
1215 map[dim][i] = PointerGetDatum(dataptr);
1216 dataptr += MAXALIGN(info[dim].typlen);
1219 else if (info[dim].typlen == -1)
1221 /* varlena */
1222 for (i = 0; i < info[dim].nvalues; i++)
1224 uint32 len;
1226 /* read the uint32 length */
1227 memcpy(&len, ptr, sizeof(uint32));
1228 ptr += sizeof(uint32);
1230 /* the length is data-only */
1231 SET_VARSIZE(dataptr, len + VARHDRSZ);
1232 memcpy(VARDATA(dataptr), ptr, len);
1233 ptr += len;
1235 /* just point into the array */
1236 map[dim][i] = PointerGetDatum(dataptr);
1238 /* skip to place of the next deserialized value */
1239 dataptr += MAXALIGN(len + VARHDRSZ);
1242 else if (info[dim].typlen == -2)
1244 /* cstring */
1245 for (i = 0; i < info[dim].nvalues; i++)
1247 uint32 len;
1249 memcpy(&len, ptr, sizeof(uint32));
1250 ptr += sizeof(uint32);
1252 memcpy(dataptr, ptr, len);
1253 ptr += len;
1255 /* just point into the array */
1256 map[dim][i] = PointerGetDatum(dataptr);
1257 dataptr += MAXALIGN(len);
1261 /* no under/overflow of input array */
1262 Assert(ptr <= (start + info[dim].nbytes));
1264 /* no overflow of the output mcv value */
1265 Assert(dataptr <= ((char *) mcvlist + mcvlen));
1268 /* check we consumed input data for this dimension exactly */
1269 Assert(ptr == (start + info[dim].nbytes));
1272 /* we should have also filled the MCV list exactly */
1273 Assert(dataptr == ((char *) mcvlist + mcvlen));
1275 /* deserialize the MCV items and translate the indexes to Datums */
1276 for (i = 0; i < nitems; i++)
1278 MCVItem *item = &mcvlist->items[i];
1280 item->values = (Datum *) valuesptr;
1281 valuesptr += MAXALIGN(sizeof(Datum) * ndims);
1283 item->isnull = (bool *) isnullptr;
1284 isnullptr += MAXALIGN(sizeof(bool) * ndims);
1286 memcpy(item->isnull, ptr, sizeof(bool) * ndims);
1287 ptr += sizeof(bool) * ndims;
1289 memcpy(&item->frequency, ptr, sizeof(double));
1290 ptr += sizeof(double);
1292 memcpy(&item->base_frequency, ptr, sizeof(double));
1293 ptr += sizeof(double);
1295 /* finally translate the indexes (for non-NULL only) */
1296 for (dim = 0; dim < ndims; dim++)
1298 uint16 index;
1300 memcpy(&index, ptr, sizeof(uint16));
1301 ptr += sizeof(uint16);
1303 if (item->isnull[dim])
1304 continue;
1306 item->values[dim] = map[dim][index];
1309 /* check we're not overflowing the input */
1310 Assert(ptr <= endptr);
1313 /* check that we processed all the data */
1314 Assert(ptr == endptr);
1316 /* release the buffers used for mapping */
1317 for (dim = 0; dim < ndims; dim++)
1318 pfree(map[dim]);
1320 pfree(map);
1322 return mcvlist;
1326 * SRF with details about buckets of a histogram:
1328 * - item ID (0...nitems)
1329 * - values (string array)
1330 * - nulls only (boolean array)
1331 * - frequency (double precision)
1332 * - base_frequency (double precision)
1334 * The input is the OID of the statistics, and there are no rows returned if
1335 * the statistics contains no histogram.
1337 Datum
1338 pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
1340 FuncCallContext *funcctx;
1342 /* stuff done only on the first call of the function */
1343 if (SRF_IS_FIRSTCALL())
1345 MemoryContext oldcontext;
1346 MCVList *mcvlist;
1347 TupleDesc tupdesc;
1349 /* create a function context for cross-call persistence */
1350 funcctx = SRF_FIRSTCALL_INIT();
1352 /* switch to memory context appropriate for multiple function calls */
1353 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
1355 mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
1357 funcctx->user_fctx = mcvlist;
1359 /* total number of tuples to be returned */
1360 funcctx->max_calls = 0;
1361 if (funcctx->user_fctx != NULL)
1362 funcctx->max_calls = mcvlist->nitems;
1364 /* Build a tuple descriptor for our result type */
1365 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1366 ereport(ERROR,
1367 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1368 errmsg("function returning record called in context "
1369 "that cannot accept type record")));
1370 tupdesc = BlessTupleDesc(tupdesc);
1373 * generate attribute metadata needed later to produce tuples from raw
1374 * C strings
1376 funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
1378 MemoryContextSwitchTo(oldcontext);
1381 /* stuff done on every call of the function */
1382 funcctx = SRF_PERCALL_SETUP();
1384 if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more
1385 * left to send */
1387 Datum values[5];
1388 bool nulls[5];
1389 HeapTuple tuple;
1390 Datum result;
1391 ArrayBuildState *astate_values = NULL;
1392 ArrayBuildState *astate_nulls = NULL;
1394 int i;
1395 MCVList *mcvlist;
1396 MCVItem *item;
1398 mcvlist = (MCVList *) funcctx->user_fctx;
1400 Assert(funcctx->call_cntr < mcvlist->nitems);
1402 item = &mcvlist->items[funcctx->call_cntr];
1404 for (i = 0; i < mcvlist->ndimensions; i++)
1407 astate_nulls = accumArrayResult(astate_nulls,
1408 BoolGetDatum(item->isnull[i]),
1409 false,
1410 BOOLOID,
1411 CurrentMemoryContext);
1413 if (!item->isnull[i])
1415 bool isvarlena;
1416 Oid outfunc;
1417 FmgrInfo fmgrinfo;
1418 Datum val;
1419 text *txt;
1421 /* lookup output func for the type */
1422 getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena);
1423 fmgr_info(outfunc, &fmgrinfo);
1425 val = FunctionCall1(&fmgrinfo, item->values[i]);
1426 txt = cstring_to_text(DatumGetPointer(val));
1428 astate_values = accumArrayResult(astate_values,
1429 PointerGetDatum(txt),
1430 false,
1431 TEXTOID,
1432 CurrentMemoryContext);
1434 else
1435 astate_values = accumArrayResult(astate_values,
1436 (Datum) 0,
1437 true,
1438 TEXTOID,
1439 CurrentMemoryContext);
1442 values[0] = Int32GetDatum(funcctx->call_cntr);
1443 values[1] = makeArrayResult(astate_values, CurrentMemoryContext);
1444 values[2] = makeArrayResult(astate_nulls, CurrentMemoryContext);
1445 values[3] = Float8GetDatum(item->frequency);
1446 values[4] = Float8GetDatum(item->base_frequency);
1448 /* no NULLs in the tuple */
1449 memset(nulls, 0, sizeof(nulls));
1451 /* build a tuple */
1452 tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls);
1454 /* make the tuple into a datum */
1455 result = HeapTupleGetDatum(tuple);
1457 SRF_RETURN_NEXT(funcctx, result);
1459 else /* do when there is no more left */
1461 SRF_RETURN_DONE(funcctx);
1466 * pg_mcv_list_in - input routine for type pg_mcv_list.
1468 * pg_mcv_list is real enough to be a table column, but it has no operations
1469 * of its own, and disallows input too
1471 Datum
1472 pg_mcv_list_in(PG_FUNCTION_ARGS)
1475 * pg_mcv_list stores the data in binary form and parsing text input is
1476 * not needed, so disallow this.
1478 ereport(ERROR,
1479 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1480 errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1482 PG_RETURN_VOID(); /* keep compiler quiet */
1487 * pg_mcv_list_out - output routine for type pg_mcv_list.
1489 * MCV lists are serialized into a bytea value, so we simply call byteaout()
1490 * to serialize the value into text. But it'd be nice to serialize that into
1491 * a meaningful representation (e.g. for inspection by people).
1493 * XXX This should probably return something meaningful, similar to what
1494 * pg_dependencies_out does. Not sure how to deal with the deduplicated
1495 * values, though - do we want to expand that or not?
1497 Datum
1498 pg_mcv_list_out(PG_FUNCTION_ARGS)
1500 return byteaout(fcinfo);
1504 * pg_mcv_list_recv - binary input routine for type pg_mcv_list.
1506 Datum
1507 pg_mcv_list_recv(PG_FUNCTION_ARGS)
1509 ereport(ERROR,
1510 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1511 errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1513 PG_RETURN_VOID(); /* keep compiler quiet */
1517 * pg_mcv_list_send - binary output routine for type pg_mcv_list.
1519 * MCV lists are serialized in a bytea value (although the type is named
1520 * differently), so let's just send that.
1522 Datum
1523 pg_mcv_list_send(PG_FUNCTION_ARGS)
1525 return byteasend(fcinfo);
1529 * match the attribute/expression to a dimension of the statistic
1531 * Returns the zero-based index of the matching statistics dimension.
1532 * Optionally determines the collation.
1534 static int
1535 mcv_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
1537 int idx;
1539 if (IsA(expr, Var))
1541 /* simple Var, so just lookup using varattno */
1542 Var *var = (Var *) expr;
1544 if (collid)
1545 *collid = var->varcollid;
1547 idx = bms_member_index(keys, var->varattno);
1549 if (idx < 0)
1550 elog(ERROR, "variable not found in statistics object");
1552 else
1554 /* expression - lookup in stats expressions */
1555 ListCell *lc;
1557 if (collid)
1558 *collid = exprCollation(expr);
1560 /* expressions are stored after the simple columns */
1561 idx = bms_num_members(keys);
1562 foreach(lc, exprs)
1564 Node *stat_expr = (Node *) lfirst(lc);
1566 if (equal(expr, stat_expr))
1567 break;
1569 idx++;
1572 if (lc == NULL)
1573 elog(ERROR, "expression not found in statistics object");
1576 return idx;
1580 * mcv_get_match_bitmap
1581 * Evaluate clauses using the MCV list, and update the match bitmap.
1583 * A match bitmap keeps match/mismatch status for each MCV item, and we
1584 * update it based on additional clauses. We also use it to skip items
1585 * that can't possibly match (e.g. item marked as "mismatch" can't change
1586 * to "match" when evaluating AND clause list).
1588 * The function also returns a flag indicating whether there was an
1589 * equality condition for all attributes, the minimum frequency in the MCV
1590 * list, and a total MCV frequency (sum of frequencies for all items).
1592 * XXX Currently the match bitmap uses a bool for each MCV item, which is
1593 * somewhat wasteful as we could do with just a single bit, thus reducing
1594 * the size to ~1/8. It would also allow us to combine bitmaps simply using
1595 * & and |, which should be faster than min/max. The bitmaps are fairly
1596 * small, though (thanks to the cap on the MCV list size).
1598 static bool *
1599 mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
1600 Bitmapset *keys, List *exprs,
1601 MCVList *mcvlist, bool is_or)
1603 ListCell *l;
1604 bool *matches;
1606 /* The bitmap may be partially built. */
1607 Assert(clauses != NIL);
1608 Assert(mcvlist != NULL);
1609 Assert(mcvlist->nitems > 0);
1610 Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
1612 matches = palloc(sizeof(bool) * mcvlist->nitems);
1613 memset(matches, !is_or, sizeof(bool) * mcvlist->nitems);
1616 * Loop through the list of clauses, and for each of them evaluate all the
1617 * MCV items not yet eliminated by the preceding clauses.
1619 foreach(l, clauses)
1621 Node *clause = (Node *) lfirst(l);
1623 /* if it's a RestrictInfo, then extract the clause */
1624 if (IsA(clause, RestrictInfo))
1625 clause = (Node *) ((RestrictInfo *) clause)->clause;
1628 * Handle the various types of clauses - OpClause, NullTest and
1629 * AND/OR/NOT
1631 if (is_opclause(clause))
1633 OpExpr *expr = (OpExpr *) clause;
1634 FmgrInfo opproc;
1636 /* valid only after examine_opclause_args returns true */
1637 Node *clause_expr;
1638 Const *cst;
1639 bool expronleft;
1640 int idx;
1641 Oid collid;
1643 fmgr_info(get_opcode(expr->opno), &opproc);
1645 /* extract the var/expr and const from the expression */
1646 if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
1647 elog(ERROR, "incompatible clause");
1649 /* match the attribute/expression to a dimension of the statistic */
1650 idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1653 * Walk through the MCV items and evaluate the current clause. We
1654 * can skip items that were already ruled out, and terminate if
1655 * there are no remaining MCV items that might possibly match.
1657 for (int i = 0; i < mcvlist->nitems; i++)
1659 bool match = true;
1660 MCVItem *item = &mcvlist->items[i];
1662 Assert(idx >= 0);
1665 * When the MCV item or the Const value is NULL we can treat
1666 * this as a mismatch. We must not call the operator because
1667 * of strictness.
1669 if (item->isnull[idx] || cst->constisnull)
1671 matches[i] = RESULT_MERGE(matches[i], is_or, false);
1672 continue;
1676 * Skip MCV items that can't change result in the bitmap. Once
1677 * the value gets false for AND-lists, or true for OR-lists,
1678 * we don't need to look at more clauses.
1680 if (RESULT_IS_FINAL(matches[i], is_or))
1681 continue;
1684 * First check whether the constant is below the lower
1685 * boundary (in that case we can skip the bucket, because
1686 * there's no overlap).
1688 * We don't store collations used to build the statistics, but
1689 * we can use the collation for the attribute itself, as
1690 * stored in varcollid. We do reset the statistics after a
1691 * type change (including collation change), so this is OK.
1692 * For expressions, we use the collation extracted from the
1693 * expression itself.
1695 if (expronleft)
1696 match = DatumGetBool(FunctionCall2Coll(&opproc,
1697 collid,
1698 item->values[idx],
1699 cst->constvalue));
1700 else
1701 match = DatumGetBool(FunctionCall2Coll(&opproc,
1702 collid,
1703 cst->constvalue,
1704 item->values[idx]));
1706 /* update the match bitmap with the result */
1707 matches[i] = RESULT_MERGE(matches[i], is_or, match);
1710 else if (IsA(clause, ScalarArrayOpExpr))
1712 ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
1713 FmgrInfo opproc;
1715 /* valid only after examine_opclause_args returns true */
1716 Node *clause_expr;
1717 Const *cst;
1718 bool expronleft;
1719 Oid collid;
1720 int idx;
1722 /* array evaluation */
1723 ArrayType *arrayval;
1724 int16 elmlen;
1725 bool elmbyval;
1726 char elmalign;
1727 int num_elems;
1728 Datum *elem_values;
1729 bool *elem_nulls;
1731 fmgr_info(get_opcode(expr->opno), &opproc);
1733 /* extract the var/expr and const from the expression */
1734 if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
1735 elog(ERROR, "incompatible clause");
1737 /* We expect Var on left */
1738 if (!expronleft)
1739 elog(ERROR, "incompatible clause");
1742 * Deconstruct the array constant, unless it's NULL (we'll cover
1743 * that case below)
1745 if (!cst->constisnull)
1747 arrayval = DatumGetArrayTypeP(cst->constvalue);
1748 get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
1749 &elmlen, &elmbyval, &elmalign);
1750 deconstruct_array(arrayval,
1751 ARR_ELEMTYPE(arrayval),
1752 elmlen, elmbyval, elmalign,
1753 &elem_values, &elem_nulls, &num_elems);
1756 /* match the attribute/expression to a dimension of the statistic */
1757 idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1760 * Walk through the MCV items and evaluate the current clause. We
1761 * can skip items that were already ruled out, and terminate if
1762 * there are no remaining MCV items that might possibly match.
1764 for (int i = 0; i < mcvlist->nitems; i++)
1766 int j;
1767 bool match = !expr->useOr;
1768 MCVItem *item = &mcvlist->items[i];
1771 * When the MCV item or the Const value is NULL we can treat
1772 * this as a mismatch. We must not call the operator because
1773 * of strictness.
1775 if (item->isnull[idx] || cst->constisnull)
1777 matches[i] = RESULT_MERGE(matches[i], is_or, false);
1778 continue;
1782 * Skip MCV items that can't change result in the bitmap. Once
1783 * the value gets false for AND-lists, or true for OR-lists,
1784 * we don't need to look at more clauses.
1786 if (RESULT_IS_FINAL(matches[i], is_or))
1787 continue;
1789 for (j = 0; j < num_elems; j++)
1791 Datum elem_value = elem_values[j];
1792 bool elem_isnull = elem_nulls[j];
1793 bool elem_match;
1795 /* NULL values always evaluate as not matching. */
1796 if (elem_isnull)
1798 match = RESULT_MERGE(match, expr->useOr, false);
1799 continue;
1803 * Stop evaluating the array elements once we reach a
1804 * matching value that can't change - ALL() is the same as
1805 * AND-list, ANY() is the same as OR-list.
1807 if (RESULT_IS_FINAL(match, expr->useOr))
1808 break;
1810 elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
1811 collid,
1812 item->values[idx],
1813 elem_value));
1815 match = RESULT_MERGE(match, expr->useOr, elem_match);
1818 /* update the match bitmap with the result */
1819 matches[i] = RESULT_MERGE(matches[i], is_or, match);
1822 else if (IsA(clause, NullTest))
1824 NullTest *expr = (NullTest *) clause;
1825 Node *clause_expr = (Node *) (expr->arg);
1827 /* match the attribute/expression to a dimension of the statistic */
1828 int idx = mcv_match_expression(clause_expr, keys, exprs, NULL);
1831 * Walk through the MCV items and evaluate the current clause. We
1832 * can skip items that were already ruled out, and terminate if
1833 * there are no remaining MCV items that might possibly match.
1835 for (int i = 0; i < mcvlist->nitems; i++)
1837 bool match = false; /* assume mismatch */
1838 MCVItem *item = &mcvlist->items[i];
1840 /* if the clause mismatches the MCV item, update the bitmap */
1841 switch (expr->nulltesttype)
1843 case IS_NULL:
1844 match = (item->isnull[idx]) ? true : match;
1845 break;
1847 case IS_NOT_NULL:
1848 match = (!item->isnull[idx]) ? true : match;
1849 break;
1852 /* now, update the match bitmap, depending on OR/AND type */
1853 matches[i] = RESULT_MERGE(matches[i], is_or, match);
1856 else if (is_orclause(clause) || is_andclause(clause))
1858 /* AND/OR clause, with all subclauses being compatible */
1860 int i;
1861 BoolExpr *bool_clause = ((BoolExpr *) clause);
1862 List *bool_clauses = bool_clause->args;
1864 /* match/mismatch bitmap for each MCV item */
1865 bool *bool_matches = NULL;
1867 Assert(bool_clauses != NIL);
1868 Assert(list_length(bool_clauses) >= 2);
1870 /* build the match bitmap for the OR-clauses */
1871 bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, exprs,
1872 mcvlist, is_orclause(clause));
1875 * Merge the bitmap produced by mcv_get_match_bitmap into the
1876 * current one. We need to consider if we're evaluating AND or OR
1877 * condition when merging the results.
1879 for (i = 0; i < mcvlist->nitems; i++)
1880 matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
1882 pfree(bool_matches);
1884 else if (is_notclause(clause))
1886 /* NOT clause, with all subclauses compatible */
1888 int i;
1889 BoolExpr *not_clause = ((BoolExpr *) clause);
1890 List *not_args = not_clause->args;
1892 /* match/mismatch bitmap for each MCV item */
1893 bool *not_matches = NULL;
1895 Assert(not_args != NIL);
1896 Assert(list_length(not_args) == 1);
1898 /* build the match bitmap for the NOT-clause */
1899 not_matches = mcv_get_match_bitmap(root, not_args, keys, exprs,
1900 mcvlist, false);
1903 * Merge the bitmap produced by mcv_get_match_bitmap into the
1904 * current one. We're handling a NOT clause, so invert the result
1905 * before merging it into the global bitmap.
1907 for (i = 0; i < mcvlist->nitems; i++)
1908 matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
1910 pfree(not_matches);
1912 else if (IsA(clause, Var))
1914 /* Var (has to be a boolean Var, possibly from below NOT) */
1916 Var *var = (Var *) (clause);
1918 /* match the attribute to a dimension of the statistic */
1919 int idx = bms_member_index(keys, var->varattno);
1921 Assert(var->vartype == BOOLOID);
1924 * Walk through the MCV items and evaluate the current clause. We
1925 * can skip items that were already ruled out, and terminate if
1926 * there are no remaining MCV items that might possibly match.
1928 for (int i = 0; i < mcvlist->nitems; i++)
1930 MCVItem *item = &mcvlist->items[i];
1931 bool match = false;
1933 /* if the item is NULL, it's a mismatch */
1934 if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
1935 match = true;
1937 /* update the result bitmap */
1938 matches[i] = RESULT_MERGE(matches[i], is_or, match);
1941 else
1943 /* Otherwise, it must be a bare boolean-returning expression */
1944 int idx;
1946 /* match the expression to a dimension of the statistic */
1947 idx = mcv_match_expression(clause, keys, exprs, NULL);
1950 * Walk through the MCV items and evaluate the current clause. We
1951 * can skip items that were already ruled out, and terminate if
1952 * there are no remaining MCV items that might possibly match.
1954 for (int i = 0; i < mcvlist->nitems; i++)
1956 bool match;
1957 MCVItem *item = &mcvlist->items[i];
1959 /* "match" just means it's bool TRUE */
1960 match = !item->isnull[idx] && DatumGetBool(item->values[idx]);
1962 /* now, update the match bitmap, depending on OR/AND type */
1963 matches[i] = RESULT_MERGE(matches[i], is_or, match);
1968 return matches;
1973 * mcv_combine_selectivities
1974 * Combine per-column and multi-column MCV selectivity estimates.
1976 * simple_sel is a "simple" selectivity estimate (produced without using any
1977 * extended statistics, essentially assuming independence of columns/clauses).
1979 * mcv_sel and mcv_basesel are sums of the frequencies and base frequencies of
1980 * all matching MCV items. The difference (mcv_sel - mcv_basesel) is then
1981 * essentially interpreted as a correction to be added to simple_sel, as
1982 * described below.
1984 * mcv_totalsel is the sum of the frequencies of all MCV items (not just the
1985 * matching ones). This is used as an upper bound on the portion of the
1986 * selectivity estimates not covered by the MCV statistics.
1988 * Note: While simple and base selectivities are defined in a quite similar
1989 * way, the values are computed differently and are not therefore equal. The
1990 * simple selectivity is computed as a product of per-clause estimates, while
1991 * the base selectivity is computed by adding up base frequencies of matching
1992 * items of the multi-column MCV list. So the values may differ for two main
1993 * reasons - (a) the MCV list may not cover 100% of the data and (b) some of
1994 * the MCV items did not match the estimated clauses.
1996 * As both (a) and (b) reduce the base selectivity value, it generally holds
1997 * that (simple_sel >= mcv_basesel). If the MCV list covers all the data, the
1998 * values may be equal.
2000 * So, other_sel = (simple_sel - mcv_basesel) is an estimate for the part not
2001 * covered by the MCV list, and (mcv_sel - mcv_basesel) may be seen as a
2002 * correction for the part covered by the MCV list. Those two statements are
2003 * actually equivalent.
2005 Selectivity
2006 mcv_combine_selectivities(Selectivity simple_sel,
2007 Selectivity mcv_sel,
2008 Selectivity mcv_basesel,
2009 Selectivity mcv_totalsel)
2011 Selectivity other_sel;
2012 Selectivity sel;
2014 /* estimated selectivity of values not covered by MCV matches */
2015 other_sel = simple_sel - mcv_basesel;
2016 CLAMP_PROBABILITY(other_sel);
2018 /* this non-MCV selectivity cannot exceed 1 - mcv_totalsel */
2019 if (other_sel > 1.0 - mcv_totalsel)
2020 other_sel = 1.0 - mcv_totalsel;
2022 /* overall selectivity is the sum of the MCV and non-MCV parts */
2023 sel = mcv_sel + other_sel;
2024 CLAMP_PROBABILITY(sel);
2026 return sel;
2031 * mcv_clauselist_selectivity
2032 * Use MCV statistics to estimate the selectivity of an implicitly-ANDed
2033 * list of clauses.
2035 * This determines which MCV items match every clause in the list and returns
2036 * the sum of the frequencies of those items.
2038 * In addition, it returns the sum of the base frequencies of each of those
2039 * items (that is the sum of the selectivities that each item would have if
2040 * the columns were independent of one another), and the total selectivity of
2041 * all the MCV items (not just the matching ones). These are expected to be
2042 * used together with a "simple" selectivity estimate (one based only on
2043 * per-column statistics) to produce an overall selectivity estimate that
2044 * makes use of both per-column and multi-column statistics --- see
2045 * mcv_combine_selectivities().
2047 Selectivity
2048 mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
2049 List *clauses, int varRelid,
2050 JoinType jointype, SpecialJoinInfo *sjinfo,
2051 RelOptInfo *rel,
2052 Selectivity *basesel, Selectivity *totalsel)
2054 int i;
2055 MCVList *mcv;
2056 Selectivity s = 0.0;
2057 RangeTblEntry *rte = root->simple_rte_array[rel->relid];
2059 /* match/mismatch bitmap for each MCV item */
2060 bool *matches = NULL;
2062 /* load the MCV list stored in the statistics object */
2063 mcv = statext_mcv_load(stat->statOid, rte->inh);
2065 /* build a match bitmap for the clauses */
2066 matches = mcv_get_match_bitmap(root, clauses, stat->keys, stat->exprs,
2067 mcv, false);
2069 /* sum frequencies for all the matching MCV items */
2070 *basesel = 0.0;
2071 *totalsel = 0.0;
2072 for (i = 0; i < mcv->nitems; i++)
2074 *totalsel += mcv->items[i].frequency;
2076 if (matches[i] != false)
2078 *basesel += mcv->items[i].base_frequency;
2079 s += mcv->items[i].frequency;
2083 return s;
2088 * mcv_clause_selectivity_or
2089 * Use MCV statistics to estimate the selectivity of a clause that
2090 * appears in an ORed list of clauses.
2092 * As with mcv_clauselist_selectivity() this determines which MCV items match
2093 * the clause and returns both the sum of the frequencies and the sum of the
2094 * base frequencies of those items, as well as the sum of the frequencies of
2095 * all MCV items (not just the matching ones) so that this information can be
2096 * used by mcv_combine_selectivities() to produce a selectivity estimate that
2097 * makes use of both per-column and multi-column statistics.
2099 * Additionally, we return information to help compute the overall selectivity
2100 * of the ORed list of clauses assumed to contain this clause. This function
2101 * is intended to be called for each clause in the ORed list of clauses,
2102 * allowing the overall selectivity to be computed using the following
2103 * algorithm:
2105 * Suppose P[n] = P(C[1] OR C[2] OR ... OR C[n]) is the combined selectivity
2106 * of the first n clauses in the list. Then the combined selectivity taking
2107 * into account the next clause C[n+1] can be written as
2109 * P[n+1] = P[n] + P(C[n+1]) - P((C[1] OR ... OR C[n]) AND C[n+1])
2111 * The final term above represents the overlap between the clauses examined so
2112 * far and the (n+1)'th clause. To estimate its selectivity, we track the
2113 * match bitmap for the ORed list of clauses examined so far and examine its
2114 * intersection with the match bitmap for the (n+1)'th clause.
2116 * We then also return the sums of the MCV item frequencies and base
2117 * frequencies for the match bitmap intersection corresponding to the overlap
2118 * term above, so that they can be combined with a simple selectivity estimate
2119 * for that term.
2121 * The parameter "or_matches" is an in/out parameter tracking the match bitmap
2122 * for the clauses examined so far. The caller is expected to set it to NULL
2123 * the first time it calls this function.
2125 Selectivity
2126 mcv_clause_selectivity_or(PlannerInfo *root, StatisticExtInfo *stat,
2127 MCVList *mcv, Node *clause, bool **or_matches,
2128 Selectivity *basesel, Selectivity *overlap_mcvsel,
2129 Selectivity *overlap_basesel, Selectivity *totalsel)
2131 Selectivity s = 0.0;
2132 bool *new_matches;
2133 int i;
2135 /* build the OR-matches bitmap, if not built already */
2136 if (*or_matches == NULL)
2137 *or_matches = palloc0(sizeof(bool) * mcv->nitems);
2139 /* build the match bitmap for the new clause */
2140 new_matches = mcv_get_match_bitmap(root, list_make1(clause), stat->keys,
2141 stat->exprs, mcv, false);
2144 * Sum the frequencies for all the MCV items matching this clause and also
2145 * those matching the overlap between this clause and any of the preceding
2146 * clauses as described above.
2148 *basesel = 0.0;
2149 *overlap_mcvsel = 0.0;
2150 *overlap_basesel = 0.0;
2151 *totalsel = 0.0;
2152 for (i = 0; i < mcv->nitems; i++)
2154 *totalsel += mcv->items[i].frequency;
2156 if (new_matches[i])
2158 s += mcv->items[i].frequency;
2159 *basesel += mcv->items[i].base_frequency;
2161 if ((*or_matches)[i])
2163 *overlap_mcvsel += mcv->items[i].frequency;
2164 *overlap_basesel += mcv->items[i].base_frequency;
2168 /* update the OR-matches bitmap for the next clause */
2169 (*or_matches)[i] = (*or_matches)[i] || new_matches[i];
2172 pfree(new_matches);
2174 return s;