2 ( Cree par l
'interface Caml/PIP.
3 Résoudre MIN(x', y
', z', i
, j
, k
, i
', j', k
')
8 2*i+4*j+4*k-x-y-z <= 0,
13 2*i
'+4*j'+4*k
'-x'-y
'-z' <= 0,
35 #[ 0 0 0 -1 0 0 0 0 0 0 1 -1 1 0 0 0 ]
36 #[ 0 0 0 0 0 0 -1 0 0 0 1 -1 1 0 0 0 ]
37 #[ 0 0 0 0 -1 0 0 0 0 0 1 -1 1 0 0 0 ]
38 #[ 0 0 0 0 0 0 0 -1 0 0 1 -1 1 0 0 0 ]
39 #[ 0 0 0 0 0 1 0 0 0 0 -1 1 0 -1 0 0 ]
40 #[ -1 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 ]
41 #[ 0 -1 0 0 0 0 0 0 0 0 1 -1 0 0 1 0 ]
42 #[ 0 0 1 0 0 0 0 0 0 -1 -1 1 0 0 0 -1 ]
43 #[ 0 0 0 1 0 0 0 0 0 -1 -1 0 0 0 0 0 ]
44 #[ 0 0 0 1 1 -1 0 0 0 0 -1 0 0 0 0 0 ]
45 #[ 0 0 -1 0 0 0 2 0 0 0 -1 0 0 0 0 0 ]
46 #[ 0 0 0 0 0 0 1 0 0 -1 -1 0 0 0 0 0 ]
47 #[ 0 0 0 0 0 0 1 1 -1 0 -1 0 0 0 0 0 ]
48 #[ 0 0 0 0 1 0 0 0 0 -1 -1 0 0 0 0 0 ]
49 #[ 0 0 0 0 0 0 0 1 0 -1 -1 0 0 0 0 0 ]
50 #[ 0 0 0 0 0 1 0 0 0 -1 -1 0 0 0 0 0 ]
51 #[ 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 ]
52 #[ 1 1 0 0 0 0 0 0 0 0 -2 2 0 -1 -1 0 ]
53 #[ 0 0 0 2 0 0 0 0 0 0 -2 1 0 0 0 -1 ]
54 #[ 0 -1 0 0 0 0 0 4 3 0 -6 0 0 0 0 0 ]
55 #[ 0 0 0 0 4 3 0 0 0 0 -7 1 0 0 -1 0 ]
56 #[ 1 1 1 0 0 0 -2 -4 -4 0 7 0 0 0 0 0 ]
57 #[ 0 0 0 -2 -4 -4 0 0 0 0 10 -3 0 1 1 1 ]
58 #[ -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]