nbtree: fix read page recheck typo.
[pgsql.git] / src / backend / storage / freespace / freespace.c
blobb1262ac3b69ddf6127684bf6c39874764335afb5
1 /*-------------------------------------------------------------------------
3 * freespace.c
4 * POSTGRES free space map for quickly finding free space in relations
7 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/storage/freespace/freespace.c
14 * NOTES:
16 * Free Space Map keeps track of the amount of free space on pages, and
17 * allows quickly searching for a page with enough free space. The FSM is
18 * stored in a dedicated relation fork of all heap relations, and those
19 * index access methods that need it (see also indexfsm.c). See README for
20 * more information.
22 *-------------------------------------------------------------------------
24 #include "postgres.h"
26 #include "access/htup_details.h"
27 #include "access/xloginsert.h"
28 #include "access/xlogutils.h"
29 #include "miscadmin.h"
30 #include "storage/freespace.h"
31 #include "storage/fsm_internals.h"
32 #include "storage/smgr.h"
33 #include "utils/rel.h"
37 * We use just one byte to store the amount of free space on a page, so we
38 * divide the amount of free space a page can have into 256 different
39 * categories. The highest category, 255, represents a page with at least
40 * MaxFSMRequestSize bytes of free space, and the second highest category
41 * represents the range from 254 * FSM_CAT_STEP, inclusive, to
42 * MaxFSMRequestSize, exclusive.
44 * MaxFSMRequestSize depends on the architecture and BLCKSZ, but assuming
45 * default 8k BLCKSZ, and that MaxFSMRequestSize is 8164 bytes, the
46 * categories look like this:
49 * Range Category
50 * 0 - 31 0
51 * 32 - 63 1
52 * ... ... ...
53 * 8096 - 8127 253
54 * 8128 - 8163 254
55 * 8164 - 8192 255
57 * The reason that MaxFSMRequestSize is special is that if MaxFSMRequestSize
58 * isn't equal to a range boundary, a page with exactly MaxFSMRequestSize
59 * bytes of free space wouldn't satisfy a request for MaxFSMRequestSize
60 * bytes. If there isn't more than MaxFSMRequestSize bytes of free space on a
61 * completely empty page, that would mean that we could never satisfy a
62 * request of exactly MaxFSMRequestSize bytes.
64 #define FSM_CATEGORIES 256
65 #define FSM_CAT_STEP (BLCKSZ / FSM_CATEGORIES)
66 #define MaxFSMRequestSize MaxHeapTupleSize
69 * Depth of the on-disk tree. We need to be able to address 2^32-1 blocks,
70 * and 1626 is the smallest number that satisfies X^3 >= 2^32-1. Likewise,
71 * 256 is the smallest number that satisfies X^4 >= 2^32-1. In practice,
72 * this means that 4096 bytes is the smallest BLCKSZ that we can get away
73 * with a 3-level tree, and 512 is the smallest we support.
75 #define FSM_TREE_DEPTH ((SlotsPerFSMPage >= 1626) ? 3 : 4)
77 #define FSM_ROOT_LEVEL (FSM_TREE_DEPTH - 1)
78 #define FSM_BOTTOM_LEVEL 0
81 * The internal FSM routines work on a logical addressing scheme. Each
82 * level of the tree can be thought of as a separately addressable file.
84 typedef struct
86 int level; /* level */
87 int logpageno; /* page number within the level */
88 } FSMAddress;
90 /* Address of the root page. */
91 static const FSMAddress FSM_ROOT_ADDRESS = {FSM_ROOT_LEVEL, 0};
93 /* functions to navigate the tree */
94 static FSMAddress fsm_get_child(FSMAddress parent, uint16 slot);
95 static FSMAddress fsm_get_parent(FSMAddress child, uint16 *slot);
96 static FSMAddress fsm_get_location(BlockNumber heapblk, uint16 *slot);
97 static BlockNumber fsm_get_heap_blk(FSMAddress addr, uint16 slot);
98 static BlockNumber fsm_logical_to_physical(FSMAddress addr);
100 static Buffer fsm_readbuf(Relation rel, FSMAddress addr, bool extend);
101 static Buffer fsm_extend(Relation rel, BlockNumber fsm_nblocks);
103 /* functions to convert amount of free space to a FSM category */
104 static uint8 fsm_space_avail_to_cat(Size avail);
105 static uint8 fsm_space_needed_to_cat(Size needed);
106 static Size fsm_space_cat_to_avail(uint8 cat);
108 /* workhorse functions for various operations */
109 static int fsm_set_and_search(Relation rel, FSMAddress addr, uint16 slot,
110 uint8 newValue, uint8 minValue);
111 static BlockNumber fsm_search(Relation rel, uint8 min_cat);
112 static uint8 fsm_vacuum_page(Relation rel, FSMAddress addr,
113 BlockNumber start, BlockNumber end,
114 bool *eof_p);
115 static bool fsm_does_block_exist(Relation rel, BlockNumber blknumber);
118 /******** Public API ********/
121 * GetPageWithFreeSpace - try to find a page in the given relation with
122 * at least the specified amount of free space.
124 * If successful, return the block number; if not, return InvalidBlockNumber.
126 * The caller must be prepared for the possibility that the returned page
127 * will turn out to have too little space available by the time the caller
128 * gets a lock on it. In that case, the caller should report the actual
129 * amount of free space available on that page and then try again (see
130 * RecordAndGetPageWithFreeSpace). If InvalidBlockNumber is returned,
131 * extend the relation.
133 * This can trigger FSM updates if any FSM entry is found to point to a block
134 * past the end of the relation.
136 BlockNumber
137 GetPageWithFreeSpace(Relation rel, Size spaceNeeded)
139 uint8 min_cat = fsm_space_needed_to_cat(spaceNeeded);
141 return fsm_search(rel, min_cat);
145 * RecordAndGetPageWithFreeSpace - update info about a page and try again.
147 * We provide this combo form to save some locking overhead, compared to
148 * separate RecordPageWithFreeSpace + GetPageWithFreeSpace calls. There's
149 * also some effort to return a page close to the old page; if there's a
150 * page with enough free space on the same FSM page where the old one page
151 * is located, it is preferred.
153 BlockNumber
154 RecordAndGetPageWithFreeSpace(Relation rel, BlockNumber oldPage,
155 Size oldSpaceAvail, Size spaceNeeded)
157 int old_cat = fsm_space_avail_to_cat(oldSpaceAvail);
158 int search_cat = fsm_space_needed_to_cat(spaceNeeded);
159 FSMAddress addr;
160 uint16 slot;
161 int search_slot;
163 /* Get the location of the FSM byte representing the heap block */
164 addr = fsm_get_location(oldPage, &slot);
166 search_slot = fsm_set_and_search(rel, addr, slot, old_cat, search_cat);
169 * If fsm_set_and_search found a suitable new block, return that.
170 * Otherwise, search as usual.
172 if (search_slot != -1)
174 BlockNumber blknum = fsm_get_heap_blk(addr, search_slot);
177 * Check that the blknum is actually in the relation. Don't try to
178 * update the FSM in that case, just fall back to the other case
180 if (fsm_does_block_exist(rel, blknum))
181 return blknum;
183 return fsm_search(rel, search_cat);
187 * RecordPageWithFreeSpace - update info about a page.
189 * Note that if the new spaceAvail value is higher than the old value stored
190 * in the FSM, the space might not become visible to searchers until the next
191 * FreeSpaceMapVacuum call, which updates the upper level pages.
193 void
194 RecordPageWithFreeSpace(Relation rel, BlockNumber heapBlk, Size spaceAvail)
196 int new_cat = fsm_space_avail_to_cat(spaceAvail);
197 FSMAddress addr;
198 uint16 slot;
200 /* Get the location of the FSM byte representing the heap block */
201 addr = fsm_get_location(heapBlk, &slot);
203 fsm_set_and_search(rel, addr, slot, new_cat, 0);
207 * XLogRecordPageWithFreeSpace - like RecordPageWithFreeSpace, for use in
208 * WAL replay
210 void
211 XLogRecordPageWithFreeSpace(RelFileLocator rlocator, BlockNumber heapBlk,
212 Size spaceAvail)
214 int new_cat = fsm_space_avail_to_cat(spaceAvail);
215 FSMAddress addr;
216 uint16 slot;
217 BlockNumber blkno;
218 Buffer buf;
219 Page page;
221 /* Get the location of the FSM byte representing the heap block */
222 addr = fsm_get_location(heapBlk, &slot);
223 blkno = fsm_logical_to_physical(addr);
225 /* If the page doesn't exist already, extend */
226 buf = XLogReadBufferExtended(rlocator, FSM_FORKNUM, blkno,
227 RBM_ZERO_ON_ERROR, InvalidBuffer);
228 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
230 page = BufferGetPage(buf);
231 if (PageIsNew(page))
232 PageInit(page, BLCKSZ, 0);
234 if (fsm_set_avail(page, slot, new_cat))
235 MarkBufferDirtyHint(buf, false);
236 UnlockReleaseBuffer(buf);
240 * GetRecordedFreeSpace - return the amount of free space on a particular page,
241 * according to the FSM.
243 Size
244 GetRecordedFreeSpace(Relation rel, BlockNumber heapBlk)
246 FSMAddress addr;
247 uint16 slot;
248 Buffer buf;
249 uint8 cat;
251 /* Get the location of the FSM byte representing the heap block */
252 addr = fsm_get_location(heapBlk, &slot);
254 buf = fsm_readbuf(rel, addr, false);
255 if (!BufferIsValid(buf))
256 return 0;
257 cat = fsm_get_avail(BufferGetPage(buf), slot);
258 ReleaseBuffer(buf);
260 return fsm_space_cat_to_avail(cat);
264 * FreeSpaceMapPrepareTruncateRel - prepare for truncation of a relation.
266 * nblocks is the new size of the heap.
268 * Return the number of blocks of new FSM.
269 * If it's InvalidBlockNumber, there is nothing to truncate;
270 * otherwise the caller is responsible for calling smgrtruncate()
271 * to truncate the FSM pages, and FreeSpaceMapVacuumRange()
272 * to update upper-level pages in the FSM.
274 BlockNumber
275 FreeSpaceMapPrepareTruncateRel(Relation rel, BlockNumber nblocks)
277 BlockNumber new_nfsmblocks;
278 FSMAddress first_removed_address;
279 uint16 first_removed_slot;
280 Buffer buf;
283 * If no FSM has been created yet for this relation, there's nothing to
284 * truncate.
286 if (!smgrexists(RelationGetSmgr(rel), FSM_FORKNUM))
287 return InvalidBlockNumber;
289 /* Get the location in the FSM of the first removed heap block */
290 first_removed_address = fsm_get_location(nblocks, &first_removed_slot);
293 * Zero out the tail of the last remaining FSM page. If the slot
294 * representing the first removed heap block is at a page boundary, as the
295 * first slot on the FSM page that first_removed_address points to, we can
296 * just truncate that page altogether.
298 if (first_removed_slot > 0)
300 buf = fsm_readbuf(rel, first_removed_address, false);
301 if (!BufferIsValid(buf))
302 return InvalidBlockNumber; /* nothing to do; the FSM was already
303 * smaller */
304 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
306 /* NO EREPORT(ERROR) from here till changes are logged */
307 START_CRIT_SECTION();
309 fsm_truncate_avail(BufferGetPage(buf), first_removed_slot);
312 * This change is non-critical, because fsm_does_block_exist() would
313 * stop us from returning a truncated-away block. However, since this
314 * may remove up to SlotsPerFSMPage slots, it's nice to avoid the cost
315 * of that many fsm_does_block_exist() rejections. Use a full
316 * MarkBufferDirty(), not MarkBufferDirtyHint().
318 MarkBufferDirty(buf);
321 * WAL-log like MarkBufferDirtyHint() might have done, just to avoid
322 * differing from the rest of the file in this respect. This is
323 * optional; see README mention of full page images. XXX consider
324 * XLogSaveBufferForHint() for even closer similarity.
326 * A higher-level operation calls us at WAL replay. If we crash
327 * before the XLOG_SMGR_TRUNCATE flushes to disk, main fork length has
328 * not changed, and our fork remains valid. If we crash after that
329 * flush, redo will return here.
331 if (!InRecovery && RelationNeedsWAL(rel) && XLogHintBitIsNeeded())
332 log_newpage_buffer(buf, false);
334 END_CRIT_SECTION();
336 UnlockReleaseBuffer(buf);
338 new_nfsmblocks = fsm_logical_to_physical(first_removed_address) + 1;
340 else
342 new_nfsmblocks = fsm_logical_to_physical(first_removed_address);
343 if (smgrnblocks(RelationGetSmgr(rel), FSM_FORKNUM) <= new_nfsmblocks)
344 return InvalidBlockNumber; /* nothing to do; the FSM was already
345 * smaller */
348 return new_nfsmblocks;
352 * FreeSpaceMapVacuum - update upper-level pages in the rel's FSM
354 * We assume that the bottom-level pages have already been updated with
355 * new free-space information.
357 void
358 FreeSpaceMapVacuum(Relation rel)
360 bool dummy;
362 /* Recursively scan the tree, starting at the root */
363 (void) fsm_vacuum_page(rel, FSM_ROOT_ADDRESS,
364 (BlockNumber) 0, InvalidBlockNumber,
365 &dummy);
369 * FreeSpaceMapVacuumRange - update upper-level pages in the rel's FSM
371 * As above, but assume that only heap pages between start and end-1 inclusive
372 * have new free-space information, so update only the upper-level slots
373 * covering that block range. end == InvalidBlockNumber is equivalent to
374 * "all the rest of the relation".
376 void
377 FreeSpaceMapVacuumRange(Relation rel, BlockNumber start, BlockNumber end)
379 bool dummy;
381 /* Recursively scan the tree, starting at the root */
382 if (end > start)
383 (void) fsm_vacuum_page(rel, FSM_ROOT_ADDRESS, start, end, &dummy);
386 /******** Internal routines ********/
389 * Return category corresponding x bytes of free space
391 static uint8
392 fsm_space_avail_to_cat(Size avail)
394 int cat;
396 Assert(avail < BLCKSZ);
398 if (avail >= MaxFSMRequestSize)
399 return 255;
401 cat = avail / FSM_CAT_STEP;
404 * The highest category, 255, is reserved for MaxFSMRequestSize bytes or
405 * more.
407 if (cat > 254)
408 cat = 254;
410 return (uint8) cat;
414 * Return the lower bound of the range of free space represented by given
415 * category.
417 static Size
418 fsm_space_cat_to_avail(uint8 cat)
420 /* The highest category represents exactly MaxFSMRequestSize bytes. */
421 if (cat == 255)
422 return MaxFSMRequestSize;
423 else
424 return cat * FSM_CAT_STEP;
428 * Which category does a page need to have, to accommodate x bytes of data?
429 * While fsm_space_avail_to_cat() rounds down, this needs to round up.
431 static uint8
432 fsm_space_needed_to_cat(Size needed)
434 int cat;
436 /* Can't ask for more space than the highest category represents */
437 if (needed > MaxFSMRequestSize)
438 elog(ERROR, "invalid FSM request size %zu", needed);
440 if (needed == 0)
441 return 1;
443 cat = (needed + FSM_CAT_STEP - 1) / FSM_CAT_STEP;
445 if (cat > 255)
446 cat = 255;
448 return (uint8) cat;
452 * Returns the physical block number of a FSM page
454 static BlockNumber
455 fsm_logical_to_physical(FSMAddress addr)
457 BlockNumber pages;
458 int leafno;
459 int l;
462 * Calculate the logical page number of the first leaf page below the
463 * given page.
465 leafno = addr.logpageno;
466 for (l = 0; l < addr.level; l++)
467 leafno *= SlotsPerFSMPage;
469 /* Count upper level nodes required to address the leaf page */
470 pages = 0;
471 for (l = 0; l < FSM_TREE_DEPTH; l++)
473 pages += leafno + 1;
474 leafno /= SlotsPerFSMPage;
478 * If the page we were asked for wasn't at the bottom level, subtract the
479 * additional lower level pages we counted above.
481 pages -= addr.level;
483 /* Turn the page count into 0-based block number */
484 return pages - 1;
488 * Return the FSM location corresponding to given heap block.
490 static FSMAddress
491 fsm_get_location(BlockNumber heapblk, uint16 *slot)
493 FSMAddress addr;
495 addr.level = FSM_BOTTOM_LEVEL;
496 addr.logpageno = heapblk / SlotsPerFSMPage;
497 *slot = heapblk % SlotsPerFSMPage;
499 return addr;
503 * Return the heap block number corresponding to given location in the FSM.
505 static BlockNumber
506 fsm_get_heap_blk(FSMAddress addr, uint16 slot)
508 Assert(addr.level == FSM_BOTTOM_LEVEL);
509 return ((unsigned int) addr.logpageno) * SlotsPerFSMPage + slot;
513 * Given a logical address of a child page, get the logical page number of
514 * the parent, and the slot within the parent corresponding to the child.
516 static FSMAddress
517 fsm_get_parent(FSMAddress child, uint16 *slot)
519 FSMAddress parent;
521 Assert(child.level < FSM_ROOT_LEVEL);
523 parent.level = child.level + 1;
524 parent.logpageno = child.logpageno / SlotsPerFSMPage;
525 *slot = child.logpageno % SlotsPerFSMPage;
527 return parent;
531 * Given a logical address of a parent page and a slot number, get the
532 * logical address of the corresponding child page.
534 static FSMAddress
535 fsm_get_child(FSMAddress parent, uint16 slot)
537 FSMAddress child;
539 Assert(parent.level > FSM_BOTTOM_LEVEL);
541 child.level = parent.level - 1;
542 child.logpageno = parent.logpageno * SlotsPerFSMPage + slot;
544 return child;
548 * Read a FSM page.
550 * If the page doesn't exist, InvalidBuffer is returned, or if 'extend' is
551 * true, the FSM file is extended.
553 static Buffer
554 fsm_readbuf(Relation rel, FSMAddress addr, bool extend)
556 BlockNumber blkno = fsm_logical_to_physical(addr);
557 Buffer buf;
558 SMgrRelation reln = RelationGetSmgr(rel);
561 * If we haven't cached the size of the FSM yet, check it first. Also
562 * recheck if the requested block seems to be past end, since our cached
563 * value might be stale. (We send smgr inval messages on truncation, but
564 * not on extension.)
566 if (reln->smgr_cached_nblocks[FSM_FORKNUM] == InvalidBlockNumber ||
567 blkno >= reln->smgr_cached_nblocks[FSM_FORKNUM])
569 /* Invalidate the cache so smgrnblocks asks the kernel. */
570 reln->smgr_cached_nblocks[FSM_FORKNUM] = InvalidBlockNumber;
571 if (smgrexists(reln, FSM_FORKNUM))
572 smgrnblocks(reln, FSM_FORKNUM);
573 else
574 reln->smgr_cached_nblocks[FSM_FORKNUM] = 0;
578 * For reading we use ZERO_ON_ERROR mode, and initialize the page if
579 * necessary. The FSM information is not accurate anyway, so it's better
580 * to clear corrupt pages than error out. Since the FSM changes are not
581 * WAL-logged, the so-called torn page problem on crash can lead to pages
582 * with corrupt headers, for example.
584 * We use the same path below to initialize pages when extending the
585 * relation, as a concurrent extension can end up with vm_extend()
586 * returning an already-initialized page.
588 if (blkno >= reln->smgr_cached_nblocks[FSM_FORKNUM])
590 if (extend)
591 buf = fsm_extend(rel, blkno + 1);
592 else
593 return InvalidBuffer;
595 else
596 buf = ReadBufferExtended(rel, FSM_FORKNUM, blkno, RBM_ZERO_ON_ERROR, NULL);
599 * Initializing the page when needed is trickier than it looks, because of
600 * the possibility of multiple backends doing this concurrently, and our
601 * desire to not uselessly take the buffer lock in the normal path where
602 * the page is OK. We must take the lock to initialize the page, so
603 * recheck page newness after we have the lock, in case someone else
604 * already did it. Also, because we initially check PageIsNew with no
605 * lock, it's possible to fall through and return the buffer while someone
606 * else is still initializing the page (i.e., we might see pd_upper as set
607 * but other page header fields are still zeroes). This is harmless for
608 * callers that will take a buffer lock themselves, but some callers
609 * inspect the page without any lock at all. The latter is OK only so
610 * long as it doesn't depend on the page header having correct contents.
611 * Current usage is safe because PageGetContents() does not require that.
613 if (PageIsNew(BufferGetPage(buf)))
615 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
616 if (PageIsNew(BufferGetPage(buf)))
617 PageInit(BufferGetPage(buf), BLCKSZ, 0);
618 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
620 return buf;
624 * Ensure that the FSM fork is at least fsm_nblocks long, extending
625 * it if necessary with empty pages. And by empty, I mean pages filled
626 * with zeros, meaning there's no free space.
628 static Buffer
629 fsm_extend(Relation rel, BlockNumber fsm_nblocks)
631 return ExtendBufferedRelTo(BMR_REL(rel), FSM_FORKNUM, NULL,
632 EB_CREATE_FORK_IF_NEEDED |
633 EB_CLEAR_SIZE_CACHE,
634 fsm_nblocks,
635 RBM_ZERO_ON_ERROR);
639 * Set value in given FSM page and slot.
641 * If minValue > 0, the updated page is also searched for a page with at
642 * least minValue of free space. If one is found, its slot number is
643 * returned, -1 otherwise.
645 static int
646 fsm_set_and_search(Relation rel, FSMAddress addr, uint16 slot,
647 uint8 newValue, uint8 minValue)
649 Buffer buf;
650 Page page;
651 int newslot = -1;
653 buf = fsm_readbuf(rel, addr, true);
654 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
656 page = BufferGetPage(buf);
658 if (fsm_set_avail(page, slot, newValue))
659 MarkBufferDirtyHint(buf, false);
661 if (minValue != 0)
663 /* Search while we still hold the lock */
664 newslot = fsm_search_avail(buf, minValue,
665 addr.level == FSM_BOTTOM_LEVEL,
666 true);
669 UnlockReleaseBuffer(buf);
671 return newslot;
675 * Search the tree for a heap page with at least min_cat of free space
677 static BlockNumber
678 fsm_search(Relation rel, uint8 min_cat)
680 int restarts = 0;
681 FSMAddress addr = FSM_ROOT_ADDRESS;
683 for (;;)
685 int slot;
686 Buffer buf;
687 uint8 max_avail = 0;
689 /* Read the FSM page. */
690 buf = fsm_readbuf(rel, addr, false);
692 /* Search within the page */
693 if (BufferIsValid(buf))
695 LockBuffer(buf, BUFFER_LOCK_SHARE);
696 slot = fsm_search_avail(buf, min_cat,
697 (addr.level == FSM_BOTTOM_LEVEL),
698 false);
699 if (slot == -1)
701 max_avail = fsm_get_max_avail(BufferGetPage(buf));
702 UnlockReleaseBuffer(buf);
704 else
706 /* Keep the pin for possible update below */
707 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
710 else
711 slot = -1;
713 if (slot != -1)
716 * Descend the tree, or return the found block if we're at the
717 * bottom.
719 if (addr.level == FSM_BOTTOM_LEVEL)
721 BlockNumber blkno = fsm_get_heap_blk(addr, slot);
722 Page page;
724 if (fsm_does_block_exist(rel, blkno))
726 ReleaseBuffer(buf);
727 return blkno;
731 * Block is past the end of the relation. Update FSM, and
732 * restart from root. The usual "advancenext" behavior is
733 * pessimal for this rare scenario, since every later slot is
734 * unusable in the same way. We could zero all affected slots
735 * on the same FSM page, but don't bet on the benefits of that
736 * optimization justifying its compiled code bulk.
738 page = BufferGetPage(buf);
739 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
740 fsm_set_avail(page, slot, 0);
741 MarkBufferDirtyHint(buf, false);
742 UnlockReleaseBuffer(buf);
743 if (restarts++ > 10000) /* same rationale as below */
744 return InvalidBlockNumber;
745 addr = FSM_ROOT_ADDRESS;
747 else
749 ReleaseBuffer(buf);
751 addr = fsm_get_child(addr, slot);
753 else if (addr.level == FSM_ROOT_LEVEL)
756 * At the root, failure means there's no page with enough free
757 * space in the FSM. Give up.
759 return InvalidBlockNumber;
761 else
763 uint16 parentslot;
764 FSMAddress parent;
767 * At lower level, failure can happen if the value in the upper-
768 * level node didn't reflect the value on the lower page. Update
769 * the upper node, to avoid falling into the same trap again, and
770 * start over.
772 * There's a race condition here, if another backend updates this
773 * page right after we release it, and gets the lock on the parent
774 * page before us. We'll then update the parent page with the now
775 * stale information we had. It's OK, because it should happen
776 * rarely, and will be fixed by the next vacuum.
778 parent = fsm_get_parent(addr, &parentslot);
779 fsm_set_and_search(rel, parent, parentslot, max_avail, 0);
782 * If the upper pages are badly out of date, we might need to loop
783 * quite a few times, updating them as we go. Any inconsistencies
784 * should eventually be corrected and the loop should end. Looping
785 * indefinitely is nevertheless scary, so provide an emergency
786 * valve.
788 if (restarts++ > 10000)
789 return InvalidBlockNumber;
791 /* Start search all over from the root */
792 addr = FSM_ROOT_ADDRESS;
799 * Recursive guts of FreeSpaceMapVacuum
801 * Examine the FSM page indicated by addr, as well as its children, updating
802 * upper-level nodes that cover the heap block range from start to end-1.
803 * (It's okay if end is beyond the actual end of the map.)
804 * Return the maximum freespace value on this page.
806 * If addr is past the end of the FSM, set *eof_p to true and return 0.
808 * This traverses the tree in depth-first order. The tree is stored
809 * physically in depth-first order, so this should be pretty I/O efficient.
811 static uint8
812 fsm_vacuum_page(Relation rel, FSMAddress addr,
813 BlockNumber start, BlockNumber end,
814 bool *eof_p)
816 Buffer buf;
817 Page page;
818 uint8 max_avail;
820 /* Read the page if it exists, or return EOF */
821 buf = fsm_readbuf(rel, addr, false);
822 if (!BufferIsValid(buf))
824 *eof_p = true;
825 return 0;
827 else
828 *eof_p = false;
830 page = BufferGetPage(buf);
833 * If we're above the bottom level, recurse into children, and fix the
834 * information stored about them at this level.
836 if (addr.level > FSM_BOTTOM_LEVEL)
838 FSMAddress fsm_start,
839 fsm_end;
840 uint16 fsm_start_slot,
841 fsm_end_slot;
842 int slot,
843 start_slot,
844 end_slot;
845 bool eof = false;
848 * Compute the range of slots we need to update on this page, given
849 * the requested range of heap blocks to consider. The first slot to
850 * update is the one covering the "start" block, and the last slot is
851 * the one covering "end - 1". (Some of this work will be duplicated
852 * in each recursive call, but it's cheap enough to not worry about.)
854 fsm_start = fsm_get_location(start, &fsm_start_slot);
855 fsm_end = fsm_get_location(end - 1, &fsm_end_slot);
857 while (fsm_start.level < addr.level)
859 fsm_start = fsm_get_parent(fsm_start, &fsm_start_slot);
860 fsm_end = fsm_get_parent(fsm_end, &fsm_end_slot);
862 Assert(fsm_start.level == addr.level);
864 if (fsm_start.logpageno == addr.logpageno)
865 start_slot = fsm_start_slot;
866 else if (fsm_start.logpageno > addr.logpageno)
867 start_slot = SlotsPerFSMPage; /* shouldn't get here... */
868 else
869 start_slot = 0;
871 if (fsm_end.logpageno == addr.logpageno)
872 end_slot = fsm_end_slot;
873 else if (fsm_end.logpageno > addr.logpageno)
874 end_slot = SlotsPerFSMPage - 1;
875 else
876 end_slot = -1; /* shouldn't get here... */
878 for (slot = start_slot; slot <= end_slot; slot++)
880 int child_avail;
882 CHECK_FOR_INTERRUPTS();
884 /* After we hit end-of-file, just clear the rest of the slots */
885 if (!eof)
886 child_avail = fsm_vacuum_page(rel, fsm_get_child(addr, slot),
887 start, end,
888 &eof);
889 else
890 child_avail = 0;
892 /* Update information about the child */
893 if (fsm_get_avail(page, slot) != child_avail)
895 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
896 fsm_set_avail(page, slot, child_avail);
897 MarkBufferDirtyHint(buf, false);
898 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
903 /* Now get the maximum value on the page, to return to caller */
904 max_avail = fsm_get_max_avail(page);
907 * Reset the next slot pointer. This encourages the use of low-numbered
908 * pages, increasing the chances that a later vacuum can truncate the
909 * relation. We don't bother with a lock here, nor with marking the page
910 * dirty if it wasn't already, since this is just a hint.
912 ((FSMPage) PageGetContents(page))->fp_next_slot = 0;
914 ReleaseBuffer(buf);
916 return max_avail;
921 * Check whether a block number is past the end of the relation. This can
922 * happen after WAL replay, if the FSM reached disk but newly-extended pages
923 * it refers to did not.
925 static bool
926 fsm_does_block_exist(Relation rel, BlockNumber blknumber)
928 SMgrRelation smgr = RelationGetSmgr(rel);
931 * If below the cached nblocks, the block surely exists. Otherwise, we
932 * face a trade-off. We opt to compare to a fresh nblocks, incurring
933 * lseek() overhead. The alternative would be to assume the block does
934 * not exist, but that would cause FSM to set zero space available for
935 * blocks that main fork extension just recorded.
937 return ((BlockNumberIsValid(smgr->smgr_cached_nblocks[MAIN_FORKNUM]) &&
938 blknumber < smgr->smgr_cached_nblocks[MAIN_FORKNUM]) ||
939 blknumber < RelationGetNumberOfBlocks(rel));