4 * When included this file generates a "templated" (by way of macros)
5 * open-addressing hash table implementation specialized to user-defined
8 * It's probably not worthwhile to generate such a specialized implementation
9 * for hash tables that aren't performance or space sensitive.
11 * Compared to dynahash, simplehash has the following benefits:
13 * - Due to the "templated" code generation has known structure sizes and no
14 * indirect function calls (which show up substantially in dynahash
15 * profiles). These features considerably increase speed for small
17 * - Open addressing has better CPU cache behavior than dynahash's chained
19 * - The generated interface is type-safe and easier to use than dynahash,
20 * though at the cost of more complex setup.
21 * - Allocates memory in a MemoryContext or another allocator with a
22 * malloc/free style interface (which isn't easily usable in a shared
24 * - Does not require the overhead of a separate memory context.
28 * To generate a hash-table and associated functions for a use case several
29 * macros have to be #define'ed before this file is included. Including
30 * the file #undef's all those, so a new hash table can be generated
32 * The relevant parameters are:
33 * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
34 * will result in hash table type 'foo_hash' and functions like
35 * 'foo_insert'/'foo_lookup' and so forth.
36 * - SH_ELEMENT_TYPE - type of the contained elements
37 * - SH_KEY_TYPE - type of the hashtable's key
38 * - SH_DECLARE - if defined function prototypes and type declarations are
40 * - SH_DEFINE - if defined function definitions are generated
41 * - SH_SCOPE - in which scope (e.g. extern, static inline) do function
43 * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
44 * use this to allocate bytes
45 * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
46 * are defined, so you can supply your own
47 * The following parameters are only relevant when SH_DEFINE is defined:
48 * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
49 * - SH_EQUAL(table, a, b) - compare two table keys
50 * - SH_HASH_KEY(table, key) - generate hash for the key
51 * - SH_STORE_HASH - if defined the hash is stored in the elements
52 * - SH_GET_HASH(tb, a) - return the field to store the hash in
54 * The element type is required to contain a "status" member that can store
55 * the range of values defined in the SH_STATUS enum.
57 * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
58 * the hash table implementation needs to compare hashes to move elements
59 * (particularly when growing the hash), it's preferable, if possible, to
60 * store the element's hash in the element's data type. If the hash is so
61 * stored, the hash table will also compare hashes before calling SH_EQUAL
62 * when comparing two keys.
64 * For convenience the hash table create functions accept a void pointer
65 * that will be stored in the hash table type's member private_data. This
66 * allows callbacks to reference caller provided data.
68 * For examples of usage look at tidbitmap.c (file local definition) and
69 * execnodes.h/execGrouping.c (exposed declaration, file local
74 * The hash table design chosen is a variant of linear open-addressing. The
75 * reason for doing so is that linear addressing is CPU cache & pipeline
76 * friendly. The biggest disadvantage of simple linear addressing schemes
77 * are highly variable lookup times due to clustering, and deletions
78 * leaving a lot of tombstones around. To address these issues a variant
79 * of "robin hood" hashing is employed. Robin hood hashing optimizes
80 * chaining lengths by moving elements close to their optimal bucket
81 * ("rich" elements), out of the way if a to-be-inserted element is further
82 * away from its optimal position (i.e. it's "poor"). While that can make
83 * insertions slower, the average lookup performance is a lot better, and
84 * higher fill factors can be used in a still performant manner. To avoid
85 * tombstones - which normally solve the issue that a deleted node's
86 * presence is relevant to determine whether a lookup needs to continue
87 * looking or is done - buckets following a deleted element are shifted
88 * backwards, unless they're empty or already at their optimal position.
91 #include "port/pg_bitutils.h"
94 #define SH_MAKE_PREFIX(a) CppConcat(a,_)
95 #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
96 #define SH_MAKE_NAME_(a,b) CppConcat(a,b)
98 /* name macros for: */
100 /* type declarations */
101 #define SH_TYPE SH_MAKE_NAME(hash)
102 #define SH_STATUS SH_MAKE_NAME(status)
103 #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
104 #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
105 #define SH_ITERATOR SH_MAKE_NAME(iterator)
107 /* function declarations */
108 #define SH_CREATE SH_MAKE_NAME(create)
109 #define SH_DESTROY SH_MAKE_NAME(destroy)
110 #define SH_RESET SH_MAKE_NAME(reset)
111 #define SH_INSERT SH_MAKE_NAME(insert)
112 #define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
113 #define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
114 #define SH_DELETE SH_MAKE_NAME(delete)
115 #define SH_LOOKUP SH_MAKE_NAME(lookup)
116 #define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
117 #define SH_GROW SH_MAKE_NAME(grow)
118 #define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
119 #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
120 #define SH_ITERATE SH_MAKE_NAME(iterate)
121 #define SH_ALLOCATE SH_MAKE_NAME(allocate)
122 #define SH_FREE SH_MAKE_NAME(free)
123 #define SH_STAT SH_MAKE_NAME(stat)
125 /* internal helper functions (no externally visible prototypes) */
126 #define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters)
127 #define SH_NEXT SH_MAKE_NAME(next)
128 #define SH_PREV SH_MAKE_NAME(prev)
129 #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
130 #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
131 #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
132 #define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
133 #define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
135 /* generate forward declarations necessary to use the hash table */
138 /* type definitions */
139 typedef struct SH_TYPE
142 * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
143 * tables. Note that the maximum number of elements is lower
144 * (SH_MAX_FILLFACTOR)
148 /* how many elements have valid contents */
151 /* mask for bucket and size calculations, based on size */
154 /* boundary after which to grow hashtable */
155 uint32 grow_threshold
;
158 SH_ELEMENT_TYPE
*data
;
160 #ifndef SH_RAW_ALLOCATOR
161 /* memory context to use for allocations */
165 /* user defined data, useful for callbacks */
169 typedef enum SH_STATUS
171 SH_STATUS_EMPTY
= 0x00,
172 SH_STATUS_IN_USE
= 0x01
175 typedef struct SH_ITERATOR
177 uint32 cur
; /* current element */
179 bool done
; /* iterator exhausted? */
182 /* externally visible function prototypes */
183 #ifdef SH_RAW_ALLOCATOR
184 /* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
185 SH_SCOPE SH_TYPE
*SH_CREATE(uint32 nelements
, void *private_data
);
188 * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
189 * void *private_data)
191 SH_SCOPE SH_TYPE
*SH_CREATE(MemoryContext ctx
, uint32 nelements
,
195 /* void <prefix>_destroy(<prefix>_hash *tb) */
196 SH_SCOPE
void SH_DESTROY(SH_TYPE
* tb
);
198 /* void <prefix>_reset(<prefix>_hash *tb) */
199 SH_SCOPE
void SH_RESET(SH_TYPE
* tb
);
201 /* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
202 SH_SCOPE
void SH_GROW(SH_TYPE
* tb
, uint64 newsize
);
204 /* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
205 SH_SCOPE SH_ELEMENT_TYPE
*SH_INSERT(SH_TYPE
* tb
, SH_KEY_TYPE key
, bool *found
);
208 * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
211 SH_SCOPE SH_ELEMENT_TYPE
*SH_INSERT_HASH(SH_TYPE
* tb
, SH_KEY_TYPE key
,
212 uint32 hash
, bool *found
);
214 /* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
215 SH_SCOPE SH_ELEMENT_TYPE
*SH_LOOKUP(SH_TYPE
* tb
, SH_KEY_TYPE key
);
217 /* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
218 SH_SCOPE SH_ELEMENT_TYPE
*SH_LOOKUP_HASH(SH_TYPE
* tb
, SH_KEY_TYPE key
,
221 /* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
222 SH_SCOPE
void SH_DELETE_ITEM(SH_TYPE
* tb
, SH_ELEMENT_TYPE
* entry
);
224 /* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
225 SH_SCOPE
bool SH_DELETE(SH_TYPE
* tb
, SH_KEY_TYPE key
);
227 /* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
228 SH_SCOPE
void SH_START_ITERATE(SH_TYPE
* tb
, SH_ITERATOR
* iter
);
231 * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
234 SH_SCOPE
void SH_START_ITERATE_AT(SH_TYPE
* tb
, SH_ITERATOR
* iter
, uint32 at
);
236 /* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
237 SH_SCOPE SH_ELEMENT_TYPE
*SH_ITERATE(SH_TYPE
* tb
, SH_ITERATOR
* iter
);
239 /* void <prefix>_stat(<prefix>_hash *tb */
240 SH_SCOPE
void SH_STAT(SH_TYPE
* tb
);
242 #endif /* SH_DECLARE */
245 /* generate implementation of the hash table */
248 #ifndef SH_RAW_ALLOCATOR
249 #include "utils/memutils.h"
252 /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
253 #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
255 /* normal fillfactor, unless already close to maximum */
256 #ifndef SH_FILLFACTOR
257 #define SH_FILLFACTOR (0.9)
259 /* increase fillfactor if we otherwise would error out */
260 #define SH_MAX_FILLFACTOR (0.98)
261 /* grow if actual and optimal location bigger than */
262 #ifndef SH_GROW_MAX_DIB
263 #define SH_GROW_MAX_DIB 25
265 /* grow if more than elements to move when inserting */
266 #ifndef SH_GROW_MAX_MOVE
267 #define SH_GROW_MAX_MOVE 150
269 #ifndef SH_GROW_MIN_FILLFACTOR
270 /* but do not grow due to SH_GROW_MAX_* if below */
271 #define SH_GROW_MIN_FILLFACTOR 0.1
275 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
277 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
281 * Wrap the following definitions in include guards, to avoid multiple
282 * definition errors if this header is included more than once. The rest of
283 * the file deliberately has no include guards, because it can be included
284 * with different parameters to define functions and types with non-colliding
291 #define sh_error(...) pg_log_error(__VA_ARGS__)
292 #define sh_log(...) pg_log_info(__VA_ARGS__)
294 #define sh_error(...) elog(ERROR, __VA_ARGS__)
295 #define sh_log(...) elog(LOG, __VA_ARGS__)
301 * Compute sizing parameters for hashtable. Called when creating and growing
305 SH_COMPUTE_PARAMETERS(SH_TYPE
* tb
, uint64 newsize
)
309 /* supporting zero sized hashes would complicate matters */
310 size
= Max(newsize
, 2);
312 /* round up size to the next power of 2, that's how bucketing works */
313 size
= pg_nextpower2_64(size
);
314 Assert(size
<= SH_MAX_SIZE
);
317 * Verify that allocation of ->data is possible on this platform, without
320 if ((((uint64
) sizeof(SH_ELEMENT_TYPE
)) * size
) >= SIZE_MAX
/ 2)
321 sh_error("hash table too large");
325 tb
->sizemask
= (uint32
) (size
- 1);
328 * Compute the next threshold at which we need to grow the hash table
331 if (tb
->size
== SH_MAX_SIZE
)
332 tb
->grow_threshold
= ((double) tb
->size
) * SH_MAX_FILLFACTOR
;
334 tb
->grow_threshold
= ((double) tb
->size
) * SH_FILLFACTOR
;
337 /* return the optimal bucket for the hash */
339 SH_INITIAL_BUCKET(SH_TYPE
* tb
, uint32 hash
)
341 return hash
& tb
->sizemask
;
344 /* return next bucket after the current, handling wraparound */
346 SH_NEXT(SH_TYPE
* tb
, uint32 curelem
, uint32 startelem
)
348 curelem
= (curelem
+ 1) & tb
->sizemask
;
350 Assert(curelem
!= startelem
);
355 /* return bucket before the current, handling wraparound */
357 SH_PREV(SH_TYPE
* tb
, uint32 curelem
, uint32 startelem
)
359 curelem
= (curelem
- 1) & tb
->sizemask
;
361 Assert(curelem
!= startelem
);
366 /* return distance between bucket and its optimal position */
368 SH_DISTANCE_FROM_OPTIMAL(SH_TYPE
* tb
, uint32 optimal
, uint32 bucket
)
370 if (optimal
<= bucket
)
371 return bucket
- optimal
;
373 return (tb
->size
+ bucket
) - optimal
;
377 SH_ENTRY_HASH(SH_TYPE
* tb
, SH_ELEMENT_TYPE
* entry
)
380 return SH_GET_HASH(tb
, entry
);
382 return SH_HASH_KEY(tb
, entry
->SH_KEY
);
386 /* default memory allocator function */
387 static inline void *SH_ALLOCATE(SH_TYPE
* type
, Size size
);
388 static inline void SH_FREE(SH_TYPE
* type
, void *pointer
);
390 #ifndef SH_USE_NONDEFAULT_ALLOCATOR
392 /* default memory allocator function */
394 SH_ALLOCATE(SH_TYPE
* type
, Size size
)
396 #ifdef SH_RAW_ALLOCATOR
397 return SH_RAW_ALLOCATOR(size
);
399 return MemoryContextAllocExtended(type
->ctx
, size
,
400 MCXT_ALLOC_HUGE
| MCXT_ALLOC_ZERO
);
404 /* default memory free function */
406 SH_FREE(SH_TYPE
* type
, void *pointer
)
414 * Create a hash table with enough space for `nelements` distinct members.
415 * Memory for the hash table is allocated from the passed-in context. If
416 * desired, the array of elements can be allocated using a passed-in allocator;
417 * this could be useful in order to place the array of elements in a shared
418 * memory, or in a context that will outlive the rest of the hash table.
419 * Memory other than for the array of elements will still be allocated from
420 * the passed-in context.
422 #ifdef SH_RAW_ALLOCATOR
424 SH_CREATE(uint32 nelements
, void *private_data
)
427 SH_CREATE(MemoryContext ctx
, uint32 nelements
, void *private_data
)
433 #ifdef SH_RAW_ALLOCATOR
434 tb
= SH_RAW_ALLOCATOR(sizeof(SH_TYPE
));
436 tb
= MemoryContextAllocZero(ctx
, sizeof(SH_TYPE
));
439 tb
->private_data
= private_data
;
441 /* increase nelements by fillfactor, want to store nelements elements */
442 size
= Min((double) SH_MAX_SIZE
, ((double) nelements
) / SH_FILLFACTOR
);
444 SH_COMPUTE_PARAMETERS(tb
, size
);
446 tb
->data
= SH_ALLOCATE(tb
, sizeof(SH_ELEMENT_TYPE
) * tb
->size
);
451 /* destroy a previously created hash table */
453 SH_DESTROY(SH_TYPE
* tb
)
455 SH_FREE(tb
, tb
->data
);
459 /* reset the contents of a previously created hash table */
461 SH_RESET(SH_TYPE
* tb
)
463 memset(tb
->data
, 0, sizeof(SH_ELEMENT_TYPE
) * tb
->size
);
468 * Grow a hash table to at least `newsize` buckets.
470 * Usually this will automatically be called by insertions/deletions, when
471 * necessary. But resizing to the exact input size can be advantageous
472 * performance-wise, when known at some point.
475 SH_GROW(SH_TYPE
* tb
, uint64 newsize
)
477 uint64 oldsize
= tb
->size
;
478 SH_ELEMENT_TYPE
*olddata
= tb
->data
;
479 SH_ELEMENT_TYPE
*newdata
;
481 uint32 startelem
= 0;
484 Assert(oldsize
== pg_nextpower2_64(oldsize
));
485 Assert(oldsize
!= SH_MAX_SIZE
);
486 Assert(oldsize
< newsize
);
488 /* compute parameters for new table */
489 SH_COMPUTE_PARAMETERS(tb
, newsize
);
491 tb
->data
= SH_ALLOCATE(tb
, sizeof(SH_ELEMENT_TYPE
) * tb
->size
);
496 * Copy entries from the old data to newdata. We theoretically could use
497 * SH_INSERT here, to avoid code duplication, but that's more general than
498 * we need. We neither want tb->members increased, nor do we need to do
499 * deal with deleted elements, nor do we need to compare keys. So a
500 * special-cased implementation is lot faster. As resizing can be time
501 * consuming and frequent, that's worthwhile to optimize.
503 * To be able to simply move entries over, we have to start not at the
504 * first bucket (i.e olddata[0]), but find the first bucket that's either
505 * empty, or is occupied by an entry at its optimal position. Such a
506 * bucket has to exist in any table with a load factor under 1, as not all
507 * buckets are occupied, i.e. there always has to be an empty bucket. By
508 * starting at such a bucket we can move the entries to the larger table,
509 * without having to deal with conflicts.
512 /* search for the first element in the hash that's not wrapped around */
513 for (i
= 0; i
< oldsize
; i
++)
515 SH_ELEMENT_TYPE
*oldentry
= &olddata
[i
];
519 if (oldentry
->status
!= SH_STATUS_IN_USE
)
525 hash
= SH_ENTRY_HASH(tb
, oldentry
);
526 optimal
= SH_INITIAL_BUCKET(tb
, hash
);
535 /* and copy all elements in the old table */
536 copyelem
= startelem
;
537 for (i
= 0; i
< oldsize
; i
++)
539 SH_ELEMENT_TYPE
*oldentry
= &olddata
[copyelem
];
541 if (oldentry
->status
== SH_STATUS_IN_USE
)
546 SH_ELEMENT_TYPE
*newentry
;
548 hash
= SH_ENTRY_HASH(tb
, oldentry
);
549 startelem
= SH_INITIAL_BUCKET(tb
, hash
);
552 /* find empty element to put data into */
555 newentry
= &newdata
[curelem
];
557 if (newentry
->status
== SH_STATUS_EMPTY
)
562 curelem
= SH_NEXT(tb
, curelem
, startelem
);
565 /* copy entry to new slot */
566 memcpy(newentry
, oldentry
, sizeof(SH_ELEMENT_TYPE
));
569 /* can't use SH_NEXT here, would use new size */
571 if (copyelem
>= oldsize
)
577 SH_FREE(tb
, olddata
);
581 * This is a separate static inline function, so it can be reliably be inlined
582 * into its wrapper functions even if SH_SCOPE is extern.
584 static inline SH_ELEMENT_TYPE
*
585 SH_INSERT_HASH_INTERNAL(SH_TYPE
* tb
, SH_KEY_TYPE key
, uint32 hash
, bool *found
)
589 SH_ELEMENT_TYPE
*data
;
596 * We do the grow check even if the key is actually present, to avoid
597 * doing the check inside the loop. This also lets us avoid having to
598 * re-find our position in the hashtable after resizing.
600 * Note that this also reached when resizing the table due to
601 * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
603 if (unlikely(tb
->members
>= tb
->grow_threshold
))
605 if (tb
->size
== SH_MAX_SIZE
)
607 sh_error("hash table size exceeded");
611 * When optimizing, it can be very useful to print these out.
614 SH_GROW(tb
, tb
->size
* 2);
618 /* perform insert, start bucket search at optimal location */
620 startelem
= SH_INITIAL_BUCKET(tb
, hash
);
627 SH_ELEMENT_TYPE
*entry
= &data
[curelem
];
629 /* any empty bucket can directly be used */
630 if (entry
->status
== SH_STATUS_EMPTY
)
635 SH_GET_HASH(tb
, entry
) = hash
;
637 entry
->status
= SH_STATUS_IN_USE
;
643 * If the bucket is not empty, we either found a match (in which case
644 * we're done), or we have to decide whether to skip over or move the
645 * colliding entry. When the colliding element's distance to its
646 * optimal position is smaller than the to-be-inserted entry's, we
647 * shift the colliding entry (and its followers) forward by one.
650 if (SH_COMPARE_KEYS(tb
, hash
, key
, entry
))
652 Assert(entry
->status
== SH_STATUS_IN_USE
);
657 curhash
= SH_ENTRY_HASH(tb
, entry
);
658 curoptimal
= SH_INITIAL_BUCKET(tb
, curhash
);
659 curdist
= SH_DISTANCE_FROM_OPTIMAL(tb
, curoptimal
, curelem
);
661 if (insertdist
> curdist
)
663 SH_ELEMENT_TYPE
*lastentry
= entry
;
664 uint32 emptyelem
= curelem
;
668 /* find next empty bucket */
671 SH_ELEMENT_TYPE
*emptyentry
;
673 emptyelem
= SH_NEXT(tb
, emptyelem
, startelem
);
674 emptyentry
= &data
[emptyelem
];
676 if (emptyentry
->status
== SH_STATUS_EMPTY
)
678 lastentry
= emptyentry
;
683 * To avoid negative consequences from overly imbalanced
684 * hashtables, grow the hashtable if collisions would require
685 * us to move a lot of entries. The most likely cause of such
686 * imbalance is filling a (currently) small table, from a
687 * currently big one, in hash-table order. Don't grow if the
688 * hashtable would be too empty, to prevent quick space
689 * explosion for some weird edge cases.
691 if (unlikely(++emptydist
> SH_GROW_MAX_MOVE
) &&
692 ((double) tb
->members
/ tb
->size
) >= SH_GROW_MIN_FILLFACTOR
)
694 tb
->grow_threshold
= 0;
699 /* shift forward, starting at last occupied element */
702 * TODO: This could be optimized to be one memcpy in many cases,
703 * excepting wrapping around at the end of ->data. Hasn't shown up
704 * in profiles so far though.
706 moveelem
= emptyelem
;
707 while (moveelem
!= curelem
)
709 SH_ELEMENT_TYPE
*moveentry
;
711 moveelem
= SH_PREV(tb
, moveelem
, startelem
);
712 moveentry
= &data
[moveelem
];
714 memcpy(lastentry
, moveentry
, sizeof(SH_ELEMENT_TYPE
));
715 lastentry
= moveentry
;
718 /* and fill the now empty spot */
723 SH_GET_HASH(tb
, entry
) = hash
;
725 entry
->status
= SH_STATUS_IN_USE
;
730 curelem
= SH_NEXT(tb
, curelem
, startelem
);
734 * To avoid negative consequences from overly imbalanced hashtables,
735 * grow the hashtable if collisions lead to large runs. The most
736 * likely cause of such imbalance is filling a (currently) small
737 * table, from a currently big one, in hash-table order. Don't grow
738 * if the hashtable would be too empty, to prevent quick space
739 * explosion for some weird edge cases.
741 if (unlikely(insertdist
> SH_GROW_MAX_DIB
) &&
742 ((double) tb
->members
/ tb
->size
) >= SH_GROW_MIN_FILLFACTOR
)
744 tb
->grow_threshold
= 0;
751 * Insert the key key into the hash-table, set *found to true if the key
752 * already exists, false otherwise. Returns the hash-table entry in either
755 SH_SCOPE SH_ELEMENT_TYPE
*
756 SH_INSERT(SH_TYPE
* tb
, SH_KEY_TYPE key
, bool *found
)
758 uint32 hash
= SH_HASH_KEY(tb
, key
);
760 return SH_INSERT_HASH_INTERNAL(tb
, key
, hash
, found
);
764 * Insert the key key into the hash-table using an already-calculated
765 * hash. Set *found to true if the key already exists, false
766 * otherwise. Returns the hash-table entry in either case.
768 SH_SCOPE SH_ELEMENT_TYPE
*
769 SH_INSERT_HASH(SH_TYPE
* tb
, SH_KEY_TYPE key
, uint32 hash
, bool *found
)
771 return SH_INSERT_HASH_INTERNAL(tb
, key
, hash
, found
);
775 * This is a separate static inline function, so it can be reliably be inlined
776 * into its wrapper functions even if SH_SCOPE is extern.
778 static inline SH_ELEMENT_TYPE
*
779 SH_LOOKUP_HASH_INTERNAL(SH_TYPE
* tb
, SH_KEY_TYPE key
, uint32 hash
)
781 const uint32 startelem
= SH_INITIAL_BUCKET(tb
, hash
);
782 uint32 curelem
= startelem
;
786 SH_ELEMENT_TYPE
*entry
= &tb
->data
[curelem
];
788 if (entry
->status
== SH_STATUS_EMPTY
)
793 Assert(entry
->status
== SH_STATUS_IN_USE
);
795 if (SH_COMPARE_KEYS(tb
, hash
, key
, entry
))
799 * TODO: we could stop search based on distance. If the current
800 * buckets's distance-from-optimal is smaller than what we've skipped
801 * already, the entry doesn't exist. Probably only do so if
802 * SH_STORE_HASH is defined, to avoid re-computing hashes?
805 curelem
= SH_NEXT(tb
, curelem
, startelem
);
810 * Lookup up entry in hash table. Returns NULL if key not present.
812 SH_SCOPE SH_ELEMENT_TYPE
*
813 SH_LOOKUP(SH_TYPE
* tb
, SH_KEY_TYPE key
)
815 uint32 hash
= SH_HASH_KEY(tb
, key
);
817 return SH_LOOKUP_HASH_INTERNAL(tb
, key
, hash
);
821 * Lookup up entry in hash table using an already-calculated hash.
823 * Returns NULL if key not present.
825 SH_SCOPE SH_ELEMENT_TYPE
*
826 SH_LOOKUP_HASH(SH_TYPE
* tb
, SH_KEY_TYPE key
, uint32 hash
)
828 return SH_LOOKUP_HASH_INTERNAL(tb
, key
, hash
);
832 * Delete entry from hash table by key. Returns whether to-be-deleted key was
836 SH_DELETE(SH_TYPE
* tb
, SH_KEY_TYPE key
)
838 uint32 hash
= SH_HASH_KEY(tb
, key
);
839 uint32 startelem
= SH_INITIAL_BUCKET(tb
, hash
);
840 uint32 curelem
= startelem
;
844 SH_ELEMENT_TYPE
*entry
= &tb
->data
[curelem
];
846 if (entry
->status
== SH_STATUS_EMPTY
)
849 if (entry
->status
== SH_STATUS_IN_USE
&&
850 SH_COMPARE_KEYS(tb
, hash
, key
, entry
))
852 SH_ELEMENT_TYPE
*lastentry
= entry
;
857 * Backward shift following elements till either an empty element
858 * or an element at its optimal position is encountered.
860 * While that sounds expensive, the average chain length is short,
861 * and deletions would otherwise require tombstones.
865 SH_ELEMENT_TYPE
*curentry
;
869 curelem
= SH_NEXT(tb
, curelem
, startelem
);
870 curentry
= &tb
->data
[curelem
];
872 if (curentry
->status
!= SH_STATUS_IN_USE
)
874 lastentry
->status
= SH_STATUS_EMPTY
;
878 curhash
= SH_ENTRY_HASH(tb
, curentry
);
879 curoptimal
= SH_INITIAL_BUCKET(tb
, curhash
);
881 /* current is at optimal position, done */
882 if (curoptimal
== curelem
)
884 lastentry
->status
= SH_STATUS_EMPTY
;
889 memcpy(lastentry
, curentry
, sizeof(SH_ELEMENT_TYPE
));
891 lastentry
= curentry
;
897 /* TODO: return false; if distance too big */
899 curelem
= SH_NEXT(tb
, curelem
, startelem
);
904 * Delete entry from hash table by entry pointer
907 SH_DELETE_ITEM(SH_TYPE
* tb
, SH_ELEMENT_TYPE
* entry
)
909 SH_ELEMENT_TYPE
*lastentry
= entry
;
910 uint32 hash
= SH_ENTRY_HASH(tb
, entry
);
911 uint32 startelem
= SH_INITIAL_BUCKET(tb
, hash
);
914 /* Calculate the index of 'entry' */
915 curelem
= entry
- &tb
->data
[0];
920 * Backward shift following elements till either an empty element or an
921 * element at its optimal position is encountered.
923 * While that sounds expensive, the average chain length is short, and
924 * deletions would otherwise require tombstones.
928 SH_ELEMENT_TYPE
*curentry
;
932 curelem
= SH_NEXT(tb
, curelem
, startelem
);
933 curentry
= &tb
->data
[curelem
];
935 if (curentry
->status
!= SH_STATUS_IN_USE
)
937 lastentry
->status
= SH_STATUS_EMPTY
;
941 curhash
= SH_ENTRY_HASH(tb
, curentry
);
942 curoptimal
= SH_INITIAL_BUCKET(tb
, curhash
);
944 /* current is at optimal position, done */
945 if (curoptimal
== curelem
)
947 lastentry
->status
= SH_STATUS_EMPTY
;
952 memcpy(lastentry
, curentry
, sizeof(SH_ELEMENT_TYPE
));
954 lastentry
= curentry
;
959 * Initialize iterator.
962 SH_START_ITERATE(SH_TYPE
* tb
, SH_ITERATOR
* iter
)
965 uint64 startelem
= PG_UINT64_MAX
;
968 * Search for the first empty element. As deletions during iterations are
969 * supported, we want to start/end at an element that cannot be affected
970 * by elements being shifted.
972 for (i
= 0; i
< tb
->size
; i
++)
974 SH_ELEMENT_TYPE
*entry
= &tb
->data
[i
];
976 if (entry
->status
!= SH_STATUS_IN_USE
)
983 Assert(startelem
< SH_MAX_SIZE
);
986 * Iterate backwards, that allows the current element to be deleted, even
987 * if there are backward shifts
989 iter
->cur
= startelem
;
990 iter
->end
= iter
->cur
;
995 * Initialize iterator to a specific bucket. That's really only useful for
996 * cases where callers are partially iterating over the hashspace, and that
997 * iteration deletes and inserts elements based on visited entries. Doing that
998 * repeatedly could lead to an unbalanced keyspace when always starting at the
1002 SH_START_ITERATE_AT(SH_TYPE
* tb
, SH_ITERATOR
* iter
, uint32 at
)
1005 * Iterate backwards, that allows the current element to be deleted, even
1006 * if there are backward shifts.
1008 iter
->cur
= at
& tb
->sizemask
; /* ensure at is within a valid range */
1009 iter
->end
= iter
->cur
;
1014 * Iterate over all entries in the hash-table. Return the next occupied entry,
1017 * During iteration the current entry in the hash table may be deleted,
1018 * without leading to elements being skipped or returned twice. Additionally
1019 * the rest of the table may be modified (i.e. there can be insertions or
1020 * deletions), but if so, there's neither a guarantee that all nodes are
1021 * visited at least once, nor a guarantee that a node is visited at most once.
1023 SH_SCOPE SH_ELEMENT_TYPE
*
1024 SH_ITERATE(SH_TYPE
* tb
, SH_ITERATOR
* iter
)
1028 SH_ELEMENT_TYPE
*elem
;
1030 elem
= &tb
->data
[iter
->cur
];
1032 /* next element in backward direction */
1033 iter
->cur
= (iter
->cur
- 1) & tb
->sizemask
;
1035 if ((iter
->cur
& tb
->sizemask
) == (iter
->end
& tb
->sizemask
))
1037 if (elem
->status
== SH_STATUS_IN_USE
)
1047 * Report some statistics about the state of the hashtable. For
1048 * debugging/profiling purposes only.
1051 SH_STAT(SH_TYPE
* tb
)
1053 uint32 max_chain_length
= 0;
1054 uint32 total_chain_length
= 0;
1055 double avg_chain_length
;
1059 uint32
*collisions
= palloc0(tb
->size
* sizeof(uint32
));
1060 uint32 total_collisions
= 0;
1061 uint32 max_collisions
= 0;
1062 double avg_collisions
;
1064 for (i
= 0; i
< tb
->size
; i
++)
1069 SH_ELEMENT_TYPE
*elem
;
1071 elem
= &tb
->data
[i
];
1073 if (elem
->status
!= SH_STATUS_IN_USE
)
1076 hash
= SH_ENTRY_HASH(tb
, elem
);
1077 optimal
= SH_INITIAL_BUCKET(tb
, hash
);
1078 dist
= SH_DISTANCE_FROM_OPTIMAL(tb
, optimal
, i
);
1080 if (dist
> max_chain_length
)
1081 max_chain_length
= dist
;
1082 total_chain_length
+= dist
;
1084 collisions
[optimal
]++;
1087 for (i
= 0; i
< tb
->size
; i
++)
1089 uint32 curcoll
= collisions
[i
];
1094 /* single contained element is not a collision */
1096 total_collisions
+= curcoll
;
1097 if (curcoll
> max_collisions
)
1098 max_collisions
= curcoll
;
1101 if (tb
->members
> 0)
1103 fillfactor
= tb
->members
/ ((double) tb
->size
);
1104 avg_chain_length
= ((double) total_chain_length
) / tb
->members
;
1105 avg_collisions
= ((double) total_collisions
) / tb
->members
;
1110 avg_chain_length
= 0;
1114 sh_log("size: " UINT64_FORMAT
", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %i, avg_collisions: %f",
1115 tb
->size
, tb
->members
, fillfactor
, total_chain_length
, max_chain_length
, avg_chain_length
,
1116 total_collisions
, max_collisions
, avg_collisions
);
1119 #endif /* SH_DEFINE */
1122 /* undefine external parameters, so next hash table can be defined */
1126 #undef SH_ELEMENT_TYPE
1132 #undef SH_STORE_HASH
1133 #undef SH_USE_NONDEFAULT_ALLOCATOR
1136 /* undefine locally declared macros */
1137 #undef SH_MAKE_PREFIX
1139 #undef SH_MAKE_NAME_
1140 #undef SH_FILLFACTOR
1141 #undef SH_MAX_FILLFACTOR
1142 #undef SH_GROW_MAX_DIB
1143 #undef SH_GROW_MAX_MOVE
1144 #undef SH_GROW_MIN_FILLFACTOR
1150 #undef SH_STATUS_EMPTY
1151 #undef SH_STATUS_IN_USE
1154 /* external function names */
1159 #undef SH_INSERT_HASH
1160 #undef SH_DELETE_ITEM
1163 #undef SH_LOOKUP_HASH
1165 #undef SH_START_ITERATE
1166 #undef SH_START_ITERATE_AT
1172 /* internal function names */
1173 #undef SH_COMPUTE_PARAMETERS
1174 #undef SH_COMPARE_KEYS
1175 #undef SH_INITIAL_BUCKET
1178 #undef SH_DISTANCE_FROM_OPTIMAL
1179 #undef SH_ENTRY_HASH
1180 #undef SH_INSERT_HASH_INTERNAL
1181 #undef SH_LOOKUP_HASH_INTERNAL