Consistently use "superuser" instead of "super user"
[pgsql.git] / src / include / lib / simplehash.h
blobfdb3cf0a36d7c61d82e51856a69dfc29f63df16d
1 /*
2 * simplehash.h
4 * When included this file generates a "templated" (by way of macros)
5 * open-addressing hash table implementation specialized to user-defined
6 * types.
8 * It's probably not worthwhile to generate such a specialized implementation
9 * for hash tables that aren't performance or space sensitive.
11 * Compared to dynahash, simplehash has the following benefits:
13 * - Due to the "templated" code generation has known structure sizes and no
14 * indirect function calls (which show up substantially in dynahash
15 * profiles). These features considerably increase speed for small
16 * entries.
17 * - Open addressing has better CPU cache behavior than dynahash's chained
18 * hashtables.
19 * - The generated interface is type-safe and easier to use than dynahash,
20 * though at the cost of more complex setup.
21 * - Allocates memory in a MemoryContext or another allocator with a
22 * malloc/free style interface (which isn't easily usable in a shared
23 * memory context)
24 * - Does not require the overhead of a separate memory context.
26 * Usage notes:
28 * To generate a hash-table and associated functions for a use case several
29 * macros have to be #define'ed before this file is included. Including
30 * the file #undef's all those, so a new hash table can be generated
31 * afterwards.
32 * The relevant parameters are:
33 * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
34 * will result in hash table type 'foo_hash' and functions like
35 * 'foo_insert'/'foo_lookup' and so forth.
36 * - SH_ELEMENT_TYPE - type of the contained elements
37 * - SH_KEY_TYPE - type of the hashtable's key
38 * - SH_DECLARE - if defined function prototypes and type declarations are
39 * generated
40 * - SH_DEFINE - if defined function definitions are generated
41 * - SH_SCOPE - in which scope (e.g. extern, static inline) do function
42 * declarations reside
43 * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
44 * use this to allocate bytes
45 * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
46 * are defined, so you can supply your own
47 * The following parameters are only relevant when SH_DEFINE is defined:
48 * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
49 * - SH_EQUAL(table, a, b) - compare two table keys
50 * - SH_HASH_KEY(table, key) - generate hash for the key
51 * - SH_STORE_HASH - if defined the hash is stored in the elements
52 * - SH_GET_HASH(tb, a) - return the field to store the hash in
54 * The element type is required to contain a "status" member that can store
55 * the range of values defined in the SH_STATUS enum.
57 * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
58 * the hash table implementation needs to compare hashes to move elements
59 * (particularly when growing the hash), it's preferable, if possible, to
60 * store the element's hash in the element's data type. If the hash is so
61 * stored, the hash table will also compare hashes before calling SH_EQUAL
62 * when comparing two keys.
64 * For convenience the hash table create functions accept a void pointer
65 * that will be stored in the hash table type's member private_data. This
66 * allows callbacks to reference caller provided data.
68 * For examples of usage look at tidbitmap.c (file local definition) and
69 * execnodes.h/execGrouping.c (exposed declaration, file local
70 * implementation).
72 * Hash table design:
74 * The hash table design chosen is a variant of linear open-addressing. The
75 * reason for doing so is that linear addressing is CPU cache & pipeline
76 * friendly. The biggest disadvantage of simple linear addressing schemes
77 * are highly variable lookup times due to clustering, and deletions
78 * leaving a lot of tombstones around. To address these issues a variant
79 * of "robin hood" hashing is employed. Robin hood hashing optimizes
80 * chaining lengths by moving elements close to their optimal bucket
81 * ("rich" elements), out of the way if a to-be-inserted element is further
82 * away from its optimal position (i.e. it's "poor"). While that can make
83 * insertions slower, the average lookup performance is a lot better, and
84 * higher fill factors can be used in a still performant manner. To avoid
85 * tombstones - which normally solve the issue that a deleted node's
86 * presence is relevant to determine whether a lookup needs to continue
87 * looking or is done - buckets following a deleted element are shifted
88 * backwards, unless they're empty or already at their optimal position.
91 #include "port/pg_bitutils.h"
93 /* helpers */
94 #define SH_MAKE_PREFIX(a) CppConcat(a,_)
95 #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
96 #define SH_MAKE_NAME_(a,b) CppConcat(a,b)
98 /* name macros for: */
100 /* type declarations */
101 #define SH_TYPE SH_MAKE_NAME(hash)
102 #define SH_STATUS SH_MAKE_NAME(status)
103 #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
104 #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
105 #define SH_ITERATOR SH_MAKE_NAME(iterator)
107 /* function declarations */
108 #define SH_CREATE SH_MAKE_NAME(create)
109 #define SH_DESTROY SH_MAKE_NAME(destroy)
110 #define SH_RESET SH_MAKE_NAME(reset)
111 #define SH_INSERT SH_MAKE_NAME(insert)
112 #define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
113 #define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
114 #define SH_DELETE SH_MAKE_NAME(delete)
115 #define SH_LOOKUP SH_MAKE_NAME(lookup)
116 #define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
117 #define SH_GROW SH_MAKE_NAME(grow)
118 #define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
119 #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
120 #define SH_ITERATE SH_MAKE_NAME(iterate)
121 #define SH_ALLOCATE SH_MAKE_NAME(allocate)
122 #define SH_FREE SH_MAKE_NAME(free)
123 #define SH_STAT SH_MAKE_NAME(stat)
125 /* internal helper functions (no externally visible prototypes) */
126 #define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters)
127 #define SH_NEXT SH_MAKE_NAME(next)
128 #define SH_PREV SH_MAKE_NAME(prev)
129 #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
130 #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
131 #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
132 #define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
133 #define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
135 /* generate forward declarations necessary to use the hash table */
136 #ifdef SH_DECLARE
138 /* type definitions */
139 typedef struct SH_TYPE
142 * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
143 * tables. Note that the maximum number of elements is lower
144 * (SH_MAX_FILLFACTOR)
146 uint64 size;
148 /* how many elements have valid contents */
149 uint32 members;
151 /* mask for bucket and size calculations, based on size */
152 uint32 sizemask;
154 /* boundary after which to grow hashtable */
155 uint32 grow_threshold;
157 /* hash buckets */
158 SH_ELEMENT_TYPE *data;
160 #ifndef SH_RAW_ALLOCATOR
161 /* memory context to use for allocations */
162 MemoryContext ctx;
163 #endif
165 /* user defined data, useful for callbacks */
166 void *private_data;
167 } SH_TYPE;
169 typedef enum SH_STATUS
171 SH_STATUS_EMPTY = 0x00,
172 SH_STATUS_IN_USE = 0x01
173 } SH_STATUS;
175 typedef struct SH_ITERATOR
177 uint32 cur; /* current element */
178 uint32 end;
179 bool done; /* iterator exhausted? */
180 } SH_ITERATOR;
182 /* externally visible function prototypes */
183 #ifdef SH_RAW_ALLOCATOR
184 /* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
185 SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data);
186 #else
188 * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
189 * void *private_data)
191 SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements,
192 void *private_data);
193 #endif
195 /* void <prefix>_destroy(<prefix>_hash *tb) */
196 SH_SCOPE void SH_DESTROY(SH_TYPE * tb);
198 /* void <prefix>_reset(<prefix>_hash *tb) */
199 SH_SCOPE void SH_RESET(SH_TYPE * tb);
201 /* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
202 SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize);
204 /* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
205 SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found);
208 * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
209 * bool *found)
211 SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
212 uint32 hash, bool *found);
214 /* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
215 SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key);
217 /* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
218 SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
219 uint32 hash);
221 /* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
222 SH_SCOPE void SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry);
224 /* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
225 SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key);
227 /* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
228 SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
231 * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
232 * uint32 at)
234 SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at);
236 /* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
237 SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
239 /* void <prefix>_stat(<prefix>_hash *tb */
240 SH_SCOPE void SH_STAT(SH_TYPE * tb);
242 #endif /* SH_DECLARE */
245 /* generate implementation of the hash table */
246 #ifdef SH_DEFINE
248 #ifndef SH_RAW_ALLOCATOR
249 #include "utils/memutils.h"
250 #endif
252 /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
253 #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
255 /* normal fillfactor, unless already close to maximum */
256 #ifndef SH_FILLFACTOR
257 #define SH_FILLFACTOR (0.9)
258 #endif
259 /* increase fillfactor if we otherwise would error out */
260 #define SH_MAX_FILLFACTOR (0.98)
261 /* grow if actual and optimal location bigger than */
262 #ifndef SH_GROW_MAX_DIB
263 #define SH_GROW_MAX_DIB 25
264 #endif
265 /* grow if more than elements to move when inserting */
266 #ifndef SH_GROW_MAX_MOVE
267 #define SH_GROW_MAX_MOVE 150
268 #endif
269 #ifndef SH_GROW_MIN_FILLFACTOR
270 /* but do not grow due to SH_GROW_MAX_* if below */
271 #define SH_GROW_MIN_FILLFACTOR 0.1
272 #endif
274 #ifdef SH_STORE_HASH
275 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
276 #else
277 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
278 #endif
281 * Wrap the following definitions in include guards, to avoid multiple
282 * definition errors if this header is included more than once. The rest of
283 * the file deliberately has no include guards, because it can be included
284 * with different parameters to define functions and types with non-colliding
285 * names.
287 #ifndef SIMPLEHASH_H
288 #define SIMPLEHASH_H
290 #ifdef FRONTEND
291 #define sh_error(...) pg_log_error(__VA_ARGS__)
292 #define sh_log(...) pg_log_info(__VA_ARGS__)
293 #else
294 #define sh_error(...) elog(ERROR, __VA_ARGS__)
295 #define sh_log(...) elog(LOG, __VA_ARGS__)
296 #endif
298 #endif
301 * Compute sizing parameters for hashtable. Called when creating and growing
302 * the hashtable.
304 static inline void
305 SH_COMPUTE_PARAMETERS(SH_TYPE * tb, uint64 newsize)
307 uint64 size;
309 /* supporting zero sized hashes would complicate matters */
310 size = Max(newsize, 2);
312 /* round up size to the next power of 2, that's how bucketing works */
313 size = pg_nextpower2_64(size);
314 Assert(size <= SH_MAX_SIZE);
317 * Verify that allocation of ->data is possible on this platform, without
318 * overflowing Size.
320 if ((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2)
321 sh_error("hash table too large");
323 /* now set size */
324 tb->size = size;
325 tb->sizemask = (uint32) (size - 1);
328 * Compute the next threshold at which we need to grow the hash table
329 * again.
331 if (tb->size == SH_MAX_SIZE)
332 tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR;
333 else
334 tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR;
337 /* return the optimal bucket for the hash */
338 static inline uint32
339 SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash)
341 return hash & tb->sizemask;
344 /* return next bucket after the current, handling wraparound */
345 static inline uint32
346 SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem)
348 curelem = (curelem + 1) & tb->sizemask;
350 Assert(curelem != startelem);
352 return curelem;
355 /* return bucket before the current, handling wraparound */
356 static inline uint32
357 SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem)
359 curelem = (curelem - 1) & tb->sizemask;
361 Assert(curelem != startelem);
363 return curelem;
366 /* return distance between bucket and its optimal position */
367 static inline uint32
368 SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket)
370 if (optimal <= bucket)
371 return bucket - optimal;
372 else
373 return (tb->size + bucket) - optimal;
376 static inline uint32
377 SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
379 #ifdef SH_STORE_HASH
380 return SH_GET_HASH(tb, entry);
381 #else
382 return SH_HASH_KEY(tb, entry->SH_KEY);
383 #endif
386 /* default memory allocator function */
387 static inline void *SH_ALLOCATE(SH_TYPE * type, Size size);
388 static inline void SH_FREE(SH_TYPE * type, void *pointer);
390 #ifndef SH_USE_NONDEFAULT_ALLOCATOR
392 /* default memory allocator function */
393 static inline void *
394 SH_ALLOCATE(SH_TYPE * type, Size size)
396 #ifdef SH_RAW_ALLOCATOR
397 return SH_RAW_ALLOCATOR(size);
398 #else
399 return MemoryContextAllocExtended(type->ctx, size,
400 MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO);
401 #endif
404 /* default memory free function */
405 static inline void
406 SH_FREE(SH_TYPE * type, void *pointer)
408 pfree(pointer);
411 #endif
414 * Create a hash table with enough space for `nelements` distinct members.
415 * Memory for the hash table is allocated from the passed-in context. If
416 * desired, the array of elements can be allocated using a passed-in allocator;
417 * this could be useful in order to place the array of elements in a shared
418 * memory, or in a context that will outlive the rest of the hash table.
419 * Memory other than for the array of elements will still be allocated from
420 * the passed-in context.
422 #ifdef SH_RAW_ALLOCATOR
423 SH_SCOPE SH_TYPE *
424 SH_CREATE(uint32 nelements, void *private_data)
425 #else
426 SH_SCOPE SH_TYPE *
427 SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data)
428 #endif
430 SH_TYPE *tb;
431 uint64 size;
433 #ifdef SH_RAW_ALLOCATOR
434 tb = SH_RAW_ALLOCATOR(sizeof(SH_TYPE));
435 #else
436 tb = MemoryContextAllocZero(ctx, sizeof(SH_TYPE));
437 tb->ctx = ctx;
438 #endif
439 tb->private_data = private_data;
441 /* increase nelements by fillfactor, want to store nelements elements */
442 size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR);
444 SH_COMPUTE_PARAMETERS(tb, size);
446 tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
448 return tb;
451 /* destroy a previously created hash table */
452 SH_SCOPE void
453 SH_DESTROY(SH_TYPE * tb)
455 SH_FREE(tb, tb->data);
456 pfree(tb);
459 /* reset the contents of a previously created hash table */
460 SH_SCOPE void
461 SH_RESET(SH_TYPE * tb)
463 memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size);
464 tb->members = 0;
468 * Grow a hash table to at least `newsize` buckets.
470 * Usually this will automatically be called by insertions/deletions, when
471 * necessary. But resizing to the exact input size can be advantageous
472 * performance-wise, when known at some point.
474 SH_SCOPE void
475 SH_GROW(SH_TYPE * tb, uint64 newsize)
477 uint64 oldsize = tb->size;
478 SH_ELEMENT_TYPE *olddata = tb->data;
479 SH_ELEMENT_TYPE *newdata;
480 uint32 i;
481 uint32 startelem = 0;
482 uint32 copyelem;
484 Assert(oldsize == pg_nextpower2_64(oldsize));
485 Assert(oldsize != SH_MAX_SIZE);
486 Assert(oldsize < newsize);
488 /* compute parameters for new table */
489 SH_COMPUTE_PARAMETERS(tb, newsize);
491 tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
493 newdata = tb->data;
496 * Copy entries from the old data to newdata. We theoretically could use
497 * SH_INSERT here, to avoid code duplication, but that's more general than
498 * we need. We neither want tb->members increased, nor do we need to do
499 * deal with deleted elements, nor do we need to compare keys. So a
500 * special-cased implementation is lot faster. As resizing can be time
501 * consuming and frequent, that's worthwhile to optimize.
503 * To be able to simply move entries over, we have to start not at the
504 * first bucket (i.e olddata[0]), but find the first bucket that's either
505 * empty, or is occupied by an entry at its optimal position. Such a
506 * bucket has to exist in any table with a load factor under 1, as not all
507 * buckets are occupied, i.e. there always has to be an empty bucket. By
508 * starting at such a bucket we can move the entries to the larger table,
509 * without having to deal with conflicts.
512 /* search for the first element in the hash that's not wrapped around */
513 for (i = 0; i < oldsize; i++)
515 SH_ELEMENT_TYPE *oldentry = &olddata[i];
516 uint32 hash;
517 uint32 optimal;
519 if (oldentry->status != SH_STATUS_IN_USE)
521 startelem = i;
522 break;
525 hash = SH_ENTRY_HASH(tb, oldentry);
526 optimal = SH_INITIAL_BUCKET(tb, hash);
528 if (optimal == i)
530 startelem = i;
531 break;
535 /* and copy all elements in the old table */
536 copyelem = startelem;
537 for (i = 0; i < oldsize; i++)
539 SH_ELEMENT_TYPE *oldentry = &olddata[copyelem];
541 if (oldentry->status == SH_STATUS_IN_USE)
543 uint32 hash;
544 uint32 startelem;
545 uint32 curelem;
546 SH_ELEMENT_TYPE *newentry;
548 hash = SH_ENTRY_HASH(tb, oldentry);
549 startelem = SH_INITIAL_BUCKET(tb, hash);
550 curelem = startelem;
552 /* find empty element to put data into */
553 while (true)
555 newentry = &newdata[curelem];
557 if (newentry->status == SH_STATUS_EMPTY)
559 break;
562 curelem = SH_NEXT(tb, curelem, startelem);
565 /* copy entry to new slot */
566 memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE));
569 /* can't use SH_NEXT here, would use new size */
570 copyelem++;
571 if (copyelem >= oldsize)
573 copyelem = 0;
577 SH_FREE(tb, olddata);
581 * This is a separate static inline function, so it can be reliably be inlined
582 * into its wrapper functions even if SH_SCOPE is extern.
584 static inline SH_ELEMENT_TYPE *
585 SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
587 uint32 startelem;
588 uint32 curelem;
589 SH_ELEMENT_TYPE *data;
590 uint32 insertdist;
592 restart:
593 insertdist = 0;
596 * We do the grow check even if the key is actually present, to avoid
597 * doing the check inside the loop. This also lets us avoid having to
598 * re-find our position in the hashtable after resizing.
600 * Note that this also reached when resizing the table due to
601 * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
603 if (unlikely(tb->members >= tb->grow_threshold))
605 if (tb->size == SH_MAX_SIZE)
607 sh_error("hash table size exceeded");
611 * When optimizing, it can be very useful to print these out.
613 /* SH_STAT(tb); */
614 SH_GROW(tb, tb->size * 2);
615 /* SH_STAT(tb); */
618 /* perform insert, start bucket search at optimal location */
619 data = tb->data;
620 startelem = SH_INITIAL_BUCKET(tb, hash);
621 curelem = startelem;
622 while (true)
624 uint32 curdist;
625 uint32 curhash;
626 uint32 curoptimal;
627 SH_ELEMENT_TYPE *entry = &data[curelem];
629 /* any empty bucket can directly be used */
630 if (entry->status == SH_STATUS_EMPTY)
632 tb->members++;
633 entry->SH_KEY = key;
634 #ifdef SH_STORE_HASH
635 SH_GET_HASH(tb, entry) = hash;
636 #endif
637 entry->status = SH_STATUS_IN_USE;
638 *found = false;
639 return entry;
643 * If the bucket is not empty, we either found a match (in which case
644 * we're done), or we have to decide whether to skip over or move the
645 * colliding entry. When the colliding element's distance to its
646 * optimal position is smaller than the to-be-inserted entry's, we
647 * shift the colliding entry (and its followers) forward by one.
650 if (SH_COMPARE_KEYS(tb, hash, key, entry))
652 Assert(entry->status == SH_STATUS_IN_USE);
653 *found = true;
654 return entry;
657 curhash = SH_ENTRY_HASH(tb, entry);
658 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
659 curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem);
661 if (insertdist > curdist)
663 SH_ELEMENT_TYPE *lastentry = entry;
664 uint32 emptyelem = curelem;
665 uint32 moveelem;
666 int32 emptydist = 0;
668 /* find next empty bucket */
669 while (true)
671 SH_ELEMENT_TYPE *emptyentry;
673 emptyelem = SH_NEXT(tb, emptyelem, startelem);
674 emptyentry = &data[emptyelem];
676 if (emptyentry->status == SH_STATUS_EMPTY)
678 lastentry = emptyentry;
679 break;
683 * To avoid negative consequences from overly imbalanced
684 * hashtables, grow the hashtable if collisions would require
685 * us to move a lot of entries. The most likely cause of such
686 * imbalance is filling a (currently) small table, from a
687 * currently big one, in hash-table order. Don't grow if the
688 * hashtable would be too empty, to prevent quick space
689 * explosion for some weird edge cases.
691 if (unlikely(++emptydist > SH_GROW_MAX_MOVE) &&
692 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
694 tb->grow_threshold = 0;
695 goto restart;
699 /* shift forward, starting at last occupied element */
702 * TODO: This could be optimized to be one memcpy in many cases,
703 * excepting wrapping around at the end of ->data. Hasn't shown up
704 * in profiles so far though.
706 moveelem = emptyelem;
707 while (moveelem != curelem)
709 SH_ELEMENT_TYPE *moveentry;
711 moveelem = SH_PREV(tb, moveelem, startelem);
712 moveentry = &data[moveelem];
714 memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE));
715 lastentry = moveentry;
718 /* and fill the now empty spot */
719 tb->members++;
721 entry->SH_KEY = key;
722 #ifdef SH_STORE_HASH
723 SH_GET_HASH(tb, entry) = hash;
724 #endif
725 entry->status = SH_STATUS_IN_USE;
726 *found = false;
727 return entry;
730 curelem = SH_NEXT(tb, curelem, startelem);
731 insertdist++;
734 * To avoid negative consequences from overly imbalanced hashtables,
735 * grow the hashtable if collisions lead to large runs. The most
736 * likely cause of such imbalance is filling a (currently) small
737 * table, from a currently big one, in hash-table order. Don't grow
738 * if the hashtable would be too empty, to prevent quick space
739 * explosion for some weird edge cases.
741 if (unlikely(insertdist > SH_GROW_MAX_DIB) &&
742 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
744 tb->grow_threshold = 0;
745 goto restart;
751 * Insert the key key into the hash-table, set *found to true if the key
752 * already exists, false otherwise. Returns the hash-table entry in either
753 * case.
755 SH_SCOPE SH_ELEMENT_TYPE *
756 SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found)
758 uint32 hash = SH_HASH_KEY(tb, key);
760 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
764 * Insert the key key into the hash-table using an already-calculated
765 * hash. Set *found to true if the key already exists, false
766 * otherwise. Returns the hash-table entry in either case.
768 SH_SCOPE SH_ELEMENT_TYPE *
769 SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
771 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
775 * This is a separate static inline function, so it can be reliably be inlined
776 * into its wrapper functions even if SH_SCOPE is extern.
778 static inline SH_ELEMENT_TYPE *
779 SH_LOOKUP_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
781 const uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
782 uint32 curelem = startelem;
784 while (true)
786 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
788 if (entry->status == SH_STATUS_EMPTY)
790 return NULL;
793 Assert(entry->status == SH_STATUS_IN_USE);
795 if (SH_COMPARE_KEYS(tb, hash, key, entry))
796 return entry;
799 * TODO: we could stop search based on distance. If the current
800 * buckets's distance-from-optimal is smaller than what we've skipped
801 * already, the entry doesn't exist. Probably only do so if
802 * SH_STORE_HASH is defined, to avoid re-computing hashes?
805 curelem = SH_NEXT(tb, curelem, startelem);
810 * Lookup up entry in hash table. Returns NULL if key not present.
812 SH_SCOPE SH_ELEMENT_TYPE *
813 SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key)
815 uint32 hash = SH_HASH_KEY(tb, key);
817 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
821 * Lookup up entry in hash table using an already-calculated hash.
823 * Returns NULL if key not present.
825 SH_SCOPE SH_ELEMENT_TYPE *
826 SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
828 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
832 * Delete entry from hash table by key. Returns whether to-be-deleted key was
833 * present.
835 SH_SCOPE bool
836 SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key)
838 uint32 hash = SH_HASH_KEY(tb, key);
839 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
840 uint32 curelem = startelem;
842 while (true)
844 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
846 if (entry->status == SH_STATUS_EMPTY)
847 return false;
849 if (entry->status == SH_STATUS_IN_USE &&
850 SH_COMPARE_KEYS(tb, hash, key, entry))
852 SH_ELEMENT_TYPE *lastentry = entry;
854 tb->members--;
857 * Backward shift following elements till either an empty element
858 * or an element at its optimal position is encountered.
860 * While that sounds expensive, the average chain length is short,
861 * and deletions would otherwise require tombstones.
863 while (true)
865 SH_ELEMENT_TYPE *curentry;
866 uint32 curhash;
867 uint32 curoptimal;
869 curelem = SH_NEXT(tb, curelem, startelem);
870 curentry = &tb->data[curelem];
872 if (curentry->status != SH_STATUS_IN_USE)
874 lastentry->status = SH_STATUS_EMPTY;
875 break;
878 curhash = SH_ENTRY_HASH(tb, curentry);
879 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
881 /* current is at optimal position, done */
882 if (curoptimal == curelem)
884 lastentry->status = SH_STATUS_EMPTY;
885 break;
888 /* shift */
889 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
891 lastentry = curentry;
894 return true;
897 /* TODO: return false; if distance too big */
899 curelem = SH_NEXT(tb, curelem, startelem);
904 * Delete entry from hash table by entry pointer
906 SH_SCOPE void
907 SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
909 SH_ELEMENT_TYPE *lastentry = entry;
910 uint32 hash = SH_ENTRY_HASH(tb, entry);
911 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
912 uint32 curelem;
914 /* Calculate the index of 'entry' */
915 curelem = entry - &tb->data[0];
917 tb->members--;
920 * Backward shift following elements till either an empty element or an
921 * element at its optimal position is encountered.
923 * While that sounds expensive, the average chain length is short, and
924 * deletions would otherwise require tombstones.
926 while (true)
928 SH_ELEMENT_TYPE *curentry;
929 uint32 curhash;
930 uint32 curoptimal;
932 curelem = SH_NEXT(tb, curelem, startelem);
933 curentry = &tb->data[curelem];
935 if (curentry->status != SH_STATUS_IN_USE)
937 lastentry->status = SH_STATUS_EMPTY;
938 break;
941 curhash = SH_ENTRY_HASH(tb, curentry);
942 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
944 /* current is at optimal position, done */
945 if (curoptimal == curelem)
947 lastentry->status = SH_STATUS_EMPTY;
948 break;
951 /* shift */
952 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
954 lastentry = curentry;
959 * Initialize iterator.
961 SH_SCOPE void
962 SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
964 int i;
965 uint64 startelem = PG_UINT64_MAX;
968 * Search for the first empty element. As deletions during iterations are
969 * supported, we want to start/end at an element that cannot be affected
970 * by elements being shifted.
972 for (i = 0; i < tb->size; i++)
974 SH_ELEMENT_TYPE *entry = &tb->data[i];
976 if (entry->status != SH_STATUS_IN_USE)
978 startelem = i;
979 break;
983 Assert(startelem < SH_MAX_SIZE);
986 * Iterate backwards, that allows the current element to be deleted, even
987 * if there are backward shifts
989 iter->cur = startelem;
990 iter->end = iter->cur;
991 iter->done = false;
995 * Initialize iterator to a specific bucket. That's really only useful for
996 * cases where callers are partially iterating over the hashspace, and that
997 * iteration deletes and inserts elements based on visited entries. Doing that
998 * repeatedly could lead to an unbalanced keyspace when always starting at the
999 * same position.
1001 SH_SCOPE void
1002 SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at)
1005 * Iterate backwards, that allows the current element to be deleted, even
1006 * if there are backward shifts.
1008 iter->cur = at & tb->sizemask; /* ensure at is within a valid range */
1009 iter->end = iter->cur;
1010 iter->done = false;
1014 * Iterate over all entries in the hash-table. Return the next occupied entry,
1015 * or NULL if done.
1017 * During iteration the current entry in the hash table may be deleted,
1018 * without leading to elements being skipped or returned twice. Additionally
1019 * the rest of the table may be modified (i.e. there can be insertions or
1020 * deletions), but if so, there's neither a guarantee that all nodes are
1021 * visited at least once, nor a guarantee that a node is visited at most once.
1023 SH_SCOPE SH_ELEMENT_TYPE *
1024 SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
1026 while (!iter->done)
1028 SH_ELEMENT_TYPE *elem;
1030 elem = &tb->data[iter->cur];
1032 /* next element in backward direction */
1033 iter->cur = (iter->cur - 1) & tb->sizemask;
1035 if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask))
1036 iter->done = true;
1037 if (elem->status == SH_STATUS_IN_USE)
1039 return elem;
1043 return NULL;
1047 * Report some statistics about the state of the hashtable. For
1048 * debugging/profiling purposes only.
1050 SH_SCOPE void
1051 SH_STAT(SH_TYPE * tb)
1053 uint32 max_chain_length = 0;
1054 uint32 total_chain_length = 0;
1055 double avg_chain_length;
1056 double fillfactor;
1057 uint32 i;
1059 uint32 *collisions = palloc0(tb->size * sizeof(uint32));
1060 uint32 total_collisions = 0;
1061 uint32 max_collisions = 0;
1062 double avg_collisions;
1064 for (i = 0; i < tb->size; i++)
1066 uint32 hash;
1067 uint32 optimal;
1068 uint32 dist;
1069 SH_ELEMENT_TYPE *elem;
1071 elem = &tb->data[i];
1073 if (elem->status != SH_STATUS_IN_USE)
1074 continue;
1076 hash = SH_ENTRY_HASH(tb, elem);
1077 optimal = SH_INITIAL_BUCKET(tb, hash);
1078 dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i);
1080 if (dist > max_chain_length)
1081 max_chain_length = dist;
1082 total_chain_length += dist;
1084 collisions[optimal]++;
1087 for (i = 0; i < tb->size; i++)
1089 uint32 curcoll = collisions[i];
1091 if (curcoll == 0)
1092 continue;
1094 /* single contained element is not a collision */
1095 curcoll--;
1096 total_collisions += curcoll;
1097 if (curcoll > max_collisions)
1098 max_collisions = curcoll;
1101 if (tb->members > 0)
1103 fillfactor = tb->members / ((double) tb->size);
1104 avg_chain_length = ((double) total_chain_length) / tb->members;
1105 avg_collisions = ((double) total_collisions) / tb->members;
1107 else
1109 fillfactor = 0;
1110 avg_chain_length = 0;
1111 avg_collisions = 0;
1114 sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %i, avg_collisions: %f",
1115 tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length,
1116 total_collisions, max_collisions, avg_collisions);
1119 #endif /* SH_DEFINE */
1122 /* undefine external parameters, so next hash table can be defined */
1123 #undef SH_PREFIX
1124 #undef SH_KEY_TYPE
1125 #undef SH_KEY
1126 #undef SH_ELEMENT_TYPE
1127 #undef SH_HASH_KEY
1128 #undef SH_SCOPE
1129 #undef SH_DECLARE
1130 #undef SH_DEFINE
1131 #undef SH_GET_HASH
1132 #undef SH_STORE_HASH
1133 #undef SH_USE_NONDEFAULT_ALLOCATOR
1134 #undef SH_EQUAL
1136 /* undefine locally declared macros */
1137 #undef SH_MAKE_PREFIX
1138 #undef SH_MAKE_NAME
1139 #undef SH_MAKE_NAME_
1140 #undef SH_FILLFACTOR
1141 #undef SH_MAX_FILLFACTOR
1142 #undef SH_GROW_MAX_DIB
1143 #undef SH_GROW_MAX_MOVE
1144 #undef SH_GROW_MIN_FILLFACTOR
1145 #undef SH_MAX_SIZE
1147 /* types */
1148 #undef SH_TYPE
1149 #undef SH_STATUS
1150 #undef SH_STATUS_EMPTY
1151 #undef SH_STATUS_IN_USE
1152 #undef SH_ITERATOR
1154 /* external function names */
1155 #undef SH_CREATE
1156 #undef SH_DESTROY
1157 #undef SH_RESET
1158 #undef SH_INSERT
1159 #undef SH_INSERT_HASH
1160 #undef SH_DELETE_ITEM
1161 #undef SH_DELETE
1162 #undef SH_LOOKUP
1163 #undef SH_LOOKUP_HASH
1164 #undef SH_GROW
1165 #undef SH_START_ITERATE
1166 #undef SH_START_ITERATE_AT
1167 #undef SH_ITERATE
1168 #undef SH_ALLOCATE
1169 #undef SH_FREE
1170 #undef SH_STAT
1172 /* internal function names */
1173 #undef SH_COMPUTE_PARAMETERS
1174 #undef SH_COMPARE_KEYS
1175 #undef SH_INITIAL_BUCKET
1176 #undef SH_NEXT
1177 #undef SH_PREV
1178 #undef SH_DISTANCE_FROM_OPTIMAL
1179 #undef SH_ENTRY_HASH
1180 #undef SH_INSERT_HASH_INTERNAL
1181 #undef SH_LOOKUP_HASH_INTERNAL