2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
11 * Linux specific vnodeops. Also includes the glue routines required to call
14 * So far the only truly scary part is that Linux relies on the inode cache
15 * to be up to date. Don't you dare break a callback and expect an fstat
16 * to give you meaningful information. This appears to be fixed in the 2.1
17 * development kernels. As it is we can fix this now by intercepting the
21 #include <afsconfig.h>
22 #include "afs/param.h"
25 #include "afs/sysincludes.h"
26 #include "afsincludes.h"
27 #include "afs/afs_stats.h"
29 #ifdef HAVE_MM_INLINE_H
30 #include <linux/mm_inline.h>
32 #include <linux/pagemap.h>
33 #include <linux/writeback.h>
34 #include <linux/pagevec.h>
35 #include <linux/aio.h>
37 #include "afs/afs_bypasscache.h"
39 #include "osi_compat.h"
40 #include "osi_pagecopy.h"
42 #ifndef HAVE_LINUX_PAGEVEC_LRU_ADD_FILE
43 #define __pagevec_lru_add_file __pagevec_lru_add
47 #define MAX_ERRNO 1000L
50 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34)
51 /* Enable our workaround for a race with d_splice_alias. The race was fixed in
52 * 2.6.34, so don't do it after that point. */
53 # define D_SPLICE_ALIAS_RACE
56 int cachefs_noreadpage
= 0;
58 extern struct backing_dev_info
*afs_backing_dev_info
;
60 extern struct vcache
*afs_globalVp
;
62 /* This function converts a positive error code from AFS into a negative
63 * code suitable for passing into the Linux VFS layer. It checks that the
64 * error code is within the permissable bounds for the ERR_PTR mechanism.
66 * _All_ error codes which come from the AFS layer should be passed through
67 * this function before being returned to the kernel.
71 afs_convert_code(int code
) {
72 if ((code
>= 0) && (code
<= MAX_ERRNO
))
78 /* Linux doesn't require a credp for many functions, and crref is an expensive
79 * operation. This helper function avoids obtaining it for VerifyVCache calls
83 afs_linux_VerifyVCache(struct vcache
*avc
, cred_t
**retcred
) {
85 struct vrequest
*treq
= NULL
;
88 if (avc
->f
.states
& CStatd
) {
96 code
= afs_CreateReq(&treq
, credp
);
98 code
= afs_VerifyVCache2(avc
, treq
);
107 return afs_convert_code(code
);
110 #if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER) || defined(HAVE_LINUX_GENERIC_FILE_AIO_READ)
111 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
113 afs_linux_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
114 # elif defined(LINUX_HAS_NONVECTOR_AIO)
116 afs_linux_aio_read(struct kiocb
*iocb
, char __user
*buf
, size_t bufsize
,
120 afs_linux_aio_read(struct kiocb
*iocb
, const struct iovec
*buf
,
121 unsigned long bufsize
, loff_t pos
)
124 struct file
*fp
= iocb
->ki_filp
;
126 struct vcache
*vcp
= VTOAFS(fp
->f_dentry
->d_inode
);
127 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
128 loff_t pos
= iocb
->ki_pos
;
129 unsigned long bufsize
= iter
->nr_segs
;
134 afs_Trace4(afs_iclSetp
, CM_TRACE_AIOREADOP
, ICL_TYPE_POINTER
, vcp
,
135 ICL_TYPE_OFFSET
, ICL_HANDLE_OFFSET(pos
), ICL_TYPE_INT32
,
136 (afs_int32
)bufsize
, ICL_TYPE_INT32
, 99999);
137 code
= afs_linux_VerifyVCache(vcp
, NULL
);
140 /* Linux's FlushPages implementation doesn't ever use credp,
141 * so we optimise by not using it */
142 osi_FlushPages(vcp
, NULL
); /* ensure stale pages are gone */
144 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
145 code
= generic_file_read_iter(iocb
, iter
);
147 code
= generic_file_aio_read(iocb
, buf
, bufsize
, pos
);
152 afs_Trace4(afs_iclSetp
, CM_TRACE_AIOREADOP
, ICL_TYPE_POINTER
, vcp
,
153 ICL_TYPE_OFFSET
, ICL_HANDLE_OFFSET(pos
), ICL_TYPE_INT32
,
154 (afs_int32
)bufsize
, ICL_TYPE_INT32
, code
);
160 afs_linux_read(struct file
*fp
, char *buf
, size_t count
, loff_t
* offp
)
163 struct vcache
*vcp
= VTOAFS(fp
->f_dentry
->d_inode
);
166 afs_Trace4(afs_iclSetp
, CM_TRACE_READOP
, ICL_TYPE_POINTER
, vcp
,
167 ICL_TYPE_OFFSET
, offp
, ICL_TYPE_INT32
, count
, ICL_TYPE_INT32
,
169 code
= afs_linux_VerifyVCache(vcp
, NULL
);
172 /* Linux's FlushPages implementation doesn't ever use credp,
173 * so we optimise by not using it */
174 osi_FlushPages(vcp
, NULL
); /* ensure stale pages are gone */
176 code
= do_sync_read(fp
, buf
, count
, offp
);
180 afs_Trace4(afs_iclSetp
, CM_TRACE_READOP
, ICL_TYPE_POINTER
, vcp
,
181 ICL_TYPE_OFFSET
, offp
, ICL_TYPE_INT32
, count
, ICL_TYPE_INT32
,
189 /* Now we have integrated VM for writes as well as reads. the generic write operations
190 * also take care of re-positioning the pointer if file is open in append
191 * mode. Call fake open/close to ensure we do writes of core dumps.
193 #if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER) || defined(HAVE_LINUX_GENERIC_FILE_AIO_READ)
194 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
196 afs_linux_write_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
197 # elif defined(LINUX_HAS_NONVECTOR_AIO)
199 afs_linux_aio_write(struct kiocb
*iocb
, const char __user
*buf
, size_t bufsize
,
203 afs_linux_aio_write(struct kiocb
*iocb
, const struct iovec
*buf
,
204 unsigned long bufsize
, loff_t pos
)
208 struct vcache
*vcp
= VTOAFS(iocb
->ki_filp
->f_dentry
->d_inode
);
210 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
211 loff_t pos
= iocb
->ki_pos
;
212 unsigned long bufsize
= iter
->nr_segs
;
217 afs_Trace4(afs_iclSetp
, CM_TRACE_AIOWRITEOP
, ICL_TYPE_POINTER
, vcp
,
218 ICL_TYPE_OFFSET
, ICL_HANDLE_OFFSET(pos
), ICL_TYPE_INT32
,
219 (afs_int32
)bufsize
, ICL_TYPE_INT32
,
220 (iocb
->ki_filp
->f_flags
& O_APPEND
) ? 99998 : 99999);
222 code
= afs_linux_VerifyVCache(vcp
, &credp
);
224 ObtainWriteLock(&vcp
->lock
, 529);
226 ReleaseWriteLock(&vcp
->lock
);
229 # if defined(STRUCT_FILE_OPERATIONS_HAS_READ_ITER)
230 code
= generic_file_write_iter(iocb
, iter
);
232 code
= generic_file_aio_write(iocb
, buf
, bufsize
, pos
);
237 ObtainWriteLock(&vcp
->lock
, 530);
239 if (vcp
->execsOrWriters
== 1 && !credp
)
242 afs_FakeClose(vcp
, credp
);
243 ReleaseWriteLock(&vcp
->lock
);
245 afs_Trace4(afs_iclSetp
, CM_TRACE_AIOWRITEOP
, ICL_TYPE_POINTER
, vcp
,
246 ICL_TYPE_OFFSET
, ICL_HANDLE_OFFSET(pos
), ICL_TYPE_INT32
,
247 (afs_int32
)bufsize
, ICL_TYPE_INT32
, code
);
256 afs_linux_write(struct file
*fp
, const char *buf
, size_t count
, loff_t
* offp
)
259 struct vcache
*vcp
= VTOAFS(fp
->f_dentry
->d_inode
);
264 afs_Trace4(afs_iclSetp
, CM_TRACE_WRITEOP
, ICL_TYPE_POINTER
, vcp
,
265 ICL_TYPE_OFFSET
, offp
, ICL_TYPE_INT32
, count
, ICL_TYPE_INT32
,
266 (fp
->f_flags
& O_APPEND
) ? 99998 : 99999);
268 code
= afs_linux_VerifyVCache(vcp
, &credp
);
270 ObtainWriteLock(&vcp
->lock
, 529);
272 ReleaseWriteLock(&vcp
->lock
);
275 code
= do_sync_write(fp
, buf
, count
, offp
);
279 ObtainWriteLock(&vcp
->lock
, 530);
281 if (vcp
->execsOrWriters
== 1 && !credp
)
284 afs_FakeClose(vcp
, credp
);
285 ReleaseWriteLock(&vcp
->lock
);
287 afs_Trace4(afs_iclSetp
, CM_TRACE_WRITEOP
, ICL_TYPE_POINTER
, vcp
,
288 ICL_TYPE_OFFSET
, offp
, ICL_TYPE_INT32
, count
, ICL_TYPE_INT32
,
298 extern int BlobScan(struct dcache
* afile
, afs_int32 ablob
, afs_int32
*ablobOut
);
300 /* This is a complete rewrite of afs_readdir, since we can make use of
301 * filldir instead of afs_readdir_move. Note that changes to vcache/dcache
302 * handling and use of bulkstats will need to be reflected here as well.
305 #if defined(STRUCT_FILE_OPERATIONS_HAS_ITERATE)
306 afs_linux_readdir(struct file
*fp
, struct dir_context
*ctx
)
308 afs_linux_readdir(struct file
*fp
, void *dirbuf
, filldir_t filldir
)
311 struct vcache
*avc
= VTOAFS(FILE_INODE(fp
));
312 struct vrequest
*treq
= NULL
;
318 struct DirBuffer entry
;
321 afs_size_t origOffset
, tlen
;
322 cred_t
*credp
= crref();
323 struct afs_fakestat_state fakestat
;
326 AFS_STATCNT(afs_readdir
);
328 code
= afs_convert_code(afs_CreateReq(&treq
, credp
));
333 afs_InitFakeStat(&fakestat
);
334 code
= afs_convert_code(afs_EvalFakeStat(&avc
, &fakestat
, treq
));
338 /* update the cache entry */
340 code
= afs_convert_code(afs_VerifyVCache2(avc
, treq
));
344 /* get a reference to the entire directory */
345 tdc
= afs_GetDCache(avc
, (afs_size_t
) 0, treq
, &origOffset
, &tlen
, 1);
351 ObtainWriteLock(&avc
->lock
, 811);
352 ObtainReadLock(&tdc
->lock
);
354 * Make sure that the data in the cache is current. There are two
355 * cases we need to worry about:
356 * 1. The cache data is being fetched by another process.
357 * 2. The cache data is no longer valid
359 while ((avc
->f
.states
& CStatd
)
360 && (tdc
->dflags
& DFFetching
)
361 && hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
)) {
362 ReleaseReadLock(&tdc
->lock
);
363 ReleaseWriteLock(&avc
->lock
);
364 afs_osi_Sleep(&tdc
->validPos
);
365 ObtainWriteLock(&avc
->lock
, 812);
366 ObtainReadLock(&tdc
->lock
);
368 if (!(avc
->f
.states
& CStatd
)
369 || !hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
)) {
370 ReleaseReadLock(&tdc
->lock
);
371 ReleaseWriteLock(&avc
->lock
);
376 /* Set the readdir-in-progress flag, and downgrade the lock
377 * to shared so others will be able to acquire a read lock.
379 avc
->f
.states
|= CReadDir
;
380 avc
->dcreaddir
= tdc
;
381 avc
->readdir_pid
= MyPidxx2Pid(MyPidxx
);
382 ConvertWToSLock(&avc
->lock
);
384 /* Fill in until we get an error or we're done. This implementation
385 * takes an offset in units of blobs, rather than bytes.
388 #if defined(STRUCT_FILE_OPERATIONS_HAS_ITERATE)
391 offset
= (int) fp
->f_pos
;
394 code
= BlobScan(tdc
, offset
, &dirpos
);
398 code
= afs_dir_GetVerifiedBlob(tdc
, dirpos
, &entry
);
400 if (!(avc
->f
.states
& CCorrupt
)) {
401 struct cell
*tc
= afs_GetCellStale(avc
->f
.fid
.Cell
, READ_LOCK
);
402 afs_warn("afs: Corrupt directory (%d.%d.%d.%d [%s] @%lx, pos %d)\n",
403 avc
->f
.fid
.Cell
, avc
->f
.fid
.Fid
.Volume
,
404 avc
->f
.fid
.Fid
.Vnode
, avc
->f
.fid
.Fid
.Unique
,
405 tc
? tc
->cellName
: "",
406 (unsigned long)&tdc
->f
.inode
, dirpos
);
408 afs_PutCell(tc
, READ_LOCK
);
409 UpgradeSToWLock(&avc
->lock
, 814);
410 avc
->f
.states
|= CCorrupt
;
416 de
= (struct DirEntry
*)entry
.data
;
417 ino
= afs_calc_inum (avc
->f
.fid
.Cell
, avc
->f
.fid
.Fid
.Volume
,
418 ntohl(de
->fid
.vnode
));
419 len
= strlen(de
->name
);
421 /* filldir returns -EINVAL when the buffer is full. */
423 unsigned int type
= DT_UNKNOWN
;
424 struct VenusFid afid
;
427 afid
.Cell
= avc
->f
.fid
.Cell
;
428 afid
.Fid
.Volume
= avc
->f
.fid
.Fid
.Volume
;
429 afid
.Fid
.Vnode
= ntohl(de
->fid
.vnode
);
430 afid
.Fid
.Unique
= ntohl(de
->fid
.vunique
);
431 if ((avc
->f
.states
& CForeign
) == 0 && (ntohl(de
->fid
.vnode
) & 1)) {
433 } else if ((tvc
= afs_FindVCache(&afid
, 0, 0))) {
434 if (tvc
->mvstat
!= AFS_MVSTAT_FILE
) {
436 } else if (((tvc
->f
.states
) & (CStatd
| CTruth
))) {
437 /* CTruth will be set if the object has
442 else if (vtype
== VREG
)
444 /* Don't do this until we're sure it can't be a mtpt */
445 /* else if (vtype == VLNK)
447 /* what other types does AFS support? */
449 /* clean up from afs_FindVCache */
453 * If this is NFS readdirplus, then the filler is going to
454 * call getattr on this inode, which will deadlock if we're
458 #if defined(STRUCT_FILE_OPERATIONS_HAS_ITERATE)
459 /* dir_emit returns a bool - true when it succeeds.
460 * Inverse the result to fit with how we check "code" */
461 code
= !dir_emit(ctx
, de
->name
, len
, ino
, type
);
463 code
= (*filldir
) (dirbuf
, de
->name
, len
, offset
, ino
, type
);
470 offset
= dirpos
+ 1 + ((len
+ 16) >> 5);
472 /* If filldir didn't fill in the last one this is still pointing to that
478 #if defined(STRUCT_FILE_OPERATIONS_HAS_ITERATE)
479 ctx
->pos
= (loff_t
) offset
;
481 fp
->f_pos
= (loff_t
) offset
;
483 ReleaseReadLock(&tdc
->lock
);
485 UpgradeSToWLock(&avc
->lock
, 813);
486 avc
->f
.states
&= ~CReadDir
;
488 avc
->readdir_pid
= 0;
489 ReleaseSharedLock(&avc
->lock
);
492 afs_PutFakeStat(&fakestat
);
493 afs_DestroyReq(treq
);
500 /* in afs_pioctl.c */
501 extern int afs_xioctl(struct inode
*ip
, struct file
*fp
, unsigned int com
,
504 #if defined(HAVE_UNLOCKED_IOCTL) || defined(HAVE_COMPAT_IOCTL)
505 static long afs_unlocked_xioctl(struct file
*fp
, unsigned int com
,
507 return afs_xioctl(FILE_INODE(fp
), fp
, com
, arg
);
514 afs_linux_mmap(struct file
*fp
, struct vm_area_struct
*vmap
)
516 struct vcache
*vcp
= VTOAFS(FILE_INODE(fp
));
520 afs_Trace3(afs_iclSetp
, CM_TRACE_GMAP
, ICL_TYPE_POINTER
, vcp
,
521 ICL_TYPE_POINTER
, vmap
->vm_start
, ICL_TYPE_INT32
,
522 vmap
->vm_end
- vmap
->vm_start
);
524 /* get a validated vcache entry */
525 code
= afs_linux_VerifyVCache(vcp
, NULL
);
528 /* Linux's Flushpage implementation doesn't use credp, so optimise
529 * our code to not need to crref() it */
530 osi_FlushPages(vcp
, NULL
); /* ensure stale pages are gone */
532 code
= generic_file_mmap(fp
, vmap
);
535 vcp
->f
.states
|= CMAPPED
;
543 afs_linux_open(struct inode
*ip
, struct file
*fp
)
545 struct vcache
*vcp
= VTOAFS(ip
);
546 cred_t
*credp
= crref();
550 code
= afs_open(&vcp
, fp
->f_flags
, credp
);
554 return afs_convert_code(code
);
558 afs_linux_release(struct inode
*ip
, struct file
*fp
)
560 struct vcache
*vcp
= VTOAFS(ip
);
561 cred_t
*credp
= crref();
565 code
= afs_close(vcp
, fp
->f_flags
, credp
);
566 ObtainWriteLock(&vcp
->lock
, 807);
571 ReleaseWriteLock(&vcp
->lock
);
575 return afs_convert_code(code
);
579 #if defined(FOP_FSYNC_TAKES_DENTRY)
580 afs_linux_fsync(struct file
*fp
, struct dentry
*dp
, int datasync
)
581 #elif defined(FOP_FSYNC_TAKES_RANGE)
582 afs_linux_fsync(struct file
*fp
, loff_t start
, loff_t end
, int datasync
)
584 afs_linux_fsync(struct file
*fp
, int datasync
)
588 struct inode
*ip
= FILE_INODE(fp
);
589 cred_t
*credp
= crref();
591 #if defined(FOP_FSYNC_TAKES_RANGE)
592 afs_linux_lock_inode(ip
);
595 code
= afs_fsync(VTOAFS(ip
), credp
);
597 #if defined(FOP_FSYNC_TAKES_RANGE)
598 afs_linux_unlock_inode(ip
);
601 return afs_convert_code(code
);
607 afs_linux_lock(struct file
*fp
, int cmd
, struct file_lock
*flp
)
610 struct vcache
*vcp
= VTOAFS(FILE_INODE(fp
));
611 cred_t
*credp
= crref();
612 struct AFS_FLOCK flock
;
614 /* Convert to a lock format afs_lockctl understands. */
615 memset(&flock
, 0, sizeof(flock
));
616 flock
.l_type
= flp
->fl_type
;
617 flock
.l_pid
= flp
->fl_pid
;
619 flock
.l_start
= flp
->fl_start
;
620 if (flp
->fl_end
== OFFSET_MAX
)
621 flock
.l_len
= 0; /* Lock to end of file */
623 flock
.l_len
= flp
->fl_end
- flp
->fl_start
+ 1;
625 /* Safe because there are no large files, yet */
626 #if defined(F_GETLK64) && (F_GETLK != F_GETLK64)
627 if (cmd
== F_GETLK64
)
629 else if (cmd
== F_SETLK64
)
631 else if (cmd
== F_SETLKW64
)
633 #endif /* F_GETLK64 && F_GETLK != F_GETLK64 */
636 code
= afs_convert_code(afs_lockctl(vcp
, &flock
, cmd
, credp
));
639 if ((code
== 0 || flp
->fl_type
== F_UNLCK
) &&
640 (cmd
== F_SETLK
|| cmd
== F_SETLKW
)) {
641 code
= afs_posix_lock_file(fp
, flp
);
642 if (code
&& flp
->fl_type
!= F_UNLCK
) {
643 struct AFS_FLOCK flock2
;
645 flock2
.l_type
= F_UNLCK
;
647 afs_lockctl(vcp
, &flock2
, F_SETLK
, credp
);
651 /* If lockctl says there are no conflicting locks, then also check with the
652 * kernel, as lockctl knows nothing about byte range locks
654 if (code
== 0 && cmd
== F_GETLK
&& flock
.l_type
== F_UNLCK
) {
655 afs_posix_test_lock(fp
, flp
);
656 /* If we found a lock in the kernel's structure, return it */
657 if (flp
->fl_type
!= F_UNLCK
) {
663 /* Convert flock back to Linux's file_lock */
664 flp
->fl_type
= flock
.l_type
;
665 flp
->fl_pid
= flock
.l_pid
;
666 flp
->fl_start
= flock
.l_start
;
667 if (flock
.l_len
== 0)
668 flp
->fl_end
= OFFSET_MAX
; /* Lock to end of file */
670 flp
->fl_end
= flock
.l_start
+ flock
.l_len
- 1;
676 #ifdef STRUCT_FILE_OPERATIONS_HAS_FLOCK
678 afs_linux_flock(struct file
*fp
, int cmd
, struct file_lock
*flp
) {
680 struct vcache
*vcp
= VTOAFS(FILE_INODE(fp
));
681 cred_t
*credp
= crref();
682 struct AFS_FLOCK flock
;
683 /* Convert to a lock format afs_lockctl understands. */
684 memset(&flock
, 0, sizeof(flock
));
685 flock
.l_type
= flp
->fl_type
;
686 flock
.l_pid
= flp
->fl_pid
;
691 /* Safe because there are no large files, yet */
692 #if defined(F_GETLK64) && (F_GETLK != F_GETLK64)
693 if (cmd
== F_GETLK64
)
695 else if (cmd
== F_SETLK64
)
697 else if (cmd
== F_SETLKW64
)
699 #endif /* F_GETLK64 && F_GETLK != F_GETLK64 */
702 code
= afs_convert_code(afs_lockctl(vcp
, &flock
, cmd
, credp
));
705 if ((code
== 0 || flp
->fl_type
== F_UNLCK
) &&
706 (cmd
== F_SETLK
|| cmd
== F_SETLKW
)) {
707 flp
->fl_flags
&=~ FL_SLEEP
;
708 code
= flock_lock_file_wait(fp
, flp
);
709 if (code
&& flp
->fl_type
!= F_UNLCK
) {
710 struct AFS_FLOCK flock2
;
712 flock2
.l_type
= F_UNLCK
;
714 afs_lockctl(vcp
, &flock2
, F_SETLK
, credp
);
718 /* Convert flock back to Linux's file_lock */
719 flp
->fl_type
= flock
.l_type
;
720 flp
->fl_pid
= flock
.l_pid
;
728 * essentially the same as afs_fsync() but we need to get the return
729 * code for the sys_close() here, not afs_linux_release(), so call
730 * afs_StoreAllSegments() with AFS_LASTSTORE
733 #if defined(FOP_FLUSH_TAKES_FL_OWNER_T)
734 afs_linux_flush(struct file
*fp
, fl_owner_t id
)
736 afs_linux_flush(struct file
*fp
)
739 struct vrequest
*treq
= NULL
;
747 if ((fp
->f_flags
& O_ACCMODE
) == O_RDONLY
) { /* readers dont flush */
755 vcp
= VTOAFS(FILE_INODE(fp
));
757 code
= afs_CreateReq(&treq
, credp
);
760 /* If caching is bypassed for this file, or globally, just return 0 */
761 if (cache_bypass_strategy
== ALWAYS_BYPASS_CACHE
)
764 ObtainReadLock(&vcp
->lock
);
765 if (vcp
->cachingStates
& FCSBypass
)
767 ReleaseReadLock(&vcp
->lock
);
770 /* future proof: don't rely on 0 return from afs_InitReq */
775 ObtainSharedLock(&vcp
->lock
, 535);
776 if ((vcp
->execsOrWriters
> 0) && (file_count(fp
) == 1)) {
777 UpgradeSToWLock(&vcp
->lock
, 536);
778 if (!AFS_IS_DISCONNECTED
) {
779 code
= afs_StoreAllSegments(vcp
,
781 AFS_SYNC
| AFS_LASTSTORE
);
783 afs_DisconAddDirty(vcp
, VDisconWriteOsiFlush
, 1);
785 ConvertWToSLock(&vcp
->lock
);
787 code
= afs_CheckCode(code
, treq
, 54);
788 ReleaseSharedLock(&vcp
->lock
);
791 afs_DestroyReq(treq
);
796 return afs_convert_code(code
);
799 struct file_operations afs_dir_fops
= {
800 .read
= generic_read_dir
,
801 #if defined(STRUCT_FILE_OPERATIONS_HAS_ITERATE)
802 .iterate
= afs_linux_readdir
,
804 .readdir
= afs_linux_readdir
,
806 #ifdef HAVE_UNLOCKED_IOCTL
807 .unlocked_ioctl
= afs_unlocked_xioctl
,
811 #ifdef HAVE_COMPAT_IOCTL
812 .compat_ioctl
= afs_unlocked_xioctl
,
814 .open
= afs_linux_open
,
815 .release
= afs_linux_release
,
816 .llseek
= default_llseek
,
817 #ifdef HAVE_LINUX_NOOP_FSYNC
820 .fsync
= simple_sync_file
,
824 struct file_operations afs_file_fops
= {
825 #ifdef STRUCT_FILE_OPERATIONS_HAS_READ_ITER
826 .read_iter
= afs_linux_read_iter
,
827 .write_iter
= afs_linux_write_iter
,
828 # if !defined(HAVE_LINUX___VFS_WRITE) && !defined(HAVE_LINUX_KERNEL_WRITE)
829 .read
= new_sync_read
,
830 .write
= new_sync_write
,
832 #elif defined(HAVE_LINUX_GENERIC_FILE_AIO_READ)
833 .aio_read
= afs_linux_aio_read
,
834 .aio_write
= afs_linux_aio_write
,
835 .read
= do_sync_read
,
836 .write
= do_sync_write
,
838 .read
= afs_linux_read
,
839 .write
= afs_linux_write
,
841 #ifdef HAVE_UNLOCKED_IOCTL
842 .unlocked_ioctl
= afs_unlocked_xioctl
,
846 #ifdef HAVE_COMPAT_IOCTL
847 .compat_ioctl
= afs_unlocked_xioctl
,
849 .mmap
= afs_linux_mmap
,
850 .open
= afs_linux_open
,
851 .flush
= afs_linux_flush
,
852 #if defined(STRUCT_FILE_OPERATIONS_HAS_SENDFILE)
853 .sendfile
= generic_file_sendfile
,
855 #if defined(STRUCT_FILE_OPERATIONS_HAS_SPLICE) && !defined(HAVE_LINUX_DEFAULT_FILE_SPLICE_READ)
856 # if defined(HAVE_LINUX_ITER_FILE_SPLICE_WRITE)
857 .splice_write
= iter_file_splice_write
,
859 .splice_write
= generic_file_splice_write
,
861 .splice_read
= generic_file_splice_read
,
863 .release
= afs_linux_release
,
864 .fsync
= afs_linux_fsync
,
865 .lock
= afs_linux_lock
,
866 #ifdef STRUCT_FILE_OPERATIONS_HAS_FLOCK
867 .flock
= afs_linux_flock
,
869 .llseek
= default_llseek
,
872 static struct dentry
*
873 canonical_dentry(struct inode
*ip
)
875 struct vcache
*vcp
= VTOAFS(ip
);
876 struct dentry
*first
= NULL
, *ret
= NULL
, *cur
;
877 #if defined(D_ALIAS_IS_HLIST) && !defined(HLIST_ITERATOR_NO_NODE)
878 struct hlist_node
*p
;
882 * if vcp->target_link is set, and can be found in ip->i_dentry, use that.
883 * otherwise, use the first dentry in ip->i_dentry.
884 * if ip->i_dentry is empty, use the 'dentry' argument we were given.
886 /* note that vcp->target_link specifies which dentry to use, but we have
887 * no reference held on that dentry. so, we cannot use or dereference
888 * vcp->target_link itself, since it may have been freed. instead, we only
889 * use it to compare to pointers in the ip->i_dentry list. */
893 afs_d_alias_lock(ip
);
895 #if defined(D_ALIAS_IS_HLIST)
896 # if defined(HLIST_ITERATOR_NO_NODE)
897 hlist_for_each_entry(cur
, &ip
->i_dentry
, d_alias
) {
899 hlist_for_each_entry(cur
, p
, &ip
->i_dentry
, d_alias
) {
902 list_for_each_entry_reverse(cur
, &ip
->i_dentry
, d_alias
) {
905 if (!vcp
->target_link
|| cur
== vcp
->target_link
) {
918 vcp
->target_link
= ret
;
923 afs_d_alias_unlock(ip
);
928 /**********************************************************************
929 * AFS Linux dentry operations
930 **********************************************************************/
932 /* afs_linux_revalidate
933 * Ensure vcache is stat'd before use. Return 0 if entry is valid.
936 afs_linux_revalidate(struct dentry
*dp
)
938 struct vattr
*vattr
= NULL
;
939 struct vcache
*vcp
= VTOAFS(dp
->d_inode
);
943 if (afs_shuttingdown
!= AFS_RUNNING
)
948 code
= afs_CreateAttr(&vattr
);
953 /* This avoids the crref when we don't have to do it. Watch for
954 * changes in afs_getattr that don't get replicated here!
956 if (vcp
->f
.states
& CStatd
&&
957 (!afs_fakestat_enable
|| vcp
->mvstat
!= AFS_MVSTAT_MTPT
) &&
959 (vType(vcp
) == VDIR
|| vType(vcp
) == VLNK
)) {
960 code
= afs_CopyOutAttrs(vcp
, vattr
);
963 code
= afs_getattr(vcp
, vattr
, credp
);
968 afs_fill_inode(AFSTOV(vcp
), vattr
);
970 afs_DestroyAttr(vattr
);
975 return afs_convert_code(code
);
979 * Set iattr data into vattr. Assume vattr cleared before call.
982 iattr2vattr(struct vattr
*vattrp
, struct iattr
*iattrp
)
984 vattrp
->va_mask
= iattrp
->ia_valid
;
985 if (iattrp
->ia_valid
& ATTR_MODE
)
986 vattrp
->va_mode
= iattrp
->ia_mode
;
987 if (iattrp
->ia_valid
& ATTR_UID
)
988 vattrp
->va_uid
= afs_from_kuid(iattrp
->ia_uid
);
989 if (iattrp
->ia_valid
& ATTR_GID
)
990 vattrp
->va_gid
= afs_from_kgid(iattrp
->ia_gid
);
991 if (iattrp
->ia_valid
& ATTR_SIZE
)
992 vattrp
->va_size
= iattrp
->ia_size
;
993 if (iattrp
->ia_valid
& ATTR_ATIME
) {
994 vattrp
->va_atime
.tv_sec
= iattrp
->ia_atime
.tv_sec
;
995 vattrp
->va_atime
.tv_usec
= 0;
997 if (iattrp
->ia_valid
& ATTR_MTIME
) {
998 vattrp
->va_mtime
.tv_sec
= iattrp
->ia_mtime
.tv_sec
;
999 vattrp
->va_mtime
.tv_usec
= 0;
1001 if (iattrp
->ia_valid
& ATTR_CTIME
) {
1002 vattrp
->va_ctime
.tv_sec
= iattrp
->ia_ctime
.tv_sec
;
1003 vattrp
->va_ctime
.tv_usec
= 0;
1008 * Rewrite the inode cache from the attr. Assumes all vattr fields are valid.
1011 vattr2inode(struct inode
*ip
, struct vattr
*vp
)
1013 ip
->i_ino
= vp
->va_nodeid
;
1014 #ifdef HAVE_LINUX_SET_NLINK
1015 set_nlink(ip
, vp
->va_nlink
);
1017 ip
->i_nlink
= vp
->va_nlink
;
1019 ip
->i_blocks
= vp
->va_blocks
;
1020 #ifdef STRUCT_INODE_HAS_I_BLKBITS
1021 ip
->i_blkbits
= AFS_BLKBITS
;
1023 #ifdef STRUCT_INODE_HAS_I_BLKSIZE
1024 ip
->i_blksize
= vp
->va_blocksize
;
1026 ip
->i_rdev
= vp
->va_rdev
;
1027 ip
->i_mode
= vp
->va_mode
;
1028 ip
->i_uid
= afs_make_kuid(vp
->va_uid
);
1029 ip
->i_gid
= afs_make_kgid(vp
->va_gid
);
1030 i_size_write(ip
, vp
->va_size
);
1031 ip
->i_atime
.tv_sec
= vp
->va_atime
.tv_sec
;
1032 ip
->i_atime
.tv_nsec
= 0;
1033 ip
->i_mtime
.tv_sec
= vp
->va_mtime
.tv_sec
;
1034 /* Set the mtime nanoseconds to the sysname generation number.
1035 * This convinces NFS clients that all directories have changed
1036 * any time the sysname list changes.
1038 ip
->i_mtime
.tv_nsec
= afs_sysnamegen
;
1039 ip
->i_ctime
.tv_sec
= vp
->va_ctime
.tv_sec
;
1040 ip
->i_ctime
.tv_nsec
= 0;
1043 /* afs_notify_change
1044 * Linux version of setattr call. What to change is in the iattr struct.
1045 * We need to set bits in both the Linux inode as well as the vcache.
1048 afs_notify_change(struct dentry
*dp
, struct iattr
*iattrp
)
1050 struct vattr
*vattr
= NULL
;
1051 cred_t
*credp
= crref();
1052 struct inode
*ip
= dp
->d_inode
;
1056 code
= afs_CreateAttr(&vattr
);
1061 iattr2vattr(vattr
, iattrp
); /* Convert for AFS vnodeops call. */
1063 code
= afs_setattr(VTOAFS(ip
), vattr
, credp
);
1065 afs_getattr(VTOAFS(ip
), vattr
, credp
);
1066 vattr2inode(ip
, vattr
);
1068 afs_DestroyAttr(vattr
);
1073 return afs_convert_code(code
);
1076 #if defined(IOP_GETATTR_TAKES_PATH_STRUCT)
1078 afs_linux_getattr(const struct path
*path
, struct kstat
*stat
, u32 request_mask
, unsigned int sync_mode
)
1080 int err
= afs_linux_revalidate(path
->dentry
);
1082 generic_fillattr(path
->dentry
->d_inode
, stat
);
1088 afs_linux_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
, struct kstat
*stat
)
1090 int err
= afs_linux_revalidate(dentry
);
1092 generic_fillattr(dentry
->d_inode
, stat
);
1099 parent_vcache_dv(struct inode
*inode
, cred_t
*credp
)
1102 struct vcache
*pvcp
;
1105 * If parent is a mount point and we are using fakestat, we may need
1106 * to look at the fake vcache entry instead of what the vfs is giving
1107 * us. The fake entry is the one with the useful DataVersion.
1109 pvcp
= VTOAFS(inode
);
1110 if (pvcp
->mvstat
== AFS_MVSTAT_MTPT
&& afs_fakestat_enable
) {
1111 struct vrequest treq
;
1112 struct afs_fakestat_state fakestate
;
1118 afs_InitReq(&treq
, credp
);
1119 afs_InitFakeStat(&fakestate
);
1120 afs_TryEvalFakeStat(&pvcp
, &fakestate
, &treq
);
1123 afs_PutFakeStat(&fakestate
);
1125 return hgetlo(pvcp
->f
.m
.DataVersion
);
1128 #ifdef D_SPLICE_ALIAS_RACE
1129 /* Leave some trace that this code is enabled; otherwise it's pretty hard to
1131 static __attribute__((used
)) const char dentry_race_marker
[] = "d_splice_alias race workaround enabled";
1134 check_dentry_race(struct dentry
*dp
)
1138 struct dentry
*parent
= dget_parent(dp
);
1140 /* In Linux, before commit 4919c5e45a91b5db5a41695fe0357fbdff0d5767,
1141 * d_splice_alias can momentarily hash a dentry before it's fully
1142 * populated. This only happens for a moment, since it's unhashed again
1143 * right after (in d_move), but this can make the dentry be found by
1144 * __d_lookup, and then given to us.
1146 * So check if the dentry is unhashed; if it is, then the dentry is not
1147 * valid. We lock the parent inode to ensure that d_splice_alias is no
1148 * longer running (the inode mutex will be held during
1149 * afs_linux_lookup). Locking d_lock is required to check the dentry's
1150 * flags, so lock that, too.
1152 afs_linux_lock_inode(parent
->d_inode
);
1153 spin_lock(&dp
->d_lock
);
1154 if (d_unhashed(dp
)) {
1157 spin_unlock(&dp
->d_lock
);
1158 afs_linux_unlock_inode(parent
->d_inode
);
1164 #endif /* D_SPLICE_ALIAS_RACE */
1166 /* Validate a dentry. Return 1 if unchanged, 0 if VFS layer should re-evaluate.
1167 * In kernels 2.2.10 and above, we are passed an additional flags var which
1168 * may have either the LOOKUP_FOLLOW OR LOOKUP_DIRECTORY set in which case
1169 * we are advised to follow the entry if it is a link or to make sure that
1170 * it is a directory. But since the kernel itself checks these possibilities
1171 * later on, we shouldn't have to do it until later. Perhaps in the future..
1173 * The code here assumes that on entry the global lock is not held
1176 #if defined(DOP_REVALIDATE_TAKES_UNSIGNED)
1177 afs_linux_dentry_revalidate(struct dentry
*dp
, unsigned int flags
)
1178 #elif defined(DOP_REVALIDATE_TAKES_NAMEIDATA)
1179 afs_linux_dentry_revalidate(struct dentry
*dp
, struct nameidata
*nd
)
1181 afs_linux_dentry_revalidate(struct dentry
*dp
, int flags
)
1184 cred_t
*credp
= NULL
;
1185 struct vcache
*vcp
, *pvcp
, *tvc
= NULL
;
1186 struct dentry
*parent
;
1188 struct afs_fakestat_state fakestate
;
1190 afs_uint32 parent_dv
;
1193 /* We don't support RCU path walking */
1194 # if defined(DOP_REVALIDATE_TAKES_UNSIGNED)
1195 if (flags
& LOOKUP_RCU
)
1197 if (nd
->flags
& LOOKUP_RCU
)
1202 #ifdef D_SPLICE_ALIAS_RACE
1203 if (check_dentry_race(dp
)) {
1210 afs_InitFakeStat(&fakestate
);
1213 vcp
= VTOAFS(dp
->d_inode
);
1215 if (vcp
== afs_globalVp
)
1218 if (vcp
->mvstat
== AFS_MVSTAT_MTPT
) {
1219 if (vcp
->mvid
.target_root
&& (vcp
->f
.states
& CMValid
)) {
1220 int tryEvalOnly
= 0;
1222 struct vrequest
*treq
= NULL
;
1226 code
= afs_CreateReq(&treq
, credp
);
1230 if ((strcmp(dp
->d_name
.name
, ".directory") == 0)) {
1234 code
= afs_TryEvalFakeStat(&vcp
, &fakestate
, treq
);
1236 code
= afs_EvalFakeStat(&vcp
, &fakestate
, treq
);
1237 afs_DestroyReq(treq
);
1238 if ((tryEvalOnly
&& vcp
->mvstat
== AFS_MVSTAT_MTPT
) || code
) {
1239 /* a mount point, not yet replaced by its directory */
1243 } else if (vcp
->mvstat
== AFS_MVSTAT_ROOT
&& *dp
->d_name
.name
!= '/') {
1244 osi_Assert(vcp
->mvid
.parent
!= NULL
);
1248 /* If the last looker changes, we should make sure the current
1249 * looker still has permission to examine this file. This would
1250 * always require a crref() which would be "slow".
1252 if (vcp
->last_looker
!= treq
.uid
) {
1253 if (!afs_AccessOK(vcp
, (vType(vcp
) == VREG
) ? PRSFS_READ
: PRSFS_LOOKUP
, &treq
, CHECK_MODE_BITS
)) {
1257 vcp
->last_looker
= treq
.uid
;
1261 parent
= dget_parent(dp
);
1262 pvcp
= VTOAFS(parent
->d_inode
);
1263 parent_dv
= parent_vcache_dv(parent
->d_inode
, credp
);
1265 /* If the parent's DataVersion has changed or the vnode
1266 * is longer valid, we need to do a full lookup. VerifyVCache
1267 * isn't enough since the vnode may have been renamed.
1270 if (parent_dv
> dp
->d_time
|| !(vcp
->f
.states
& CStatd
)) {
1271 struct vattr
*vattr
= NULL
;
1275 if (credp
== NULL
) {
1278 code
= afs_lookup(pvcp
, (char *)dp
->d_name
.name
, &tvc
, credp
);
1281 /* We couldn't perform the lookup, so we're not okay. */
1284 } else if (tvc
== vcp
) {
1285 /* We got back the same vcache, so we're good. */
1288 } else if (tvc
== VTOAFS(dp
->d_inode
)) {
1289 /* We got back the same vcache, so we're good. This is
1290 * different from the above case, because sometimes 'vcp' is
1291 * not the same as the vcache for dp->d_inode, if 'vcp' was a
1292 * mtpt and we evaluated it to a root dir. In rare cases,
1293 * afs_lookup might not evalute the mtpt when we do, or vice
1294 * versa, so the previous case will not succeed. But this is
1295 * still 'correct', so make sure not to mark the dentry as
1296 * invalid; it still points to the same thing! */
1300 /* We got back a different file, so we're definitely not
1307 /* Force unhash; the name doesn't point to this file
1310 if (code
&& code
!= ENOENT
) {
1311 /* ...except if we couldn't perform the actual lookup,
1312 * we don't know if the name points to this file or not. */
1318 code
= afs_CreateAttr(&vattr
);
1324 if (afs_getattr(vcp
, vattr
, credp
)) {
1326 afs_DestroyAttr(vattr
);
1330 vattr2inode(AFSTOV(vcp
), vattr
);
1331 dp
->d_time
= parent_dv
;
1333 afs_DestroyAttr(vattr
);
1336 /* should we always update the attributes at this point? */
1337 /* unlikely--the vcache entry hasn't changed */
1343 /* 'dp' represents a cached negative lookup. */
1345 parent
= dget_parent(dp
);
1346 pvcp
= VTOAFS(parent
->d_inode
);
1347 parent_dv
= parent_vcache_dv(parent
->d_inode
, credp
);
1349 if (parent_dv
> dp
->d_time
|| !(pvcp
->f
.states
& CStatd
)
1350 || afs_IsDynroot(pvcp
)) {
1364 #ifndef D_INVALIDATE_IS_VOID
1365 /* When (v3.18) d_invalidate was converted to void, it also started
1366 * being called automatically from revalidate, and automatically
1368 * - shrink_dcache_parent
1369 * - automatic detach of submounts
1371 * Therefore, after that point, OpenAFS revalidate logic no longer needs
1372 * to do any of those things itself for invalid dentry structs. We only need
1373 * to tell VFS it's invalid (by returning 0), and VFS will handle the rest.
1375 if (have_submounts(dp
))
1383 afs_PutFakeStat(&fakestate
);
1388 #ifndef D_INVALIDATE_IS_VOID
1391 * If we had a negative lookup for the name we want to forcibly
1392 * unhash the dentry.
1393 * Otherwise use d_invalidate which will not unhash it if still in use.
1396 shrink_dcache_parent(dp
);
1407 afs_dentry_iput(struct dentry
*dp
, struct inode
*ip
)
1409 struct vcache
*vcp
= VTOAFS(ip
);
1412 if (!AFS_IS_DISCONNECTED
|| (vcp
->f
.states
& CUnlinked
)) {
1413 (void) afs_InactiveVCache(vcp
, NULL
);
1416 afs_linux_clear_nfsfs_renamed(dp
);
1422 #if defined(DOP_D_DELETE_TAKES_CONST)
1423 afs_dentry_delete(const struct dentry
*dp
)
1425 afs_dentry_delete(struct dentry
*dp
)
1428 if (dp
->d_inode
&& (VTOAFS(dp
->d_inode
)->f
.states
& CUnlinked
))
1429 return 1; /* bad inode? */
1434 #ifdef STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT
1435 static struct vfsmount
*
1436 afs_dentry_automount(afs_linux_path_t
*path
)
1438 struct dentry
*target
;
1441 * Avoid symlink resolution limits when resolving; we cannot contribute to
1442 * an infinite symlink loop.
1444 * On newer kernels the field has moved to the private nameidata structure
1445 * so we can't adjust it here. This may cause ELOOP when using a path with
1446 * 40 or more directories that are not already in the dentry cache.
1448 #if defined(STRUCT_TASK_STRUCT_HAS_TOTAL_LINK_COUNT)
1449 current
->total_link_count
--;
1452 target
= canonical_dentry(path
->dentry
->d_inode
);
1454 if (target
== path
->dentry
) {
1461 path
->dentry
= target
;
1464 spin_lock(&path
->dentry
->d_lock
);
1465 path
->dentry
->d_flags
&= ~DCACHE_NEED_AUTOMOUNT
;
1466 spin_unlock(&path
->dentry
->d_lock
);
1471 #endif /* STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT */
1473 struct dentry_operations afs_dentry_operations
= {
1474 .d_revalidate
= afs_linux_dentry_revalidate
,
1475 .d_delete
= afs_dentry_delete
,
1476 .d_iput
= afs_dentry_iput
,
1477 #ifdef STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT
1478 .d_automount
= afs_dentry_automount
,
1479 #endif /* STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT */
1482 /**********************************************************************
1483 * AFS Linux inode operations
1484 **********************************************************************/
1488 * Merely need to set enough of vattr to get us through the create. Note
1489 * that the higher level code (open_namei) will take care of any tuncation
1490 * explicitly. Exclusive open is also taken care of in open_namei.
1492 * name is in kernel space at this point.
1495 #if defined(IOP_CREATE_TAKES_BOOL)
1496 afs_linux_create(struct inode
*dip
, struct dentry
*dp
, umode_t mode
,
1498 #elif defined(IOP_CREATE_TAKES_UMODE_T)
1499 afs_linux_create(struct inode
*dip
, struct dentry
*dp
, umode_t mode
,
1500 struct nameidata
*nd
)
1501 #elif defined(IOP_CREATE_TAKES_NAMEIDATA)
1502 afs_linux_create(struct inode
*dip
, struct dentry
*dp
, int mode
,
1503 struct nameidata
*nd
)
1505 afs_linux_create(struct inode
*dip
, struct dentry
*dp
, int mode
)
1508 struct vattr
*vattr
= NULL
;
1509 cred_t
*credp
= crref();
1510 const char *name
= dp
->d_name
.name
;
1516 code
= afs_CreateAttr(&vattr
);
1520 vattr
->va_mode
= mode
;
1521 vattr
->va_type
= mode
& S_IFMT
;
1523 code
= afs_create(VTOAFS(dip
), (char *)name
, vattr
, NONEXCL
, mode
,
1527 struct inode
*ip
= AFSTOV(vcp
);
1529 afs_getattr(vcp
, vattr
, credp
);
1530 afs_fill_inode(ip
, vattr
);
1531 insert_inode_hash(ip
);
1532 #if !defined(STRUCT_SUPER_BLOCK_HAS_S_D_OP)
1533 dp
->d_op
= &afs_dentry_operations
;
1535 dp
->d_time
= parent_vcache_dv(dip
, credp
);
1536 d_instantiate(dp
, ip
);
1539 afs_DestroyAttr(vattr
);
1545 return afs_convert_code(code
);
1548 /* afs_linux_lookup */
1549 static struct dentry
*
1550 #if defined(IOP_LOOKUP_TAKES_UNSIGNED)
1551 afs_linux_lookup(struct inode
*dip
, struct dentry
*dp
,
1553 #elif defined(IOP_LOOKUP_TAKES_NAMEIDATA)
1554 afs_linux_lookup(struct inode
*dip
, struct dentry
*dp
,
1555 struct nameidata
*nd
)
1557 afs_linux_lookup(struct inode
*dip
, struct dentry
*dp
)
1560 cred_t
*credp
= crref();
1561 struct vcache
*vcp
= NULL
;
1562 const char *comp
= dp
->d_name
.name
;
1563 struct inode
*ip
= NULL
;
1564 struct dentry
*newdp
= NULL
;
1569 code
= afs_lookup(VTOAFS(dip
), (char *)comp
, &vcp
, credp
);
1570 if (code
== ENOENT
) {
1571 /* It's ok for the file to not be found. That's noted by the caller by
1572 * seeing that the dp->d_inode field is NULL (set by d_splice_alias or
1575 osi_Assert(vcp
== NULL
);
1583 struct vattr
*vattr
= NULL
;
1584 struct vcache
*parent_vc
= VTOAFS(dip
);
1586 if (parent_vc
== vcp
) {
1587 /* This is possible if the parent dir is a mountpoint to a volume,
1588 * and the dir entry we looked up is a mountpoint to the same
1589 * volume. Linux cannot cope with this, so return an error instead
1590 * of risking a deadlock or panic. */
1597 code
= afs_CreateAttr(&vattr
);
1605 afs_getattr(vcp
, vattr
, credp
);
1606 afs_fill_inode(ip
, vattr
);
1607 if (hlist_unhashed(&ip
->i_hash
))
1608 insert_inode_hash(ip
);
1610 afs_DestroyAttr(vattr
);
1612 #if !defined(STRUCT_SUPER_BLOCK_HAS_S_D_OP)
1613 dp
->d_op
= &afs_dentry_operations
;
1615 dp
->d_time
= parent_vcache_dv(dip
, credp
);
1619 if (ip
&& S_ISDIR(ip
->i_mode
)) {
1620 d_prune_aliases(ip
);
1622 #ifdef STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT
1623 /* Only needed if this is a volume root */
1624 if (vcp
->mvstat
== 2)
1625 ip
->i_flags
|= S_AUTOMOUNT
;
1629 * Take an extra reference so the inode doesn't go away if
1630 * d_splice_alias drops our reference on error.
1633 #ifdef HAVE_LINUX_IHOLD
1639 newdp
= d_splice_alias(ip
, dp
);
1644 if (IS_ERR(newdp
)) {
1645 /* d_splice_alias can return an error (EIO) if there is an existing
1646 * connected directory alias for this dentry. Add our dentry manually
1647 * ourselves if this happens. */
1650 #if defined(D_SPLICE_ALIAS_LEAK_ON_ERROR)
1651 /* Depending on the kernel version, d_splice_alias may or may not drop
1652 * the inode reference on error. If it didn't, do it here. */
1661 return ERR_PTR(afs_convert_code(code
));
1669 afs_linux_link(struct dentry
*olddp
, struct inode
*dip
, struct dentry
*newdp
)
1672 cred_t
*credp
= crref();
1673 const char *name
= newdp
->d_name
.name
;
1674 struct inode
*oldip
= olddp
->d_inode
;
1676 /* If afs_link returned the vnode, we could instantiate the
1677 * dentry. Since it's not, we drop this one and do a new lookup.
1682 code
= afs_link(VTOAFS(oldip
), VTOAFS(dip
), (char *)name
, credp
);
1686 return afs_convert_code(code
);
1689 /* We have to have a Linux specific sillyrename function, because we
1690 * also have to keep the dcache up to date when we're doing a silly
1691 * rename - so we don't want the generic vnodeops doing this behind our
1696 afs_linux_sillyrename(struct inode
*dir
, struct dentry
*dentry
,
1699 struct vcache
*tvc
= VTOAFS(dentry
->d_inode
);
1700 struct dentry
*__dp
= NULL
;
1701 char *__name
= NULL
;
1704 if (afs_linux_nfsfs_renamed(dentry
))
1712 osi_FreeSmallSpace(__name
);
1713 __name
= afs_newname();
1716 __dp
= lookup_one_len(__name
, dentry
->d_parent
, strlen(__name
));
1719 osi_FreeSmallSpace(__name
);
1722 } while (__dp
->d_inode
!= NULL
);
1725 code
= afs_rename(VTOAFS(dir
), (char *)dentry
->d_name
.name
,
1726 VTOAFS(dir
), (char *)__dp
->d_name
.name
,
1729 tvc
->mvid
.silly_name
= __name
;
1732 crfree(tvc
->uncred
);
1734 tvc
->uncred
= credp
;
1735 tvc
->f
.states
|= CUnlinked
;
1736 afs_linux_set_nfsfs_renamed(dentry
);
1738 __dp
->d_time
= 0; /* force to revalidate */
1739 d_move(dentry
, __dp
);
1741 osi_FreeSmallSpace(__name
);
1752 afs_linux_unlink(struct inode
*dip
, struct dentry
*dp
)
1755 cred_t
*credp
= crref();
1756 const char *name
= dp
->d_name
.name
;
1757 struct vcache
*tvc
= VTOAFS(dp
->d_inode
);
1759 if (VREFCOUNT(tvc
) > 1 && tvc
->opens
> 0
1760 && !(tvc
->f
.states
& CUnlinked
)) {
1762 code
= afs_linux_sillyrename(dip
, dp
, credp
);
1765 code
= afs_remove(VTOAFS(dip
), (char *)name
, credp
);
1772 return afs_convert_code(code
);
1777 afs_linux_symlink(struct inode
*dip
, struct dentry
*dp
, const char *target
)
1780 cred_t
*credp
= crref();
1781 struct vattr
*vattr
= NULL
;
1782 const char *name
= dp
->d_name
.name
;
1784 /* If afs_symlink returned the vnode, we could instantiate the
1785 * dentry. Since it's not, we drop this one and do a new lookup.
1790 code
= afs_CreateAttr(&vattr
);
1795 code
= afs_symlink(VTOAFS(dip
), (char *)name
, vattr
, (char *)target
, NULL
,
1797 afs_DestroyAttr(vattr
);
1802 return afs_convert_code(code
);
1806 #if defined(IOP_MKDIR_TAKES_UMODE_T)
1807 afs_linux_mkdir(struct inode
*dip
, struct dentry
*dp
, umode_t mode
)
1809 afs_linux_mkdir(struct inode
*dip
, struct dentry
*dp
, int mode
)
1813 cred_t
*credp
= crref();
1814 struct vcache
*tvcp
= NULL
;
1815 struct vattr
*vattr
= NULL
;
1816 const char *name
= dp
->d_name
.name
;
1819 code
= afs_CreateAttr(&vattr
);
1824 vattr
->va_mask
= ATTR_MODE
;
1825 vattr
->va_mode
= mode
;
1827 code
= afs_mkdir(VTOAFS(dip
), (char *)name
, vattr
, &tvcp
, credp
);
1830 struct inode
*ip
= AFSTOV(tvcp
);
1832 afs_getattr(tvcp
, vattr
, credp
);
1833 afs_fill_inode(ip
, vattr
);
1835 #if !defined(STRUCT_SUPER_BLOCK_HAS_S_D_OP)
1836 dp
->d_op
= &afs_dentry_operations
;
1838 dp
->d_time
= parent_vcache_dv(dip
, credp
);
1839 d_instantiate(dp
, ip
);
1841 afs_DestroyAttr(vattr
);
1847 return afs_convert_code(code
);
1851 afs_linux_rmdir(struct inode
*dip
, struct dentry
*dp
)
1854 cred_t
*credp
= crref();
1855 const char *name
= dp
->d_name
.name
;
1857 /* locking kernel conflicts with glock? */
1860 code
= afs_rmdir(VTOAFS(dip
), (char *)name
, credp
);
1863 /* Linux likes to see ENOTEMPTY returned from an rmdir() syscall
1864 * that failed because a directory is not empty. So, we map
1865 * EEXIST to ENOTEMPTY on linux.
1867 if (code
== EEXIST
) {
1876 return afs_convert_code(code
);
1881 afs_linux_rename(struct inode
*oldip
, struct dentry
*olddp
,
1882 struct inode
*newip
, struct dentry
*newdp
1883 #ifdef HAVE_LINUX_INODE_OPERATIONS_RENAME_TAKES_FLAGS
1884 , unsigned int flags
1889 cred_t
*credp
= crref();
1890 const char *oldname
= olddp
->d_name
.name
;
1891 const char *newname
= newdp
->d_name
.name
;
1892 struct dentry
*rehash
= NULL
;
1894 #ifdef HAVE_LINUX_INODE_OPERATIONS_RENAME_TAKES_FLAGS
1896 return -EINVAL
; /* no support for new flags yet */
1899 /* Prevent any new references during rename operation. */
1901 if (!d_unhashed(newdp
)) {
1906 afs_maybe_shrink_dcache(olddp
);
1909 code
= afs_rename(VTOAFS(oldip
), (char *)oldname
, VTOAFS(newip
), (char *)newname
, credp
);
1913 olddp
->d_time
= 0; /* force to revalidate */
1919 return afs_convert_code(code
);
1923 /* afs_linux_ireadlink
1924 * Internal readlink which can return link contents to user or kernel space.
1925 * Note that the buffer is NOT supposed to be null-terminated.
1928 afs_linux_ireadlink(struct inode
*ip
, char *target
, int maxlen
, uio_seg_t seg
)
1931 cred_t
*credp
= crref();
1935 memset(&tuio
, 0, sizeof(tuio
));
1936 memset(&iov
, 0, sizeof(iov
));
1938 setup_uio(&tuio
, &iov
, target
, (afs_offs_t
) 0, maxlen
, UIO_READ
, seg
);
1939 code
= afs_readlink(VTOAFS(ip
), &tuio
, credp
);
1943 return maxlen
- tuio
.uio_resid
;
1945 return afs_convert_code(code
);
1948 #if !defined(USABLE_KERNEL_PAGE_SYMLINK_CACHE)
1949 /* afs_linux_readlink
1950 * Fill target (which is in user space) with contents of symlink.
1953 afs_linux_readlink(struct dentry
*dp
, char *target
, int maxlen
)
1956 struct inode
*ip
= dp
->d_inode
;
1959 code
= afs_linux_ireadlink(ip
, target
, maxlen
, AFS_UIOUSER
);
1965 /* afs_linux_follow_link
1966 * a file system dependent link following routine.
1968 #if defined(HAVE_LINUX_INODE_OPERATIONS_FOLLOW_LINK_NO_NAMEIDATA)
1969 static const char *afs_linux_follow_link(struct dentry
*dentry
, void **link_data
)
1971 static int afs_linux_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1977 name
= kmalloc(PATH_MAX
, GFP_NOFS
);
1979 #if defined(HAVE_LINUX_INODE_OPERATIONS_FOLLOW_LINK_NO_NAMEIDATA)
1980 return ERR_PTR(-EIO
);
1987 code
= afs_linux_ireadlink(dentry
->d_inode
, name
, PATH_MAX
- 1, AFS_UIOSYS
);
1991 #if defined(HAVE_LINUX_INODE_OPERATIONS_FOLLOW_LINK_NO_NAMEIDATA)
1992 return ERR_PTR(code
);
1999 #if defined(HAVE_LINUX_INODE_OPERATIONS_FOLLOW_LINK_NO_NAMEIDATA)
2000 return *link_data
= name
;
2002 nd_set_link(nd
, name
);
2007 #if defined(HAVE_LINUX_INODE_OPERATIONS_PUT_LINK_NO_NAMEIDATA)
2009 afs_linux_put_link(struct inode
*inode
, void *link_data
)
2011 char *name
= link_data
;
2013 if (name
&& !IS_ERR(name
))
2018 afs_linux_put_link(struct dentry
*dentry
, struct nameidata
*nd
)
2020 char *name
= nd_get_link(nd
);
2022 if (name
&& !IS_ERR(name
))
2025 #endif /* HAVE_LINUX_INODE_OPERATIONS_PUT_LINK_NO_NAMEIDATA */
2027 #endif /* USABLE_KERNEL_PAGE_SYMLINK_CACHE */
2029 /* Populate a page by filling it from the cache file pointed at by cachefp
2030 * (which contains indicated chunk)
2031 * If task is NULL, the page copy occurs syncronously, and the routine
2032 * returns with page still locked. If task is non-NULL, then page copies
2033 * may occur in the background, and the page will be unlocked when it is
2037 afs_linux_read_cache(struct file
*cachefp
, struct page
*page
,
2038 int chunk
, struct pagevec
*lrupv
,
2039 struct afs_pagecopy_task
*task
) {
2040 loff_t offset
= page_offset(page
);
2041 struct inode
*cacheinode
= cachefp
->f_dentry
->d_inode
;
2042 struct page
*newpage
, *cachepage
;
2043 struct address_space
*cachemapping
;
2047 cachemapping
= cacheinode
->i_mapping
;
2051 /* If we're trying to read a page that's past the end of the disk
2052 * cache file, then just return a zeroed page */
2053 if (AFS_CHUNKOFFSET(offset
) >= i_size_read(cacheinode
)) {
2054 zero_user_segment(page
, 0, PAGE_SIZE
);
2055 SetPageUptodate(page
);
2061 /* From our offset, we now need to work out which page in the disk
2062 * file it corresponds to. This will be fun ... */
2063 pageindex
= (offset
- AFS_CHUNKTOBASE(chunk
)) >> PAGE_SHIFT
;
2065 while (cachepage
== NULL
) {
2066 cachepage
= find_get_page(cachemapping
, pageindex
);
2069 newpage
= page_cache_alloc(cachemapping
);
2075 code
= add_to_page_cache(newpage
, cachemapping
,
2076 pageindex
, GFP_KERNEL
);
2078 cachepage
= newpage
;
2081 get_page(cachepage
);
2082 if (!pagevec_add(lrupv
, cachepage
))
2083 __pagevec_lru_add_file(lrupv
);
2088 if (code
!= -EEXIST
)
2092 lock_page(cachepage
);
2096 if (!PageUptodate(cachepage
)) {
2097 ClearPageError(cachepage
);
2098 code
= cachemapping
->a_ops
->readpage(NULL
, cachepage
);
2099 if (!code
&& !task
) {
2100 wait_on_page_locked(cachepage
);
2103 unlock_page(cachepage
);
2107 if (PageUptodate(cachepage
)) {
2108 copy_highpage(page
, cachepage
);
2109 flush_dcache_page(page
);
2110 SetPageUptodate(page
);
2115 afs_pagecopy_queue_page(task
, cachepage
, page
);
2127 put_page(cachepage
);
2133 afs_linux_readpage_fastpath(struct file
*fp
, struct page
*pp
, int *codep
)
2135 loff_t offset
= page_offset(pp
);
2136 struct inode
*ip
= FILE_INODE(fp
);
2137 struct vcache
*avc
= VTOAFS(ip
);
2139 struct file
*cacheFp
= NULL
;
2142 struct pagevec lrupv
;
2144 /* Not a UFS cache, don't do anything */
2145 if (cacheDiskType
!= AFS_FCACHE_TYPE_UFS
)
2148 /* No readpage (ex: tmpfs) , skip */
2149 if (cachefs_noreadpage
)
2152 /* Can't do anything if the vcache isn't statd , or if the read
2153 * crosses a chunk boundary.
2155 if (!(avc
->f
.states
& CStatd
) ||
2156 AFS_CHUNK(offset
) != AFS_CHUNK(offset
+ PAGE_SIZE
)) {
2160 ObtainWriteLock(&avc
->lock
, 911);
2162 /* XXX - See if hinting actually makes things faster !!! */
2164 /* See if we have a suitable entry already cached */
2168 /* We need to lock xdcache, then dcache, to handle situations where
2169 * the hint is on the free list. However, we can't safely do this
2170 * according to the locking hierarchy. So, use a non blocking lock.
2172 ObtainReadLock(&afs_xdcache
);
2173 dcLocked
= ( 0 == NBObtainReadLock(&tdc
->lock
));
2175 if (dcLocked
&& (tdc
->index
!= NULLIDX
)
2176 && !FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
)
2177 && tdc
->f
.chunk
== AFS_CHUNK(offset
)
2178 && !(afs_indexFlags
[tdc
->index
] & (IFFree
| IFDiscarded
))) {
2179 /* Bonus - the hint was correct */
2182 /* Only destroy the hint if its actually invalid, not if there's
2183 * just been a locking failure */
2185 ReleaseReadLock(&tdc
->lock
);
2192 ReleaseReadLock(&afs_xdcache
);
2195 /* No hint, or hint is no longer valid - see if we can get something
2196 * directly from the dcache
2199 tdc
= afs_FindDCache(avc
, offset
);
2202 ReleaseWriteLock(&avc
->lock
);
2207 ObtainReadLock(&tdc
->lock
);
2209 /* Is the dcache we've been given currently up to date */
2210 if (!hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
) ||
2211 (tdc
->dflags
& DFFetching
))
2214 /* Update our hint for future abuse */
2217 /* Okay, so we've now got a cache file that is up to date */
2219 /* XXX - I suspect we should be locking the inodes before we use them! */
2221 cacheFp
= afs_linux_raw_open(&tdc
->f
.inode
);
2222 if (!cacheFp
->f_dentry
->d_inode
->i_mapping
->a_ops
->readpage
) {
2223 cachefs_noreadpage
= 1;
2227 #if defined(PAGEVEC_INIT_COLD_ARG)
2228 pagevec_init(&lrupv
, 0);
2230 pagevec_init(&lrupv
);
2233 code
= afs_linux_read_cache(cacheFp
, pp
, tdc
->f
.chunk
, &lrupv
, NULL
);
2235 if (pagevec_count(&lrupv
))
2236 __pagevec_lru_add_file(&lrupv
);
2238 filp_close(cacheFp
, NULL
);
2241 ReleaseReadLock(&tdc
->lock
);
2242 ReleaseWriteLock(&avc
->lock
);
2249 ReleaseWriteLock(&avc
->lock
);
2250 ReleaseReadLock(&tdc
->lock
);
2255 /* afs_linux_readpage
2257 * This function is split into two, because prepare_write/begin_write
2258 * require a readpage call which doesn't unlock the resulting page upon
2262 afs_linux_fillpage(struct file
*fp
, struct page
*pp
)
2267 struct iovec
*iovecp
;
2268 struct inode
*ip
= FILE_INODE(fp
);
2269 afs_int32 cnt
= page_count(pp
);
2270 struct vcache
*avc
= VTOAFS(ip
);
2271 afs_offs_t offset
= page_offset(pp
);
2275 if (afs_linux_readpage_fastpath(fp
, pp
, &code
)) {
2285 auio
= kmalloc(sizeof(struct uio
), GFP_NOFS
);
2286 iovecp
= kmalloc(sizeof(struct iovec
), GFP_NOFS
);
2288 setup_uio(auio
, iovecp
, (char *)address
, offset
, PAGE_SIZE
, UIO_READ
,
2293 afs_Trace4(afs_iclSetp
, CM_TRACE_READPAGE
, ICL_TYPE_POINTER
, ip
,
2294 ICL_TYPE_POINTER
, pp
, ICL_TYPE_INT32
, cnt
, ICL_TYPE_INT32
,
2295 99999); /* not a possible code value */
2297 code
= afs_rdwr(avc
, auio
, UIO_READ
, 0, credp
);
2299 afs_Trace4(afs_iclSetp
, CM_TRACE_READPAGE
, ICL_TYPE_POINTER
, ip
,
2300 ICL_TYPE_POINTER
, pp
, ICL_TYPE_INT32
, cnt
, ICL_TYPE_INT32
,
2302 AFS_DISCON_UNLOCK();
2305 /* XXX valid for no-cache also? Check last bits of files... :)
2306 * Cognate code goes in afs_NoCacheFetchProc. */
2307 if (auio
->uio_resid
) /* zero remainder of page */
2308 memset((void *)(address
+ (PAGE_SIZE
- auio
->uio_resid
)), 0,
2311 flush_dcache_page(pp
);
2312 SetPageUptodate(pp
);
2321 return afs_convert_code(code
);
2325 afs_linux_prefetch(struct file
*fp
, struct page
*pp
)
2328 struct vcache
*avc
= VTOAFS(FILE_INODE(fp
));
2329 afs_offs_t offset
= page_offset(pp
);
2331 if (AFS_CHUNKOFFSET(offset
) == 0) {
2333 struct vrequest
*treq
= NULL
;
2338 code
= afs_CreateReq(&treq
, credp
);
2339 if (!code
&& !NBObtainWriteLock(&avc
->lock
, 534)) {
2340 tdc
= afs_FindDCache(avc
, offset
);
2342 if (!(tdc
->mflags
& DFNextStarted
))
2343 afs_PrefetchChunk(avc
, tdc
, credp
, treq
);
2346 ReleaseWriteLock(&avc
->lock
);
2348 afs_DestroyReq(treq
);
2352 return afs_convert_code(code
);
2357 afs_linux_bypass_readpages(struct file
*fp
, struct address_space
*mapping
,
2358 struct list_head
*page_list
, unsigned num_pages
)
2363 struct iovec
* iovecp
;
2364 struct nocache_read_request
*ancr
;
2366 struct pagevec lrupv
;
2370 struct inode
*ip
= FILE_INODE(fp
);
2371 struct vcache
*avc
= VTOAFS(ip
);
2372 afs_int32 base_index
= 0;
2373 afs_int32 page_count
= 0;
2376 /* background thread must free: iovecp, auio, ancr */
2377 iovecp
= osi_Alloc(num_pages
* sizeof(struct iovec
));
2379 auio
= osi_Alloc(sizeof(struct uio
));
2380 auio
->uio_iov
= iovecp
;
2381 auio
->uio_iovcnt
= num_pages
;
2382 auio
->uio_flag
= UIO_READ
;
2383 auio
->uio_seg
= AFS_UIOSYS
;
2384 auio
->uio_resid
= num_pages
* PAGE_SIZE
;
2386 ancr
= osi_Alloc(sizeof(struct nocache_read_request
));
2388 ancr
->offset
= auio
->uio_offset
;
2389 ancr
->length
= auio
->uio_resid
;
2391 #if defined(PAGEVEC_INIT_COLD_ARG)
2392 pagevec_init(&lrupv
, 0);
2394 pagevec_init(&lrupv
);
2397 for(page_ix
= 0; page_ix
< num_pages
; ++page_ix
) {
2399 if(list_empty(page_list
))
2402 pp
= list_entry(page_list
->prev
, struct page
, lru
);
2403 /* If we allocate a page and don't remove it from page_list,
2404 * the page cache gets upset. */
2406 isize
= (i_size_read(fp
->f_mapping
->host
) - 1) >> PAGE_SHIFT
;
2407 if(pp
->index
> isize
) {
2414 offset
= page_offset(pp
);
2415 ancr
->offset
= auio
->uio_offset
= offset
;
2416 base_index
= pp
->index
;
2418 iovecp
[page_ix
].iov_len
= PAGE_SIZE
;
2419 code
= add_to_page_cache(pp
, mapping
, pp
->index
, GFP_KERNEL
);
2420 if(base_index
!= pp
->index
) {
2424 iovecp
[page_ix
].iov_base
= (void *) 0;
2426 ancr
->length
-= PAGE_SIZE
;
2434 iovecp
[page_ix
].iov_base
= (void *) 0;
2437 if(!PageLocked(pp
)) {
2441 /* increment page refcount--our original design assumed
2442 * that locking it would effectively pin it; protect
2443 * ourselves from the possiblity that this assumption is
2444 * is faulty, at low cost (provided we do not fail to
2445 * do the corresponding decref on the other side) */
2448 /* save the page for background map */
2449 iovecp
[page_ix
].iov_base
= (void*) pp
;
2451 /* and put it on the LRU cache */
2452 if (!pagevec_add(&lrupv
, pp
))
2453 __pagevec_lru_add_file(&lrupv
);
2457 /* If there were useful pages in the page list, make sure all pages
2458 * are in the LRU cache, then schedule the read */
2460 if (pagevec_count(&lrupv
))
2461 __pagevec_lru_add_file(&lrupv
);
2463 code
= afs_ReadNoCache(avc
, ancr
, credp
);
2466 /* If there is nothing for the background thread to handle,
2467 * it won't be freeing the things that we never gave it */
2468 osi_Free(iovecp
, num_pages
* sizeof(struct iovec
));
2469 osi_Free(auio
, sizeof(struct uio
));
2470 osi_Free(ancr
, sizeof(struct nocache_read_request
));
2472 /* we do not flush, release, or unmap pages--that will be
2473 * done for us by the background thread as each page comes in
2474 * from the fileserver */
2475 return afs_convert_code(code
);
2480 afs_linux_bypass_readpage(struct file
*fp
, struct page
*pp
)
2482 cred_t
*credp
= NULL
;
2484 struct iovec
*iovecp
;
2485 struct nocache_read_request
*ancr
;
2489 * Special case: if page is at or past end of file, just zero it and set
2492 if (page_offset(pp
) >= i_size_read(fp
->f_mapping
->host
)) {
2493 zero_user_segment(pp
, 0, PAGE_SIZE
);
2494 SetPageUptodate(pp
);
2501 /* receiver frees */
2502 auio
= osi_Alloc(sizeof(struct uio
));
2503 iovecp
= osi_Alloc(sizeof(struct iovec
));
2505 /* address can be NULL, because we overwrite it with 'pp', below */
2506 setup_uio(auio
, iovecp
, NULL
, page_offset(pp
),
2507 PAGE_SIZE
, UIO_READ
, AFS_UIOSYS
);
2509 /* save the page for background map */
2510 get_page(pp
); /* see above */
2511 auio
->uio_iov
->iov_base
= (void*) pp
;
2512 /* the background thread will free this */
2513 ancr
= osi_Alloc(sizeof(struct nocache_read_request
));
2515 ancr
->offset
= page_offset(pp
);
2516 ancr
->length
= PAGE_SIZE
;
2519 code
= afs_ReadNoCache(VTOAFS(FILE_INODE(fp
)), ancr
, credp
);
2522 return afs_convert_code(code
);
2526 afs_linux_can_bypass(struct inode
*ip
) {
2528 switch(cache_bypass_strategy
) {
2529 case NEVER_BYPASS_CACHE
:
2531 case ALWAYS_BYPASS_CACHE
:
2533 case LARGE_FILES_BYPASS_CACHE
:
2534 if (i_size_read(ip
) > cache_bypass_threshold
)
2541 /* Check if a file is permitted to bypass the cache by policy, and modify
2542 * the cache bypass state recorded for that file */
2545 afs_linux_bypass_check(struct inode
*ip
) {
2548 int bypass
= afs_linux_can_bypass(ip
);
2551 trydo_cache_transition(VTOAFS(ip
), credp
, bypass
);
2559 afs_linux_readpage(struct file
*fp
, struct page
*pp
)
2563 if (afs_linux_bypass_check(FILE_INODE(fp
))) {
2564 code
= afs_linux_bypass_readpage(fp
, pp
);
2566 code
= afs_linux_fillpage(fp
, pp
);
2568 code
= afs_linux_prefetch(fp
, pp
);
2575 /* Readpages reads a number of pages for a particular file. We use
2576 * this to optimise the reading, by limiting the number of times upon which
2577 * we have to lookup, lock and open vcaches and dcaches
2581 afs_linux_readpages(struct file
*fp
, struct address_space
*mapping
,
2582 struct list_head
*page_list
, unsigned int num_pages
)
2584 struct inode
*inode
= mapping
->host
;
2585 struct vcache
*avc
= VTOAFS(inode
);
2587 struct file
*cacheFp
= NULL
;
2589 unsigned int page_idx
;
2591 struct pagevec lrupv
;
2592 struct afs_pagecopy_task
*task
;
2594 if (afs_linux_bypass_check(inode
))
2595 return afs_linux_bypass_readpages(fp
, mapping
, page_list
, num_pages
);
2597 if (cacheDiskType
== AFS_FCACHE_TYPE_MEM
)
2600 /* No readpage (ex: tmpfs) , skip */
2601 if (cachefs_noreadpage
)
2605 if ((code
= afs_linux_VerifyVCache(avc
, NULL
))) {
2610 ObtainWriteLock(&avc
->lock
, 912);
2613 task
= afs_pagecopy_init_task();
2616 #if defined(PAGEVEC_INIT_COLD_ARG)
2617 pagevec_init(&lrupv
, 0);
2619 pagevec_init(&lrupv
);
2621 for (page_idx
= 0; page_idx
< num_pages
; page_idx
++) {
2622 struct page
*page
= list_entry(page_list
->prev
, struct page
, lru
);
2623 list_del(&page
->lru
);
2624 offset
= page_offset(page
);
2626 if (tdc
&& tdc
->f
.chunk
!= AFS_CHUNK(offset
)) {
2628 ReleaseReadLock(&tdc
->lock
);
2633 filp_close(cacheFp
, NULL
);
2638 if ((tdc
= afs_FindDCache(avc
, offset
))) {
2639 ObtainReadLock(&tdc
->lock
);
2640 if (!hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
) ||
2641 (tdc
->dflags
& DFFetching
)) {
2642 ReleaseReadLock(&tdc
->lock
);
2649 cacheFp
= afs_linux_raw_open(&tdc
->f
.inode
);
2650 if (!cacheFp
->f_dentry
->d_inode
->i_mapping
->a_ops
->readpage
) {
2651 cachefs_noreadpage
= 1;
2657 if (tdc
&& !add_to_page_cache(page
, mapping
, page
->index
,
2660 if (!pagevec_add(&lrupv
, page
))
2661 __pagevec_lru_add_file(&lrupv
);
2663 afs_linux_read_cache(cacheFp
, page
, tdc
->f
.chunk
, &lrupv
, task
);
2667 if (pagevec_count(&lrupv
))
2668 __pagevec_lru_add_file(&lrupv
);
2672 filp_close(cacheFp
, NULL
);
2674 afs_pagecopy_put_task(task
);
2678 ReleaseReadLock(&tdc
->lock
);
2682 ReleaseWriteLock(&avc
->lock
);
2687 /* Prepare an AFS vcache for writeback. Should be called with the vcache
2690 afs_linux_prepare_writeback(struct vcache
*avc
) {
2692 struct pagewriter
*pw
;
2694 pid
= MyPidxx2Pid(MyPidxx
);
2695 /* Prevent recursion into the writeback code */
2696 spin_lock(&avc
->pagewriter_lock
);
2697 list_for_each_entry(pw
, &avc
->pagewriters
, link
) {
2698 if (pw
->writer
== pid
) {
2699 spin_unlock(&avc
->pagewriter_lock
);
2700 return AOP_WRITEPAGE_ACTIVATE
;
2703 spin_unlock(&avc
->pagewriter_lock
);
2705 /* Add ourselves to writer list */
2706 pw
= osi_Alloc(sizeof(struct pagewriter
));
2708 spin_lock(&avc
->pagewriter_lock
);
2709 list_add_tail(&pw
->link
, &avc
->pagewriters
);
2710 spin_unlock(&avc
->pagewriter_lock
);
2716 afs_linux_dopartialwrite(struct vcache
*avc
, cred_t
*credp
) {
2717 struct vrequest
*treq
= NULL
;
2720 if (!afs_CreateReq(&treq
, credp
)) {
2721 code
= afs_DoPartialWrite(avc
, treq
);
2722 afs_DestroyReq(treq
);
2725 return afs_convert_code(code
);
2729 afs_linux_complete_writeback(struct vcache
*avc
) {
2730 struct pagewriter
*pw
, *store
;
2732 struct list_head tofree
;
2734 INIT_LIST_HEAD(&tofree
);
2735 pid
= MyPidxx2Pid(MyPidxx
);
2736 /* Remove ourselves from writer list */
2737 spin_lock(&avc
->pagewriter_lock
);
2738 list_for_each_entry_safe(pw
, store
, &avc
->pagewriters
, link
) {
2739 if (pw
->writer
== pid
) {
2740 list_del(&pw
->link
);
2741 /* osi_Free may sleep so we need to defer it */
2742 list_add_tail(&pw
->link
, &tofree
);
2745 spin_unlock(&avc
->pagewriter_lock
);
2746 list_for_each_entry_safe(pw
, store
, &tofree
, link
) {
2747 list_del(&pw
->link
);
2748 osi_Free(pw
, sizeof(struct pagewriter
));
2752 /* Writeback a given page syncronously. Called with no AFS locks held */
2754 afs_linux_page_writeback(struct inode
*ip
, struct page
*pp
,
2755 unsigned long offset
, unsigned int count
,
2758 struct vcache
*vcp
= VTOAFS(ip
);
2766 memset(&tuio
, 0, sizeof(tuio
));
2767 memset(&iovec
, 0, sizeof(iovec
));
2769 buffer
= kmap(pp
) + offset
;
2770 base
= page_offset(pp
) + offset
;
2773 afs_Trace4(afs_iclSetp
, CM_TRACE_UPDATEPAGE
, ICL_TYPE_POINTER
, vcp
,
2774 ICL_TYPE_POINTER
, pp
, ICL_TYPE_INT32
, page_count(pp
),
2775 ICL_TYPE_INT32
, 99999);
2777 setup_uio(&tuio
, &iovec
, buffer
, base
, count
, UIO_WRITE
, AFS_UIOSYS
);
2779 code
= afs_write(vcp
, &tuio
, f_flags
, credp
, 0);
2781 i_size_write(ip
, vcp
->f
.m
.Length
);
2782 ip
->i_blocks
= ((vcp
->f
.m
.Length
+ 1023) >> 10) << 1;
2784 code
= code
? afs_convert_code(code
) : count
- tuio
.uio_resid
;
2786 afs_Trace4(afs_iclSetp
, CM_TRACE_UPDATEPAGE
, ICL_TYPE_POINTER
, vcp
,
2787 ICL_TYPE_POINTER
, pp
, ICL_TYPE_INT32
, page_count(pp
),
2788 ICL_TYPE_INT32
, code
);
2797 afs_linux_writepage_sync(struct inode
*ip
, struct page
*pp
,
2798 unsigned long offset
, unsigned int count
)
2802 struct vcache
*vcp
= VTOAFS(ip
);
2805 /* Catch recursive writeback. This occurs if the kernel decides
2806 * writeback is required whilst we are writing to the cache, or
2807 * flushing to the server. When we're running syncronously (as
2808 * opposed to from writepage) we can't actually do anything about
2809 * this case - as we can't return AOP_WRITEPAGE_ACTIVATE to write()
2812 ObtainWriteLock(&vcp
->lock
, 532);
2813 afs_linux_prepare_writeback(vcp
);
2814 ReleaseWriteLock(&vcp
->lock
);
2818 code
= afs_linux_page_writeback(ip
, pp
, offset
, count
, credp
);
2821 ObtainWriteLock(&vcp
->lock
, 533);
2823 code1
= afs_linux_dopartialwrite(vcp
, credp
);
2824 afs_linux_complete_writeback(vcp
);
2825 ReleaseWriteLock(&vcp
->lock
);
2836 #ifdef AOP_WRITEPAGE_TAKES_WRITEBACK_CONTROL
2837 afs_linux_writepage(struct page
*pp
, struct writeback_control
*wbc
)
2839 afs_linux_writepage(struct page
*pp
)
2842 struct address_space
*mapping
= pp
->mapping
;
2843 struct inode
*inode
;
2846 unsigned int to
= PAGE_SIZE
;
2853 inode
= mapping
->host
;
2854 vcp
= VTOAFS(inode
);
2855 isize
= i_size_read(inode
);
2857 /* Don't defeat an earlier truncate */
2858 if (page_offset(pp
) > isize
) {
2859 set_page_writeback(pp
);
2865 ObtainWriteLock(&vcp
->lock
, 537);
2866 code
= afs_linux_prepare_writeback(vcp
);
2867 if (code
== AOP_WRITEPAGE_ACTIVATE
) {
2868 /* WRITEPAGE_ACTIVATE is the only return value that permits us
2869 * to return with the page still locked */
2870 ReleaseWriteLock(&vcp
->lock
);
2875 /* Grab the creds structure currently held in the vnode, and
2876 * get a reference to it, in case it goes away ... */
2882 ReleaseWriteLock(&vcp
->lock
);
2885 set_page_writeback(pp
);
2887 SetPageUptodate(pp
);
2889 /* We can unlock the page here, because it's protected by the
2890 * page_writeback flag. This should make us less vulnerable to
2891 * deadlocking in afs_write and afs_DoPartialWrite
2895 /* If this is the final page, then just write the number of bytes that
2896 * are actually in it */
2897 if ((isize
- page_offset(pp
)) < to
)
2898 to
= isize
- page_offset(pp
);
2900 code
= afs_linux_page_writeback(inode
, pp
, 0, to
, credp
);
2903 ObtainWriteLock(&vcp
->lock
, 538);
2905 /* As much as we might like to ignore a file server error here,
2906 * and just try again when we close(), unfortunately StoreAllSegments
2907 * will invalidate our chunks if the server returns a permanent error,
2908 * so we need to at least try and get that error back to the user
2911 code1
= afs_linux_dopartialwrite(vcp
, credp
);
2913 afs_linux_complete_writeback(vcp
);
2914 ReleaseWriteLock(&vcp
->lock
);
2919 end_page_writeback(pp
);
2931 /* afs_linux_permission
2932 * Check access rights - returns error if can't check or permission denied.
2935 #if defined(IOP_PERMISSION_TAKES_FLAGS)
2936 afs_linux_permission(struct inode
*ip
, int mode
, unsigned int flags
)
2937 #elif defined(IOP_PERMISSION_TAKES_NAMEIDATA)
2938 afs_linux_permission(struct inode
*ip
, int mode
, struct nameidata
*nd
)
2940 afs_linux_permission(struct inode
*ip
, int mode
)
2947 /* Check for RCU path walking */
2948 #if defined(IOP_PERMISSION_TAKES_FLAGS)
2949 if (flags
& IPERM_FLAG_RCU
)
2951 #elif defined(MAY_NOT_BLOCK)
2952 if (mode
& MAY_NOT_BLOCK
)
2958 if (mode
& MAY_EXEC
)
2960 if (mode
& MAY_READ
)
2962 if (mode
& MAY_WRITE
)
2964 code
= afs_access(VTOAFS(ip
), tmp
, credp
);
2968 return afs_convert_code(code
);
2972 afs_linux_commit_write(struct file
*file
, struct page
*page
, unsigned offset
,
2976 struct inode
*inode
= FILE_INODE(file
);
2977 loff_t pagebase
= page_offset(page
);
2979 if (i_size_read(inode
) < (pagebase
+ offset
))
2980 i_size_write(inode
, pagebase
+ offset
);
2982 if (PageChecked(page
)) {
2983 SetPageUptodate(page
);
2984 ClearPageChecked(page
);
2987 code
= afs_linux_writepage_sync(inode
, page
, offset
, to
- offset
);
2993 afs_linux_prepare_write(struct file
*file
, struct page
*page
, unsigned from
,
2997 /* http://kerneltrap.org/node/4941 details the expected behaviour of
2998 * prepare_write. Essentially, if the page exists within the file,
2999 * and is not being fully written, then we should populate it.
3002 if (!PageUptodate(page
)) {
3003 loff_t pagebase
= page_offset(page
);
3004 loff_t isize
= i_size_read(page
->mapping
->host
);
3006 /* Is the location we are writing to beyond the end of the file? */
3007 if (pagebase
>= isize
||
3008 ((from
== 0) && (pagebase
+ to
) >= isize
)) {
3009 zero_user_segments(page
, 0, from
, to
, PAGE_SIZE
);
3010 SetPageChecked(page
);
3011 /* Are we we writing a full page */
3012 } else if (from
== 0 && to
== PAGE_SIZE
) {
3013 SetPageChecked(page
);
3014 /* Is the page readable, if it's wronly, we don't care, because we're
3015 * not actually going to read from it ... */
3016 } else if ((file
->f_flags
&& O_ACCMODE
) != O_WRONLY
) {
3017 /* We don't care if fillpage fails, because if it does the page
3018 * won't be marked as up to date
3020 afs_linux_fillpage(file
, page
);
3026 #if defined(STRUCT_ADDRESS_SPACE_OPERATIONS_HAS_WRITE_BEGIN)
3028 afs_linux_write_end(struct file
*file
, struct address_space
*mapping
,
3029 loff_t pos
, unsigned len
, unsigned copied
,
3030 struct page
*page
, void *fsdata
)
3033 unsigned int from
= pos
& (PAGE_SIZE
- 1);
3035 code
= afs_linux_commit_write(file
, page
, from
, from
+ copied
);
3043 afs_linux_write_begin(struct file
*file
, struct address_space
*mapping
,
3044 loff_t pos
, unsigned len
, unsigned flags
,
3045 struct page
**pagep
, void **fsdata
)
3048 pgoff_t index
= pos
>> PAGE_SHIFT
;
3049 unsigned int from
= pos
& (PAGE_SIZE
- 1);
3052 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3055 code
= afs_linux_prepare_write(file
, page
, from
, from
+ len
);
3065 #ifndef STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT
3067 afs_linux_dir_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
3069 struct dentry
**dpp
;
3070 struct dentry
*target
;
3072 if (current
->total_link_count
> 0) {
3073 /* avoid symlink resolution limits when resolving; we cannot contribute to
3074 * an infinite symlink loop */
3075 /* only do this for follow_link when total_link_count is positive to be
3076 * on the safe side; there is at least one code path in the Linux
3077 * kernel where it seems like it may be possible to get here without
3078 * total_link_count getting incremented. it is not clear on how that
3079 * path is actually reached, but guard against it just to be safe */
3080 current
->total_link_count
--;
3083 target
= canonical_dentry(dentry
->d_inode
);
3085 # ifdef STRUCT_NAMEIDATA_HAS_PATH
3086 dpp
= &nd
->path
.dentry
;
3096 *dpp
= dget(dentry
);
3099 nd
->last_type
= LAST_BIND
;
3103 #endif /* !STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT */
3106 static struct inode_operations afs_file_iops
= {
3107 .permission
= afs_linux_permission
,
3108 .getattr
= afs_linux_getattr
,
3109 .setattr
= afs_notify_change
,
3112 static struct address_space_operations afs_file_aops
= {
3113 .readpage
= afs_linux_readpage
,
3114 .readpages
= afs_linux_readpages
,
3115 .writepage
= afs_linux_writepage
,
3116 #if defined (STRUCT_ADDRESS_SPACE_OPERATIONS_HAS_WRITE_BEGIN)
3117 .write_begin
= afs_linux_write_begin
,
3118 .write_end
= afs_linux_write_end
,
3120 .commit_write
= afs_linux_commit_write
,
3121 .prepare_write
= afs_linux_prepare_write
,
3126 /* Separate ops vector for directories. Linux 2.2 tests type of inode
3127 * by what sort of operation is allowed.....
3130 static struct inode_operations afs_dir_iops
= {
3131 .setattr
= afs_notify_change
,
3132 .create
= afs_linux_create
,
3133 .lookup
= afs_linux_lookup
,
3134 .link
= afs_linux_link
,
3135 .unlink
= afs_linux_unlink
,
3136 .symlink
= afs_linux_symlink
,
3137 .mkdir
= afs_linux_mkdir
,
3138 .rmdir
= afs_linux_rmdir
,
3139 .rename
= afs_linux_rename
,
3140 .getattr
= afs_linux_getattr
,
3141 .permission
= afs_linux_permission
,
3142 #ifndef STRUCT_DENTRY_OPERATIONS_HAS_D_AUTOMOUNT
3143 .follow_link
= afs_linux_dir_follow_link
,
3147 /* We really need a separate symlink set of ops, since do_follow_link()
3148 * determines if it _is_ a link by checking if the follow_link op is set.
3150 #if defined(USABLE_KERNEL_PAGE_SYMLINK_CACHE)
3152 afs_symlink_filler(struct file
*file
, struct page
*page
)
3154 struct inode
*ip
= (struct inode
*)page
->mapping
->host
;
3155 char *p
= (char *)kmap(page
);
3159 code
= afs_linux_ireadlink(ip
, p
, PAGE_SIZE
, AFS_UIOSYS
);
3164 p
[code
] = '\0'; /* null terminate? */
3166 SetPageUptodate(page
);
3178 static struct address_space_operations afs_symlink_aops
= {
3179 .readpage
= afs_symlink_filler
3181 #endif /* USABLE_KERNEL_PAGE_SYMLINK_CACHE */
3183 static struct inode_operations afs_symlink_iops
= {
3184 #if defined(USABLE_KERNEL_PAGE_SYMLINK_CACHE)
3185 .readlink
= page_readlink
,
3186 # if defined(HAVE_LINUX_PAGE_GET_LINK)
3187 .get_link
= page_get_link
,
3188 # elif defined(HAVE_LINUX_PAGE_FOLLOW_LINK)
3189 .follow_link
= page_follow_link
,
3191 .follow_link
= page_follow_link_light
,
3192 .put_link
= page_put_link
,
3194 #else /* !defined(USABLE_KERNEL_PAGE_SYMLINK_CACHE) */
3195 .readlink
= afs_linux_readlink
,
3196 .follow_link
= afs_linux_follow_link
,
3197 .put_link
= afs_linux_put_link
,
3198 #endif /* USABLE_KERNEL_PAGE_SYMLINK_CACHE */
3199 .setattr
= afs_notify_change
,
3203 afs_fill_inode(struct inode
*ip
, struct vattr
*vattr
)
3206 vattr2inode(ip
, vattr
);
3208 #ifdef STRUCT_ADDRESS_SPACE_HAS_BACKING_DEV_INFO
3209 ip
->i_mapping
->backing_dev_info
= afs_backing_dev_info
;
3211 /* Reset ops if symlink or directory. */
3212 if (S_ISREG(ip
->i_mode
)) {
3213 ip
->i_op
= &afs_file_iops
;
3214 ip
->i_fop
= &afs_file_fops
;
3215 ip
->i_data
.a_ops
= &afs_file_aops
;
3217 } else if (S_ISDIR(ip
->i_mode
)) {
3218 ip
->i_op
= &afs_dir_iops
;
3219 ip
->i_fop
= &afs_dir_fops
;
3221 } else if (S_ISLNK(ip
->i_mode
)) {
3222 ip
->i_op
= &afs_symlink_iops
;
3223 #if defined(HAVE_LINUX_INODE_NOHIGHMEM)
3224 inode_nohighmem(ip
);
3226 #if defined(USABLE_KERNEL_PAGE_SYMLINK_CACHE)
3227 ip
->i_data
.a_ops
= &afs_symlink_aops
;
3228 ip
->i_mapping
= &ip
->i_data
;