Merge 1.8.0~pre4 packaging into master
[pkg-k5-afs_openafs.git] / src / rx / rx.c
blob84f6c74870ede35a2f5e7136cf618939a56f3cf2
1 /*
2 * Copyright 2000, International Business Machines Corporation and others.
3 * All Rights Reserved.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
8 */
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
15 #ifdef KERNEL
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
18 # ifndef UKERNEL
19 # include "h/types.h"
20 # include "h/time.h"
21 # include "h/stat.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
24 # endif
25 # include "netinet/in.h"
26 # ifdef AFS_SUN5_ENV
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
29 # include "inet/ip.h"
30 # include "inet/ip_ire.h"
31 # endif
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
36 # endif
37 # if defined(AFS_AIX_ENV)
38 # include "h/systm.h"
39 # endif
40 # ifdef RXDEBUG
41 # undef RXDEBUG /* turn off debugging */
42 # endif /* RXDEBUG */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
45 # endif
46 # else /* !UKERNEL */
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
57 # ifdef AFS_AIX41_ENV
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
62 #else /* KERNEL */
63 # include <roken.h>
65 # ifdef AFS_NT40_ENV
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
68 # endif
70 # include <afs/opr.h>
72 # include "rx_user.h"
73 #endif /* KERNEL */
75 #include <opr/queue.h>
76 #include <hcrypto/rand.h>
78 #include "rx.h"
79 #include "rx_clock.h"
80 #include "rx_atomic.h"
81 #include "rx_globals.h"
82 #include "rx_trace.h"
83 #include "rx_internal.h"
84 #include "rx_stats.h"
85 #include "rx_event.h"
87 #include "rx_peer.h"
88 #include "rx_conn.h"
89 #include "rx_call.h"
90 #include "rx_packet.h"
91 #include "rx_server.h"
93 #include <afs/rxgen_consts.h>
95 #ifndef KERNEL
96 #ifdef AFS_PTHREAD_ENV
97 #ifndef AFS_NT40_ENV
98 int (*registerProgram) (pid_t, char *) = 0;
99 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
100 #endif
101 #else
102 int (*registerProgram) (PROCESS, char *) = 0;
103 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
104 #endif
105 #endif
107 /* Local static routines */
108 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
109 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
110 struct rx_call *, struct rx_peer *,
111 struct clock *);
112 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
113 int istack);
114 static void rxi_SendDelayedAck(struct rxevent *event, void *call,
115 void *dummy, int dummy2);
116 static void rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1,
117 void *dummy, int dummy2);
118 static void rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1,
119 void *unused, int unused2);
120 static void rxi_ReapConnections(struct rxevent *unused, void *unused1,
121 void *unused2, int unused3);
122 static struct rx_packet *rxi_SendCallAbort(struct rx_call *call,
123 struct rx_packet *packet,
124 int istack, int force);
125 static void rxi_AckAll(struct rx_call *call);
126 static struct rx_connection
127 *rxi_FindConnection(osi_socket socket, afs_uint32 host, u_short port,
128 u_short serviceId, afs_uint32 cid,
129 afs_uint32 epoch, int type, u_int securityIndex,
130 int *unknownService);
131 static struct rx_packet
132 *rxi_ReceiveDataPacket(struct rx_call *call, struct rx_packet *np,
133 int istack, osi_socket socket,
134 afs_uint32 host, u_short port, int *tnop,
135 struct rx_call **newcallp);
136 static struct rx_packet
137 *rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
138 int istack);
139 static struct rx_packet
140 *rxi_ReceiveResponsePacket(struct rx_connection *conn,
141 struct rx_packet *np, int istack);
142 static struct rx_packet
143 *rxi_ReceiveChallengePacket(struct rx_connection *conn,
144 struct rx_packet *np, int istack);
145 static void rxi_AttachServerProc(struct rx_call *call, osi_socket socket,
146 int *tnop, struct rx_call **newcallp);
147 static void rxi_ClearTransmitQueue(struct rx_call *call, int force);
148 static void rxi_ClearReceiveQueue(struct rx_call *call);
149 static void rxi_ResetCall(struct rx_call *call, int newcall);
150 static void rxi_ScheduleKeepAliveEvent(struct rx_call *call);
151 static void rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn);
152 static void rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs);
153 static void rxi_KeepAliveOn(struct rx_call *call);
154 static void rxi_GrowMTUOn(struct rx_call *call);
155 static void rxi_ChallengeOn(struct rx_connection *conn);
156 static int rxi_CheckCall(struct rx_call *call, int haveCTLock);
157 static void rxi_AckAllInTransmitQueue(struct rx_call *call);
158 static void rxi_CancelKeepAliveEvent(struct rx_call *call);
159 static void rxi_CancelDelayedAbortEvent(struct rx_call *call);
160 static void rxi_CancelGrowMTUEvent(struct rx_call *call);
161 static void update_nextCid(void);
163 #ifdef RX_ENABLE_LOCKS
164 struct rx_tq_debug {
165 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
166 rx_atomic_t rxi_start_in_error;
167 } rx_tq_debug;
168 #endif /* RX_ENABLE_LOCKS */
170 /* Constant delay time before sending an acknowledge of the last packet
171 * received. This is to avoid sending an extra acknowledge when the
172 * client is about to make another call, anyway, or the server is
173 * about to respond.
175 * The lastAckDelay may not exceeed 400ms without causing peers to
176 * unecessarily timeout.
178 struct clock rx_lastAckDelay = {0, 400000};
180 /* Constant delay time before sending a soft ack when none was requested.
181 * This is to make sure we send soft acks before the sender times out,
182 * Normally we wait and send a hard ack when the receiver consumes the packet
184 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
185 * will require changes to the peer's RTT calculations.
187 struct clock rx_softAckDelay = {0, 100000};
190 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
191 * currently allocated within rx. This number is used to allocate the
192 * memory required to return the statistics when queried.
193 * Protected by the rx_rpc_stats mutex.
196 static unsigned int rxi_rpc_peer_stat_cnt;
199 * rxi_rpc_process_stat_cnt counts the total number of local process stat
200 * structures currently allocated within rx. The number is used to allocate
201 * the memory required to return the statistics when queried.
202 * Protected by the rx_rpc_stats mutex.
205 static unsigned int rxi_rpc_process_stat_cnt;
207 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
208 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
210 /* Incoming calls wait on this queue when there are no available
211 * server processes */
212 struct opr_queue rx_incomingCallQueue;
214 /* Server processes wait on this queue when there are no appropriate
215 * calls to process */
216 struct opr_queue rx_idleServerQueue;
218 #if !defined(offsetof)
219 #include <stddef.h> /* for definition of offsetof() */
220 #endif
222 #ifdef RX_ENABLE_LOCKS
223 afs_kmutex_t rx_atomic_mutex;
224 #endif
226 /* Forward prototypes */
227 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
229 static_inline void
230 putConnection (struct rx_connection *conn) {
231 MUTEX_ENTER(&rx_refcnt_mutex);
232 conn->refCount--;
233 MUTEX_EXIT(&rx_refcnt_mutex);
236 #ifdef AFS_PTHREAD_ENV
239 * Use procedural initialization of mutexes/condition variables
240 * to ease NT porting
243 extern afs_kmutex_t rx_quota_mutex;
244 extern afs_kmutex_t rx_pthread_mutex;
245 extern afs_kmutex_t rx_packets_mutex;
246 extern afs_kmutex_t rx_refcnt_mutex;
247 extern afs_kmutex_t des_init_mutex;
248 extern afs_kmutex_t des_random_mutex;
249 #ifndef KERNEL
250 extern afs_kmutex_t rx_clock_mutex;
251 extern afs_kmutex_t rxi_connCacheMutex;
252 extern afs_kmutex_t event_handler_mutex;
253 extern afs_kmutex_t listener_mutex;
254 extern afs_kmutex_t rx_if_init_mutex;
255 extern afs_kmutex_t rx_if_mutex;
257 extern afs_kcondvar_t rx_event_handler_cond;
258 extern afs_kcondvar_t rx_listener_cond;
259 #endif /* !KERNEL */
261 static afs_kmutex_t epoch_mutex;
262 static afs_kmutex_t rx_init_mutex;
263 static afs_kmutex_t rx_debug_mutex;
264 static afs_kmutex_t rx_rpc_stats;
266 static void
267 rxi_InitPthread(void)
269 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
270 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
271 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
272 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
273 #ifndef KERNEL
274 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
275 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
276 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
277 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
278 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
279 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
280 #endif
281 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
282 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
283 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
284 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
285 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
287 #ifndef KERNEL
288 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
289 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
290 #endif
292 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
293 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
295 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
296 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
297 MUTEX_INIT(&rx_mallocedPktQ_lock, "rx_mallocedPktQ_lock", MUTEX_DEFAULT,
300 #ifdef RX_ENABLE_LOCKS
301 #ifdef RX_LOCKS_DB
302 rxdb_init();
303 #endif /* RX_LOCKS_DB */
304 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
305 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
307 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
309 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
311 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
313 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
314 #ifndef KERNEL
315 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
316 #endif
317 #endif /* RX_ENABLE_LOCKS */
320 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
321 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
323 * The rx_stats_mutex mutex protects the following global variables:
324 * rxi_lowConnRefCount
325 * rxi_lowPeerRefCount
326 * rxi_nCalls
327 * rxi_Alloccnt
328 * rxi_Allocsize
329 * rx_tq_debug
330 * rx_stats
334 * The rx_quota_mutex mutex protects the following global variables:
335 * rxi_dataQuota
336 * rxi_minDeficit
337 * rxi_availProcs
338 * rxi_totalMin
342 * The rx_freePktQ_lock protects the following global variables:
343 * rx_nFreePackets
347 * The rx_packets_mutex mutex protects the following global variables:
348 * rx_nPackets
349 * rx_TSFPQLocalMax
350 * rx_TSFPQGlobSize
351 * rx_TSFPQMaxProcs
355 * The rx_pthread_mutex mutex protects the following global variables:
356 * rxi_fcfs_thread_num
358 #else
359 #define INIT_PTHREAD_LOCKS
360 #endif
363 /* Variables for handling the minProcs implementation. availProcs gives the
364 * number of threads available in the pool at this moment (not counting dudes
365 * executing right now). totalMin gives the total number of procs required
366 * for handling all minProcs requests. minDeficit is a dynamic variable
367 * tracking the # of procs required to satisfy all of the remaining minProcs
368 * demands.
369 * For fine grain locking to work, the quota check and the reservation of
370 * a server thread has to come while rxi_availProcs and rxi_minDeficit
371 * are locked. To this end, the code has been modified under #ifdef
372 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
373 * same time. A new function, ReturnToServerPool() returns the allocation.
375 * A call can be on several queue's (but only one at a time). When
376 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
377 * that no one else is touching the queue. To this end, we store the address
378 * of the queue lock in the call structure (under the call lock) when we
379 * put the call on a queue, and we clear the call_queue_lock when the
380 * call is removed from a queue (once the call lock has been obtained).
381 * This allows rxi_ResetCall to safely synchronize with others wishing
382 * to manipulate the queue.
385 #if defined(RX_ENABLE_LOCKS)
386 static afs_kmutex_t rx_rpc_stats;
387 #endif
389 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
390 ** pretty good that the next packet coming in is from the same connection
391 ** as the last packet, since we're send multiple packets in a transmit window.
393 struct rx_connection *rxLastConn = 0;
395 #ifdef RX_ENABLE_LOCKS
396 /* The locking hierarchy for rx fine grain locking is composed of these
397 * tiers:
399 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
400 * also protects updates to rx_nextCid
401 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
402 * call->lock - locks call data fields.
403 * These are independent of each other:
404 * rx_freeCallQueue_lock
405 * rxi_keyCreate_lock
406 * rx_serverPool_lock
407 * freeSQEList_lock
409 * serverQueueEntry->lock
410 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
411 * rx_rpc_stats
412 * peer->lock - locks peer data fields.
413 * conn_data_lock - that more than one thread is not updating a conn data
414 * field at the same time.
415 * rx_freePktQ_lock
417 * lowest level:
418 * multi_handle->lock
419 * rxevent_lock
420 * rx_packets_mutex
421 * rx_stats_mutex
422 * rx_refcnt_mutex
423 * rx_atomic_mutex
425 * Do we need a lock to protect the peer field in the conn structure?
426 * conn->peer was previously a constant for all intents and so has no
427 * lock protecting this field. The multihomed client delta introduced
428 * a RX code change : change the peer field in the connection structure
429 * to that remote interface from which the last packet for this
430 * connection was sent out. This may become an issue if further changes
431 * are made.
433 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
434 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
435 #ifdef RX_LOCKS_DB
436 /* rxdb_fileID is used to identify the lock location, along with line#. */
437 static int rxdb_fileID = RXDB_FILE_RX;
438 #endif /* RX_LOCKS_DB */
439 #else /* RX_ENABLE_LOCKS */
440 #define SET_CALL_QUEUE_LOCK(C, L)
441 #define CLEAR_CALL_QUEUE_LOCK(C)
442 #endif /* RX_ENABLE_LOCKS */
443 struct rx_serverQueueEntry *rx_waitForPacket = 0;
445 /* ------------Exported Interfaces------------- */
447 /* Initialize rx. A port number may be mentioned, in which case this
448 * becomes the default port number for any service installed later.
449 * If 0 is provided for the port number, a random port will be chosen
450 * by the kernel. Whether this will ever overlap anything in
451 * /etc/services is anybody's guess... Returns 0 on success, -1 on
452 * error. */
453 #if !(defined(AFS_NT40_ENV) || defined(RXK_UPCALL_ENV))
454 static
455 #endif
456 rx_atomic_t rxinit_status = RX_ATOMIC_INIT(1);
459 rx_InitHost(u_int host, u_int port)
461 #ifdef KERNEL
462 osi_timeval_t tv;
463 #else /* KERNEL */
464 struct timeval tv;
465 #endif /* KERNEL */
466 char *htable, *ptable;
468 SPLVAR;
470 INIT_PTHREAD_LOCKS;
471 if (!rx_atomic_test_and_clear_bit(&rxinit_status, 0))
472 return 0; /* already started */
474 #ifdef RXDEBUG
475 rxi_DebugInit();
476 #endif
477 #ifdef AFS_NT40_ENV
478 if (afs_winsockInit() < 0)
479 return -1;
480 #endif
482 #ifndef KERNEL
484 * Initialize anything necessary to provide a non-premptive threading
485 * environment.
487 rxi_InitializeThreadSupport();
488 #endif
490 /* Allocate and initialize a socket for client and perhaps server
491 * connections. */
493 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
494 if (rx_socket == OSI_NULLSOCKET) {
495 return RX_ADDRINUSE;
497 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
498 #ifdef RX_LOCKS_DB
499 rxdb_init();
500 #endif /* RX_LOCKS_DB */
501 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
502 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
503 MUTEX_INIT(&rx_atomic_mutex, "rx_atomic_mutex", MUTEX_DEFAULT, 0);
504 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
505 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
506 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
507 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
508 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
509 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
510 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
512 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
514 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
516 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
518 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
519 MUTEX_INIT(&rx_mallocedPktQ_lock, "rx_mallocedPktQ_lock", MUTEX_DEFAULT,
522 #if defined(AFS_HPUX110_ENV)
523 if (!uniprocessor)
524 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
525 #endif /* AFS_HPUX110_ENV */
526 #endif /* RX_ENABLE_LOCKS && KERNEL */
528 rxi_nCalls = 0;
529 rx_connDeadTime = 12;
530 rx_tranquil = 0; /* reset flag */
531 rxi_ResetStatistics();
532 htable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
533 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
534 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
535 ptable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
536 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
537 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
539 /* Malloc up a bunch of packets & buffers */
540 rx_nFreePackets = 0;
541 opr_queue_Init(&rx_freePacketQueue);
542 rxi_NeedMorePackets = FALSE;
543 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
544 opr_queue_Init(&rx_mallocedPacketQueue);
546 /* enforce a minimum number of allocated packets */
547 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
548 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
550 /* allocate the initial free packet pool */
551 #ifdef RX_ENABLE_TSFPQ
552 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
553 #else /* RX_ENABLE_TSFPQ */
554 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
555 #endif /* RX_ENABLE_TSFPQ */
556 rx_CheckPackets();
558 NETPRI;
560 clock_Init();
562 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
563 tv.tv_sec = clock_now.sec;
564 tv.tv_usec = clock_now.usec;
565 srand((unsigned int)tv.tv_usec);
566 #else
567 osi_GetTime(&tv);
568 #endif
569 if (port) {
570 rx_port = port;
571 } else {
572 #if defined(KERNEL) && !defined(UKERNEL)
573 /* Really, this should never happen in a real kernel */
574 rx_port = 0;
575 #else
576 struct sockaddr_in addr;
577 #ifdef AFS_NT40_ENV
578 int addrlen = sizeof(addr);
579 #else
580 socklen_t addrlen = sizeof(addr);
581 #endif
582 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
583 rx_Finalize();
584 osi_Free(htable, rx_hashTableSize * sizeof(struct rx_connection *));
585 return -1;
587 rx_port = addr.sin_port;
588 #endif
590 rx_stats.minRtt.sec = 9999999;
591 if (RAND_bytes(&rx_epoch, sizeof(rx_epoch)) != 1)
592 return -1;
593 rx_epoch = (rx_epoch & ~0x40000000) | 0x80000000;
594 if (RAND_bytes(&rx_nextCid, sizeof(rx_nextCid)) != 1)
595 return -1;
596 rx_nextCid &= RX_CIDMASK;
597 MUTEX_ENTER(&rx_quota_mutex);
598 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
599 MUTEX_EXIT(&rx_quota_mutex);
600 /* *Slightly* random start time for the cid. This is just to help
601 * out with the hashing function at the peer */
602 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
603 rx_connHashTable = (struct rx_connection **)htable;
604 rx_peerHashTable = (struct rx_peer **)ptable;
606 rx_hardAckDelay.sec = 0;
607 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
609 rxevent_Init(20, rxi_ReScheduleEvents);
611 /* Initialize various global queues */
612 opr_queue_Init(&rx_idleServerQueue);
613 opr_queue_Init(&rx_incomingCallQueue);
614 opr_queue_Init(&rx_freeCallQueue);
616 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
617 /* Initialize our list of usable IP addresses. */
618 rx_GetIFInfo();
619 #endif
621 /* Start listener process (exact function is dependent on the
622 * implementation environment--kernel or user space) */
623 rxi_StartListener();
625 USERPRI;
626 rx_atomic_clear_bit(&rxinit_status, 0);
627 return 0;
631 rx_Init(u_int port)
633 return rx_InitHost(htonl(INADDR_ANY), port);
636 /* RTT Timer
637 * ---------
639 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
640 * maintaing the round trip timer.
645 * Start a new RTT timer for a given call and packet.
647 * There must be no resendEvent already listed for this call, otherwise this
648 * will leak events - intended for internal use within the RTO code only
650 * @param[in] call
651 * the RX call to start the timer for
652 * @param[in] lastPacket
653 * a flag indicating whether the last packet has been sent or not
655 * @pre call must be locked before calling this function
658 static_inline void
659 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
661 struct clock now, retryTime;
663 MUTEX_ASSERT(&call->lock);
664 clock_GetTime(&now);
665 retryTime = now;
667 clock_Add(&retryTime, &call->rto);
669 /* If we're sending the last packet, and we're the client, then the server
670 * may wait for an additional 400ms before returning the ACK, wait for it
671 * rather than hitting a timeout */
672 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
673 clock_Addmsec(&retryTime, 400);
675 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
676 call->resendEvent = rxevent_Post(&retryTime, &now, rxi_Resend,
677 call, NULL, istack);
681 * Cancel an RTT timer for a given call.
684 * @param[in] call
685 * the RX call to cancel the timer for
687 * @pre call must be locked before calling this function
691 static_inline void
692 rxi_rto_cancel(struct rx_call *call)
694 MUTEX_ASSERT(&call->lock);
695 if (rxevent_Cancel(&call->resendEvent))
696 CALL_RELE(call, RX_CALL_REFCOUNT_RESEND);
700 * Tell the RTO timer that we have sent a packet.
702 * If the timer isn't already running, then start it. If the timer is running,
703 * then do nothing.
705 * @param[in] call
706 * the RX call that the packet has been sent on
707 * @param[in] lastPacket
708 * A flag which is true if this is the last packet for the call
710 * @pre The call must be locked before calling this function
714 static_inline void
715 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
717 if (call->resendEvent)
718 return;
720 rxi_rto_startTimer(call, lastPacket, istack);
724 * Tell the RTO timer that we have received an new ACK message
726 * This function should be called whenever a call receives an ACK that
727 * acknowledges new packets. Whatever happens, we stop the current timer.
728 * If there are unacked packets in the queue which have been sent, then
729 * we restart the timer from now. Otherwise, we leave it stopped.
731 * @param[in] call
732 * the RX call that the ACK has been received on
735 static_inline void
736 rxi_rto_packet_acked(struct rx_call *call, int istack)
738 struct opr_queue *cursor;
740 rxi_rto_cancel(call);
742 if (opr_queue_IsEmpty(&call->tq))
743 return;
745 for (opr_queue_Scan(&call->tq, cursor)) {
746 struct rx_packet *p = opr_queue_Entry(cursor, struct rx_packet, entry);
747 if (p->header.seq > call->tfirst + call->twind)
748 return;
750 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
751 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
752 return;
759 * Set an initial round trip timeout for a peer connection
761 * @param[in] secs The timeout to set in seconds
764 void
765 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
766 peer->rtt = secs * 8000;
770 * Set a delayed ack event on the specified call for the given time
772 * @param[in] call - the call on which to set the event
773 * @param[in] offset - the delay from now after which the event fires
775 void
776 rxi_PostDelayedAckEvent(struct rx_call *call, struct clock *offset)
778 struct clock now, when;
780 MUTEX_ASSERT(&call->lock);
781 clock_GetTime(&now);
782 when = now;
783 clock_Add(&when, offset);
785 if (clock_Gt(&call->delayedAckTime, &when) &&
786 rxevent_Cancel(&call->delayedAckEvent)) {
787 /* We successfully cancelled an event too far in the future to install
788 * our new one; we can reuse the reference on the call. */
789 call->delayedAckEvent = rxevent_Post(&when, &now, rxi_SendDelayedAck,
790 call, NULL, 0);
792 call->delayedAckTime = when;
793 } else if (call->delayedAckEvent == NULL) {
794 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
795 call->delayedAckEvent = rxevent_Post(&when, &now,
796 rxi_SendDelayedAck,
797 call, NULL, 0);
798 call->delayedAckTime = when;
802 void
803 rxi_CancelDelayedAckEvent(struct rx_call *call)
805 MUTEX_ASSERT(&call->lock);
806 /* Only drop the ref if we cancelled it before it could run. */
807 if (rxevent_Cancel(&call->delayedAckEvent))
808 CALL_RELE(call, RX_CALL_REFCOUNT_DELAY);
811 /* called with unincremented nRequestsRunning to see if it is OK to start
812 * a new thread in this service. Could be "no" for two reasons: over the
813 * max quota, or would prevent others from reaching their min quota.
815 #ifdef RX_ENABLE_LOCKS
816 /* This verion of QuotaOK reserves quota if it's ok while the
817 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
819 static int
820 QuotaOK(struct rx_service *aservice)
822 /* check if over max quota */
823 if (aservice->nRequestsRunning >= aservice->maxProcs) {
824 return 0;
827 /* under min quota, we're OK */
828 /* otherwise, can use only if there are enough to allow everyone
829 * to go to their min quota after this guy starts.
832 MUTEX_ENTER(&rx_quota_mutex);
833 if ((aservice->nRequestsRunning < aservice->minProcs)
834 || (rxi_availProcs > rxi_minDeficit)) {
835 aservice->nRequestsRunning++;
836 /* just started call in minProcs pool, need fewer to maintain
837 * guarantee */
838 if (aservice->nRequestsRunning <= aservice->minProcs)
839 rxi_minDeficit--;
840 rxi_availProcs--;
841 MUTEX_EXIT(&rx_quota_mutex);
842 return 1;
844 MUTEX_EXIT(&rx_quota_mutex);
846 return 0;
849 static void
850 ReturnToServerPool(struct rx_service *aservice)
852 aservice->nRequestsRunning--;
853 MUTEX_ENTER(&rx_quota_mutex);
854 if (aservice->nRequestsRunning < aservice->minProcs)
855 rxi_minDeficit++;
856 rxi_availProcs++;
857 MUTEX_EXIT(&rx_quota_mutex);
860 #else /* RX_ENABLE_LOCKS */
861 static int
862 QuotaOK(struct rx_service *aservice)
864 int rc = 0;
865 /* under min quota, we're OK */
866 if (aservice->nRequestsRunning < aservice->minProcs)
867 return 1;
869 /* check if over max quota */
870 if (aservice->nRequestsRunning >= aservice->maxProcs)
871 return 0;
873 /* otherwise, can use only if there are enough to allow everyone
874 * to go to their min quota after this guy starts.
876 MUTEX_ENTER(&rx_quota_mutex);
877 if (rxi_availProcs > rxi_minDeficit)
878 rc = 1;
879 MUTEX_EXIT(&rx_quota_mutex);
880 return rc;
882 #endif /* RX_ENABLE_LOCKS */
884 #ifndef KERNEL
885 /* Called by rx_StartServer to start up lwp's to service calls.
886 NExistingProcs gives the number of procs already existing, and which
887 therefore needn't be created. */
888 static void
889 rxi_StartServerProcs(int nExistingProcs)
891 struct rx_service *service;
892 int i;
893 int maxdiff = 0;
894 int nProcs = 0;
896 /* For each service, reserve N processes, where N is the "minimum"
897 * number of processes that MUST be able to execute a request in parallel,
898 * at any time, for that process. Also compute the maximum difference
899 * between any service's maximum number of processes that can run
900 * (i.e. the maximum number that ever will be run, and a guarantee
901 * that this number will run if other services aren't running), and its
902 * minimum number. The result is the extra number of processes that
903 * we need in order to provide the latter guarantee */
904 for (i = 0; i < RX_MAX_SERVICES; i++) {
905 int diff;
906 service = rx_services[i];
907 if (service == (struct rx_service *)0)
908 break;
909 nProcs += service->minProcs;
910 diff = service->maxProcs - service->minProcs;
911 if (diff > maxdiff)
912 maxdiff = diff;
914 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
915 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
916 for (i = 0; i < nProcs; i++) {
917 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
920 #endif /* KERNEL */
922 #ifdef AFS_NT40_ENV
923 /* This routine is only required on Windows */
924 void
925 rx_StartClientThread(void)
927 #ifdef AFS_PTHREAD_ENV
928 pthread_t pid;
929 pid = pthread_self();
930 #endif /* AFS_PTHREAD_ENV */
932 #endif /* AFS_NT40_ENV */
934 /* This routine must be called if any services are exported. If the
935 * donateMe flag is set, the calling process is donated to the server
936 * process pool */
937 void
938 rx_StartServer(int donateMe)
940 struct rx_service *service;
941 int i;
942 SPLVAR;
943 clock_NewTime();
945 NETPRI;
946 /* Start server processes, if necessary (exact function is dependent
947 * on the implementation environment--kernel or user space). DonateMe
948 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
949 * case, one less new proc will be created rx_StartServerProcs.
951 rxi_StartServerProcs(donateMe);
953 /* count up the # of threads in minProcs, and add set the min deficit to
954 * be that value, too.
956 for (i = 0; i < RX_MAX_SERVICES; i++) {
957 service = rx_services[i];
958 if (service == (struct rx_service *)0)
959 break;
960 MUTEX_ENTER(&rx_quota_mutex);
961 rxi_totalMin += service->minProcs;
962 /* below works even if a thread is running, since minDeficit would
963 * still have been decremented and later re-incremented.
965 rxi_minDeficit += service->minProcs;
966 MUTEX_EXIT(&rx_quota_mutex);
969 /* Turn on reaping of idle server connections */
970 rxi_ReapConnections(NULL, NULL, NULL, 0);
972 USERPRI;
974 if (donateMe) {
975 #ifndef AFS_NT40_ENV
976 #ifndef KERNEL
977 char name[32];
978 static int nProcs;
979 #ifdef AFS_PTHREAD_ENV
980 pid_t pid;
981 pid = afs_pointer_to_int(pthread_self());
982 #else /* AFS_PTHREAD_ENV */
983 PROCESS pid;
984 LWP_CurrentProcess(&pid);
985 #endif /* AFS_PTHREAD_ENV */
987 sprintf(name, "srv_%d", ++nProcs);
988 if (registerProgram)
989 (*registerProgram) (pid, name);
990 #endif /* KERNEL */
991 #endif /* AFS_NT40_ENV */
992 rx_ServerProc(NULL); /* Never returns */
994 #ifdef RX_ENABLE_TSFPQ
995 /* no use leaving packets around in this thread's local queue if
996 * it isn't getting donated to the server thread pool.
998 rxi_FlushLocalPacketsTSFPQ();
999 #endif /* RX_ENABLE_TSFPQ */
1000 return;
1003 /* Create a new client connection to the specified service, using the
1004 * specified security object to implement the security model for this
1005 * connection. */
1006 struct rx_connection *
1007 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
1008 struct rx_securityClass *securityObject,
1009 int serviceSecurityIndex)
1011 int hashindex, i;
1012 struct rx_connection *conn;
1014 SPLVAR;
1016 clock_NewTime();
1017 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
1018 "serviceSecurityIndex %d)\n",
1019 ntohl(shost), ntohs(sport), sservice, securityObject,
1020 serviceSecurityIndex));
1022 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
1023 * the case of kmem_alloc? */
1024 conn = rxi_AllocConnection();
1025 #ifdef RX_ENABLE_LOCKS
1026 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
1027 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
1028 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
1029 #endif
1030 NETPRI;
1031 MUTEX_ENTER(&rx_connHashTable_lock);
1032 conn->type = RX_CLIENT_CONNECTION;
1033 conn->epoch = rx_epoch;
1034 conn->cid = rx_nextCid;
1035 update_nextCid();
1036 conn->peer = rxi_FindPeer(shost, sport, 1);
1037 conn->serviceId = sservice;
1038 conn->securityObject = securityObject;
1039 conn->securityData = (void *) 0;
1040 conn->securityIndex = serviceSecurityIndex;
1041 rx_SetConnDeadTime(conn, rx_connDeadTime);
1042 rx_SetConnSecondsUntilNatPing(conn, 0);
1043 conn->ackRate = RX_FAST_ACK_RATE;
1044 conn->nSpecific = 0;
1045 conn->specific = NULL;
1046 conn->challengeEvent = NULL;
1047 conn->delayedAbortEvent = NULL;
1048 conn->abortCount = 0;
1049 conn->error = 0;
1050 for (i = 0; i < RX_MAXCALLS; i++) {
1051 conn->twind[i] = rx_initSendWindow;
1052 conn->rwind[i] = rx_initReceiveWindow;
1053 conn->lastBusy[i] = 0;
1056 RXS_NewConnection(securityObject, conn);
1057 hashindex =
1058 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1060 conn->refCount++; /* no lock required since only this thread knows... */
1061 conn->next = rx_connHashTable[hashindex];
1062 rx_connHashTable[hashindex] = conn;
1063 if (rx_stats_active)
1064 rx_atomic_inc(&rx_stats.nClientConns);
1065 MUTEX_EXIT(&rx_connHashTable_lock);
1066 USERPRI;
1067 return conn;
1071 * Ensure a connection's timeout values are valid.
1073 * @param[in] conn The connection to check
1075 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1076 * unless idleDeadTime and/or hardDeadTime are not set
1077 * @internal
1079 static void
1080 rxi_CheckConnTimeouts(struct rx_connection *conn)
1082 /* a connection's timeouts must have the relationship
1083 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1084 * total loss of network to a peer may cause an idle timeout instead of a
1085 * dead timeout, simply because the idle timeout gets hit first. Also set
1086 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1087 /* this logic is slightly complicated by the fact that
1088 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1090 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1091 if (conn->idleDeadTime) {
1092 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1094 if (conn->hardDeadTime) {
1095 if (conn->idleDeadTime) {
1096 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1097 } else {
1098 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1103 void
1104 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1106 /* The idea is to set the dead time to a value that allows several
1107 * keepalives to be dropped without timing out the connection. */
1108 conn->secondsUntilDead = seconds;
1109 rxi_CheckConnTimeouts(conn);
1110 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1113 void
1114 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1116 conn->hardDeadTime = seconds;
1117 rxi_CheckConnTimeouts(conn);
1120 void
1121 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1123 conn->idleDeadTime = seconds;
1124 rxi_CheckConnTimeouts(conn);
1127 int rxi_lowPeerRefCount = 0;
1128 int rxi_lowConnRefCount = 0;
1131 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1132 * NOTE: must not be called with rx_connHashTable_lock held.
1134 static void
1135 rxi_CleanupConnection(struct rx_connection *conn)
1137 /* Notify the service exporter, if requested, that this connection
1138 * is being destroyed */
1139 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1140 (*conn->service->destroyConnProc) (conn);
1142 /* Notify the security module that this connection is being destroyed */
1143 RXS_DestroyConnection(conn->securityObject, conn);
1145 /* If this is the last connection using the rx_peer struct, set its
1146 * idle time to now. rxi_ReapConnections will reap it if it's still
1147 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1149 MUTEX_ENTER(&rx_peerHashTable_lock);
1150 if (conn->peer->refCount < 2) {
1151 conn->peer->idleWhen = clock_Sec();
1152 if (conn->peer->refCount < 1) {
1153 conn->peer->refCount = 1;
1154 if (rx_stats_active) {
1155 MUTEX_ENTER(&rx_stats_mutex);
1156 rxi_lowPeerRefCount++;
1157 MUTEX_EXIT(&rx_stats_mutex);
1161 conn->peer->refCount--;
1162 MUTEX_EXIT(&rx_peerHashTable_lock);
1164 if (rx_stats_active)
1166 if (conn->type == RX_SERVER_CONNECTION)
1167 rx_atomic_dec(&rx_stats.nServerConns);
1168 else
1169 rx_atomic_dec(&rx_stats.nClientConns);
1171 #ifndef KERNEL
1172 if (conn->specific) {
1173 int i;
1174 for (i = 0; i < conn->nSpecific; i++) {
1175 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1176 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1177 conn->specific[i] = NULL;
1179 free(conn->specific);
1181 conn->specific = NULL;
1182 conn->nSpecific = 0;
1183 #endif /* !KERNEL */
1185 MUTEX_DESTROY(&conn->conn_call_lock);
1186 MUTEX_DESTROY(&conn->conn_data_lock);
1187 CV_DESTROY(&conn->conn_call_cv);
1189 rxi_FreeConnection(conn);
1192 /* Destroy the specified connection */
1193 void
1194 rxi_DestroyConnection(struct rx_connection *conn)
1196 MUTEX_ENTER(&rx_connHashTable_lock);
1197 rxi_DestroyConnectionNoLock(conn);
1198 /* conn should be at the head of the cleanup list */
1199 if (conn == rx_connCleanup_list) {
1200 rx_connCleanup_list = rx_connCleanup_list->next;
1201 MUTEX_EXIT(&rx_connHashTable_lock);
1202 rxi_CleanupConnection(conn);
1204 #ifdef RX_ENABLE_LOCKS
1205 else {
1206 MUTEX_EXIT(&rx_connHashTable_lock);
1208 #endif /* RX_ENABLE_LOCKS */
1211 static void
1212 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1214 struct rx_connection **conn_ptr;
1215 int havecalls = 0;
1216 int i;
1217 SPLVAR;
1219 clock_NewTime();
1221 NETPRI;
1222 MUTEX_ENTER(&conn->conn_data_lock);
1223 MUTEX_ENTER(&rx_refcnt_mutex);
1224 if (conn->refCount > 0)
1225 conn->refCount--;
1226 else {
1227 #ifdef RX_REFCOUNT_CHECK
1228 osi_Assert(conn->refCount == 0);
1229 #endif
1230 if (rx_stats_active) {
1231 MUTEX_ENTER(&rx_stats_mutex);
1232 rxi_lowConnRefCount++;
1233 MUTEX_EXIT(&rx_stats_mutex);
1237 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1238 /* Busy; wait till the last guy before proceeding */
1239 MUTEX_EXIT(&rx_refcnt_mutex);
1240 MUTEX_EXIT(&conn->conn_data_lock);
1241 USERPRI;
1242 return;
1245 /* If the client previously called rx_NewCall, but it is still
1246 * waiting, treat this as a running call, and wait to destroy the
1247 * connection later when the call completes. */
1248 if ((conn->type == RX_CLIENT_CONNECTION)
1249 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1250 conn->flags |= RX_CONN_DESTROY_ME;
1251 MUTEX_EXIT(&rx_refcnt_mutex);
1252 MUTEX_EXIT(&conn->conn_data_lock);
1253 USERPRI;
1254 return;
1256 MUTEX_EXIT(&rx_refcnt_mutex);
1257 MUTEX_EXIT(&conn->conn_data_lock);
1259 /* Check for extant references to this connection */
1260 MUTEX_ENTER(&conn->conn_call_lock);
1261 for (i = 0; i < RX_MAXCALLS; i++) {
1262 struct rx_call *call = conn->call[i];
1263 if (call) {
1264 havecalls = 1;
1265 if (conn->type == RX_CLIENT_CONNECTION) {
1266 MUTEX_ENTER(&call->lock);
1267 if (call->delayedAckEvent) {
1268 /* Push the final acknowledgment out now--there
1269 * won't be a subsequent call to acknowledge the
1270 * last reply packets */
1271 rxi_CancelDelayedAckEvent(call);
1272 if (call->state == RX_STATE_PRECALL
1273 || call->state == RX_STATE_ACTIVE) {
1274 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1275 } else {
1276 rxi_AckAll(call);
1279 MUTEX_EXIT(&call->lock);
1283 MUTEX_EXIT(&conn->conn_call_lock);
1285 #ifdef RX_ENABLE_LOCKS
1286 if (!havecalls) {
1287 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1288 MUTEX_EXIT(&conn->conn_data_lock);
1289 } else {
1290 /* Someone is accessing a packet right now. */
1291 havecalls = 1;
1294 #endif /* RX_ENABLE_LOCKS */
1296 if (havecalls) {
1297 /* Don't destroy the connection if there are any call
1298 * structures still in use */
1299 MUTEX_ENTER(&conn->conn_data_lock);
1300 conn->flags |= RX_CONN_DESTROY_ME;
1301 MUTEX_EXIT(&conn->conn_data_lock);
1302 USERPRI;
1303 return;
1306 /* Remove from connection hash table before proceeding */
1307 conn_ptr =
1308 &rx_connHashTable[CONN_HASH
1309 (peer->host, peer->port, conn->cid, conn->epoch,
1310 conn->type)];
1311 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1312 if (*conn_ptr == conn) {
1313 *conn_ptr = conn->next;
1314 break;
1317 /* if the conn that we are destroying was the last connection, then we
1318 * clear rxLastConn as well */
1319 if (rxLastConn == conn)
1320 rxLastConn = 0;
1322 /* Make sure the connection is completely reset before deleting it. */
1324 * Pending events hold a refcount, so we can't get here if they are
1325 * non-NULL. */
1326 osi_Assert(conn->challengeEvent == NULL);
1327 osi_Assert(conn->delayedAbortEvent == NULL);
1328 osi_Assert(conn->natKeepAliveEvent == NULL);
1329 osi_Assert(conn->checkReachEvent == NULL);
1331 /* Add the connection to the list of destroyed connections that
1332 * need to be cleaned up. This is necessary to avoid deadlocks
1333 * in the routines we call to inform others that this connection is
1334 * being destroyed. */
1335 conn->next = rx_connCleanup_list;
1336 rx_connCleanup_list = conn;
1339 /* Externally available version */
1340 void
1341 rx_DestroyConnection(struct rx_connection *conn)
1343 SPLVAR;
1345 NETPRI;
1346 rxi_DestroyConnection(conn);
1347 USERPRI;
1350 void
1351 rx_GetConnection(struct rx_connection *conn)
1353 SPLVAR;
1355 NETPRI;
1356 MUTEX_ENTER(&rx_refcnt_mutex);
1357 conn->refCount++;
1358 MUTEX_EXIT(&rx_refcnt_mutex);
1359 USERPRI;
1362 #ifdef RX_ENABLE_LOCKS
1363 /* Wait for the transmit queue to no longer be busy.
1364 * requires the call->lock to be held */
1365 void
1366 rxi_WaitforTQBusy(struct rx_call *call) {
1367 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1368 call->flags |= RX_CALL_TQ_WAIT;
1369 call->tqWaiters++;
1370 MUTEX_ASSERT(&call->lock);
1371 CV_WAIT(&call->cv_tq, &call->lock);
1372 call->tqWaiters--;
1373 if (call->tqWaiters == 0) {
1374 call->flags &= ~RX_CALL_TQ_WAIT;
1378 #endif
1380 static void
1381 rxi_WakeUpTransmitQueue(struct rx_call *call)
1383 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1384 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1385 call, call->tqWaiters, call->flags));
1386 #ifdef RX_ENABLE_LOCKS
1387 MUTEX_ASSERT(&call->lock);
1388 CV_BROADCAST(&call->cv_tq);
1389 #else /* RX_ENABLE_LOCKS */
1390 osi_rxWakeup(&call->tq);
1391 #endif /* RX_ENABLE_LOCKS */
1395 /* Start a new rx remote procedure call, on the specified connection.
1396 * If wait is set to 1, wait for a free call channel; otherwise return
1397 * 0. Maxtime gives the maximum number of seconds this call may take,
1398 * after rx_NewCall returns. After this time interval, a call to any
1399 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1400 * For fine grain locking, we hold the conn_call_lock in order to
1401 * to ensure that we don't get signalle after we found a call in an active
1402 * state and before we go to sleep.
1404 struct rx_call *
1405 rx_NewCall(struct rx_connection *conn)
1407 int i, wait, ignoreBusy = 1;
1408 struct rx_call *call;
1409 struct clock queueTime;
1410 afs_uint32 leastBusy = 0;
1411 SPLVAR;
1413 clock_NewTime();
1414 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1416 NETPRI;
1417 clock_GetTime(&queueTime);
1419 * Check if there are others waiting for a new call.
1420 * If so, let them go first to avoid starving them.
1421 * This is a fairly simple scheme, and might not be
1422 * a complete solution for large numbers of waiters.
1424 * makeCallWaiters keeps track of the number of
1425 * threads waiting to make calls and the
1426 * RX_CONN_MAKECALL_WAITING flag bit is used to
1427 * indicate that there are indeed calls waiting.
1428 * The flag is set when the waiter is incremented.
1429 * It is only cleared when makeCallWaiters is 0.
1430 * This prevents us from accidently destroying the
1431 * connection while it is potentially about to be used.
1433 MUTEX_ENTER(&conn->conn_call_lock);
1434 MUTEX_ENTER(&conn->conn_data_lock);
1435 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1436 conn->flags |= RX_CONN_MAKECALL_WAITING;
1437 conn->makeCallWaiters++;
1438 MUTEX_EXIT(&conn->conn_data_lock);
1440 #ifdef RX_ENABLE_LOCKS
1441 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1442 #else
1443 osi_rxSleep(conn);
1444 #endif
1445 MUTEX_ENTER(&conn->conn_data_lock);
1446 conn->makeCallWaiters--;
1447 if (conn->makeCallWaiters == 0)
1448 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1451 /* We are now the active thread in rx_NewCall */
1452 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1453 MUTEX_EXIT(&conn->conn_data_lock);
1455 for (;;) {
1456 wait = 1;
1458 for (i = 0; i < RX_MAXCALLS; i++) {
1459 call = conn->call[i];
1460 if (call) {
1461 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1462 /* we're not ignoring busy call slots; only look at the
1463 * call slot that is the "least" busy */
1464 continue;
1467 if (call->state == RX_STATE_DALLY) {
1468 MUTEX_ENTER(&call->lock);
1469 if (call->state == RX_STATE_DALLY) {
1470 if (ignoreBusy && conn->lastBusy[i]) {
1471 /* if we're ignoring busy call slots, skip any ones that
1472 * have lastBusy set */
1473 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1474 leastBusy = conn->lastBusy[i];
1476 MUTEX_EXIT(&call->lock);
1477 continue;
1481 * We are setting the state to RX_STATE_RESET to
1482 * ensure that no one else will attempt to use this
1483 * call once we drop the conn->conn_call_lock and
1484 * call->lock. We must drop the conn->conn_call_lock
1485 * before calling rxi_ResetCall because the process
1486 * of clearing the transmit queue can block for an
1487 * extended period of time. If we block while holding
1488 * the conn->conn_call_lock, then all rx_EndCall
1489 * processing will block as well. This has a detrimental
1490 * effect on overall system performance.
1492 call->state = RX_STATE_RESET;
1493 (*call->callNumber)++;
1494 MUTEX_EXIT(&conn->conn_call_lock);
1495 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1496 rxi_ResetCall(call, 0);
1497 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1498 break;
1501 * If we failed to be able to safely obtain the
1502 * conn->conn_call_lock we will have to drop the
1503 * call->lock to avoid a deadlock. When the call->lock
1504 * is released the state of the call can change. If it
1505 * is no longer RX_STATE_RESET then some other thread is
1506 * using the call.
1508 MUTEX_EXIT(&call->lock);
1509 MUTEX_ENTER(&conn->conn_call_lock);
1510 MUTEX_ENTER(&call->lock);
1512 if (call->state == RX_STATE_RESET)
1513 break;
1516 * If we get here it means that after dropping
1517 * the conn->conn_call_lock and call->lock that
1518 * the call is no longer ours. If we can't find
1519 * a free call in the remaining slots we should
1520 * not go immediately to RX_CONN_MAKECALL_WAITING
1521 * because by dropping the conn->conn_call_lock
1522 * we have given up synchronization with rx_EndCall.
1523 * Instead, cycle through one more time to see if
1524 * we can find a call that can call our own.
1526 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1527 wait = 0;
1529 MUTEX_EXIT(&call->lock);
1531 } else {
1532 if (ignoreBusy && conn->lastBusy[i]) {
1533 /* if we're ignoring busy call slots, skip any ones that
1534 * have lastBusy set */
1535 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1536 leastBusy = conn->lastBusy[i];
1538 continue;
1541 /* rxi_NewCall returns with mutex locked */
1542 call = rxi_NewCall(conn, i);
1543 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1544 break;
1547 if (i < RX_MAXCALLS) {
1548 conn->lastBusy[i] = 0;
1549 break;
1551 if (!wait)
1552 continue;
1553 if (leastBusy && ignoreBusy) {
1554 /* we didn't find a useable call slot, but we did see at least one
1555 * 'busy' slot; look again and only use a slot with the 'least
1556 * busy time */
1557 ignoreBusy = 0;
1558 continue;
1561 MUTEX_ENTER(&conn->conn_data_lock);
1562 conn->flags |= RX_CONN_MAKECALL_WAITING;
1563 conn->makeCallWaiters++;
1564 MUTEX_EXIT(&conn->conn_data_lock);
1566 #ifdef RX_ENABLE_LOCKS
1567 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1568 #else
1569 osi_rxSleep(conn);
1570 #endif
1571 MUTEX_ENTER(&conn->conn_data_lock);
1572 conn->makeCallWaiters--;
1573 if (conn->makeCallWaiters == 0)
1574 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1575 MUTEX_EXIT(&conn->conn_data_lock);
1577 /* Client is initially in send mode */
1578 call->state = RX_STATE_ACTIVE;
1579 call->error = conn->error;
1580 if (call->error)
1581 call->app.mode = RX_MODE_ERROR;
1582 else
1583 call->app.mode = RX_MODE_SENDING;
1585 #ifdef AFS_RXERRQ_ENV
1586 /* remember how many network errors the peer has when we started, so if
1587 * more errors are encountered after the call starts, we know the other endpoint won't be
1588 * responding to us */
1589 call->neterr_gen = rx_atomic_read(&conn->peer->neterrs);
1590 #endif
1592 /* remember start time for call in case we have hard dead time limit */
1593 call->queueTime = queueTime;
1594 clock_GetTime(&call->startTime);
1595 call->app.bytesSent = 0;
1596 call->app.bytesRcvd = 0;
1598 /* Turn on busy protocol. */
1599 rxi_KeepAliveOn(call);
1601 /* Attempt MTU discovery */
1602 rxi_GrowMTUOn(call);
1605 * We are no longer the active thread in rx_NewCall
1607 MUTEX_ENTER(&conn->conn_data_lock);
1608 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1609 MUTEX_EXIT(&conn->conn_data_lock);
1612 * Wake up anyone else who might be giving us a chance to
1613 * run (see code above that avoids resource starvation).
1615 #ifdef RX_ENABLE_LOCKS
1616 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1617 osi_Panic("rx_NewCall call about to be used without an empty tq");
1620 CV_BROADCAST(&conn->conn_call_cv);
1621 #else
1622 osi_rxWakeup(conn);
1623 #endif
1624 MUTEX_EXIT(&conn->conn_call_lock);
1625 MUTEX_EXIT(&call->lock);
1626 USERPRI;
1628 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1629 return call;
1632 static int
1633 rxi_HasActiveCalls(struct rx_connection *aconn)
1635 int i;
1636 struct rx_call *tcall;
1637 SPLVAR;
1639 NETPRI;
1640 for (i = 0; i < RX_MAXCALLS; i++) {
1641 if ((tcall = aconn->call[i])) {
1642 if ((tcall->state == RX_STATE_ACTIVE)
1643 || (tcall->state == RX_STATE_PRECALL)) {
1644 USERPRI;
1645 return 1;
1649 USERPRI;
1650 return 0;
1654 rxi_GetCallNumberVector(struct rx_connection *aconn,
1655 afs_int32 * aint32s)
1657 int i;
1658 struct rx_call *tcall;
1659 SPLVAR;
1661 NETPRI;
1662 MUTEX_ENTER(&aconn->conn_call_lock);
1663 for (i = 0; i < RX_MAXCALLS; i++) {
1664 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1665 aint32s[i] = aconn->callNumber[i] + 1;
1666 else
1667 aint32s[i] = aconn->callNumber[i];
1669 MUTEX_EXIT(&aconn->conn_call_lock);
1670 USERPRI;
1671 return 0;
1675 rxi_SetCallNumberVector(struct rx_connection *aconn,
1676 afs_int32 * aint32s)
1678 int i;
1679 struct rx_call *tcall;
1680 SPLVAR;
1682 NETPRI;
1683 MUTEX_ENTER(&aconn->conn_call_lock);
1684 for (i = 0; i < RX_MAXCALLS; i++) {
1685 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1686 aconn->callNumber[i] = aint32s[i] - 1;
1687 else
1688 aconn->callNumber[i] = aint32s[i];
1690 MUTEX_EXIT(&aconn->conn_call_lock);
1691 USERPRI;
1692 return 0;
1695 /* Advertise a new service. A service is named locally by a UDP port
1696 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1697 * on a failure.
1699 char *serviceName; Name for identification purposes (e.g. the
1700 service name might be used for probing for
1701 statistics) */
1702 struct rx_service *
1703 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1704 char *serviceName, struct rx_securityClass **securityObjects,
1705 int nSecurityObjects,
1706 afs_int32(*serviceProc) (struct rx_call * acall))
1708 osi_socket socket = OSI_NULLSOCKET;
1709 struct rx_service *tservice;
1710 int i;
1711 SPLVAR;
1713 clock_NewTime();
1715 if (serviceId == 0) {
1716 (osi_Msg
1717 "rx_NewService: service id for service %s is not non-zero.\n",
1718 serviceName);
1719 return 0;
1721 if (port == 0) {
1722 if (rx_port == 0) {
1723 (osi_Msg
1724 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1725 serviceName);
1726 return 0;
1728 port = rx_port;
1729 socket = rx_socket;
1732 tservice = rxi_AllocService();
1733 NETPRI;
1735 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1737 for (i = 0; i < RX_MAX_SERVICES; i++) {
1738 struct rx_service *service = rx_services[i];
1739 if (service) {
1740 if (port == service->servicePort && host == service->serviceHost) {
1741 if (service->serviceId == serviceId) {
1742 /* The identical service has already been
1743 * installed; if the caller was intending to
1744 * change the security classes used by this
1745 * service, he/she loses. */
1746 (osi_Msg
1747 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1748 serviceName, serviceId, service->serviceName);
1749 USERPRI;
1750 rxi_FreeService(tservice);
1751 return service;
1753 /* Different service, same port: re-use the socket
1754 * which is bound to the same port */
1755 socket = service->socket;
1757 } else {
1758 if (socket == OSI_NULLSOCKET) {
1759 /* If we don't already have a socket (from another
1760 * service on same port) get a new one */
1761 socket = rxi_GetHostUDPSocket(host, port);
1762 if (socket == OSI_NULLSOCKET) {
1763 USERPRI;
1764 rxi_FreeService(tservice);
1765 return 0;
1768 service = tservice;
1769 service->socket = socket;
1770 service->serviceHost = host;
1771 service->servicePort = port;
1772 service->serviceId = serviceId;
1773 service->serviceName = serviceName;
1774 service->nSecurityObjects = nSecurityObjects;
1775 service->securityObjects = securityObjects;
1776 service->minProcs = 0;
1777 service->maxProcs = 1;
1778 service->idleDeadTime = 60;
1779 service->connDeadTime = rx_connDeadTime;
1780 service->executeRequestProc = serviceProc;
1781 service->checkReach = 0;
1782 service->nSpecific = 0;
1783 service->specific = NULL;
1784 rx_services[i] = service; /* not visible until now */
1785 USERPRI;
1786 return service;
1789 USERPRI;
1790 rxi_FreeService(tservice);
1791 (osi_Msg "rx_NewService: cannot support > %d services\n",
1792 RX_MAX_SERVICES);
1793 return 0;
1796 /* Set configuration options for all of a service's security objects */
1798 afs_int32
1799 rx_SetSecurityConfiguration(struct rx_service *service,
1800 rx_securityConfigVariables type,
1801 void *value)
1803 int i;
1804 for (i = 0; i<service->nSecurityObjects; i++) {
1805 if (service->securityObjects[i]) {
1806 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1807 value, NULL);
1810 return 0;
1813 struct rx_service *
1814 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1815 struct rx_securityClass **securityObjects, int nSecurityObjects,
1816 afs_int32(*serviceProc) (struct rx_call * acall))
1818 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1821 /* Generic request processing loop. This routine should be called
1822 * by the implementation dependent rx_ServerProc. If socketp is
1823 * non-null, it will be set to the file descriptor that this thread
1824 * is now listening on. If socketp is null, this routine will never
1825 * returns. */
1826 void
1827 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1829 struct rx_call *call;
1830 afs_int32 code;
1831 struct rx_service *tservice = NULL;
1833 for (;;) {
1834 if (newcall) {
1835 call = newcall;
1836 newcall = NULL;
1837 } else {
1838 call = rx_GetCall(threadID, tservice, socketp);
1839 if (socketp && *socketp != OSI_NULLSOCKET) {
1840 /* We are now a listener thread */
1841 return;
1845 #ifdef KERNEL
1846 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1847 #ifdef RX_ENABLE_LOCKS
1848 AFS_GLOCK();
1849 #endif /* RX_ENABLE_LOCKS */
1850 afs_termState = AFSOP_STOP_AFS;
1851 afs_osi_Wakeup(&afs_termState);
1852 #ifdef RX_ENABLE_LOCKS
1853 AFS_GUNLOCK();
1854 #endif /* RX_ENABLE_LOCKS */
1855 return;
1857 #endif
1859 /* if server is restarting( typically smooth shutdown) then do not
1860 * allow any new calls.
1863 if (rx_tranquil && (call != NULL)) {
1864 SPLVAR;
1866 NETPRI;
1867 MUTEX_ENTER(&call->lock);
1869 rxi_CallError(call, RX_RESTARTING);
1870 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1872 MUTEX_EXIT(&call->lock);
1873 USERPRI;
1874 continue;
1877 tservice = call->conn->service;
1879 if (tservice->beforeProc)
1880 (*tservice->beforeProc) (call);
1882 code = tservice->executeRequestProc(call);
1884 if (tservice->afterProc)
1885 (*tservice->afterProc) (call, code);
1887 rx_EndCall(call, code);
1889 if (tservice->postProc)
1890 (*tservice->postProc) (code);
1892 if (rx_stats_active) {
1893 MUTEX_ENTER(&rx_stats_mutex);
1894 rxi_nCalls++;
1895 MUTEX_EXIT(&rx_stats_mutex);
1901 void
1902 rx_WakeupServerProcs(void)
1904 struct rx_serverQueueEntry *np, *tqp;
1905 struct opr_queue *cursor;
1906 SPLVAR;
1908 NETPRI;
1909 MUTEX_ENTER(&rx_serverPool_lock);
1911 #ifdef RX_ENABLE_LOCKS
1912 if (rx_waitForPacket)
1913 CV_BROADCAST(&rx_waitForPacket->cv);
1914 #else /* RX_ENABLE_LOCKS */
1915 if (rx_waitForPacket)
1916 osi_rxWakeup(rx_waitForPacket);
1917 #endif /* RX_ENABLE_LOCKS */
1918 MUTEX_ENTER(&freeSQEList_lock);
1919 for (np = rx_FreeSQEList; np; np = tqp) {
1920 tqp = *(struct rx_serverQueueEntry **)np;
1921 #ifdef RX_ENABLE_LOCKS
1922 CV_BROADCAST(&np->cv);
1923 #else /* RX_ENABLE_LOCKS */
1924 osi_rxWakeup(np);
1925 #endif /* RX_ENABLE_LOCKS */
1927 MUTEX_EXIT(&freeSQEList_lock);
1928 for (opr_queue_Scan(&rx_idleServerQueue, cursor)) {
1929 np = opr_queue_Entry(cursor, struct rx_serverQueueEntry, entry);
1930 #ifdef RX_ENABLE_LOCKS
1931 CV_BROADCAST(&np->cv);
1932 #else /* RX_ENABLE_LOCKS */
1933 osi_rxWakeup(np);
1934 #endif /* RX_ENABLE_LOCKS */
1936 MUTEX_EXIT(&rx_serverPool_lock);
1937 USERPRI;
1940 /* meltdown:
1941 * One thing that seems to happen is that all the server threads get
1942 * tied up on some empty or slow call, and then a whole bunch of calls
1943 * arrive at once, using up the packet pool, so now there are more
1944 * empty calls. The most critical resources here are server threads
1945 * and the free packet pool. The "doreclaim" code seems to help in
1946 * general. I think that eventually we arrive in this state: there
1947 * are lots of pending calls which do have all their packets present,
1948 * so they won't be reclaimed, are multi-packet calls, so they won't
1949 * be scheduled until later, and thus are tying up most of the free
1950 * packet pool for a very long time.
1951 * future options:
1952 * 1. schedule multi-packet calls if all the packets are present.
1953 * Probably CPU-bound operation, useful to return packets to pool.
1954 * Do what if there is a full window, but the last packet isn't here?
1955 * 3. preserve one thread which *only* runs "best" calls, otherwise
1956 * it sleeps and waits for that type of call.
1957 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1958 * the current dataquota business is badly broken. The quota isn't adjusted
1959 * to reflect how many packets are presently queued for a running call.
1960 * So, when we schedule a queued call with a full window of packets queued
1961 * up for it, that *should* free up a window full of packets for other 2d-class
1962 * calls to be able to use from the packet pool. But it doesn't.
1964 * NB. Most of the time, this code doesn't run -- since idle server threads
1965 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
1966 * as a new call arrives.
1968 /* Sleep until a call arrives. Returns a pointer to the call, ready
1969 * for an rx_Read. */
1970 #ifdef RX_ENABLE_LOCKS
1971 struct rx_call *
1972 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1974 struct rx_serverQueueEntry *sq;
1975 struct rx_call *call = (struct rx_call *)0;
1976 struct rx_service *service = NULL;
1978 MUTEX_ENTER(&freeSQEList_lock);
1980 if ((sq = rx_FreeSQEList)) {
1981 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1982 MUTEX_EXIT(&freeSQEList_lock);
1983 } else { /* otherwise allocate a new one and return that */
1984 MUTEX_EXIT(&freeSQEList_lock);
1985 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1986 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1987 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1990 MUTEX_ENTER(&rx_serverPool_lock);
1991 if (cur_service != NULL) {
1992 ReturnToServerPool(cur_service);
1994 while (1) {
1995 if (!opr_queue_IsEmpty(&rx_incomingCallQueue)) {
1996 struct rx_call *tcall, *choice2 = NULL;
1997 struct opr_queue *cursor;
1999 /* Scan for eligible incoming calls. A call is not eligible
2000 * if the maximum number of calls for its service type are
2001 * already executing */
2002 /* One thread will process calls FCFS (to prevent starvation),
2003 * while the other threads may run ahead looking for calls which
2004 * have all their input data available immediately. This helps
2005 * keep threads from blocking, waiting for data from the client. */
2006 for (opr_queue_Scan(&rx_incomingCallQueue, cursor)) {
2007 tcall = opr_queue_Entry(cursor, struct rx_call, entry);
2009 service = tcall->conn->service;
2010 if (!QuotaOK(service)) {
2011 continue;
2013 MUTEX_ENTER(&rx_pthread_mutex);
2014 if (tno == rxi_fcfs_thread_num
2015 || opr_queue_IsEnd(&rx_incomingCallQueue, cursor)) {
2016 MUTEX_EXIT(&rx_pthread_mutex);
2017 /* If we're the fcfs thread , then we'll just use
2018 * this call. If we haven't been able to find an optimal
2019 * choice, and we're at the end of the list, then use a
2020 * 2d choice if one has been identified. Otherwise... */
2021 call = (choice2 ? choice2 : tcall);
2022 service = call->conn->service;
2023 } else {
2024 MUTEX_EXIT(&rx_pthread_mutex);
2025 if (!opr_queue_IsEmpty(&tcall->rq)) {
2026 struct rx_packet *rp;
2027 rp = opr_queue_First(&tcall->rq, struct rx_packet,
2028 entry);
2029 if (rp->header.seq == 1) {
2030 if (!meltdown_1pkt
2031 || (rp->header.flags & RX_LAST_PACKET)) {
2032 call = tcall;
2033 } else if (rxi_2dchoice && !choice2
2034 && !(tcall->flags & RX_CALL_CLEARED)
2035 && (tcall->rprev > rxi_HardAckRate)) {
2036 choice2 = tcall;
2037 } else
2038 rxi_md2cnt++;
2042 if (call) {
2043 break;
2044 } else {
2045 ReturnToServerPool(service);
2050 if (call) {
2051 opr_queue_Remove(&call->entry);
2052 MUTEX_EXIT(&rx_serverPool_lock);
2053 MUTEX_ENTER(&call->lock);
2055 if (call->flags & RX_CALL_WAIT_PROC) {
2056 call->flags &= ~RX_CALL_WAIT_PROC;
2057 rx_atomic_dec(&rx_nWaiting);
2060 if (call->state != RX_STATE_PRECALL || call->error) {
2061 MUTEX_EXIT(&call->lock);
2062 MUTEX_ENTER(&rx_serverPool_lock);
2063 ReturnToServerPool(service);
2064 call = NULL;
2065 continue;
2068 if (opr_queue_IsEmpty(&call->rq)
2069 || opr_queue_First(&call->rq, struct rx_packet, entry)->header.seq != 1)
2070 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2072 CLEAR_CALL_QUEUE_LOCK(call);
2073 break;
2074 } else {
2075 /* If there are no eligible incoming calls, add this process
2076 * to the idle server queue, to wait for one */
2077 sq->newcall = 0;
2078 sq->tno = tno;
2079 if (socketp) {
2080 *socketp = OSI_NULLSOCKET;
2082 sq->socketp = socketp;
2083 opr_queue_Append(&rx_idleServerQueue, &sq->entry);
2084 #ifndef AFS_AIX41_ENV
2085 rx_waitForPacket = sq;
2086 #endif /* AFS_AIX41_ENV */
2087 do {
2088 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2089 #ifdef KERNEL
2090 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2091 MUTEX_EXIT(&rx_serverPool_lock);
2092 return (struct rx_call *)0;
2094 #endif
2095 } while (!(call = sq->newcall)
2096 && !(socketp && *socketp != OSI_NULLSOCKET));
2097 MUTEX_EXIT(&rx_serverPool_lock);
2098 if (call) {
2099 MUTEX_ENTER(&call->lock);
2101 break;
2105 MUTEX_ENTER(&freeSQEList_lock);
2106 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2107 rx_FreeSQEList = sq;
2108 MUTEX_EXIT(&freeSQEList_lock);
2110 if (call) {
2111 clock_GetTime(&call->startTime);
2112 call->state = RX_STATE_ACTIVE;
2113 call->app.mode = RX_MODE_RECEIVING;
2114 #ifdef RX_KERNEL_TRACE
2115 if (ICL_SETACTIVE(afs_iclSetp)) {
2116 int glockOwner = ISAFS_GLOCK();
2117 if (!glockOwner)
2118 AFS_GLOCK();
2119 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2120 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2121 call);
2122 if (!glockOwner)
2123 AFS_GUNLOCK();
2125 #endif
2127 rxi_calltrace(RX_CALL_START, call);
2128 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2129 call->conn->service->servicePort, call->conn->service->serviceId,
2130 call));
2132 MUTEX_EXIT(&call->lock);
2133 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2134 } else {
2135 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2138 return call;
2140 #else /* RX_ENABLE_LOCKS */
2141 struct rx_call *
2142 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2144 struct rx_serverQueueEntry *sq;
2145 struct rx_call *call = (struct rx_call *)0, *choice2;
2146 struct rx_service *service = NULL;
2147 SPLVAR;
2149 NETPRI;
2150 MUTEX_ENTER(&freeSQEList_lock);
2152 if ((sq = rx_FreeSQEList)) {
2153 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2154 MUTEX_EXIT(&freeSQEList_lock);
2155 } else { /* otherwise allocate a new one and return that */
2156 MUTEX_EXIT(&freeSQEList_lock);
2157 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2158 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2159 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2161 MUTEX_ENTER(&sq->lock);
2163 if (cur_service != NULL) {
2164 cur_service->nRequestsRunning--;
2165 MUTEX_ENTER(&rx_quota_mutex);
2166 if (cur_service->nRequestsRunning < cur_service->minProcs)
2167 rxi_minDeficit++;
2168 rxi_availProcs++;
2169 MUTEX_EXIT(&rx_quota_mutex);
2171 if (!opr_queue_IsEmpty(&rx_incomingCallQueue)) {
2172 struct rx_call *tcall;
2173 struct opr_queue *cursor;
2174 /* Scan for eligible incoming calls. A call is not eligible
2175 * if the maximum number of calls for its service type are
2176 * already executing */
2177 /* One thread will process calls FCFS (to prevent starvation),
2178 * while the other threads may run ahead looking for calls which
2179 * have all their input data available immediately. This helps
2180 * keep threads from blocking, waiting for data from the client. */
2181 choice2 = (struct rx_call *)0;
2182 for (opr_queue_Scan(&rx_incomingCallQueue, cursor)) {
2183 tcall = opr_queue_Entry(cursor, struct rx_call, entry);
2184 service = tcall->conn->service;
2185 if (QuotaOK(service)) {
2186 MUTEX_ENTER(&rx_pthread_mutex);
2187 /* XXX - If tcall->entry.next is NULL, then we're no longer
2188 * on a queue at all. This shouldn't happen. */
2189 if (tno == rxi_fcfs_thread_num || !tcall->entry.next) {
2190 MUTEX_EXIT(&rx_pthread_mutex);
2191 /* If we're the fcfs thread, then we'll just use
2192 * this call. If we haven't been able to find an optimal
2193 * choice, and we're at the end of the list, then use a
2194 * 2d choice if one has been identified. Otherwise... */
2195 call = (choice2 ? choice2 : tcall);
2196 service = call->conn->service;
2197 } else {
2198 MUTEX_EXIT(&rx_pthread_mutex);
2199 if (!opr_queue_IsEmpty(&tcall->rq)) {
2200 struct rx_packet *rp;
2201 rp = opr_queue_First(&tcall->rq, struct rx_packet,
2202 entry);
2203 if (rp->header.seq == 1
2204 && (!meltdown_1pkt
2205 || (rp->header.flags & RX_LAST_PACKET))) {
2206 call = tcall;
2207 } else if (rxi_2dchoice && !choice2
2208 && !(tcall->flags & RX_CALL_CLEARED)
2209 && (tcall->rprev > rxi_HardAckRate)) {
2210 choice2 = tcall;
2211 } else
2212 rxi_md2cnt++;
2216 if (call)
2217 break;
2221 if (call) {
2222 opr_queue_Remove(&call->entry);
2223 /* we can't schedule a call if there's no data!!! */
2224 /* send an ack if there's no data, if we're missing the
2225 * first packet, or we're missing something between first
2226 * and last -- there's a "hole" in the incoming data. */
2227 if (opr_queue_IsEmpty(&call->rq)
2228 || opr_queue_First(&call->rq, struct rx_packet, entry)->header.seq != 1
2229 || call->rprev != opr_queue_Last(&call->rq, struct rx_packet, entry)->header.seq)
2230 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2232 call->flags &= (~RX_CALL_WAIT_PROC);
2233 service->nRequestsRunning++;
2234 /* just started call in minProcs pool, need fewer to maintain
2235 * guarantee */
2236 MUTEX_ENTER(&rx_quota_mutex);
2237 if (service->nRequestsRunning <= service->minProcs)
2238 rxi_minDeficit--;
2239 rxi_availProcs--;
2240 MUTEX_EXIT(&rx_quota_mutex);
2241 rx_atomic_dec(&rx_nWaiting);
2242 /* MUTEX_EXIT(&call->lock); */
2243 } else {
2244 /* If there are no eligible incoming calls, add this process
2245 * to the idle server queue, to wait for one */
2246 sq->newcall = 0;
2247 if (socketp) {
2248 *socketp = OSI_NULLSOCKET;
2250 sq->socketp = socketp;
2251 opr_queue_Append(&rx_idleServerQueue, &sq->entry);
2252 do {
2253 osi_rxSleep(sq);
2254 #ifdef KERNEL
2255 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2256 USERPRI;
2257 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2258 return (struct rx_call *)0;
2260 #endif
2261 } while (!(call = sq->newcall)
2262 && !(socketp && *socketp != OSI_NULLSOCKET));
2264 MUTEX_EXIT(&sq->lock);
2266 MUTEX_ENTER(&freeSQEList_lock);
2267 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2268 rx_FreeSQEList = sq;
2269 MUTEX_EXIT(&freeSQEList_lock);
2271 if (call) {
2272 clock_GetTime(&call->startTime);
2273 call->state = RX_STATE_ACTIVE;
2274 call->app.mode = RX_MODE_RECEIVING;
2275 #ifdef RX_KERNEL_TRACE
2276 if (ICL_SETACTIVE(afs_iclSetp)) {
2277 int glockOwner = ISAFS_GLOCK();
2278 if (!glockOwner)
2279 AFS_GLOCK();
2280 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2281 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2282 call);
2283 if (!glockOwner)
2284 AFS_GUNLOCK();
2286 #endif
2288 rxi_calltrace(RX_CALL_START, call);
2289 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2290 call->conn->service->servicePort, call->conn->service->serviceId,
2291 call));
2292 } else {
2293 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2296 USERPRI;
2298 return call;
2300 #endif /* RX_ENABLE_LOCKS */
2304 /* Establish a procedure to be called when a packet arrives for a
2305 * call. This routine will be called at most once after each call,
2306 * and will also be called if there is an error condition on the or
2307 * the call is complete. Used by multi rx to build a selection
2308 * function which determines which of several calls is likely to be a
2309 * good one to read from.
2310 * NOTE: the way this is currently implemented it is probably only a
2311 * good idea to (1) use it immediately after a newcall (clients only)
2312 * and (2) only use it once. Other uses currently void your warranty
2314 void
2315 rx_SetArrivalProc(struct rx_call *call,
2316 void (*proc) (struct rx_call * call,
2317 void * mh,
2318 int index),
2319 void * handle, int arg)
2321 call->arrivalProc = proc;
2322 call->arrivalProcHandle = handle;
2323 call->arrivalProcArg = arg;
2326 /* Call is finished (possibly prematurely). Return rc to the peer, if
2327 * appropriate, and return the final error code from the conversation
2328 * to the caller */
2330 afs_int32
2331 rx_EndCall(struct rx_call *call, afs_int32 rc)
2333 struct rx_connection *conn = call->conn;
2334 afs_int32 error;
2335 SPLVAR;
2337 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2338 call, rc, call->error, call->abortCode));
2340 NETPRI;
2341 MUTEX_ENTER(&call->lock);
2343 if (rc == 0 && call->error == 0) {
2344 call->abortCode = 0;
2345 call->abortCount = 0;
2348 call->arrivalProc = (void (*)())0;
2349 if (rc && call->error == 0) {
2350 rxi_CallError(call, rc);
2351 call->app.mode = RX_MODE_ERROR;
2352 /* Send an abort message to the peer if this error code has
2353 * only just been set. If it was set previously, assume the
2354 * peer has already been sent the error code or will request it
2356 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2358 if (conn->type == RX_SERVER_CONNECTION) {
2359 /* Make sure reply or at least dummy reply is sent */
2360 if (call->app.mode == RX_MODE_RECEIVING) {
2361 MUTEX_EXIT(&call->lock);
2362 rxi_WriteProc(call, 0, 0);
2363 MUTEX_ENTER(&call->lock);
2365 if (call->app.mode == RX_MODE_SENDING) {
2366 rxi_FlushWriteLocked(call);
2368 rxi_calltrace(RX_CALL_END, call);
2369 /* Call goes to hold state until reply packets are acknowledged */
2370 if (call->tfirst + call->nSoftAcked < call->tnext) {
2371 call->state = RX_STATE_HOLD;
2372 } else {
2373 call->state = RX_STATE_DALLY;
2374 rxi_ClearTransmitQueue(call, 0);
2375 rxi_rto_cancel(call);
2376 rxi_CancelKeepAliveEvent(call);
2378 } else { /* Client connection */
2379 char dummy;
2380 /* Make sure server receives input packets, in the case where
2381 * no reply arguments are expected */
2383 if ((call->app.mode == RX_MODE_SENDING)
2384 || (call->app.mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2385 MUTEX_EXIT(&call->lock);
2386 (void)rxi_ReadProc(call, &dummy, 1);
2387 MUTEX_ENTER(&call->lock);
2390 /* If we had an outstanding delayed ack, be nice to the server
2391 * and force-send it now.
2393 if (call->delayedAckEvent) {
2394 rxi_CancelDelayedAckEvent(call);
2395 rxi_SendDelayedAck(NULL, call, NULL, 0);
2398 /* We need to release the call lock since it's lower than the
2399 * conn_call_lock and we don't want to hold the conn_call_lock
2400 * over the rx_ReadProc call. The conn_call_lock needs to be held
2401 * here for the case where rx_NewCall is perusing the calls on
2402 * the connection structure. We don't want to signal until
2403 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2404 * have checked this call, found it active and by the time it
2405 * goes to sleep, will have missed the signal.
2407 MUTEX_EXIT(&call->lock);
2408 MUTEX_ENTER(&conn->conn_call_lock);
2409 MUTEX_ENTER(&call->lock);
2411 if (!call->error) {
2412 /* While there are some circumstances where a call with an error is
2413 * obviously not on a "busy" channel, be conservative (clearing
2414 * lastBusy is just best-effort to possibly speed up rx_NewCall).
2415 * The call channel is definitely not busy if we just successfully
2416 * completed a call on it. */
2417 conn->lastBusy[call->channel] = 0;
2419 } else if (call->error == RX_CALL_TIMEOUT) {
2420 /* The call is still probably running on the server side, so try to
2421 * avoid this call channel in the future. */
2422 conn->lastBusy[call->channel] = clock_Sec();
2425 MUTEX_ENTER(&conn->conn_data_lock);
2426 conn->flags |= RX_CONN_BUSY;
2427 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2428 MUTEX_EXIT(&conn->conn_data_lock);
2429 #ifdef RX_ENABLE_LOCKS
2430 CV_BROADCAST(&conn->conn_call_cv);
2431 #else
2432 osi_rxWakeup(conn);
2433 #endif
2435 #ifdef RX_ENABLE_LOCKS
2436 else {
2437 MUTEX_EXIT(&conn->conn_data_lock);
2439 #endif /* RX_ENABLE_LOCKS */
2440 call->state = RX_STATE_DALLY;
2442 error = call->error;
2444 /* currentPacket, nLeft, and NFree must be zeroed here, because
2445 * ResetCall cannot: ResetCall may be called at splnet(), in the
2446 * kernel version, and may interrupt the macros rx_Read or
2447 * rx_Write, which run at normal priority for efficiency. */
2448 if (call->app.currentPacket) {
2449 #ifdef RX_TRACK_PACKETS
2450 call->app.currentPacket->flags &= ~RX_PKTFLAG_CP;
2451 #endif
2452 rxi_FreePacket(call->app.currentPacket);
2453 call->app.currentPacket = (struct rx_packet *)0;
2456 call->app.nLeft = call->app.nFree = call->app.curlen = 0;
2458 /* Free any packets from the last call to ReadvProc/WritevProc */
2459 #ifdef RXDEBUG_PACKET
2460 call->iovqc -=
2461 #endif /* RXDEBUG_PACKET */
2462 rxi_FreePackets(0, &call->app.iovq);
2463 MUTEX_EXIT(&call->lock);
2465 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2466 if (conn->type == RX_CLIENT_CONNECTION) {
2467 MUTEX_ENTER(&conn->conn_data_lock);
2468 conn->flags &= ~RX_CONN_BUSY;
2469 MUTEX_EXIT(&conn->conn_data_lock);
2470 MUTEX_EXIT(&conn->conn_call_lock);
2472 USERPRI;
2474 * Map errors to the local host's errno.h format.
2476 error = ntoh_syserr_conv(error);
2478 /* If the caller said the call failed with some error, we had better
2479 * return an error code. */
2480 osi_Assert(!rc || error);
2481 return error;
2484 #if !defined(KERNEL)
2486 /* Call this routine when shutting down a server or client (especially
2487 * clients). This will allow Rx to gracefully garbage collect server
2488 * connections, and reduce the number of retries that a server might
2489 * make to a dead client.
2490 * This is not quite right, since some calls may still be ongoing and
2491 * we can't lock them to destroy them. */
2492 void
2493 rx_Finalize(void)
2495 struct rx_connection **conn_ptr, **conn_end;
2497 INIT_PTHREAD_LOCKS;
2498 if (rx_atomic_test_and_set_bit(&rxinit_status, 0))
2499 return; /* Already shutdown. */
2501 rxi_DeleteCachedConnections();
2502 if (rx_connHashTable) {
2503 MUTEX_ENTER(&rx_connHashTable_lock);
2504 for (conn_ptr = &rx_connHashTable[0], conn_end =
2505 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2506 conn_ptr++) {
2507 struct rx_connection *conn, *next;
2508 for (conn = *conn_ptr; conn; conn = next) {
2509 next = conn->next;
2510 if (conn->type == RX_CLIENT_CONNECTION) {
2511 rx_GetConnection(conn);
2512 #ifdef RX_ENABLE_LOCKS
2513 rxi_DestroyConnectionNoLock(conn);
2514 #else /* RX_ENABLE_LOCKS */
2515 rxi_DestroyConnection(conn);
2516 #endif /* RX_ENABLE_LOCKS */
2520 #ifdef RX_ENABLE_LOCKS
2521 while (rx_connCleanup_list) {
2522 struct rx_connection *conn;
2523 conn = rx_connCleanup_list;
2524 rx_connCleanup_list = rx_connCleanup_list->next;
2525 MUTEX_EXIT(&rx_connHashTable_lock);
2526 rxi_CleanupConnection(conn);
2527 MUTEX_ENTER(&rx_connHashTable_lock);
2529 MUTEX_EXIT(&rx_connHashTable_lock);
2530 #endif /* RX_ENABLE_LOCKS */
2532 rxi_flushtrace();
2534 #ifdef AFS_NT40_ENV
2535 afs_winsockCleanup();
2536 #endif
2539 #endif
2541 /* if we wakeup packet waiter too often, can get in loop with two
2542 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2543 void
2544 rxi_PacketsUnWait(void)
2546 if (!rx_waitingForPackets) {
2547 return;
2549 #ifdef KERNEL
2550 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2551 return; /* still over quota */
2553 #endif /* KERNEL */
2554 rx_waitingForPackets = 0;
2555 #ifdef RX_ENABLE_LOCKS
2556 CV_BROADCAST(&rx_waitingForPackets_cv);
2557 #else
2558 osi_rxWakeup(&rx_waitingForPackets);
2559 #endif
2560 return;
2564 /* ------------------Internal interfaces------------------------- */
2566 /* Return this process's service structure for the
2567 * specified socket and service */
2568 static struct rx_service *
2569 rxi_FindService(osi_socket socket, u_short serviceId)
2571 struct rx_service **sp;
2572 for (sp = &rx_services[0]; *sp; sp++) {
2573 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2574 return *sp;
2576 return 0;
2579 #ifdef RXDEBUG_PACKET
2580 #ifdef KDUMP_RX_LOCK
2581 static struct rx_call_rx_lock *rx_allCallsp = 0;
2582 #else
2583 static struct rx_call *rx_allCallsp = 0;
2584 #endif
2585 #endif /* RXDEBUG_PACKET */
2587 /* Allocate a call structure, for the indicated channel of the
2588 * supplied connection. The mode and state of the call must be set by
2589 * the caller. Returns the call with mutex locked. */
2590 static struct rx_call *
2591 rxi_NewCall(struct rx_connection *conn, int channel)
2593 struct rx_call *call;
2594 #ifdef RX_ENABLE_LOCKS
2595 struct rx_call *cp; /* Call pointer temp */
2596 struct opr_queue *cursor;
2597 #endif
2599 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2601 /* Grab an existing call structure, or allocate a new one.
2602 * Existing call structures are assumed to have been left reset by
2603 * rxi_FreeCall */
2604 MUTEX_ENTER(&rx_freeCallQueue_lock);
2606 #ifdef RX_ENABLE_LOCKS
2608 * EXCEPT that the TQ might not yet be cleared out.
2609 * Skip over those with in-use TQs.
2611 call = NULL;
2612 for (opr_queue_Scan(&rx_freeCallQueue, cursor)) {
2613 cp = opr_queue_Entry(cursor, struct rx_call, entry);
2614 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2615 call = cp;
2616 break;
2619 if (call) {
2620 #else /* RX_ENABLE_LOCKS */
2621 if (!opr_queue_IsEmpty(&rx_freeCallQueue)) {
2622 call = opr_queue_First(&rx_freeCallQueue, struct rx_call, entry);
2623 #endif /* RX_ENABLE_LOCKS */
2624 opr_queue_Remove(&call->entry);
2625 if (rx_stats_active)
2626 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2627 MUTEX_EXIT(&rx_freeCallQueue_lock);
2628 MUTEX_ENTER(&call->lock);
2629 CLEAR_CALL_QUEUE_LOCK(call);
2630 #ifdef RX_ENABLE_LOCKS
2631 /* Now, if TQ wasn't cleared earlier, do it now. */
2632 rxi_WaitforTQBusy(call);
2633 if (call->flags & RX_CALL_TQ_CLEARME) {
2634 rxi_ClearTransmitQueue(call, 1);
2635 /*queue_Init(&call->tq);*/
2637 #endif /* RX_ENABLE_LOCKS */
2638 /* Bind the call to its connection structure */
2639 call->conn = conn;
2640 rxi_ResetCall(call, 1);
2641 } else {
2643 call = rxi_Alloc(sizeof(struct rx_call));
2644 #ifdef RXDEBUG_PACKET
2645 call->allNextp = rx_allCallsp;
2646 rx_allCallsp = call;
2647 call->call_id =
2648 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2649 #else /* RXDEBUG_PACKET */
2650 rx_atomic_inc(&rx_stats.nCallStructs);
2651 #endif /* RXDEBUG_PACKET */
2653 MUTEX_EXIT(&rx_freeCallQueue_lock);
2654 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2655 MUTEX_ENTER(&call->lock);
2656 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2657 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2658 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2660 /* Initialize once-only items */
2661 opr_queue_Init(&call->tq);
2662 opr_queue_Init(&call->rq);
2663 opr_queue_Init(&call->app.iovq);
2664 #ifdef RXDEBUG_PACKET
2665 call->rqc = call->tqc = call->iovqc = 0;
2666 #endif /* RXDEBUG_PACKET */
2667 /* Bind the call to its connection structure (prereq for reset) */
2668 call->conn = conn;
2669 rxi_ResetCall(call, 1);
2671 call->channel = channel;
2672 call->callNumber = &conn->callNumber[channel];
2673 call->rwind = conn->rwind[channel];
2674 call->twind = conn->twind[channel];
2675 /* Note that the next expected call number is retained (in
2676 * conn->callNumber[i]), even if we reallocate the call structure
2678 conn->call[channel] = call;
2679 /* if the channel's never been used (== 0), we should start at 1, otherwise
2680 * the call number is valid from the last time this channel was used */
2681 if (*call->callNumber == 0)
2682 *call->callNumber = 1;
2684 return call;
2687 /* A call has been inactive long enough that so we can throw away
2688 * state, including the call structure, which is placed on the call
2689 * free list.
2691 * call->lock amd rx_refcnt_mutex are held upon entry.
2692 * haveCTLock is set when called from rxi_ReapConnections.
2694 * return 1 if the call is freed, 0 if not.
2696 static int
2697 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2699 int channel = call->channel;
2700 struct rx_connection *conn = call->conn;
2701 u_char state = call->state;
2704 * We are setting the state to RX_STATE_RESET to
2705 * ensure that no one else will attempt to use this
2706 * call once we drop the refcnt lock. We must drop
2707 * the refcnt lock before calling rxi_ResetCall
2708 * because it cannot be held across acquiring the
2709 * freepktQ lock. NewCall does the same.
2711 call->state = RX_STATE_RESET;
2712 MUTEX_EXIT(&rx_refcnt_mutex);
2713 rxi_ResetCall(call, 0);
2715 if (MUTEX_TRYENTER(&conn->conn_call_lock))
2717 if (state == RX_STATE_DALLY || state == RX_STATE_HOLD)
2718 (*call->callNumber)++;
2720 if (call->conn->call[channel] == call)
2721 call->conn->call[channel] = 0;
2722 MUTEX_EXIT(&conn->conn_call_lock);
2723 } else {
2725 * We couldn't obtain the conn_call_lock so we can't
2726 * disconnect the call from the connection. Set the
2727 * call state to dally so that the call can be reused.
2729 MUTEX_ENTER(&rx_refcnt_mutex);
2730 call->state = RX_STATE_DALLY;
2731 return 0;
2734 MUTEX_ENTER(&rx_freeCallQueue_lock);
2735 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2736 #ifdef RX_ENABLE_LOCKS
2737 /* A call may be free even though its transmit queue is still in use.
2738 * Since we search the call list from head to tail, put busy calls at
2739 * the head of the list, and idle calls at the tail.
2741 if (call->flags & RX_CALL_TQ_BUSY)
2742 opr_queue_Prepend(&rx_freeCallQueue, &call->entry);
2743 else
2744 opr_queue_Append(&rx_freeCallQueue, &call->entry);
2745 #else /* RX_ENABLE_LOCKS */
2746 opr_queue_Append(&rx_freeCallQueue, &call->entry);
2747 #endif /* RX_ENABLE_LOCKS */
2748 if (rx_stats_active)
2749 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2750 MUTEX_EXIT(&rx_freeCallQueue_lock);
2752 /* Destroy the connection if it was previously slated for
2753 * destruction, i.e. the Rx client code previously called
2754 * rx_DestroyConnection (client connections), or
2755 * rxi_ReapConnections called the same routine (server
2756 * connections). Only do this, however, if there are no
2757 * outstanding calls. Note that for fine grain locking, there appears
2758 * to be a deadlock in that rxi_FreeCall has a call locked and
2759 * DestroyConnectionNoLock locks each call in the conn. But note a
2760 * few lines up where we have removed this call from the conn.
2761 * If someone else destroys a connection, they either have no
2762 * call lock held or are going through this section of code.
2764 MUTEX_ENTER(&conn->conn_data_lock);
2765 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2766 rx_GetConnection(conn);
2767 MUTEX_EXIT(&conn->conn_data_lock);
2768 #ifdef RX_ENABLE_LOCKS
2769 if (haveCTLock)
2770 rxi_DestroyConnectionNoLock(conn);
2771 else
2772 rxi_DestroyConnection(conn);
2773 #else /* RX_ENABLE_LOCKS */
2774 rxi_DestroyConnection(conn);
2775 #endif /* RX_ENABLE_LOCKS */
2776 } else {
2777 MUTEX_EXIT(&conn->conn_data_lock);
2779 MUTEX_ENTER(&rx_refcnt_mutex);
2780 return 1;
2783 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2784 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2786 void *
2787 rxi_Alloc(size_t size)
2789 char *p;
2791 if (rx_stats_active) {
2792 rx_atomic_add(&rxi_Allocsize, (int) size);
2793 rx_atomic_inc(&rxi_Alloccnt);
2796 p = (char *)
2797 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2798 afs_osi_Alloc_NoSleep(size);
2799 #else
2800 osi_Alloc(size);
2801 #endif
2802 if (!p)
2803 osi_Panic("rxi_Alloc error");
2804 memset(p, 0, size);
2805 return p;
2808 void
2809 rxi_Free(void *addr, size_t size)
2811 if (rx_stats_active) {
2812 rx_atomic_sub(&rxi_Allocsize, (int) size);
2813 rx_atomic_dec(&rxi_Alloccnt);
2815 osi_Free(addr, size);
2818 void
2819 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2821 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2822 struct rx_peer *next = NULL;
2823 int hashIndex;
2825 if (!peer) {
2826 MUTEX_ENTER(&rx_peerHashTable_lock);
2827 if (port == 0) {
2828 peer_ptr = &rx_peerHashTable[0];
2829 peer_end = &rx_peerHashTable[rx_hashTableSize];
2830 next = NULL;
2831 resume:
2832 for ( ; peer_ptr < peer_end; peer_ptr++) {
2833 if (!peer)
2834 peer = *peer_ptr;
2835 for ( ; peer; peer = next) {
2836 next = peer->next;
2837 if (host == peer->host)
2838 break;
2841 } else {
2842 hashIndex = PEER_HASH(host, port);
2843 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2844 if ((peer->host == host) && (peer->port == port))
2845 break;
2848 } else {
2849 MUTEX_ENTER(&rx_peerHashTable_lock);
2852 if (peer) {
2853 peer->refCount++;
2854 MUTEX_EXIT(&rx_peerHashTable_lock);
2856 MUTEX_ENTER(&peer->peer_lock);
2857 /* We don't handle dropping below min, so don't */
2858 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2859 peer->ifMTU=MIN(mtu, peer->ifMTU);
2860 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2861 /* if we tweaked this down, need to tune our peer MTU too */
2862 peer->MTU = MIN(peer->MTU, peer->natMTU);
2863 /* if we discovered a sub-1500 mtu, degrade */
2864 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2865 peer->maxDgramPackets = 1;
2866 /* We no longer have valid peer packet information */
2867 if (peer->maxPacketSize + RX_HEADER_SIZE > peer->ifMTU)
2868 peer->maxPacketSize = 0;
2869 MUTEX_EXIT(&peer->peer_lock);
2871 MUTEX_ENTER(&rx_peerHashTable_lock);
2872 peer->refCount--;
2873 if (host && !port) {
2874 peer = next;
2875 /* pick up where we left off */
2876 goto resume;
2879 MUTEX_EXIT(&rx_peerHashTable_lock);
2882 #ifdef AFS_RXERRQ_ENV
2883 static void
2884 rxi_SetPeerDead(struct sock_extended_err *err, afs_uint32 host, afs_uint16 port)
2886 int hashIndex = PEER_HASH(host, port);
2887 struct rx_peer *peer;
2889 MUTEX_ENTER(&rx_peerHashTable_lock);
2891 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2892 if (peer->host == host && peer->port == port) {
2893 peer->refCount++;
2894 break;
2898 MUTEX_EXIT(&rx_peerHashTable_lock);
2900 if (peer) {
2901 rx_atomic_inc(&peer->neterrs);
2902 MUTEX_ENTER(&peer->peer_lock);
2903 peer->last_err_origin = RX_NETWORK_ERROR_ORIGIN_ICMP;
2904 peer->last_err_type = err->ee_type;
2905 peer->last_err_code = err->ee_code;
2906 MUTEX_EXIT(&peer->peer_lock);
2908 MUTEX_ENTER(&rx_peerHashTable_lock);
2909 peer->refCount--;
2910 MUTEX_EXIT(&rx_peerHashTable_lock);
2914 void
2915 rxi_ProcessNetError(struct sock_extended_err *err, afs_uint32 addr, afs_uint16 port)
2917 # ifdef AFS_ADAPT_PMTU
2918 if (err->ee_errno == EMSGSIZE && err->ee_info >= 68) {
2919 rxi_SetPeerMtu(NULL, addr, port, err->ee_info - RX_IPUDP_SIZE);
2920 return;
2922 # endif
2923 if (err->ee_origin == SO_EE_ORIGIN_ICMP && err->ee_type == ICMP_DEST_UNREACH) {
2924 switch (err->ee_code) {
2925 case ICMP_NET_UNREACH:
2926 case ICMP_HOST_UNREACH:
2927 case ICMP_PORT_UNREACH:
2928 case ICMP_NET_ANO:
2929 case ICMP_HOST_ANO:
2930 rxi_SetPeerDead(err, addr, port);
2931 break;
2936 static const char *
2937 rxi_TranslateICMP(int type, int code)
2939 switch (type) {
2940 case ICMP_DEST_UNREACH:
2941 switch (code) {
2942 case ICMP_NET_UNREACH:
2943 return "Destination Net Unreachable";
2944 case ICMP_HOST_UNREACH:
2945 return "Destination Host Unreachable";
2946 case ICMP_PROT_UNREACH:
2947 return "Destination Protocol Unreachable";
2948 case ICMP_PORT_UNREACH:
2949 return "Destination Port Unreachable";
2950 case ICMP_NET_ANO:
2951 return "Destination Net Prohibited";
2952 case ICMP_HOST_ANO:
2953 return "Destination Host Prohibited";
2955 break;
2957 return NULL;
2959 #endif /* AFS_RXERRQ_ENV */
2962 * Get the last network error for a connection
2964 * A "network error" here means an error retrieved from ICMP, or some other
2965 * mechanism outside of Rx that informs us of errors in network reachability.
2967 * If a peer associated with the given Rx connection has received a network
2968 * error recently, this function allows the caller to know what error
2969 * specifically occurred. This can be useful to know, since e.g. ICMP errors
2970 * can cause calls to that peer to be quickly aborted. So, this function can
2971 * help see why a call was aborted due to network errors.
2973 * If we have received traffic from a peer since the last network error, we
2974 * treat that peer as if we had not received an network error for it.
2976 * @param[in] conn The Rx connection to examine
2977 * @param[out] err_origin The origin of the last network error (e.g. ICMP);
2978 * one of the RX_NETWORK_ERROR_ORIGIN_* constants
2979 * @param[out] err_type The type of the last error
2980 * @param[out] err_code The code of the last error
2981 * @param[out] msg Human-readable error message, if applicable; NULL otherwise
2983 * @return If we have an error
2984 * @retval -1 No error to get; 'out' params are undefined
2985 * @retval 0 We have an error; 'out' params contain the last error
2988 rx_GetNetworkError(struct rx_connection *conn, int *err_origin, int *err_type,
2989 int *err_code, const char **msg)
2991 #ifdef AFS_RXERRQ_ENV
2992 struct rx_peer *peer = conn->peer;
2993 if (rx_atomic_read(&peer->neterrs)) {
2994 MUTEX_ENTER(&peer->peer_lock);
2995 *err_origin = peer->last_err_origin;
2996 *err_type = peer->last_err_type;
2997 *err_code = peer->last_err_code;
2998 MUTEX_EXIT(&peer->peer_lock);
3000 *msg = NULL;
3001 if (*err_origin == RX_NETWORK_ERROR_ORIGIN_ICMP) {
3002 *msg = rxi_TranslateICMP(*err_type, *err_code);
3005 return 0;
3007 #endif
3008 return -1;
3011 /* Find the peer process represented by the supplied (host,port)
3012 * combination. If there is no appropriate active peer structure, a
3013 * new one will be allocated and initialized
3015 struct rx_peer *
3016 rxi_FindPeer(afs_uint32 host, u_short port, int create)
3018 struct rx_peer *pp;
3019 int hashIndex;
3020 hashIndex = PEER_HASH(host, port);
3021 MUTEX_ENTER(&rx_peerHashTable_lock);
3022 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
3023 if ((pp->host == host) && (pp->port == port))
3024 break;
3026 if (!pp) {
3027 if (create) {
3028 pp = rxi_AllocPeer(); /* This bzero's *pp */
3029 pp->host = host; /* set here or in InitPeerParams is zero */
3030 pp->port = port;
3031 #ifdef AFS_RXERRQ_ENV
3032 rx_atomic_set(&pp->neterrs, 0);
3033 #endif
3034 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
3035 opr_queue_Init(&pp->rpcStats);
3036 pp->next = rx_peerHashTable[hashIndex];
3037 rx_peerHashTable[hashIndex] = pp;
3038 rxi_InitPeerParams(pp);
3039 if (rx_stats_active)
3040 rx_atomic_inc(&rx_stats.nPeerStructs);
3043 if (pp && create) {
3044 pp->refCount++;
3046 MUTEX_EXIT(&rx_peerHashTable_lock);
3047 return pp;
3051 /* Find the connection at (host, port) started at epoch, and with the
3052 * given connection id. Creates the server connection if necessary.
3053 * The type specifies whether a client connection or a server
3054 * connection is desired. In both cases, (host, port) specify the
3055 * peer's (host, pair) pair. Client connections are not made
3056 * automatically by this routine. The parameter socket gives the
3057 * socket descriptor on which the packet was received. This is used,
3058 * in the case of server connections, to check that *new* connections
3059 * come via a valid (port, serviceId). Finally, the securityIndex
3060 * parameter must match the existing index for the connection. If a
3061 * server connection is created, it will be created using the supplied
3062 * index, if the index is valid for this service */
3063 static struct rx_connection *
3064 rxi_FindConnection(osi_socket socket, afs_uint32 host,
3065 u_short port, u_short serviceId, afs_uint32 cid,
3066 afs_uint32 epoch, int type, u_int securityIndex,
3067 int *unknownService)
3069 int hashindex, flag, i;
3070 struct rx_connection *conn;
3071 *unknownService = 0;
3072 hashindex = CONN_HASH(host, port, cid, epoch, type);
3073 MUTEX_ENTER(&rx_connHashTable_lock);
3074 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
3075 rx_connHashTable[hashindex],
3076 flag = 1);
3077 for (; conn;) {
3078 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
3079 && (epoch == conn->epoch)) {
3080 struct rx_peer *pp = conn->peer;
3081 if (securityIndex != conn->securityIndex) {
3082 /* this isn't supposed to happen, but someone could forge a packet
3083 * like this, and there seems to be some CM bug that makes this
3084 * happen from time to time -- in which case, the fileserver
3085 * asserts. */
3086 MUTEX_EXIT(&rx_connHashTable_lock);
3087 return (struct rx_connection *)0;
3089 if (pp->host == host && pp->port == port)
3090 break;
3091 if (type == RX_CLIENT_CONNECTION && pp->port == port)
3092 break;
3093 /* So what happens when it's a callback connection? */
3094 if ( /*type == RX_CLIENT_CONNECTION && */
3095 (conn->epoch & 0x80000000))
3096 break;
3098 if (!flag) {
3099 /* the connection rxLastConn that was used the last time is not the
3100 ** one we are looking for now. Hence, start searching in the hash */
3101 flag = 1;
3102 conn = rx_connHashTable[hashindex];
3103 } else
3104 conn = conn->next;
3106 if (!conn) {
3107 struct rx_service *service;
3108 if (type == RX_CLIENT_CONNECTION) {
3109 MUTEX_EXIT(&rx_connHashTable_lock);
3110 return (struct rx_connection *)0;
3112 service = rxi_FindService(socket, serviceId);
3113 if (!service || (securityIndex >= service->nSecurityObjects)
3114 || (service->securityObjects[securityIndex] == 0)) {
3115 MUTEX_EXIT(&rx_connHashTable_lock);
3116 *unknownService = 1;
3117 return (struct rx_connection *)0;
3119 conn = rxi_AllocConnection(); /* This bzero's the connection */
3120 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
3121 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
3122 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
3123 conn->next = rx_connHashTable[hashindex];
3124 rx_connHashTable[hashindex] = conn;
3125 conn->peer = rxi_FindPeer(host, port, 1);
3126 conn->type = RX_SERVER_CONNECTION;
3127 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
3128 conn->epoch = epoch;
3129 conn->cid = cid & RX_CIDMASK;
3130 conn->ackRate = RX_FAST_ACK_RATE;
3131 conn->service = service;
3132 conn->serviceId = serviceId;
3133 conn->securityIndex = securityIndex;
3134 conn->securityObject = service->securityObjects[securityIndex];
3135 conn->nSpecific = 0;
3136 conn->specific = NULL;
3137 rx_SetConnDeadTime(conn, service->connDeadTime);
3138 rx_SetConnIdleDeadTime(conn, service->idleDeadTime);
3139 for (i = 0; i < RX_MAXCALLS; i++) {
3140 conn->twind[i] = rx_initSendWindow;
3141 conn->rwind[i] = rx_initReceiveWindow;
3143 /* Notify security object of the new connection */
3144 RXS_NewConnection(conn->securityObject, conn);
3145 /* XXXX Connection timeout? */
3146 if (service->newConnProc)
3147 (*service->newConnProc) (conn);
3148 if (rx_stats_active)
3149 rx_atomic_inc(&rx_stats.nServerConns);
3152 rx_GetConnection(conn);
3154 rxLastConn = conn; /* store this connection as the last conn used */
3155 MUTEX_EXIT(&rx_connHashTable_lock);
3156 return conn;
3160 * Abort the call if the server is over the busy threshold. This
3161 * can be used without requiring a call structure be initialised,
3162 * or connected to a particular channel
3164 static_inline int
3165 rxi_AbortIfServerBusy(osi_socket socket, struct rx_connection *conn,
3166 struct rx_packet *np)
3168 if ((rx_BusyThreshold > 0) &&
3169 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3170 rxi_SendRawAbort(socket, conn->peer->host, conn->peer->port,
3171 rx_BusyError, np, 0);
3172 if (rx_stats_active)
3173 rx_atomic_inc(&rx_stats.nBusies);
3174 return 1;
3177 return 0;
3180 static_inline struct rx_call *
3181 rxi_ReceiveClientCall(struct rx_packet *np, struct rx_connection *conn)
3183 int channel;
3184 struct rx_call *call;
3186 channel = np->header.cid & RX_CHANNELMASK;
3187 MUTEX_ENTER(&conn->conn_call_lock);
3188 call = conn->call[channel];
3189 if (np->header.type == RX_PACKET_TYPE_BUSY) {
3190 conn->lastBusy[channel] = clock_Sec();
3192 if (!call || conn->callNumber[channel] != np->header.callNumber) {
3193 MUTEX_EXIT(&conn->conn_call_lock);
3194 if (rx_stats_active)
3195 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3196 return NULL;
3199 MUTEX_ENTER(&call->lock);
3200 MUTEX_EXIT(&conn->conn_call_lock);
3202 if ((call->state == RX_STATE_DALLY)
3203 && np->header.type == RX_PACKET_TYPE_ACK) {
3204 if (rx_stats_active)
3205 rx_atomic_inc(&rx_stats.ignorePacketDally);
3206 MUTEX_EXIT(&call->lock);
3207 return NULL;
3210 return call;
3213 static_inline struct rx_call *
3214 rxi_ReceiveServerCall(osi_socket socket, struct rx_packet *np,
3215 struct rx_connection *conn)
3217 int channel;
3218 struct rx_call *call;
3220 channel = np->header.cid & RX_CHANNELMASK;
3221 MUTEX_ENTER(&conn->conn_call_lock);
3222 call = conn->call[channel];
3224 if (!call) {
3225 if (rxi_AbortIfServerBusy(socket, conn, np)) {
3226 MUTEX_EXIT(&conn->conn_call_lock);
3227 return NULL;
3230 call = rxi_NewCall(conn, channel); /* returns locked call */
3231 *call->callNumber = np->header.callNumber;
3232 MUTEX_EXIT(&conn->conn_call_lock);
3234 call->state = RX_STATE_PRECALL;
3235 clock_GetTime(&call->queueTime);
3236 call->app.bytesSent = 0;
3237 call->app.bytesRcvd = 0;
3238 rxi_KeepAliveOn(call);
3240 return call;
3243 if (np->header.callNumber == conn->callNumber[channel]) {
3244 MUTEX_ENTER(&call->lock);
3245 MUTEX_EXIT(&conn->conn_call_lock);
3246 return call;
3249 if (np->header.callNumber < conn->callNumber[channel]) {
3250 MUTEX_EXIT(&conn->conn_call_lock);
3251 if (rx_stats_active)
3252 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3253 return NULL;
3256 MUTEX_ENTER(&call->lock);
3257 MUTEX_EXIT(&conn->conn_call_lock);
3259 /* Wait until the transmit queue is idle before deciding
3260 * whether to reset the current call. Chances are that the
3261 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3262 * flag is cleared.
3264 #ifdef RX_ENABLE_LOCKS
3265 if (call->state == RX_STATE_ACTIVE && !call->error) {
3266 rxi_WaitforTQBusy(call);
3267 /* If we entered error state while waiting,
3268 * must call rxi_CallError to permit rxi_ResetCall
3269 * to processed when the tqWaiter count hits zero.
3271 if (call->error) {
3272 rxi_CallError(call, call->error);
3273 MUTEX_EXIT(&call->lock);
3274 return NULL;
3277 #endif /* RX_ENABLE_LOCKS */
3278 /* If the new call cannot be taken right now send a busy and set
3279 * the error condition in this call, so that it terminates as
3280 * quickly as possible */
3281 if (call->state == RX_STATE_ACTIVE) {
3282 rxi_CallError(call, RX_CALL_DEAD);
3283 rxi_SendSpecial(call, conn, NULL, RX_PACKET_TYPE_BUSY,
3284 NULL, 0, 1);
3285 MUTEX_EXIT(&call->lock);
3286 return NULL;
3289 if (rxi_AbortIfServerBusy(socket, conn, np)) {
3290 MUTEX_EXIT(&call->lock);
3291 return NULL;
3294 rxi_ResetCall(call, 0);
3295 /* The conn_call_lock is not held but no one else should be
3296 * using this call channel while we are processing this incoming
3297 * packet. This assignment should be safe.
3299 *call->callNumber = np->header.callNumber;
3300 call->state = RX_STATE_PRECALL;
3301 clock_GetTime(&call->queueTime);
3302 call->app.bytesSent = 0;
3303 call->app.bytesRcvd = 0;
3304 rxi_KeepAliveOn(call);
3306 return call;
3310 /* There are two packet tracing routines available for testing and monitoring
3311 * Rx. One is called just after every packet is received and the other is
3312 * called just before every packet is sent. Received packets, have had their
3313 * headers decoded, and packets to be sent have not yet had their headers
3314 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3315 * containing the network address. Both can be modified. The return value, if
3316 * non-zero, indicates that the packet should be dropped. */
3318 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3319 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3321 /* A packet has been received off the interface. Np is the packet, socket is
3322 * the socket number it was received from (useful in determining which service
3323 * this packet corresponds to), and (host, port) reflect the host,port of the
3324 * sender. This call returns the packet to the caller if it is finished with
3325 * it, rather than de-allocating it, just as a small performance hack */
3327 struct rx_packet *
3328 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3329 afs_uint32 host, u_short port, int *tnop,
3330 struct rx_call **newcallp)
3332 struct rx_call *call;
3333 struct rx_connection *conn;
3334 int type;
3335 int unknownService = 0;
3336 #ifdef RXDEBUG
3337 char *packetType;
3338 #endif
3339 struct rx_packet *tnp;
3341 #ifdef RXDEBUG
3342 /* We don't print out the packet until now because (1) the time may not be
3343 * accurate enough until now in the lwp implementation (rx_Listener only gets
3344 * the time after the packet is read) and (2) from a protocol point of view,
3345 * this is the first time the packet has been seen */
3346 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3347 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3348 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3349 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3350 np->header.epoch, np->header.cid, np->header.callNumber,
3351 np->header.seq, np->header.flags, np));
3352 #endif
3354 /* Account for connectionless packets */
3355 if (rx_stats_active &&
3356 ((np->header.type == RX_PACKET_TYPE_VERSION) ||
3357 (np->header.type == RX_PACKET_TYPE_DEBUG))) {
3358 struct rx_peer *peer;
3360 /* Try to look up the peer structure, but don't create one */
3361 peer = rxi_FindPeer(host, port, 0);
3363 /* Since this may not be associated with a connection, it may have
3364 * no refCount, meaning we could race with ReapConnections
3367 if (peer && (peer->refCount > 0)) {
3368 #ifdef AFS_RXERRQ_ENV
3369 if (rx_atomic_read(&peer->neterrs)) {
3370 rx_atomic_set(&peer->neterrs, 0);
3372 #endif
3373 MUTEX_ENTER(&peer->peer_lock);
3374 peer->bytesReceived += np->length;
3375 MUTEX_EXIT(&peer->peer_lock);
3379 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3380 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3383 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3384 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3386 #ifdef RXDEBUG
3387 /* If an input tracer function is defined, call it with the packet and
3388 * network address. Note this function may modify its arguments. */
3389 if (rx_justReceived) {
3390 struct sockaddr_in addr;
3391 int drop;
3392 addr.sin_family = AF_INET;
3393 addr.sin_port = port;
3394 addr.sin_addr.s_addr = host;
3395 memset(&addr.sin_zero, 0, sizeof(addr.sin_zero));
3396 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3397 addr.sin_len = sizeof(addr);
3398 #endif /* AFS_OSF_ENV */
3399 drop = (*rx_justReceived) (np, &addr);
3400 /* drop packet if return value is non-zero */
3401 if (drop)
3402 return np;
3403 port = addr.sin_port; /* in case fcn changed addr */
3404 host = addr.sin_addr.s_addr;
3406 #endif
3408 /* If packet was not sent by the client, then *we* must be the client */
3409 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3410 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3412 /* Find the connection (or fabricate one, if we're the server & if
3413 * necessary) associated with this packet */
3414 conn =
3415 rxi_FindConnection(socket, host, port, np->header.serviceId,
3416 np->header.cid, np->header.epoch, type,
3417 np->header.securityIndex, &unknownService);
3419 /* To avoid having 2 connections just abort at each other,
3420 don't abort an abort. */
3421 if (!conn) {
3422 if (unknownService && (np->header.type != RX_PACKET_TYPE_ABORT))
3423 rxi_SendRawAbort(socket, host, port, RX_INVALID_OPERATION,
3424 np, 0);
3425 return np;
3428 #ifdef AFS_RXERRQ_ENV
3429 if (rx_atomic_read(&conn->peer->neterrs)) {
3430 rx_atomic_set(&conn->peer->neterrs, 0);
3432 #endif
3434 /* If we're doing statistics, then account for the incoming packet */
3435 if (rx_stats_active) {
3436 MUTEX_ENTER(&conn->peer->peer_lock);
3437 conn->peer->bytesReceived += np->length;
3438 MUTEX_EXIT(&conn->peer->peer_lock);
3441 /* If the connection is in an error state, send an abort packet and ignore
3442 * the incoming packet */
3443 if (conn->error) {
3444 /* Don't respond to an abort packet--we don't want loops! */
3445 MUTEX_ENTER(&conn->conn_data_lock);
3446 if (np->header.type != RX_PACKET_TYPE_ABORT)
3447 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3448 putConnection(conn);
3449 MUTEX_EXIT(&conn->conn_data_lock);
3450 return np;
3453 /* Check for connection-only requests (i.e. not call specific). */
3454 if (np->header.callNumber == 0) {
3455 switch (np->header.type) {
3456 case RX_PACKET_TYPE_ABORT: {
3457 /* What if the supplied error is zero? */
3458 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3459 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3460 rxi_ConnectionError(conn, errcode);
3461 putConnection(conn);
3462 return np;
3464 case RX_PACKET_TYPE_CHALLENGE:
3465 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3466 putConnection(conn);
3467 return tnp;
3468 case RX_PACKET_TYPE_RESPONSE:
3469 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3470 putConnection(conn);
3471 return tnp;
3472 case RX_PACKET_TYPE_PARAMS:
3473 case RX_PACKET_TYPE_PARAMS + 1:
3474 case RX_PACKET_TYPE_PARAMS + 2:
3475 /* ignore these packet types for now */
3476 putConnection(conn);
3477 return np;
3479 default:
3480 /* Should not reach here, unless the peer is broken: send an
3481 * abort packet */
3482 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3483 MUTEX_ENTER(&conn->conn_data_lock);
3484 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3485 putConnection(conn);
3486 MUTEX_EXIT(&conn->conn_data_lock);
3487 return tnp;
3491 if (type == RX_SERVER_CONNECTION)
3492 call = rxi_ReceiveServerCall(socket, np, conn);
3493 else
3494 call = rxi_ReceiveClientCall(np, conn);
3496 if (call == NULL) {
3497 putConnection(conn);
3498 return np;
3501 MUTEX_ASSERT(&call->lock);
3502 /* Set remote user defined status from packet */
3503 call->remoteStatus = np->header.userStatus;
3505 /* Now do packet type-specific processing */
3506 switch (np->header.type) {
3507 case RX_PACKET_TYPE_DATA:
3508 /* If we're a client, and receiving a response, then all the packets
3509 * we transmitted packets are implicitly acknowledged. */
3510 if (type == RX_CLIENT_CONNECTION && !opr_queue_IsEmpty(&call->tq))
3511 rxi_AckAllInTransmitQueue(call);
3513 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3514 newcallp);
3515 break;
3516 case RX_PACKET_TYPE_ACK:
3517 /* Respond immediately to ack packets requesting acknowledgement
3518 * (ping packets) */
3519 if (np->header.flags & RX_REQUEST_ACK) {
3520 if (call->error)
3521 (void)rxi_SendCallAbort(call, 0, 1, 0);
3522 else
3523 (void)rxi_SendAck(call, 0, np->header.serial,
3524 RX_ACK_PING_RESPONSE, 1);
3526 np = rxi_ReceiveAckPacket(call, np, 1);
3527 break;
3528 case RX_PACKET_TYPE_ABORT: {
3529 /* An abort packet: reset the call, passing the error up to the user. */
3530 /* What if error is zero? */
3531 /* What if the error is -1? the application will treat it as a timeout. */
3532 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3533 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3534 rxi_CallError(call, errdata);
3535 MUTEX_EXIT(&call->lock);
3536 putConnection(conn);
3537 return np; /* xmitting; drop packet */
3539 case RX_PACKET_TYPE_BUSY:
3540 /* Mostly ignore BUSY packets. We will update lastReceiveTime below,
3541 * so we don't think the endpoint is completely dead, but otherwise
3542 * just act as if we never saw anything. If all we get are BUSY packets
3543 * back, then we will eventually error out with RX_CALL_TIMEOUT if the
3544 * connection is configured with idle/hard timeouts. */
3545 break;
3547 case RX_PACKET_TYPE_ACKALL:
3548 /* All packets acknowledged, so we can drop all packets previously
3549 * readied for sending */
3550 rxi_AckAllInTransmitQueue(call);
3551 break;
3552 default:
3553 /* Should not reach here, unless the peer is broken: send an abort
3554 * packet */
3555 rxi_CallError(call, RX_PROTOCOL_ERROR);
3556 np = rxi_SendCallAbort(call, np, 1, 0);
3557 break;
3559 /* Note when this last legitimate packet was received, for keep-alive
3560 * processing. Note, we delay getting the time until now in the hope that
3561 * the packet will be delivered to the user before any get time is required
3562 * (if not, then the time won't actually be re-evaluated here). */
3563 call->lastReceiveTime = clock_Sec();
3564 MUTEX_EXIT(&call->lock);
3565 putConnection(conn);
3566 return np;
3569 /* return true if this is an "interesting" connection from the point of view
3570 of someone trying to debug the system */
3572 rxi_IsConnInteresting(struct rx_connection *aconn)
3574 int i;
3575 struct rx_call *tcall;
3577 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3578 return 1;
3580 for (i = 0; i < RX_MAXCALLS; i++) {
3581 tcall = aconn->call[i];
3582 if (tcall) {
3583 if ((tcall->state == RX_STATE_PRECALL)
3584 || (tcall->state == RX_STATE_ACTIVE))
3585 return 1;
3586 if ((tcall->app.mode == RX_MODE_SENDING)
3587 || (tcall->app.mode == RX_MODE_RECEIVING))
3588 return 1;
3591 return 0;
3594 #ifdef KERNEL
3595 /* if this is one of the last few packets AND it wouldn't be used by the
3596 receiving call to immediately satisfy a read request, then drop it on
3597 the floor, since accepting it might prevent a lock-holding thread from
3598 making progress in its reading. If a call has been cleared while in
3599 the precall state then ignore all subsequent packets until the call
3600 is assigned to a thread. */
3602 static int
3603 TooLow(struct rx_packet *ap, struct rx_call *acall)
3605 int rc = 0;
3607 MUTEX_ENTER(&rx_quota_mutex);
3608 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3609 && (acall->state == RX_STATE_PRECALL))
3610 || ((rx_nFreePackets < rxi_dataQuota + 2)
3611 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
3612 && (acall->flags & RX_CALL_READER_WAIT)))) {
3613 rc = 1;
3615 MUTEX_EXIT(&rx_quota_mutex);
3616 return rc;
3618 #endif /* KERNEL */
3621 * Clear the attach wait flag on a connection and proceed.
3623 * Any processing waiting for a connection to be attached should be
3624 * unblocked. We clear the flag and do any other needed tasks.
3626 * @param[in] conn
3627 * the conn to unmark waiting for attach
3629 * @pre conn's conn_data_lock must be locked before calling this function
3632 static void
3633 rxi_ConnClearAttachWait(struct rx_connection *conn)
3635 /* Indicate that rxi_CheckReachEvent is no longer running by
3636 * clearing the flag. Must be atomic under conn_data_lock to
3637 * avoid a new call slipping by: rxi_CheckConnReach holds
3638 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3640 conn->flags &= ~RX_CONN_ATTACHWAIT;
3641 if (conn->flags & RX_CONN_NAT_PING) {
3642 conn->flags &= ~RX_CONN_NAT_PING;
3643 rxi_ScheduleNatKeepAliveEvent(conn);
3648 * Event handler function for connection-specific events for checking
3649 * reachability. Also called directly from main code with |event| == NULL
3650 * in order to trigger the initial reachability check.
3652 * When |event| == NULL, must be called with the connection data lock held,
3653 * but returns with the lock unlocked.
3655 static void
3656 rxi_CheckReachEvent(struct rxevent *event, void *arg1, void *arg2, int dummy)
3658 struct rx_connection *conn = arg1;
3659 struct rx_call *acall = arg2;
3660 struct rx_call *call = acall;
3661 struct clock when, now;
3662 int i, waiting;
3664 if (event != NULL)
3665 MUTEX_ENTER(&conn->conn_data_lock);
3666 else
3667 MUTEX_ASSERT(&conn->conn_data_lock);
3669 if (event != NULL && event == conn->checkReachEvent)
3670 rxevent_Put(&conn->checkReachEvent);
3671 waiting = conn->flags & RX_CONN_ATTACHWAIT;
3672 MUTEX_EXIT(&conn->conn_data_lock);
3674 if (waiting) {
3675 if (!call) {
3676 MUTEX_ENTER(&conn->conn_call_lock);
3677 MUTEX_ENTER(&conn->conn_data_lock);
3678 for (i = 0; i < RX_MAXCALLS; i++) {
3679 struct rx_call *tc = conn->call[i];
3680 if (tc && tc->state == RX_STATE_PRECALL) {
3681 call = tc;
3682 break;
3685 if (!call)
3686 rxi_ConnClearAttachWait(conn);
3687 MUTEX_EXIT(&conn->conn_data_lock);
3688 MUTEX_EXIT(&conn->conn_call_lock);
3691 if (call) {
3692 if (call != acall)
3693 MUTEX_ENTER(&call->lock);
3694 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
3695 if (call != acall)
3696 MUTEX_EXIT(&call->lock);
3698 clock_GetTime(&now);
3699 when = now;
3700 when.sec += RX_CHECKREACH_TIMEOUT;
3701 MUTEX_ENTER(&conn->conn_data_lock);
3702 if (!conn->checkReachEvent) {
3703 rx_GetConnection(conn);
3704 conn->checkReachEvent = rxevent_Post(&when, &now,
3705 rxi_CheckReachEvent, conn,
3706 NULL, 0);
3708 MUTEX_EXIT(&conn->conn_data_lock);
3711 /* If fired as an event handler, drop our refcount on the connection. */
3712 if (event != NULL)
3713 putConnection(conn);
3716 static int
3717 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
3719 struct rx_service *service = conn->service;
3720 struct rx_peer *peer = conn->peer;
3721 afs_uint32 now, lastReach;
3723 if (service->checkReach == 0)
3724 return 0;
3726 now = clock_Sec();
3727 MUTEX_ENTER(&peer->peer_lock);
3728 lastReach = peer->lastReachTime;
3729 MUTEX_EXIT(&peer->peer_lock);
3730 if (now - lastReach < RX_CHECKREACH_TTL)
3731 return 0;
3733 MUTEX_ENTER(&conn->conn_data_lock);
3734 if (conn->flags & RX_CONN_ATTACHWAIT) {
3735 MUTEX_EXIT(&conn->conn_data_lock);
3736 return 1;
3738 conn->flags |= RX_CONN_ATTACHWAIT;
3739 if (conn->checkReachEvent == NULL) {
3740 /* rxi_CheckReachEvent(NULL, ...) will drop the lock. */
3741 rxi_CheckReachEvent(NULL, conn, call, 0);
3742 } else {
3743 MUTEX_EXIT(&conn->conn_data_lock);
3746 return 1;
3749 /* try to attach call, if authentication is complete */
3750 static void
3751 TryAttach(struct rx_call *acall, osi_socket socket,
3752 int *tnop, struct rx_call **newcallp,
3753 int reachOverride)
3755 struct rx_connection *conn = acall->conn;
3757 if (conn->type == RX_SERVER_CONNECTION
3758 && acall->state == RX_STATE_PRECALL) {
3759 /* Don't attach until we have any req'd. authentication. */
3760 if (RXS_CheckAuthentication(conn->securityObject, conn) == 0) {
3761 if (reachOverride || rxi_CheckConnReach(conn, acall) == 0)
3762 rxi_AttachServerProc(acall, socket, tnop, newcallp);
3763 /* Note: this does not necessarily succeed; there
3764 * may not any proc available
3766 } else {
3767 rxi_ChallengeOn(acall->conn);
3772 /* A data packet has been received off the interface. This packet is
3773 * appropriate to the call (the call is in the right state, etc.). This
3774 * routine can return a packet to the caller, for re-use */
3776 static struct rx_packet *
3777 rxi_ReceiveDataPacket(struct rx_call *call,
3778 struct rx_packet *np, int istack,
3779 osi_socket socket, afs_uint32 host, u_short port,
3780 int *tnop, struct rx_call **newcallp)
3782 int ackNeeded = 0; /* 0 means no, otherwise ack_reason */
3783 int newPackets = 0;
3784 int didHardAck = 0;
3785 int haveLast = 0;
3786 afs_uint32 seq;
3787 afs_uint32 serial=0, flags=0;
3788 int isFirst;
3789 struct rx_packet *tnp;
3790 if (rx_stats_active)
3791 rx_atomic_inc(&rx_stats.dataPacketsRead);
3793 #ifdef KERNEL
3794 /* If there are no packet buffers, drop this new packet, unless we can find
3795 * packet buffers from inactive calls */
3796 if (!call->error
3797 && (rxi_OverQuota(RX_PACKET_CLASS_RECEIVE) || TooLow(np, call))) {
3798 MUTEX_ENTER(&rx_freePktQ_lock);
3799 rxi_NeedMorePackets = TRUE;
3800 MUTEX_EXIT(&rx_freePktQ_lock);
3801 if (rx_stats_active)
3802 rx_atomic_inc(&rx_stats.noPacketBuffersOnRead);
3803 rxi_calltrace(RX_TRACE_DROP, call);
3804 dpf(("packet %"AFS_PTR_FMT" dropped on receipt - quota problems\n", np));
3805 /* We used to clear the receive queue here, in an attempt to free
3806 * packets. However this is unsafe if the queue has received a
3807 * soft ACK for the final packet */
3808 rxi_PostDelayedAckEvent(call, &rx_softAckDelay);
3809 return np;
3811 #endif /* KERNEL */
3814 * New in AFS 3.5, if the RX_JUMBO_PACKET flag is set then this
3815 * packet is one of several packets transmitted as a single
3816 * datagram. Do not send any soft or hard acks until all packets
3817 * in a jumbogram have been processed. Send negative acks right away.
3819 for (isFirst = 1, tnp = NULL; isFirst || tnp; isFirst = 0) {
3820 /* tnp is non-null when there are more packets in the
3821 * current jumbo gram */
3822 if (tnp) {
3823 if (np)
3824 rxi_FreePacket(np);
3825 np = tnp;
3828 seq = np->header.seq;
3829 serial = np->header.serial;
3830 flags = np->header.flags;
3832 /* If the call is in an error state, send an abort message */
3833 if (call->error)
3834 return rxi_SendCallAbort(call, np, istack, 0);
3836 /* The RX_JUMBO_PACKET is set in all but the last packet in each
3837 * AFS 3.5 jumbogram. */
3838 if (flags & RX_JUMBO_PACKET) {
3839 tnp = rxi_SplitJumboPacket(np, host, port, isFirst);
3840 } else {
3841 tnp = NULL;
3844 if (np->header.spare != 0) {
3845 MUTEX_ENTER(&call->conn->conn_data_lock);
3846 call->conn->flags |= RX_CONN_USING_PACKET_CKSUM;
3847 MUTEX_EXIT(&call->conn->conn_data_lock);
3850 /* The usual case is that this is the expected next packet */
3851 if (seq == call->rnext) {
3853 /* Check to make sure it is not a duplicate of one already queued */
3854 if (!opr_queue_IsEmpty(&call->rq)
3855 && opr_queue_First(&call->rq, struct rx_packet, entry)->header.seq == seq) {
3856 if (rx_stats_active)
3857 rx_atomic_inc(&rx_stats.dupPacketsRead);
3858 dpf(("packet %"AFS_PTR_FMT" dropped on receipt - duplicate\n", np));
3859 rxi_CancelDelayedAckEvent(call);
3860 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3861 ackNeeded = 0;
3862 call->rprev = seq;
3863 continue;
3866 /* It's the next packet. Stick it on the receive queue
3867 * for this call. Set newPackets to make sure we wake
3868 * the reader once all packets have been processed */
3869 #ifdef RX_TRACK_PACKETS
3870 np->flags |= RX_PKTFLAG_RQ;
3871 #endif
3872 opr_queue_Prepend(&call->rq, &np->entry);
3873 #ifdef RXDEBUG_PACKET
3874 call->rqc++;
3875 #endif /* RXDEBUG_PACKET */
3876 call->nSoftAcks++;
3877 np = NULL; /* We can't use this anymore */
3878 newPackets = 1;
3880 /* If an ack is requested then set a flag to make sure we
3881 * send an acknowledgement for this packet */
3882 if (flags & RX_REQUEST_ACK) {
3883 ackNeeded = RX_ACK_REQUESTED;
3886 /* Keep track of whether we have received the last packet */
3887 if (flags & RX_LAST_PACKET) {
3888 call->flags |= RX_CALL_HAVE_LAST;
3889 haveLast = 1;
3892 /* Check whether we have all of the packets for this call */
3893 if (call->flags & RX_CALL_HAVE_LAST) {
3894 afs_uint32 tseq; /* temporary sequence number */
3895 struct opr_queue *cursor;
3897 for (tseq = seq, opr_queue_Scan(&call->rq, cursor)) {
3898 struct rx_packet *tp;
3900 tp = opr_queue_Entry(cursor, struct rx_packet, entry);
3901 if (tseq != tp->header.seq)
3902 break;
3903 if (tp->header.flags & RX_LAST_PACKET) {
3904 call->flags |= RX_CALL_RECEIVE_DONE;
3905 break;
3907 tseq++;
3911 /* Provide asynchronous notification for those who want it
3912 * (e.g. multi rx) */
3913 if (call->arrivalProc) {
3914 (*call->arrivalProc) (call, call->arrivalProcHandle,
3915 call->arrivalProcArg);
3916 call->arrivalProc = (void (*)())0;
3919 /* Update last packet received */
3920 call->rprev = seq;
3922 /* If there is no server process serving this call, grab
3923 * one, if available. We only need to do this once. If a
3924 * server thread is available, this thread becomes a server
3925 * thread and the server thread becomes a listener thread. */
3926 if (isFirst) {
3927 TryAttach(call, socket, tnop, newcallp, 0);
3930 /* This is not the expected next packet. */
3931 else {
3932 /* Determine whether this is a new or old packet, and if it's
3933 * a new one, whether it fits into the current receive window.
3934 * Also figure out whether the packet was delivered in sequence.
3935 * We use the prev variable to determine whether the new packet
3936 * is the successor of its immediate predecessor in the
3937 * receive queue, and the missing flag to determine whether
3938 * any of this packets predecessors are missing. */
3940 afs_uint32 prev; /* "Previous packet" sequence number */
3941 struct opr_queue *cursor;
3942 int missing; /* Are any predecessors missing? */
3944 /* If the new packet's sequence number has been sent to the
3945 * application already, then this is a duplicate */
3946 if (seq < call->rnext) {
3947 if (rx_stats_active)
3948 rx_atomic_inc(&rx_stats.dupPacketsRead);
3949 rxi_CancelDelayedAckEvent(call);
3950 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3951 ackNeeded = 0;
3952 call->rprev = seq;
3953 continue;
3956 /* If the sequence number is greater than what can be
3957 * accomodated by the current window, then send a negative
3958 * acknowledge and drop the packet */
3959 if ((call->rnext + call->rwind) <= seq) {
3960 rxi_CancelDelayedAckEvent(call);
3961 np = rxi_SendAck(call, np, serial, RX_ACK_EXCEEDS_WINDOW,
3962 istack);
3963 ackNeeded = 0;
3964 call->rprev = seq;
3965 continue;
3968 /* Look for the packet in the queue of old received packets */
3969 prev = call->rnext - 1;
3970 missing = 0;
3971 for (opr_queue_Scan(&call->rq, cursor)) {
3972 struct rx_packet *tp
3973 = opr_queue_Entry(cursor, struct rx_packet, entry);
3975 /*Check for duplicate packet */
3976 if (seq == tp->header.seq) {
3977 if (rx_stats_active)
3978 rx_atomic_inc(&rx_stats.dupPacketsRead);
3979 rxi_CancelDelayedAckEvent(call);
3980 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE,
3981 istack);
3982 ackNeeded = 0;
3983 call->rprev = seq;
3984 goto nextloop;
3986 /* If we find a higher sequence packet, break out and
3987 * insert the new packet here. */
3988 if (seq < tp->header.seq)
3989 break;
3990 /* Check for missing packet */
3991 if (tp->header.seq != prev + 1) {
3992 missing = 1;
3995 prev = tp->header.seq;
3998 /* Keep track of whether we have received the last packet. */
3999 if (flags & RX_LAST_PACKET) {
4000 call->flags |= RX_CALL_HAVE_LAST;
4003 /* It's within the window: add it to the the receive queue.
4004 * tp is left by the previous loop either pointing at the
4005 * packet before which to insert the new packet, or at the
4006 * queue head if the queue is empty or the packet should be
4007 * appended. */
4008 #ifdef RX_TRACK_PACKETS
4009 np->flags |= RX_PKTFLAG_RQ;
4010 #endif
4011 #ifdef RXDEBUG_PACKET
4012 call->rqc++;
4013 #endif /* RXDEBUG_PACKET */
4014 opr_queue_InsertBefore(cursor, &np->entry);
4015 call->nSoftAcks++;
4016 np = NULL;
4018 /* Check whether we have all of the packets for this call */
4019 if ((call->flags & RX_CALL_HAVE_LAST)
4020 && !(call->flags & RX_CALL_RECEIVE_DONE)) {
4021 afs_uint32 tseq; /* temporary sequence number */
4023 tseq = call->rnext;
4024 for (opr_queue_Scan(&call->rq, cursor)) {
4025 struct rx_packet *tp
4026 = opr_queue_Entry(cursor, struct rx_packet, entry);
4027 if (tseq != tp->header.seq)
4028 break;
4029 if (tp->header.flags & RX_LAST_PACKET) {
4030 call->flags |= RX_CALL_RECEIVE_DONE;
4031 break;
4033 tseq++;
4037 /* We need to send an ack of the packet is out of sequence,
4038 * or if an ack was requested by the peer. */
4039 if (seq != prev + 1 || missing) {
4040 ackNeeded = RX_ACK_OUT_OF_SEQUENCE;
4041 } else if (flags & RX_REQUEST_ACK) {
4042 ackNeeded = RX_ACK_REQUESTED;
4045 /* Acknowledge the last packet for each call */
4046 if (flags & RX_LAST_PACKET) {
4047 haveLast = 1;
4050 call->rprev = seq;
4052 nextloop:;
4055 if (newPackets) {
4057 * If the receiver is waiting for an iovec, fill the iovec
4058 * using the data from the receive queue */
4059 if (call->flags & RX_CALL_IOVEC_WAIT) {
4060 didHardAck = rxi_FillReadVec(call, serial);
4061 /* the call may have been aborted */
4062 if (call->error) {
4063 return NULL;
4065 if (didHardAck) {
4066 ackNeeded = 0;
4070 /* Wakeup the reader if any */
4071 if ((call->flags & RX_CALL_READER_WAIT)
4072 && (!(call->flags & RX_CALL_IOVEC_WAIT) || !(call->iovNBytes)
4073 || (call->iovNext >= call->iovMax)
4074 || (call->flags & RX_CALL_RECEIVE_DONE))) {
4075 call->flags &= ~RX_CALL_READER_WAIT;
4076 #ifdef RX_ENABLE_LOCKS
4077 CV_BROADCAST(&call->cv_rq);
4078 #else
4079 osi_rxWakeup(&call->rq);
4080 #endif
4085 * Send an ack when requested by the peer, or once every
4086 * rxi_SoftAckRate packets until the last packet has been
4087 * received. Always send a soft ack for the last packet in
4088 * the server's reply. */
4089 if (ackNeeded) {
4090 rxi_CancelDelayedAckEvent(call);
4091 np = rxi_SendAck(call, np, serial, ackNeeded, istack);
4092 } else if (call->nSoftAcks > (u_short) rxi_SoftAckRate) {
4093 rxi_CancelDelayedAckEvent(call);
4094 np = rxi_SendAck(call, np, serial, RX_ACK_IDLE, istack);
4095 } else if (call->nSoftAcks) {
4096 if (haveLast && !(flags & RX_CLIENT_INITIATED))
4097 rxi_PostDelayedAckEvent(call, &rx_lastAckDelay);
4098 else
4099 rxi_PostDelayedAckEvent(call, &rx_softAckDelay);
4100 } else if (call->flags & RX_CALL_RECEIVE_DONE) {
4101 rxi_CancelDelayedAckEvent(call);
4104 return np;
4107 static void
4108 rxi_UpdatePeerReach(struct rx_connection *conn, struct rx_call *acall)
4110 struct rx_peer *peer = conn->peer;
4112 MUTEX_ENTER(&peer->peer_lock);
4113 peer->lastReachTime = clock_Sec();
4114 MUTEX_EXIT(&peer->peer_lock);
4116 MUTEX_ENTER(&conn->conn_data_lock);
4117 if (conn->flags & RX_CONN_ATTACHWAIT) {
4118 int i;
4120 rxi_ConnClearAttachWait(conn);
4121 MUTEX_EXIT(&conn->conn_data_lock);
4123 for (i = 0; i < RX_MAXCALLS; i++) {
4124 struct rx_call *call = conn->call[i];
4125 if (call) {
4126 if (call != acall)
4127 MUTEX_ENTER(&call->lock);
4128 /* tnop can be null if newcallp is null */
4129 TryAttach(call, (osi_socket) - 1, NULL, NULL, 1);
4130 if (call != acall)
4131 MUTEX_EXIT(&call->lock);
4134 } else
4135 MUTEX_EXIT(&conn->conn_data_lock);
4138 #if defined(RXDEBUG) && defined(AFS_NT40_ENV)
4139 static const char *
4140 rx_ack_reason(int reason)
4142 switch (reason) {
4143 case RX_ACK_REQUESTED:
4144 return "requested";
4145 case RX_ACK_DUPLICATE:
4146 return "duplicate";
4147 case RX_ACK_OUT_OF_SEQUENCE:
4148 return "sequence";
4149 case RX_ACK_EXCEEDS_WINDOW:
4150 return "window";
4151 case RX_ACK_NOSPACE:
4152 return "nospace";
4153 case RX_ACK_PING:
4154 return "ping";
4155 case RX_ACK_PING_RESPONSE:
4156 return "response";
4157 case RX_ACK_DELAY:
4158 return "delay";
4159 case RX_ACK_IDLE:
4160 return "idle";
4161 default:
4162 return "unknown!!";
4165 #endif
4168 /* The real smarts of the whole thing. */
4169 static struct rx_packet *
4170 rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
4171 int istack)
4173 struct rx_ackPacket *ap;
4174 int nAcks;
4175 struct rx_packet *tp;
4176 struct rx_connection *conn = call->conn;
4177 struct rx_peer *peer = conn->peer;
4178 struct opr_queue *cursor;
4179 struct clock now; /* Current time, for RTT calculations */
4180 afs_uint32 first;
4181 afs_uint32 prev;
4182 afs_uint32 serial;
4183 int nbytes;
4184 int missing;
4185 int acked;
4186 int nNacked = 0;
4187 int newAckCount = 0;
4188 int maxDgramPackets = 0; /* Set if peer supports AFS 3.5 jumbo datagrams */
4189 int pktsize = 0; /* Set if we need to update the peer mtu */
4190 int conn_data_locked = 0;
4192 if (rx_stats_active)
4193 rx_atomic_inc(&rx_stats.ackPacketsRead);
4194 ap = (struct rx_ackPacket *)rx_DataOf(np);
4195 nbytes = rx_Contiguous(np) - (int)((ap->acks) - (u_char *) ap);
4196 if (nbytes < 0)
4197 return np; /* truncated ack packet */
4199 /* depends on ack packet struct */
4200 nAcks = MIN((unsigned)nbytes, (unsigned)ap->nAcks);
4201 first = ntohl(ap->firstPacket);
4202 prev = ntohl(ap->previousPacket);
4203 serial = ntohl(ap->serial);
4206 * Ignore ack packets received out of order while protecting
4207 * against peers that set the previousPacket field to a packet
4208 * serial number instead of a sequence number.
4210 if (first < call->tfirst ||
4211 (first == call->tfirst && prev < call->tprev && prev < call->tfirst
4212 + call->twind)) {
4213 return np;
4216 call->tprev = prev;
4218 if (np->header.flags & RX_SLOW_START_OK) {
4219 call->flags |= RX_CALL_SLOW_START_OK;
4222 if (ap->reason == RX_ACK_PING_RESPONSE)
4223 rxi_UpdatePeerReach(conn, call);
4225 if (conn->lastPacketSizeSeq) {
4226 MUTEX_ENTER(&conn->conn_data_lock);
4227 conn_data_locked = 1;
4228 if ((first > conn->lastPacketSizeSeq) && (conn->lastPacketSize)) {
4229 pktsize = conn->lastPacketSize;
4230 conn->lastPacketSize = conn->lastPacketSizeSeq = 0;
4233 if ((ap->reason == RX_ACK_PING_RESPONSE) && (conn->lastPingSizeSer)) {
4234 if (!conn_data_locked) {
4235 MUTEX_ENTER(&conn->conn_data_lock);
4236 conn_data_locked = 1;
4238 if ((conn->lastPingSizeSer == serial) && (conn->lastPingSize)) {
4239 /* process mtu ping ack */
4240 pktsize = conn->lastPingSize;
4241 conn->lastPingSizeSer = conn->lastPingSize = 0;
4245 if (conn_data_locked) {
4246 MUTEX_EXIT(&conn->conn_data_lock);
4247 conn_data_locked = 0;
4249 #ifdef RXDEBUG
4250 #ifdef AFS_NT40_ENV
4251 if (rxdebug_active) {
4252 char msg[512];
4253 size_t len;
4255 len = _snprintf(msg, sizeof(msg),
4256 "tid[%d] RACK: reason %s serial %u previous %u seq %u first %u acks %u space %u ",
4257 GetCurrentThreadId(), rx_ack_reason(ap->reason),
4258 ntohl(ap->serial), ntohl(ap->previousPacket),
4259 (unsigned int)np->header.seq, ntohl(ap->firstPacket),
4260 ap->nAcks, ntohs(ap->bufferSpace) );
4261 if (nAcks) {
4262 int offset;
4264 for (offset = 0; offset < nAcks && len < sizeof(msg); offset++)
4265 msg[len++] = (ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*');
4267 msg[len++]='\n';
4268 msg[len] = '\0';
4269 OutputDebugString(msg);
4271 #else /* AFS_NT40_ENV */
4272 if (rx_Log) {
4273 fprintf(rx_Log,
4274 "RACK: reason %x previous %u seq %u serial %u first %u",
4275 ap->reason, ntohl(ap->previousPacket),
4276 (unsigned int)np->header.seq, (unsigned int)serial,
4277 ntohl(ap->firstPacket));
4278 if (nAcks) {
4279 int offset;
4280 for (offset = 0; offset < nAcks; offset++)
4281 putc(ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*',
4282 rx_Log);
4284 putc('\n', rx_Log);
4286 #endif /* AFS_NT40_ENV */
4287 #endif
4289 MUTEX_ENTER(&peer->peer_lock);
4290 if (pktsize) {
4292 * Start somewhere. Can't assume we can send what we can receive,
4293 * but we are clearly receiving.
4295 if (!peer->maxPacketSize)
4296 peer->maxPacketSize = RX_MIN_PACKET_SIZE - RX_HEADER_SIZE;
4298 if (pktsize > peer->maxPacketSize) {
4299 peer->maxPacketSize = pktsize;
4300 if ((pktsize + RX_HEADER_SIZE > peer->ifMTU)) {
4301 peer->ifMTU = pktsize + RX_HEADER_SIZE;
4302 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
4303 rxi_ScheduleGrowMTUEvent(call, 1);
4308 clock_GetTime(&now);
4310 /* The transmit queue splits into 4 sections.
4312 * The first section is packets which have now been acknowledged
4313 * by a window size change in the ack. These have reached the
4314 * application layer, and may be discarded. These are packets
4315 * with sequence numbers < ap->firstPacket.
4317 * The second section is packets which have sequence numbers in
4318 * the range ap->firstPacket to ap->firstPacket + ap->nAcks. The
4319 * contents of the packet's ack array determines whether these
4320 * packets are acknowledged or not.
4322 * The third section is packets which fall above the range
4323 * addressed in the ack packet. These have not yet been received
4324 * by the peer.
4326 * The four section is packets which have not yet been transmitted.
4327 * These packets will have a header.serial of 0.
4330 /* First section - implicitly acknowledged packets that can be
4331 * disposed of
4334 tp = opr_queue_First(&call->tq, struct rx_packet, entry);
4335 while(!opr_queue_IsEnd(&call->tq, &tp->entry) && tp->header.seq < first) {
4336 struct rx_packet *next;
4338 next = opr_queue_Next(&tp->entry, struct rx_packet, entry);
4339 call->tfirst = tp->header.seq + 1;
4341 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
4342 newAckCount++;
4343 rxi_ComputeRoundTripTime(tp, ap, call, peer, &now);
4346 #ifdef RX_ENABLE_LOCKS
4347 /* XXX Hack. Because we have to release the global call lock when sending
4348 * packets (osi_NetSend) we drop all acks while we're traversing the tq
4349 * in rxi_Start sending packets out because packets may move to the
4350 * freePacketQueue as result of being here! So we drop these packets until
4351 * we're safely out of the traversing. Really ugly!
4352 * To make it even uglier, if we're using fine grain locking, we can
4353 * set the ack bits in the packets and have rxi_Start remove the packets
4354 * when it's done transmitting.
4356 if (call->flags & RX_CALL_TQ_BUSY) {
4357 tp->flags |= RX_PKTFLAG_ACKED;
4358 call->flags |= RX_CALL_TQ_SOME_ACKED;
4359 } else
4360 #endif /* RX_ENABLE_LOCKS */
4362 opr_queue_Remove(&tp->entry);
4363 #ifdef RX_TRACK_PACKETS
4364 tp->flags &= ~RX_PKTFLAG_TQ;
4365 #endif
4366 #ifdef RXDEBUG_PACKET
4367 call->tqc--;
4368 #endif /* RXDEBUG_PACKET */
4369 rxi_FreePacket(tp); /* rxi_FreePacket mustn't wake up anyone, preemptively. */
4371 tp = next;
4374 /* N.B. we don't turn off any timers here. They'll go away by themselves, anyway */
4376 /* Second section of the queue - packets for which we are receiving
4377 * soft ACKs
4379 * Go through the explicit acks/nacks and record the results in
4380 * the waiting packets. These are packets that can't be released
4381 * yet, even with a positive acknowledge. This positive
4382 * acknowledge only means the packet has been received by the
4383 * peer, not that it will be retained long enough to be sent to
4384 * the peer's upper level. In addition, reset the transmit timers
4385 * of any missing packets (those packets that must be missing
4386 * because this packet was out of sequence) */
4388 call->nSoftAcked = 0;
4389 missing = 0;
4390 while (!opr_queue_IsEnd(&call->tq, &tp->entry)
4391 && tp->header.seq < first + nAcks) {
4392 /* Set the acknowledge flag per packet based on the
4393 * information in the ack packet. An acknowlegded packet can
4394 * be downgraded when the server has discarded a packet it
4395 * soacked previously, or when an ack packet is received
4396 * out of sequence. */
4397 if (ap->acks[tp->header.seq - first] == RX_ACK_TYPE_ACK) {
4398 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
4399 newAckCount++;
4400 tp->flags |= RX_PKTFLAG_ACKED;
4401 rxi_ComputeRoundTripTime(tp, ap, call, peer, &now);
4403 if (missing) {
4404 nNacked++;
4405 } else {
4406 call->nSoftAcked++;
4408 } else /* RX_ACK_TYPE_NACK */ {
4409 tp->flags &= ~RX_PKTFLAG_ACKED;
4410 missing = 1;
4413 tp = opr_queue_Next(&tp->entry, struct rx_packet, entry);
4416 /* We don't need to take any action with the 3rd or 4th section in the
4417 * queue - they're not addressed by the contents of this ACK packet.
4420 /* if the ack packet has a receivelen field hanging off it,
4421 * update our state */
4422 if (np->length >= rx_AckDataSize(ap->nAcks) + 2 * sizeof(afs_int32)) {
4423 afs_uint32 tSize;
4425 /* If the ack packet has a "recommended" size that is less than
4426 * what I am using now, reduce my size to match */
4427 rx_packetread(np, rx_AckDataSize(ap->nAcks) + (int)sizeof(afs_int32),
4428 (int)sizeof(afs_int32), &tSize);
4429 tSize = (afs_uint32) ntohl(tSize);
4430 if (tSize > RX_MAX_PACKET_SIZE)
4431 tSize = RX_MAX_PACKET_SIZE;
4432 if (tSize < RX_MIN_PACKET_SIZE)
4433 tSize = RX_MIN_PACKET_SIZE;
4434 peer->natMTU = rxi_AdjustIfMTU(MIN(tSize, peer->ifMTU));
4436 /* Get the maximum packet size to send to this peer */
4437 rx_packetread(np, rx_AckDataSize(ap->nAcks), (int)sizeof(afs_int32),
4438 &tSize);
4439 tSize = (afs_uint32) ntohl(tSize);
4440 if (tSize > RX_MAX_PACKET_SIZE)
4441 tSize = RX_MAX_PACKET_SIZE;
4442 if (tSize < RX_MIN_PACKET_SIZE)
4443 tSize = RX_MIN_PACKET_SIZE;
4444 tSize = (afs_uint32) MIN(tSize, rx_MyMaxSendSize);
4445 tSize = rxi_AdjustMaxMTU(peer->natMTU, tSize);
4447 /* sanity check - peer might have restarted with different params.
4448 * If peer says "send less", dammit, send less... Peer should never
4449 * be unable to accept packets of the size that prior AFS versions would
4450 * send without asking. */
4451 if (peer->maxMTU != tSize) {
4452 if (peer->maxMTU > tSize) /* possible cong., maxMTU decreased */
4453 peer->congestSeq++;
4454 peer->maxMTU = tSize;
4455 peer->MTU = MIN(tSize, peer->MTU);
4456 call->MTU = MIN(call->MTU, tSize);
4459 if (np->length == rx_AckDataSize(ap->nAcks) + 3 * sizeof(afs_int32)) {
4460 /* AFS 3.4a */
4461 rx_packetread(np,
4462 rx_AckDataSize(ap->nAcks) + 2 * (int)sizeof(afs_int32),
4463 (int)sizeof(afs_int32), &tSize);
4464 tSize = (afs_uint32) ntohl(tSize); /* peer's receive window, if it's */
4465 if (tSize == 0)
4466 tSize = 1;
4467 if (tSize >= rx_maxSendWindow)
4468 tSize = rx_maxSendWindow;
4469 if (tSize < call->twind) { /* smaller than our send */
4470 call->twind = tSize; /* window, we must send less... */
4471 call->ssthresh = MIN(call->twind, call->ssthresh);
4472 call->conn->twind[call->channel] = call->twind;
4475 /* Only send jumbograms to 3.4a fileservers. 3.3a RX gets the
4476 * network MTU confused with the loopback MTU. Calculate the
4477 * maximum MTU here for use in the slow start code below.
4479 /* Did peer restart with older RX version? */
4480 if (peer->maxDgramPackets > 1) {
4481 peer->maxDgramPackets = 1;
4483 } else if (np->length >=
4484 rx_AckDataSize(ap->nAcks) + 4 * sizeof(afs_int32)) {
4485 /* AFS 3.5 */
4486 rx_packetread(np,
4487 rx_AckDataSize(ap->nAcks) + 2 * (int)sizeof(afs_int32),
4488 sizeof(afs_int32), &tSize);
4489 tSize = (afs_uint32) ntohl(tSize);
4490 if (tSize == 0)
4491 tSize = 1;
4492 if (tSize >= rx_maxSendWindow)
4493 tSize = rx_maxSendWindow;
4495 * As of AFS 3.5 we set the send window to match the receive window.
4497 if (tSize < call->twind) {
4498 call->twind = tSize;
4499 call->conn->twind[call->channel] = call->twind;
4500 call->ssthresh = MIN(call->twind, call->ssthresh);
4501 } else if (tSize > call->twind) {
4502 call->twind = tSize;
4503 call->conn->twind[call->channel] = call->twind;
4507 * As of AFS 3.5, a jumbogram is more than one fixed size
4508 * packet transmitted in a single UDP datagram. If the remote
4509 * MTU is smaller than our local MTU then never send a datagram
4510 * larger than the natural MTU.
4512 rx_packetread(np,
4513 rx_AckDataSize(ap->nAcks) + 3 * (int)sizeof(afs_int32),
4514 (int)sizeof(afs_int32), &tSize);
4515 maxDgramPackets = (afs_uint32) ntohl(tSize);
4516 maxDgramPackets = MIN(maxDgramPackets, rxi_nDgramPackets);
4517 maxDgramPackets =
4518 MIN(maxDgramPackets, (int)(peer->ifDgramPackets));
4519 if (maxDgramPackets > 1) {
4520 peer->maxDgramPackets = maxDgramPackets;
4521 call->MTU = RX_JUMBOBUFFERSIZE + RX_HEADER_SIZE;
4522 } else {
4523 peer->maxDgramPackets = 1;
4524 call->MTU = peer->natMTU;
4526 } else if (peer->maxDgramPackets > 1) {
4527 /* Restarted with lower version of RX */
4528 peer->maxDgramPackets = 1;
4530 } else if (peer->maxDgramPackets > 1
4531 || peer->maxMTU != OLD_MAX_PACKET_SIZE) {
4532 /* Restarted with lower version of RX */
4533 peer->maxMTU = OLD_MAX_PACKET_SIZE;
4534 peer->natMTU = OLD_MAX_PACKET_SIZE;
4535 peer->MTU = OLD_MAX_PACKET_SIZE;
4536 peer->maxDgramPackets = 1;
4537 peer->nDgramPackets = 1;
4538 peer->congestSeq++;
4539 call->MTU = OLD_MAX_PACKET_SIZE;
4542 /* If the window has been extended by this acknowledge packet,
4543 * then wakeup a sender waiting in alloc for window space, or try
4544 * sending packets now, if he's been sitting on packets due to
4545 * lack of window space */
4546 if (call->tnext < (call->tfirst + call->twind)) {
4547 #ifdef RX_ENABLE_LOCKS
4548 CV_SIGNAL(&call->cv_twind);
4549 #else
4550 if (call->flags & RX_CALL_WAIT_WINDOW_ALLOC) {
4551 call->flags &= ~RX_CALL_WAIT_WINDOW_ALLOC;
4552 osi_rxWakeup(&call->twind);
4554 #endif
4555 if (call->flags & RX_CALL_WAIT_WINDOW_SEND) {
4556 call->flags &= ~RX_CALL_WAIT_WINDOW_SEND;
4560 if (nNacked) {
4562 * Calculate how many datagrams were successfully received after
4563 * the first missing packet and adjust the negative ack counter
4564 * accordingly.
4566 call->nAcks = 0;
4567 call->nNacks++;
4568 nNacked = (nNacked + call->nDgramPackets - 1) / call->nDgramPackets;
4569 if (call->nNacks < nNacked) {
4570 call->nNacks = nNacked;
4572 } else {
4573 call->nAcks += newAckCount;
4574 call->nNacks = 0;
4577 /* If the packet contained new acknowledgements, rather than just
4578 * being a duplicate of one we have previously seen, then we can restart
4579 * the RTT timer
4581 if (newAckCount > 0)
4582 rxi_rto_packet_acked(call, istack);
4584 if (call->flags & RX_CALL_FAST_RECOVER) {
4585 if (newAckCount == 0) {
4586 call->cwind = MIN((int)(call->cwind + 1), rx_maxSendWindow);
4587 } else {
4588 call->flags &= ~RX_CALL_FAST_RECOVER;
4589 call->cwind = call->nextCwind;
4590 call->nextCwind = 0;
4591 call->nAcks = 0;
4593 call->nCwindAcks = 0;
4594 } else if (nNacked && call->nNacks >= (u_short) rx_nackThreshold) {
4595 /* Three negative acks in a row trigger congestion recovery */
4596 call->flags |= RX_CALL_FAST_RECOVER;
4597 call->ssthresh = MAX(4, MIN((int)call->cwind, (int)call->twind)) >> 1;
4598 call->cwind =
4599 MIN((int)(call->ssthresh + rx_nackThreshold), rx_maxSendWindow);
4600 call->nDgramPackets = MAX(2, (int)call->nDgramPackets) >> 1;
4601 call->nextCwind = call->ssthresh;
4602 call->nAcks = 0;
4603 call->nNacks = 0;
4604 peer->MTU = call->MTU;
4605 peer->cwind = call->nextCwind;
4606 peer->nDgramPackets = call->nDgramPackets;
4607 peer->congestSeq++;
4608 call->congestSeq = peer->congestSeq;
4610 /* Reset the resend times on the packets that were nacked
4611 * so we will retransmit as soon as the window permits
4614 acked = 0;
4615 for (opr_queue_ScanBackwards(&call->tq, cursor)) {
4616 struct rx_packet *tp =
4617 opr_queue_Entry(cursor, struct rx_packet, entry);
4618 if (acked) {
4619 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
4620 tp->flags &= ~RX_PKTFLAG_SENT;
4622 } else if (tp->flags & RX_PKTFLAG_ACKED) {
4623 acked = 1;
4626 } else {
4627 /* If cwind is smaller than ssthresh, then increase
4628 * the window one packet for each ack we receive (exponential
4629 * growth).
4630 * If cwind is greater than or equal to ssthresh then increase
4631 * the congestion window by one packet for each cwind acks we
4632 * receive (linear growth). */
4633 if (call->cwind < call->ssthresh) {
4634 call->cwind =
4635 MIN((int)call->ssthresh, (int)(call->cwind + newAckCount));
4636 call->nCwindAcks = 0;
4637 } else {
4638 call->nCwindAcks += newAckCount;
4639 if (call->nCwindAcks >= call->cwind) {
4640 call->nCwindAcks = 0;
4641 call->cwind = MIN((int)(call->cwind + 1), rx_maxSendWindow);
4645 * If we have received several acknowledgements in a row then
4646 * it is time to increase the size of our datagrams
4648 if ((int)call->nAcks > rx_nDgramThreshold) {
4649 if (peer->maxDgramPackets > 1) {
4650 if (call->nDgramPackets < peer->maxDgramPackets) {
4651 call->nDgramPackets++;
4653 call->MTU = RX_HEADER_SIZE + RX_JUMBOBUFFERSIZE;
4654 } else if (call->MTU < peer->maxMTU) {
4655 /* don't upgrade if we can't handle it */
4656 if ((call->nDgramPackets == 1) && (call->MTU >= peer->ifMTU))
4657 call->MTU = peer->ifMTU;
4658 else {
4659 call->MTU += peer->natMTU;
4660 call->MTU = MIN(call->MTU, peer->maxMTU);
4663 call->nAcks = 0;
4667 MUTEX_EXIT(&peer->peer_lock); /* rxi_Start will lock peer. */
4669 /* Servers need to hold the call until all response packets have
4670 * been acknowledged. Soft acks are good enough since clients
4671 * are not allowed to clear their receive queues. */
4672 if (call->state == RX_STATE_HOLD
4673 && call->tfirst + call->nSoftAcked >= call->tnext) {
4674 call->state = RX_STATE_DALLY;
4675 rxi_ClearTransmitQueue(call, 0);
4676 rxi_CancelKeepAliveEvent(call);
4677 } else if (!opr_queue_IsEmpty(&call->tq)) {
4678 rxi_Start(call, istack);
4680 return np;
4684 * Schedule a connection abort to be sent after some delay.
4686 * @param[in] conn The connection to send the abort on.
4687 * @param[in] msec The number of milliseconds to wait before sending.
4689 * @pre conn_data_lock must be held
4691 static void
4692 rxi_SendConnectionAbortLater(struct rx_connection *conn, int msec)
4694 struct clock when, now;
4696 MUTEX_ASSERT(&conn->conn_data_lock);
4697 if (!conn->error) {
4698 return;
4700 if (!conn->delayedAbortEvent) {
4701 clock_GetTime(&now);
4702 when = now;
4703 clock_Addmsec(&when, msec);
4704 rx_GetConnection(conn);
4705 conn->delayedAbortEvent =
4706 rxevent_Post(&when, &now, rxi_SendDelayedConnAbort, conn, NULL, 0);
4710 /* Received a response to a challenge packet */
4711 static struct rx_packet *
4712 rxi_ReceiveResponsePacket(struct rx_connection *conn,
4713 struct rx_packet *np, int istack)
4715 int error;
4717 /* Ignore the packet if we're the client */
4718 if (conn->type == RX_CLIENT_CONNECTION)
4719 return np;
4721 /* If already authenticated, ignore the packet (it's probably a retry) */
4722 if (RXS_CheckAuthentication(conn->securityObject, conn) == 0)
4723 return np;
4725 if (!conn->securityChallengeSent) {
4726 /* We've never sent out a challenge for this connection, so this
4727 * response cannot possibly be correct; ignore it. This can happen
4728 * if we sent a challenge to the client, then we were restarted, and
4729 * then the client sent us a response. If we ignore the response, the
4730 * client will eventually resend a data packet, causing us to send a
4731 * new challenge and the client to send a new response. */
4732 return np;
4735 /* Otherwise, have the security object evaluate the response packet */
4736 error = RXS_CheckResponse(conn->securityObject, conn, np);
4737 if (error) {
4738 /* If the response is invalid, reset the connection, sending
4739 * an abort to the peer. Send the abort with a 1 second delay,
4740 * to avoid a peer hammering us by constantly recreating a
4741 * connection with bad credentials. */
4742 rxi_ConnectionError(conn, error);
4743 MUTEX_ENTER(&conn->conn_data_lock);
4744 rxi_SendConnectionAbortLater(conn, 1000);
4745 MUTEX_EXIT(&conn->conn_data_lock);
4746 return np;
4747 } else {
4748 /* If the response is valid, any calls waiting to attach
4749 * servers can now do so */
4750 int i;
4752 for (i = 0; i < RX_MAXCALLS; i++) {
4753 struct rx_call *call = conn->call[i];
4754 if (call) {
4755 MUTEX_ENTER(&call->lock);
4756 if (call->state == RX_STATE_PRECALL)
4757 rxi_AttachServerProc(call, (osi_socket) - 1, NULL, NULL);
4758 /* tnop can be null if newcallp is null */
4759 MUTEX_EXIT(&call->lock);
4763 /* Update the peer reachability information, just in case
4764 * some calls went into attach-wait while we were waiting
4765 * for authentication..
4767 rxi_UpdatePeerReach(conn, NULL);
4769 return np;
4772 /* A client has received an authentication challenge: the security
4773 * object is asked to cough up a respectable response packet to send
4774 * back to the server. The server is responsible for retrying the
4775 * challenge if it fails to get a response. */
4777 static struct rx_packet *
4778 rxi_ReceiveChallengePacket(struct rx_connection *conn,
4779 struct rx_packet *np, int istack)
4781 int error;
4783 /* Ignore the challenge if we're the server */
4784 if (conn->type == RX_SERVER_CONNECTION)
4785 return np;
4787 /* Ignore the challenge if the connection is otherwise idle; someone's
4788 * trying to use us as an oracle. */
4789 if (!rxi_HasActiveCalls(conn))
4790 return np;
4792 /* Send the security object the challenge packet. It is expected to fill
4793 * in the response. */
4794 error = RXS_GetResponse(conn->securityObject, conn, np);
4796 /* If the security object is unable to return a valid response, reset the
4797 * connection and send an abort to the peer. Otherwise send the response
4798 * packet to the peer connection. */
4799 if (error) {
4800 rxi_ConnectionError(conn, error);
4801 MUTEX_ENTER(&conn->conn_data_lock);
4802 np = rxi_SendConnectionAbort(conn, np, istack, 0);
4803 MUTEX_EXIT(&conn->conn_data_lock);
4804 } else {
4805 np = rxi_SendSpecial((struct rx_call *)0, conn, np,
4806 RX_PACKET_TYPE_RESPONSE, NULL, -1, istack);
4808 return np;
4812 /* Find an available server process to service the current request in
4813 * the given call structure. If one isn't available, queue up this
4814 * call so it eventually gets one */
4815 static void
4816 rxi_AttachServerProc(struct rx_call *call,
4817 osi_socket socket, int *tnop,
4818 struct rx_call **newcallp)
4820 struct rx_serverQueueEntry *sq;
4821 struct rx_service *service = call->conn->service;
4822 int haveQuota = 0;
4824 /* May already be attached */
4825 if (call->state == RX_STATE_ACTIVE)
4826 return;
4828 MUTEX_ENTER(&rx_serverPool_lock);
4830 haveQuota = QuotaOK(service);
4831 if ((!haveQuota) || opr_queue_IsEmpty(&rx_idleServerQueue)) {
4832 /* If there are no processes available to service this call,
4833 * put the call on the incoming call queue (unless it's
4834 * already on the queue).
4836 #ifdef RX_ENABLE_LOCKS
4837 if (haveQuota)
4838 ReturnToServerPool(service);
4839 #endif /* RX_ENABLE_LOCKS */
4841 if (!(call->flags & RX_CALL_WAIT_PROC)) {
4842 call->flags |= RX_CALL_WAIT_PROC;
4843 rx_atomic_inc(&rx_nWaiting);
4844 rx_atomic_inc(&rx_nWaited);
4845 rxi_calltrace(RX_CALL_ARRIVAL, call);
4846 SET_CALL_QUEUE_LOCK(call, &rx_serverPool_lock);
4847 opr_queue_Append(&rx_incomingCallQueue, &call->entry);
4849 } else {
4850 sq = opr_queue_Last(&rx_idleServerQueue,
4851 struct rx_serverQueueEntry, entry);
4853 /* If hot threads are enabled, and both newcallp and sq->socketp
4854 * are non-null, then this thread will process the call, and the
4855 * idle server thread will start listening on this threads socket.
4857 opr_queue_Remove(&sq->entry);
4859 if (rx_enable_hot_thread && newcallp && sq->socketp) {
4860 *newcallp = call;
4861 *tnop = sq->tno;
4862 *sq->socketp = socket;
4863 clock_GetTime(&call->startTime);
4864 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
4865 } else {
4866 sq->newcall = call;
4868 if (call->flags & RX_CALL_WAIT_PROC) {
4869 /* Conservative: I don't think this should happen */
4870 call->flags &= ~RX_CALL_WAIT_PROC;
4871 rx_atomic_dec(&rx_nWaiting);
4872 if (opr_queue_IsOnQueue(&call->entry)) {
4873 opr_queue_Remove(&call->entry);
4876 call->state = RX_STATE_ACTIVE;
4877 call->app.mode = RX_MODE_RECEIVING;
4878 #ifdef RX_KERNEL_TRACE
4880 int glockOwner = ISAFS_GLOCK();
4881 if (!glockOwner)
4882 AFS_GLOCK();
4883 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
4884 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
4885 call);
4886 if (!glockOwner)
4887 AFS_GUNLOCK();
4889 #endif
4890 if (call->flags & RX_CALL_CLEARED) {
4891 /* send an ack now to start the packet flow up again */
4892 call->flags &= ~RX_CALL_CLEARED;
4893 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
4895 #ifdef RX_ENABLE_LOCKS
4896 CV_SIGNAL(&sq->cv);
4897 #else
4898 service->nRequestsRunning++;
4899 MUTEX_ENTER(&rx_quota_mutex);
4900 if (service->nRequestsRunning <= service->minProcs)
4901 rxi_minDeficit--;
4902 rxi_availProcs--;
4903 MUTEX_EXIT(&rx_quota_mutex);
4904 osi_rxWakeup(sq);
4905 #endif
4907 MUTEX_EXIT(&rx_serverPool_lock);
4910 /* Delay the sending of an acknowledge event for a short while, while
4911 * a new call is being prepared (in the case of a client) or a reply
4912 * is being prepared (in the case of a server). Rather than sending
4913 * an ack packet, an ACKALL packet is sent. */
4914 static void
4915 rxi_AckAll(struct rx_call *call)
4917 rxi_SendSpecial(call, call->conn, NULL, RX_PACKET_TYPE_ACKALL,
4918 NULL, 0, 0);
4919 call->flags |= RX_CALL_ACKALL_SENT;
4923 * Event handler for per-call delayed acks.
4924 * Also called synchronously, with |event| == NULL, to send a "delayed" ack
4925 * immediately.
4927 static void
4928 rxi_SendDelayedAck(struct rxevent *event, void *arg1, void *unused1,
4929 int unused2)
4931 struct rx_call *call = arg1;
4932 #ifdef RX_ENABLE_LOCKS
4933 if (event) {
4934 MUTEX_ENTER(&call->lock);
4935 if (event == call->delayedAckEvent)
4936 rxevent_Put(&call->delayedAckEvent);
4938 (void)rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
4939 if (event)
4940 MUTEX_EXIT(&call->lock);
4941 #else /* RX_ENABLE_LOCKS */
4942 if (event)
4943 rxevent_Put(&call->delayedAckEvent);
4944 (void)rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
4945 #endif /* RX_ENABLE_LOCKS */
4946 /* Release the call reference for the event that fired. */
4947 if (event)
4948 CALL_RELE(call, RX_CALL_REFCOUNT_DELAY);
4951 #ifdef RX_ENABLE_LOCKS
4952 /* Set ack in all packets in transmit queue. rxi_Start will deal with
4953 * clearing them out.
4955 static void
4956 rxi_SetAcksInTransmitQueue(struct rx_call *call)
4958 struct opr_queue *cursor;
4959 int someAcked = 0;
4961 for (opr_queue_Scan(&call->tq, cursor)) {
4962 struct rx_packet *p
4963 = opr_queue_Entry(cursor, struct rx_packet, entry);
4965 p->flags |= RX_PKTFLAG_ACKED;
4966 someAcked = 1;
4969 if (someAcked) {
4970 call->flags |= RX_CALL_TQ_CLEARME;
4971 call->flags |= RX_CALL_TQ_SOME_ACKED;
4974 rxi_rto_cancel(call);
4976 call->tfirst = call->tnext;
4977 call->nSoftAcked = 0;
4979 if (call->flags & RX_CALL_FAST_RECOVER) {
4980 call->flags &= ~RX_CALL_FAST_RECOVER;
4981 call->cwind = call->nextCwind;
4982 call->nextCwind = 0;
4985 CV_SIGNAL(&call->cv_twind);
4987 #endif /* RX_ENABLE_LOCKS */
4990 * Acknowledge the whole transmit queue.
4992 * If we're running without locks, or the transmit queue isn't busy, then
4993 * we can just clear the queue now. Otherwise, we have to mark all of the
4994 * packets as acknowledged, and let rxi_Start clear it later on
4996 static void
4997 rxi_AckAllInTransmitQueue(struct rx_call *call)
4999 #ifdef RX_ENABLE_LOCKS
5000 if (call->flags & RX_CALL_TQ_BUSY) {
5001 rxi_SetAcksInTransmitQueue(call);
5002 return;
5004 #endif
5005 rxi_ClearTransmitQueue(call, 0);
5007 /* Clear out the transmit queue for the current call (all packets have
5008 * been received by peer) */
5009 static void
5010 rxi_ClearTransmitQueue(struct rx_call *call, int force)
5012 #ifdef RX_ENABLE_LOCKS
5013 struct opr_queue *cursor;
5014 if (!force && (call->flags & RX_CALL_TQ_BUSY)) {
5015 int someAcked = 0;
5016 for (opr_queue_Scan(&call->tq, cursor)) {
5017 struct rx_packet *p
5018 = opr_queue_Entry(cursor, struct rx_packet, entry);
5020 p->flags |= RX_PKTFLAG_ACKED;
5021 someAcked = 1;
5023 if (someAcked) {
5024 call->flags |= RX_CALL_TQ_CLEARME;
5025 call->flags |= RX_CALL_TQ_SOME_ACKED;
5027 } else {
5028 #endif /* RX_ENABLE_LOCKS */
5029 #ifdef RXDEBUG_PACKET
5030 call->tqc -=
5031 #endif /* RXDEBUG_PACKET */
5032 rxi_FreePackets(0, &call->tq);
5033 rxi_WakeUpTransmitQueue(call);
5034 #ifdef RX_ENABLE_LOCKS
5035 call->flags &= ~RX_CALL_TQ_CLEARME;
5037 #endif
5039 rxi_rto_cancel(call);
5040 call->tfirst = call->tnext; /* implicitly acknowledge all data already sent */
5041 call->nSoftAcked = 0;
5043 if (call->flags & RX_CALL_FAST_RECOVER) {
5044 call->flags &= ~RX_CALL_FAST_RECOVER;
5045 call->cwind = call->nextCwind;
5047 #ifdef RX_ENABLE_LOCKS
5048 CV_SIGNAL(&call->cv_twind);
5049 #else
5050 osi_rxWakeup(&call->twind);
5051 #endif
5054 static void
5055 rxi_ClearReceiveQueue(struct rx_call *call)
5057 if (!opr_queue_IsEmpty(&call->rq)) {
5058 u_short count;
5060 count = rxi_FreePackets(0, &call->rq);
5061 rx_packetReclaims += count;
5062 #ifdef RXDEBUG_PACKET
5063 call->rqc -= count;
5064 if ( call->rqc != 0 )
5065 dpf(("rxi_ClearReceiveQueue call %"AFS_PTR_FMT" rqc %u != 0\n", call, call->rqc));
5066 #endif
5067 call->flags &= ~(RX_CALL_RECEIVE_DONE | RX_CALL_HAVE_LAST);
5069 if (call->state == RX_STATE_PRECALL) {
5070 call->flags |= RX_CALL_CLEARED;
5074 /* Send an abort packet for the specified call */
5075 static struct rx_packet *
5076 rxi_SendCallAbort(struct rx_call *call, struct rx_packet *packet,
5077 int istack, int force)
5079 afs_int32 error;
5080 struct clock when, now;
5082 if (!call->error)
5083 return packet;
5085 /* Clients should never delay abort messages */
5086 if (rx_IsClientConn(call->conn))
5087 force = 1;
5089 if (call->abortCode != call->error) {
5090 call->abortCode = call->error;
5091 call->abortCount = 0;
5094 if (force || rxi_callAbortThreshhold == 0
5095 || call->abortCount < rxi_callAbortThreshhold) {
5096 rxi_CancelDelayedAbortEvent(call);
5097 error = htonl(call->error);
5098 call->abortCount++;
5099 packet =
5100 rxi_SendSpecial(call, call->conn, packet, RX_PACKET_TYPE_ABORT,
5101 (char *)&error, sizeof(error), istack);
5102 } else if (!call->delayedAbortEvent) {
5103 clock_GetTime(&now);
5104 when = now;
5105 clock_Addmsec(&when, rxi_callAbortDelay);
5106 CALL_HOLD(call, RX_CALL_REFCOUNT_ABORT);
5107 call->delayedAbortEvent =
5108 rxevent_Post(&when, &now, rxi_SendDelayedCallAbort, call, 0, 0);
5110 return packet;
5113 static void
5114 rxi_CancelDelayedAbortEvent(struct rx_call *call)
5116 MUTEX_ASSERT(&call->lock);
5117 if (rxevent_Cancel(&call->delayedAbortEvent))
5118 CALL_RELE(call, RX_CALL_REFCOUNT_ABORT);
5121 /* Send an abort packet for the specified connection. Packet is an
5122 * optional pointer to a packet that can be used to send the abort.
5123 * Once the number of abort messages reaches the threshhold, an
5124 * event is scheduled to send the abort. Setting the force flag
5125 * overrides sending delayed abort messages.
5127 * NOTE: Called with conn_data_lock held. conn_data_lock is dropped
5128 * to send the abort packet.
5130 struct rx_packet *
5131 rxi_SendConnectionAbort(struct rx_connection *conn,
5132 struct rx_packet *packet, int istack, int force)
5134 afs_int32 error;
5136 if (!conn->error)
5137 return packet;
5139 /* Clients should never delay abort messages */
5140 if (rx_IsClientConn(conn))
5141 force = 1;
5143 if (force || rxi_connAbortThreshhold == 0
5144 || conn->abortCount < rxi_connAbortThreshhold) {
5146 if (rxevent_Cancel(&conn->delayedAbortEvent))
5147 putConnection(conn);
5148 error = htonl(conn->error);
5149 conn->abortCount++;
5150 MUTEX_EXIT(&conn->conn_data_lock);
5151 packet =
5152 rxi_SendSpecial((struct rx_call *)0, conn, packet,
5153 RX_PACKET_TYPE_ABORT, (char *)&error,
5154 sizeof(error), istack);
5155 MUTEX_ENTER(&conn->conn_data_lock);
5156 } else {
5157 rxi_SendConnectionAbortLater(conn, rxi_connAbortDelay);
5159 return packet;
5162 /* Associate an error all of the calls owned by a connection. Called
5163 * with error non-zero. This is only for really fatal things, like
5164 * bad authentication responses. The connection itself is set in
5165 * error at this point, so that future packets received will be
5166 * rejected. */
5167 void
5168 rxi_ConnectionError(struct rx_connection *conn,
5169 afs_int32 error)
5171 if (error) {
5172 int i;
5174 dpf(("rxi_ConnectionError conn %"AFS_PTR_FMT" error %d\n", conn, error));
5176 MUTEX_ENTER(&conn->conn_data_lock);
5177 if (rxevent_Cancel(&conn->challengeEvent))
5178 putConnection(conn);
5179 if (rxevent_Cancel(&conn->natKeepAliveEvent))
5180 putConnection(conn);
5181 if (rxevent_Cancel(&conn->checkReachEvent)) {
5182 conn->flags &= ~(RX_CONN_ATTACHWAIT|RX_CONN_NAT_PING);
5183 putConnection(conn);
5185 MUTEX_EXIT(&conn->conn_data_lock);
5186 for (i = 0; i < RX_MAXCALLS; i++) {
5187 struct rx_call *call = conn->call[i];
5188 if (call) {
5189 MUTEX_ENTER(&call->lock);
5190 rxi_CallError(call, error);
5191 MUTEX_EXIT(&call->lock);
5194 conn->error = error;
5195 if (rx_stats_active)
5196 rx_atomic_inc(&rx_stats.fatalErrors);
5201 * Interrupt an in-progress call with the specified error and wakeup waiters.
5203 * @param[in] call The call to interrupt
5204 * @param[in] error The error code to send to the peer
5206 void
5207 rx_InterruptCall(struct rx_call *call, afs_int32 error)
5209 MUTEX_ENTER(&call->lock);
5210 rxi_CallError(call, error);
5211 rxi_SendCallAbort(call, NULL, 0, 1);
5212 MUTEX_EXIT(&call->lock);
5215 void
5216 rxi_CallError(struct rx_call *call, afs_int32 error)
5218 MUTEX_ASSERT(&call->lock);
5219 dpf(("rxi_CallError call %"AFS_PTR_FMT" error %d call->error %d\n", call, error, call->error));
5220 if (call->error)
5221 error = call->error;
5223 #ifdef RX_ENABLE_LOCKS
5224 if (!((call->flags & RX_CALL_TQ_BUSY) || (call->tqWaiters > 0))) {
5225 rxi_ResetCall(call, 0);
5227 #else
5228 rxi_ResetCall(call, 0);
5229 #endif
5230 call->error = error;
5233 /* Reset various fields in a call structure, and wakeup waiting
5234 * processes. Some fields aren't changed: state & mode are not
5235 * touched (these must be set by the caller), and bufptr, nLeft, and
5236 * nFree are not reset, since these fields are manipulated by
5237 * unprotected macros, and may only be reset by non-interrupting code.
5240 static void
5241 rxi_ResetCall(struct rx_call *call, int newcall)
5243 int flags;
5244 struct rx_peer *peer;
5245 struct rx_packet *packet;
5247 MUTEX_ASSERT(&call->lock);
5248 dpf(("rxi_ResetCall(call %"AFS_PTR_FMT", newcall %d)\n", call, newcall));
5250 /* Notify anyone who is waiting for asynchronous packet arrival */
5251 if (call->arrivalProc) {
5252 (*call->arrivalProc) (call, call->arrivalProcHandle,
5253 call->arrivalProcArg);
5254 call->arrivalProc = (void (*)())0;
5258 rxi_CancelGrowMTUEvent(call);
5260 if (call->delayedAbortEvent) {
5261 rxi_CancelDelayedAbortEvent(call);
5262 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
5263 if (packet) {
5264 rxi_SendCallAbort(call, packet, 0, 1);
5265 rxi_FreePacket(packet);
5270 * Update the peer with the congestion information in this call
5271 * so other calls on this connection can pick up where this call
5272 * left off. If the congestion sequence numbers don't match then
5273 * another call experienced a retransmission.
5275 peer = call->conn->peer;
5276 MUTEX_ENTER(&peer->peer_lock);
5277 if (!newcall) {
5278 if (call->congestSeq == peer->congestSeq) {
5279 peer->cwind = MAX(peer->cwind, call->cwind);
5280 peer->MTU = MAX(peer->MTU, call->MTU);
5281 peer->nDgramPackets =
5282 MAX(peer->nDgramPackets, call->nDgramPackets);
5284 } else {
5285 call->abortCode = 0;
5286 call->abortCount = 0;
5288 if (peer->maxDgramPackets > 1) {
5289 call->MTU = RX_HEADER_SIZE + RX_JUMBOBUFFERSIZE;
5290 } else {
5291 call->MTU = peer->MTU;
5293 call->cwind = MIN((int)peer->cwind, (int)peer->nDgramPackets);
5294 call->ssthresh = rx_maxSendWindow;
5295 call->nDgramPackets = peer->nDgramPackets;
5296 call->congestSeq = peer->congestSeq;
5297 call->rtt = peer->rtt;
5298 call->rtt_dev = peer->rtt_dev;
5299 clock_Zero(&call->rto);
5300 clock_Addmsec(&call->rto,
5301 MAX(((call->rtt >> 3) + call->rtt_dev), rx_minPeerTimeout) + 200);
5302 MUTEX_EXIT(&peer->peer_lock);
5304 flags = call->flags;
5305 rxi_WaitforTQBusy(call);
5307 rxi_ClearTransmitQueue(call, 1);
5308 if (call->tqWaiters || (flags & RX_CALL_TQ_WAIT)) {
5309 dpf(("rcall %"AFS_PTR_FMT" has %d waiters and flags %d\n", call, call->tqWaiters, call->flags));
5311 call->flags = 0;
5313 rxi_ClearReceiveQueue(call);
5314 /* why init the queue if you just emptied it? queue_Init(&call->rq); */
5317 call->error = 0;
5318 call->twind = call->conn->twind[call->channel];
5319 call->rwind = call->conn->rwind[call->channel];
5320 call->nSoftAcked = 0;
5321 call->nextCwind = 0;
5322 call->nAcks = 0;
5323 call->nNacks = 0;
5324 call->nCwindAcks = 0;
5325 call->nSoftAcks = 0;
5326 call->nHardAcks = 0;
5328 call->tfirst = call->rnext = call->tnext = 1;
5329 call->tprev = 0;
5330 call->rprev = 0;
5331 call->lastAcked = 0;
5332 call->localStatus = call->remoteStatus = 0;
5334 if (flags & RX_CALL_READER_WAIT) {
5335 #ifdef RX_ENABLE_LOCKS
5336 CV_BROADCAST(&call->cv_rq);
5337 #else
5338 osi_rxWakeup(&call->rq);
5339 #endif
5341 if (flags & RX_CALL_WAIT_PACKETS) {
5342 MUTEX_ENTER(&rx_freePktQ_lock);
5343 rxi_PacketsUnWait(); /* XXX */
5344 MUTEX_EXIT(&rx_freePktQ_lock);
5346 #ifdef RX_ENABLE_LOCKS
5347 CV_SIGNAL(&call->cv_twind);
5348 #else
5349 if (flags & RX_CALL_WAIT_WINDOW_ALLOC)
5350 osi_rxWakeup(&call->twind);
5351 #endif
5353 if (flags & RX_CALL_WAIT_PROC) {
5354 rx_atomic_dec(&rx_nWaiting);
5356 #ifdef RX_ENABLE_LOCKS
5357 /* The following ensures that we don't mess with any queue while some
5358 * other thread might also be doing so. The call_queue_lock field is
5359 * is only modified under the call lock. If the call is in the process
5360 * of being removed from a queue, the call is not locked until the
5361 * the queue lock is dropped and only then is the call_queue_lock field
5362 * zero'd out. So it's safe to lock the queue if call_queue_lock is set.
5363 * Note that any other routine which removes a call from a queue has to
5364 * obtain the queue lock before examing the queue and removing the call.
5366 if (call->call_queue_lock) {
5367 MUTEX_ENTER(call->call_queue_lock);
5368 if (opr_queue_IsOnQueue(&call->entry)) {
5369 opr_queue_Remove(&call->entry);
5371 MUTEX_EXIT(call->call_queue_lock);
5372 CLEAR_CALL_QUEUE_LOCK(call);
5374 #else /* RX_ENABLE_LOCKS */
5375 if (opr_queue_IsOnQueue(&call->entry)) {
5376 opr_queue_Remove(&call->entry);
5378 #endif /* RX_ENABLE_LOCKS */
5380 rxi_CancelKeepAliveEvent(call);
5381 rxi_CancelDelayedAckEvent(call);
5384 /* Send an acknowledge for the indicated packet (seq,serial) of the
5385 * indicated call, for the indicated reason (reason). This
5386 * acknowledge will specifically acknowledge receiving the packet, and
5387 * will also specify which other packets for this call have been
5388 * received. This routine returns the packet that was used to the
5389 * caller. The caller is responsible for freeing it or re-using it.
5390 * This acknowledgement also returns the highest sequence number
5391 * actually read out by the higher level to the sender; the sender
5392 * promises to keep around packets that have not been read by the
5393 * higher level yet (unless, of course, the sender decides to abort
5394 * the call altogether). Any of p, seq, serial, pflags, or reason may
5395 * be set to zero without ill effect. That is, if they are zero, they
5396 * will not convey any information.
5397 * NOW there is a trailer field, after the ack where it will safely be
5398 * ignored by mundanes, which indicates the maximum size packet this
5399 * host can swallow. */
5401 struct rx_packet *optionalPacket; use to send ack (or null)
5402 int seq; Sequence number of the packet we are acking
5403 int serial; Serial number of the packet
5404 int pflags; Flags field from packet header
5405 int reason; Reason an acknowledge was prompted
5408 #define RX_ZEROS 1024
5409 static char rx_zeros[RX_ZEROS];
5411 struct rx_packet *
5412 rxi_SendAck(struct rx_call *call,
5413 struct rx_packet *optionalPacket, int serial, int reason,
5414 int istack)
5416 struct rx_ackPacket *ap;
5417 struct rx_packet *p;
5418 struct opr_queue *cursor;
5419 u_char offset = 0;
5420 afs_int32 templ;
5421 afs_uint32 padbytes = 0;
5422 #ifdef RX_ENABLE_TSFPQ
5423 struct rx_ts_info_t * rx_ts_info;
5424 #endif
5427 * Open the receive window once a thread starts reading packets
5429 if (call->rnext > 1) {
5430 call->conn->rwind[call->channel] = call->rwind = rx_maxReceiveWindow;
5433 /* Don't attempt to grow MTU if this is a critical ping */
5434 if (reason == RX_ACK_MTU) {
5435 /* keep track of per-call attempts, if we're over max, do in small
5436 * otherwise in larger? set a size to increment by, decrease
5437 * on failure, here?
5439 if (call->conn->peer->maxPacketSize &&
5440 (call->conn->peer->maxPacketSize < OLD_MAX_PACKET_SIZE
5441 - RX_HEADER_SIZE))
5442 padbytes = call->conn->peer->maxPacketSize+16;
5443 else
5444 padbytes = call->conn->peer->maxMTU + 128;
5446 /* do always try a minimum size ping */
5447 padbytes = MAX(padbytes, RX_MIN_PACKET_SIZE+RX_IPUDP_SIZE+4);
5449 /* subtract the ack payload */
5450 padbytes -= (rx_AckDataSize(call->rwind) + 4 * sizeof(afs_int32));
5451 reason = RX_ACK_PING;
5454 call->nHardAcks = 0;
5455 call->nSoftAcks = 0;
5456 if (call->rnext > call->lastAcked)
5457 call->lastAcked = call->rnext;
5458 p = optionalPacket;
5460 if (p) {
5461 rx_computelen(p, p->length); /* reset length, you never know */
5462 } /* where that's been... */
5463 #ifdef RX_ENABLE_TSFPQ
5464 else {
5465 RX_TS_INFO_GET(rx_ts_info);
5466 if ((p = rx_ts_info->local_special_packet)) {
5467 rx_computelen(p, p->length);
5468 } else if ((p = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL))) {
5469 rx_ts_info->local_special_packet = p;
5470 } else { /* We won't send the ack, but don't panic. */
5471 return optionalPacket;
5474 #else
5475 else if (!(p = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL))) {
5476 /* We won't send the ack, but don't panic. */
5477 return optionalPacket;
5479 #endif
5481 templ = padbytes +
5482 rx_AckDataSize(call->rwind) + 4 * sizeof(afs_int32) -
5483 rx_GetDataSize(p);
5484 if (templ > 0) {
5485 if (rxi_AllocDataBuf(p, templ, RX_PACKET_CLASS_SPECIAL) > 0) {
5486 #ifndef RX_ENABLE_TSFPQ
5487 if (!optionalPacket)
5488 rxi_FreePacket(p);
5489 #endif
5490 return optionalPacket;
5492 templ = rx_AckDataSize(call->rwind) + 2 * sizeof(afs_int32);
5493 if (rx_Contiguous(p) < templ) {
5494 #ifndef RX_ENABLE_TSFPQ
5495 if (!optionalPacket)
5496 rxi_FreePacket(p);
5497 #endif
5498 return optionalPacket;
5503 /* MTUXXX failing to send an ack is very serious. We should */
5504 /* try as hard as possible to send even a partial ack; it's */
5505 /* better than nothing. */
5506 ap = (struct rx_ackPacket *)rx_DataOf(p);
5507 ap->bufferSpace = htonl(0); /* Something should go here, sometime */
5508 ap->reason = reason;
5510 /* The skew computation used to be bogus, I think it's better now. */
5511 /* We should start paying attention to skew. XXX */
5512 ap->serial = htonl(serial);
5513 ap->maxSkew = 0; /* used to be peer->inPacketSkew */
5516 * First packet not yet forwarded to reader. When ACKALL has been
5517 * sent the peer has been told that all received packets will be
5518 * delivered to the reader. The value 'rnext' is used internally
5519 * to refer to the next packet in the receive queue that must be
5520 * delivered to the reader. From the perspective of the peer it
5521 * already has so report the last sequence number plus one if there
5522 * are packets in the receive queue awaiting processing.
5524 if ((call->flags & RX_CALL_ACKALL_SENT) &&
5525 !opr_queue_IsEmpty(&call->rq)) {
5526 ap->firstPacket = htonl(opr_queue_Last(&call->rq, struct rx_packet, entry)->header.seq + 1);
5527 } else {
5528 ap->firstPacket = htonl(call->rnext);
5530 ap->previousPacket = htonl(call->rprev); /* Previous packet received */
5532 /* No fear of running out of ack packet here because there can only
5533 * be at most one window full of unacknowledged packets. The window
5534 * size must be constrained to be less than the maximum ack size,
5535 * of course. Also, an ack should always fit into a single packet
5536 * -- it should not ever be fragmented. */
5537 offset = 0;
5538 for (opr_queue_Scan(&call->rq, cursor)) {
5539 struct rx_packet *rqp
5540 = opr_queue_Entry(cursor, struct rx_packet, entry);
5542 if (!rqp || !call->rq.next
5543 || (rqp->header.seq > (call->rnext + call->rwind))) {
5544 #ifndef RX_ENABLE_TSFPQ
5545 if (!optionalPacket)
5546 rxi_FreePacket(p);
5547 #endif
5548 rxi_CallError(call, RX_CALL_DEAD);
5549 return optionalPacket;
5552 while (rqp->header.seq > call->rnext + offset)
5553 ap->acks[offset++] = RX_ACK_TYPE_NACK;
5554 ap->acks[offset++] = RX_ACK_TYPE_ACK;
5556 if ((offset > (u_char) rx_maxReceiveWindow) || (offset > call->rwind)) {
5557 #ifndef RX_ENABLE_TSFPQ
5558 if (!optionalPacket)
5559 rxi_FreePacket(p);
5560 #endif
5561 rxi_CallError(call, RX_CALL_DEAD);
5562 return optionalPacket;
5567 ap->nAcks = offset;
5568 p->length = rx_AckDataSize(offset) + 4 * sizeof(afs_int32);
5570 /* Must zero the 3 octets that rx_AckDataSize skips at the end of the
5571 * ACK list.
5573 rx_packetwrite(p, rx_AckDataSize(offset) - 3, 3, rx_zeros);
5575 /* these are new for AFS 3.3 */
5576 templ = rxi_AdjustMaxMTU(call->conn->peer->ifMTU, rx_maxReceiveSize);
5577 templ = htonl(templ);
5578 rx_packetwrite(p, rx_AckDataSize(offset), sizeof(afs_int32), &templ);
5579 templ = htonl(call->conn->peer->ifMTU);
5580 rx_packetwrite(p, rx_AckDataSize(offset) + sizeof(afs_int32),
5581 sizeof(afs_int32), &templ);
5583 /* new for AFS 3.4 */
5584 templ = htonl(call->rwind);
5585 rx_packetwrite(p, rx_AckDataSize(offset) + 2 * sizeof(afs_int32),
5586 sizeof(afs_int32), &templ);
5588 /* new for AFS 3.5 */
5589 templ = htonl(call->conn->peer->ifDgramPackets);
5590 rx_packetwrite(p, rx_AckDataSize(offset) + 3 * sizeof(afs_int32),
5591 sizeof(afs_int32), &templ);
5593 p->length = rx_AckDataSize(offset) + 4 * sizeof(afs_int32);
5595 p->header.serviceId = call->conn->serviceId;
5596 p->header.cid = (call->conn->cid | call->channel);
5597 p->header.callNumber = *call->callNumber;
5598 p->header.seq = 0;
5599 p->header.securityIndex = call->conn->securityIndex;
5600 p->header.epoch = call->conn->epoch;
5601 p->header.type = RX_PACKET_TYPE_ACK;
5602 p->header.flags = RX_SLOW_START_OK;
5603 if (reason == RX_ACK_PING)
5604 p->header.flags |= RX_REQUEST_ACK;
5606 while (padbytes > 0) {
5607 if (padbytes > RX_ZEROS) {
5608 rx_packetwrite(p, p->length, RX_ZEROS, rx_zeros);
5609 p->length += RX_ZEROS;
5610 padbytes -= RX_ZEROS;
5611 } else {
5612 rx_packetwrite(p, p->length, padbytes, rx_zeros);
5613 p->length += padbytes;
5614 padbytes = 0;
5618 if (call->conn->type == RX_CLIENT_CONNECTION)
5619 p->header.flags |= RX_CLIENT_INITIATED;
5621 #ifdef RXDEBUG
5622 #ifdef AFS_NT40_ENV
5623 if (rxdebug_active) {
5624 char msg[512];
5625 size_t len;
5627 len = _snprintf(msg, sizeof(msg),
5628 "tid[%d] SACK: reason %s serial %u previous %u seq %u first %u acks %u space %u ",
5629 GetCurrentThreadId(), rx_ack_reason(ap->reason),
5630 ntohl(ap->serial), ntohl(ap->previousPacket),
5631 (unsigned int)p->header.seq, ntohl(ap->firstPacket),
5632 ap->nAcks, ntohs(ap->bufferSpace) );
5633 if (ap->nAcks) {
5634 int offset;
5636 for (offset = 0; offset < ap->nAcks && len < sizeof(msg); offset++)
5637 msg[len++] = (ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*');
5639 msg[len++]='\n';
5640 msg[len] = '\0';
5641 OutputDebugString(msg);
5643 #else /* AFS_NT40_ENV */
5644 if (rx_Log) {
5645 fprintf(rx_Log, "SACK: reason %x previous %u seq %u first %u ",
5646 ap->reason, ntohl(ap->previousPacket),
5647 (unsigned int)p->header.seq, ntohl(ap->firstPacket));
5648 if (ap->nAcks) {
5649 for (offset = 0; offset < ap->nAcks; offset++)
5650 putc(ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*',
5651 rx_Log);
5653 putc('\n', rx_Log);
5655 #endif /* AFS_NT40_ENV */
5656 #endif
5658 int i, nbytes = p->length;
5660 for (i = 1; i < p->niovecs; i++) { /* vec 0 is ALWAYS header */
5661 if (nbytes <= p->wirevec[i].iov_len) {
5662 int savelen, saven;
5664 savelen = p->wirevec[i].iov_len;
5665 saven = p->niovecs;
5666 p->wirevec[i].iov_len = nbytes;
5667 p->niovecs = i + 1;
5668 rxi_Send(call, p, istack);
5669 p->wirevec[i].iov_len = savelen;
5670 p->niovecs = saven;
5671 break;
5672 } else
5673 nbytes -= p->wirevec[i].iov_len;
5676 if (rx_stats_active)
5677 rx_atomic_inc(&rx_stats.ackPacketsSent);
5678 #ifndef RX_ENABLE_TSFPQ
5679 if (!optionalPacket)
5680 rxi_FreePacket(p);
5681 #endif
5682 return optionalPacket; /* Return packet for re-use by caller */
5685 struct xmitlist {
5686 struct rx_packet **list;
5687 int len;
5688 int resending;
5691 /* Send all of the packets in the list in single datagram */
5692 static void
5693 rxi_SendList(struct rx_call *call, struct xmitlist *xmit,
5694 int istack, int moreFlag)
5696 int i;
5697 int requestAck = 0;
5698 int lastPacket = 0;
5699 struct clock now;
5700 struct rx_connection *conn = call->conn;
5701 struct rx_peer *peer = conn->peer;
5703 MUTEX_ENTER(&peer->peer_lock);
5704 peer->nSent += xmit->len;
5705 if (xmit->resending)
5706 peer->reSends += xmit->len;
5707 MUTEX_EXIT(&peer->peer_lock);
5709 if (rx_stats_active) {
5710 if (xmit->resending)
5711 rx_atomic_add(&rx_stats.dataPacketsReSent, xmit->len);
5712 else
5713 rx_atomic_add(&rx_stats.dataPacketsSent, xmit->len);
5716 clock_GetTime(&now);
5718 if (xmit->list[xmit->len - 1]->header.flags & RX_LAST_PACKET) {
5719 lastPacket = 1;
5722 /* Set the packet flags and schedule the resend events */
5723 /* Only request an ack for the last packet in the list */
5724 for (i = 0; i < xmit->len; i++) {
5725 struct rx_packet *packet = xmit->list[i];
5727 /* Record the time sent */
5728 packet->timeSent = now;
5729 packet->flags |= RX_PKTFLAG_SENT;
5731 /* Ask for an ack on retransmitted packets, on every other packet
5732 * if the peer doesn't support slow start. Ask for an ack on every
5733 * packet until the congestion window reaches the ack rate. */
5734 if (packet->header.serial) {
5735 requestAck = 1;
5736 } else {
5737 packet->firstSent = now;
5738 if (!lastPacket && (call->cwind <= (u_short) (conn->ackRate + 1)
5739 || (!(call->flags & RX_CALL_SLOW_START_OK)
5740 && (packet->header.seq & 1)))) {
5741 requestAck = 1;
5745 /* Tag this packet as not being the last in this group,
5746 * for the receiver's benefit */
5747 if (i < xmit->len - 1 || moreFlag) {
5748 packet->header.flags |= RX_MORE_PACKETS;
5752 if (requestAck) {
5753 xmit->list[xmit->len - 1]->header.flags |= RX_REQUEST_ACK;
5756 /* Since we're about to send a data packet to the peer, it's
5757 * safe to nuke any scheduled end-of-packets ack */
5758 rxi_CancelDelayedAckEvent(call);
5760 MUTEX_EXIT(&call->lock);
5761 CALL_HOLD(call, RX_CALL_REFCOUNT_SEND);
5762 if (xmit->len > 1) {
5763 rxi_SendPacketList(call, conn, xmit->list, xmit->len, istack);
5764 } else {
5765 rxi_SendPacket(call, conn, xmit->list[0], istack);
5767 MUTEX_ENTER(&call->lock);
5768 CALL_RELE(call, RX_CALL_REFCOUNT_SEND);
5770 /* Tell the RTO calculation engine that we have sent a packet, and
5771 * if it was the last one */
5772 rxi_rto_packet_sent(call, lastPacket, istack);
5774 /* Update last send time for this call (for keep-alive
5775 * processing), and for the connection (so that we can discover
5776 * idle connections) */
5777 conn->lastSendTime = call->lastSendTime = clock_Sec();
5780 /* When sending packets we need to follow these rules:
5781 * 1. Never send more than maxDgramPackets in a jumbogram.
5782 * 2. Never send a packet with more than two iovecs in a jumbogram.
5783 * 3. Never send a retransmitted packet in a jumbogram.
5784 * 4. Never send more than cwind/4 packets in a jumbogram
5785 * We always keep the last list we should have sent so we
5786 * can set the RX_MORE_PACKETS flags correctly.
5789 static void
5790 rxi_SendXmitList(struct rx_call *call, struct rx_packet **list, int len,
5791 int istack)
5793 int i;
5794 int recovery;
5795 struct xmitlist working;
5796 struct xmitlist last;
5798 struct rx_peer *peer = call->conn->peer;
5799 int morePackets = 0;
5801 memset(&last, 0, sizeof(struct xmitlist));
5802 working.list = &list[0];
5803 working.len = 0;
5804 working.resending = 0;
5806 recovery = call->flags & RX_CALL_FAST_RECOVER;
5808 for (i = 0; i < len; i++) {
5809 /* Does the current packet force us to flush the current list? */
5810 if (working.len > 0
5811 && (list[i]->header.serial || (list[i]->flags & RX_PKTFLAG_ACKED)
5812 || list[i]->length > RX_JUMBOBUFFERSIZE)) {
5814 /* This sends the 'last' list and then rolls the current working
5815 * set into the 'last' one, and resets the working set */
5817 if (last.len > 0) {
5818 rxi_SendList(call, &last, istack, 1);
5819 /* If the call enters an error state stop sending, or if
5820 * we entered congestion recovery mode, stop sending */
5821 if (call->error
5822 || (!recovery && (call->flags & RX_CALL_FAST_RECOVER)))
5823 return;
5825 last = working;
5826 working.len = 0;
5827 working.resending = 0;
5828 working.list = &list[i];
5830 /* Add the current packet to the list if it hasn't been acked.
5831 * Otherwise adjust the list pointer to skip the current packet. */
5832 if (!(list[i]->flags & RX_PKTFLAG_ACKED)) {
5833 working.len++;
5835 if (list[i]->header.serial)
5836 working.resending = 1;
5838 /* Do we need to flush the list? */
5839 if (working.len >= (int)peer->maxDgramPackets
5840 || working.len >= (int)call->nDgramPackets
5841 || working.len >= (int)call->cwind
5842 || list[i]->header.serial
5843 || list[i]->length != RX_JUMBOBUFFERSIZE) {
5844 if (last.len > 0) {
5845 rxi_SendList(call, &last, istack, 1);
5846 /* If the call enters an error state stop sending, or if
5847 * we entered congestion recovery mode, stop sending */
5848 if (call->error
5849 || (!recovery && (call->flags & RX_CALL_FAST_RECOVER)))
5850 return;
5852 last = working;
5853 working.len = 0;
5854 working.resending = 0;
5855 working.list = &list[i + 1];
5857 } else {
5858 if (working.len != 0) {
5859 osi_Panic("rxi_SendList error");
5861 working.list = &list[i + 1];
5865 /* Send the whole list when the call is in receive mode, when
5866 * the call is in eof mode, when we are in fast recovery mode,
5867 * and when we have the last packet */
5868 /* XXX - The accesses to app.mode aren't safe, as this may be called by
5869 * the listener or event threads
5871 if ((list[len - 1]->header.flags & RX_LAST_PACKET)
5872 || (call->flags & RX_CALL_FLUSH)
5873 || (call->flags & RX_CALL_FAST_RECOVER)) {
5874 /* Check for the case where the current list contains
5875 * an acked packet. Since we always send retransmissions
5876 * in a separate packet, we only need to check the first
5877 * packet in the list */
5878 if (working.len > 0 && !(working.list[0]->flags & RX_PKTFLAG_ACKED)) {
5879 morePackets = 1;
5881 if (last.len > 0) {
5882 rxi_SendList(call, &last, istack, morePackets);
5883 /* If the call enters an error state stop sending, or if
5884 * we entered congestion recovery mode, stop sending */
5885 if (call->error
5886 || (!recovery && (call->flags & RX_CALL_FAST_RECOVER)))
5887 return;
5889 if (morePackets) {
5890 rxi_SendList(call, &working, istack, 0);
5892 } else if (last.len > 0) {
5893 rxi_SendList(call, &last, istack, 0);
5894 /* Packets which are in 'working' are not sent by this call */
5899 * Check if the peer for the given call is known to be dead
5901 * If the call's peer appears dead (it has encountered fatal network errors
5902 * since the call started) the call is killed with RX_CALL_DEAD if the call
5903 * is active. Otherwise, we do nothing.
5905 * @param[in] call The call to check
5907 * @return status
5908 * @retval 0 The call is fine, and we haven't done anything to the call
5909 * @retval nonzero The call's peer appears dead, and the call has been
5910 * terminated if it was active
5912 * @pre call->lock must be locked
5914 static int
5915 rxi_CheckPeerDead(struct rx_call *call)
5917 #ifdef AFS_RXERRQ_ENV
5918 int peererrs;
5920 if (call->state == RX_STATE_DALLY) {
5921 return 0;
5924 peererrs = rx_atomic_read(&call->conn->peer->neterrs);
5925 if (call->neterr_gen < peererrs) {
5926 /* we have received network errors since this call started; kill
5927 * the call */
5928 if (call->state == RX_STATE_ACTIVE) {
5929 rxi_CallError(call, RX_CALL_DEAD);
5931 return -1;
5933 if (call->neterr_gen > peererrs) {
5934 /* someone has reset the number of peer errors; set the call error gen
5935 * so we can detect if more errors are encountered */
5936 call->neterr_gen = peererrs;
5938 #endif
5939 return 0;
5942 static void
5943 rxi_Resend(struct rxevent *event, void *arg0, void *arg1, int istack)
5945 struct rx_call *call = arg0;
5946 struct rx_peer *peer;
5947 struct opr_queue *cursor;
5948 struct clock maxTimeout = { 60, 0 };
5950 MUTEX_ENTER(&call->lock);
5952 peer = call->conn->peer;
5954 /* Make sure that the event pointer is removed from the call
5955 * structure, since there is no longer a per-call retransmission
5956 * event pending. */
5957 if (event == call->resendEvent)
5958 rxevent_Put(&call->resendEvent);
5960 rxi_CheckPeerDead(call);
5962 if (opr_queue_IsEmpty(&call->tq)) {
5963 /* Nothing to do. This means that we've been raced, and that an
5964 * ACK has come in between when we were triggered, and when we
5965 * actually got to run. */
5966 goto out;
5969 /* We're in loss recovery */
5970 call->flags |= RX_CALL_FAST_RECOVER;
5972 /* Mark all of the pending packets in the queue as being lost */
5973 for (opr_queue_Scan(&call->tq, cursor)) {
5974 struct rx_packet *p = opr_queue_Entry(cursor, struct rx_packet, entry);
5975 if (!(p->flags & RX_PKTFLAG_ACKED))
5976 p->flags &= ~RX_PKTFLAG_SENT;
5979 /* We're resending, so we double the timeout of the call. This will be
5980 * dropped back down by the first successful ACK that we receive.
5982 * We apply a maximum value here of 60 seconds
5984 clock_Add(&call->rto, &call->rto);
5985 if (clock_Gt(&call->rto, &maxTimeout))
5986 call->rto = maxTimeout;
5988 /* Packet loss is most likely due to congestion, so drop our window size
5989 * and start again from the beginning */
5990 if (peer->maxDgramPackets >1) {
5991 call->MTU = RX_JUMBOBUFFERSIZE + RX_HEADER_SIZE;
5992 call->MTU = MIN(peer->natMTU, peer->maxMTU);
5994 call->ssthresh = MAX(4, MIN((int)call->cwind, (int)call->twind)) >> 1;
5995 call->nDgramPackets = 1;
5996 call->cwind = 1;
5997 call->nextCwind = 1;
5998 call->nAcks = 0;
5999 call->nNacks = 0;
6000 MUTEX_ENTER(&peer->peer_lock);
6001 peer->MTU = call->MTU;
6002 peer->cwind = call->cwind;
6003 peer->nDgramPackets = 1;
6004 peer->congestSeq++;
6005 call->congestSeq = peer->congestSeq;
6006 MUTEX_EXIT(&peer->peer_lock);
6008 rxi_Start(call, istack);
6010 out:
6011 CALL_RELE(call, RX_CALL_REFCOUNT_RESEND);
6012 MUTEX_EXIT(&call->lock);
6015 /* This routine is called when new packets are readied for
6016 * transmission and when retransmission may be necessary, or when the
6017 * transmission window or burst count are favourable. This should be
6018 * better optimized for new packets, the usual case, now that we've
6019 * got rid of queues of send packets. XXXXXXXXXXX */
6020 void
6021 rxi_Start(struct rx_call *call, int istack)
6023 struct opr_queue *cursor;
6024 #ifdef RX_ENABLE_LOCKS
6025 struct opr_queue *store;
6026 #endif
6027 int nXmitPackets;
6028 int maxXmitPackets;
6030 if (call->error) {
6031 #ifdef RX_ENABLE_LOCKS
6032 if (rx_stats_active)
6033 rx_atomic_inc(&rx_tq_debug.rxi_start_in_error);
6034 #endif
6035 return;
6038 if (!opr_queue_IsEmpty(&call->tq)) { /* If we have anything to send */
6039 /* Send (or resend) any packets that need it, subject to
6040 * window restrictions and congestion burst control
6041 * restrictions. Ask for an ack on the last packet sent in
6042 * this burst. For now, we're relying upon the window being
6043 * considerably bigger than the largest number of packets that
6044 * are typically sent at once by one initial call to
6045 * rxi_Start. This is probably bogus (perhaps we should ask
6046 * for an ack when we're half way through the current
6047 * window?). Also, for non file transfer applications, this
6048 * may end up asking for an ack for every packet. Bogus. XXXX
6051 * But check whether we're here recursively, and let the other guy
6052 * do the work.
6054 #ifdef RX_ENABLE_LOCKS
6055 if (!(call->flags & RX_CALL_TQ_BUSY)) {
6056 call->flags |= RX_CALL_TQ_BUSY;
6057 do {
6058 #endif /* RX_ENABLE_LOCKS */
6059 restart:
6060 #ifdef RX_ENABLE_LOCKS
6061 call->flags &= ~RX_CALL_NEED_START;
6062 #endif /* RX_ENABLE_LOCKS */
6063 nXmitPackets = 0;
6064 maxXmitPackets = MIN(call->twind, call->cwind);
6065 for (opr_queue_Scan(&call->tq, cursor)) {
6066 struct rx_packet *p
6067 = opr_queue_Entry(cursor, struct rx_packet, entry);
6069 if (p->flags & RX_PKTFLAG_ACKED) {
6070 /* Since we may block, don't trust this */
6071 if (rx_stats_active)
6072 rx_atomic_inc(&rx_stats.ignoreAckedPacket);
6073 continue; /* Ignore this packet if it has been acknowledged */
6076 /* Turn off all flags except these ones, which are the same
6077 * on each transmission */
6078 p->header.flags &= RX_PRESET_FLAGS;
6080 if (p->header.seq >=
6081 call->tfirst + MIN((int)call->twind,
6082 (int)(call->nSoftAcked +
6083 call->cwind))) {
6084 call->flags |= RX_CALL_WAIT_WINDOW_SEND; /* Wait for transmit window */
6085 /* Note: if we're waiting for more window space, we can
6086 * still send retransmits; hence we don't return here, but
6087 * break out to schedule a retransmit event */
6088 dpf(("call %d waiting for window (seq %d, twind %d, nSoftAcked %d, cwind %d)\n",
6089 *(call->callNumber), p->header.seq, call->twind, call->nSoftAcked,
6090 call->cwind));
6091 break;
6094 /* Transmit the packet if it needs to be sent. */
6095 if (!(p->flags & RX_PKTFLAG_SENT)) {
6096 if (nXmitPackets == maxXmitPackets) {
6097 rxi_SendXmitList(call, call->xmitList,
6098 nXmitPackets, istack);
6099 goto restart;
6101 dpf(("call %d xmit packet %"AFS_PTR_FMT"\n",
6102 *(call->callNumber), p));
6103 call->xmitList[nXmitPackets++] = p;
6105 } /* end of the queue_Scan */
6107 /* xmitList now hold pointers to all of the packets that are
6108 * ready to send. Now we loop to send the packets */
6109 if (nXmitPackets > 0) {
6110 rxi_SendXmitList(call, call->xmitList, nXmitPackets,
6111 istack);
6114 #ifdef RX_ENABLE_LOCKS
6115 if (call->error) {
6116 /* We went into the error state while sending packets. Now is
6117 * the time to reset the call. This will also inform the using
6118 * process that the call is in an error state.
6120 if (rx_stats_active)
6121 rx_atomic_inc(&rx_tq_debug.rxi_start_aborted);
6122 call->flags &= ~RX_CALL_TQ_BUSY;
6123 rxi_WakeUpTransmitQueue(call);
6124 rxi_CallError(call, call->error);
6125 return;
6128 if (call->flags & RX_CALL_TQ_SOME_ACKED) {
6129 int missing;
6130 call->flags &= ~RX_CALL_TQ_SOME_ACKED;
6131 /* Some packets have received acks. If they all have, we can clear
6132 * the transmit queue.
6134 missing = 0;
6135 for (opr_queue_ScanSafe(&call->tq, cursor, store)) {
6136 struct rx_packet *p
6137 = opr_queue_Entry(cursor, struct rx_packet, entry);
6139 if (p->header.seq < call->tfirst
6140 && (p->flags & RX_PKTFLAG_ACKED)) {
6141 opr_queue_Remove(&p->entry);
6142 #ifdef RX_TRACK_PACKETS
6143 p->flags &= ~RX_PKTFLAG_TQ;
6144 #endif
6145 #ifdef RXDEBUG_PACKET
6146 call->tqc--;
6147 #endif
6148 rxi_FreePacket(p);
6149 } else
6150 missing = 1;
6152 if (!missing)
6153 call->flags |= RX_CALL_TQ_CLEARME;
6155 if (call->flags & RX_CALL_TQ_CLEARME)
6156 rxi_ClearTransmitQueue(call, 1);
6157 } while (call->flags & RX_CALL_NEED_START);
6159 * TQ references no longer protected by this flag; they must remain
6160 * protected by the call lock.
6162 call->flags &= ~RX_CALL_TQ_BUSY;
6163 rxi_WakeUpTransmitQueue(call);
6164 } else {
6165 call->flags |= RX_CALL_NEED_START;
6167 #endif /* RX_ENABLE_LOCKS */
6168 } else {
6169 rxi_rto_cancel(call);
6173 /* Also adjusts the keep alive parameters for the call, to reflect
6174 * that we have just sent a packet (so keep alives aren't sent
6175 * immediately) */
6176 void
6177 rxi_Send(struct rx_call *call, struct rx_packet *p,
6178 int istack)
6180 struct rx_connection *conn = call->conn;
6182 /* Stamp each packet with the user supplied status */
6183 p->header.userStatus = call->localStatus;
6185 /* Allow the security object controlling this call's security to
6186 * make any last-minute changes to the packet */
6187 RXS_SendPacket(conn->securityObject, call, p);
6189 /* Since we're about to send SOME sort of packet to the peer, it's
6190 * safe to nuke any scheduled end-of-packets ack */
6191 rxi_CancelDelayedAckEvent(call);
6193 /* Actually send the packet, filling in more connection-specific fields */
6194 MUTEX_EXIT(&call->lock);
6195 CALL_HOLD(call, RX_CALL_REFCOUNT_SEND);
6196 rxi_SendPacket(call, conn, p, istack);
6197 CALL_RELE(call, RX_CALL_REFCOUNT_SEND);
6198 MUTEX_ENTER(&call->lock);
6200 /* Update last send time for this call (for keep-alive
6201 * processing), and for the connection (so that we can discover
6202 * idle connections) */
6203 if ((p->header.type != RX_PACKET_TYPE_ACK) ||
6204 (((struct rx_ackPacket *)rx_DataOf(p))->reason == RX_ACK_PING) ||
6205 (p->length <= (rx_AckDataSize(call->rwind) + 4 * sizeof(afs_int32))))
6207 conn->lastSendTime = call->lastSendTime = clock_Sec();
6211 /* Check if a call needs to be destroyed. Called by keep-alive code to ensure
6212 * that things are fine. Also called periodically to guarantee that nothing
6213 * falls through the cracks (e.g. (error + dally) connections have keepalive
6214 * turned off. Returns 0 if conn is well, -1 otherwise. If otherwise, call
6215 * may be freed!
6216 * haveCTLock Set if calling from rxi_ReapConnections
6218 static int
6219 rxi_CheckCall(struct rx_call *call, int haveCTLock)
6221 struct rx_connection *conn = call->conn;
6222 afs_uint32 now;
6223 afs_uint32 deadTime, idleDeadTime = 0, hardDeadTime = 0;
6224 afs_uint32 fudgeFactor;
6225 int cerror = 0;
6226 int newmtu = 0;
6227 int idle_timeout = 0;
6228 afs_int32 clock_diff = 0;
6230 if (rxi_CheckPeerDead(call)) {
6231 return -1;
6234 now = clock_Sec();
6236 /* Large swings in the clock can have a significant impact on
6237 * the performance of RX call processing. Forward clock shifts
6238 * will result in premature event triggering or timeouts.
6239 * Backward shifts can result in calls not completing until
6240 * the clock catches up with the original start clock value.
6242 * If a backward clock shift of more than five minutes is noticed,
6243 * just fail the call.
6245 if (now < call->lastSendTime)
6246 clock_diff = call->lastSendTime - now;
6247 if (now < call->startWait)
6248 clock_diff = MAX(clock_diff, call->startWait - now);
6249 if (now < call->lastReceiveTime)
6250 clock_diff = MAX(clock_diff, call->lastReceiveTime - now);
6251 if (clock_diff > 5 * 60)
6253 if (call->state == RX_STATE_ACTIVE)
6254 rxi_CallError(call, RX_CALL_TIMEOUT);
6255 return -1;
6258 #ifdef RX_ENABLE_LOCKS
6259 if (call->flags & RX_CALL_TQ_BUSY) {
6260 /* Call is active and will be reset by rxi_Start if it's
6261 * in an error state.
6263 return 0;
6265 #endif
6266 /* RTT + 8*MDEV, rounded up to the next second. */
6267 fudgeFactor = (((afs_uint32) call->rtt >> 3) +
6268 ((afs_uint32) call->rtt_dev << 1) + 1023) >> 10;
6270 deadTime = conn->secondsUntilDead + fudgeFactor;
6271 /* These are computed to the second (+- 1 second). But that's
6272 * good enough for these values, which should be a significant
6273 * number of seconds. */
6274 if (now > (call->lastReceiveTime + deadTime)) {
6275 if (call->state == RX_STATE_ACTIVE) {
6276 cerror = RX_CALL_DEAD;
6277 goto mtuout;
6278 } else {
6279 #ifdef RX_ENABLE_LOCKS
6280 /* Cancel pending events */
6281 rxi_CancelDelayedAckEvent(call);
6282 rxi_rto_cancel(call);
6283 rxi_CancelKeepAliveEvent(call);
6284 rxi_CancelGrowMTUEvent(call);
6285 MUTEX_ENTER(&rx_refcnt_mutex);
6286 /* if rxi_FreeCall returns 1 it has freed the call */
6287 if (call->refCount == 0 &&
6288 rxi_FreeCall(call, haveCTLock))
6290 MUTEX_EXIT(&rx_refcnt_mutex);
6291 return -2;
6293 MUTEX_EXIT(&rx_refcnt_mutex);
6294 return -1;
6295 #else /* RX_ENABLE_LOCKS */
6296 rxi_FreeCall(call, 0);
6297 return -2;
6298 #endif /* RX_ENABLE_LOCKS */
6300 /* Non-active calls are destroyed if they are not responding
6301 * to pings; active calls are simply flagged in error, so the
6302 * attached process can die reasonably gracefully. */
6305 if (conn->idleDeadTime) {
6306 idleDeadTime = conn->idleDeadTime + fudgeFactor;
6309 if (idleDeadTime) {
6310 /* see if we have a non-activity timeout */
6311 if (call->startWait && ((call->startWait + idleDeadTime) < now)) {
6312 if (call->state == RX_STATE_ACTIVE) {
6313 cerror = RX_CALL_TIMEOUT;
6314 goto mtuout;
6319 if (conn->hardDeadTime) {
6320 hardDeadTime = conn->hardDeadTime + fudgeFactor;
6323 /* see if we have a hard timeout */
6324 if (hardDeadTime
6325 && (now > (hardDeadTime + call->startTime.sec))) {
6326 if (call->state == RX_STATE_ACTIVE)
6327 rxi_CallError(call, RX_CALL_TIMEOUT);
6328 return -1;
6330 return 0;
6331 mtuout:
6332 if (conn->msgsizeRetryErr && cerror != RX_CALL_TIMEOUT && !idle_timeout &&
6333 call->lastReceiveTime) {
6334 int oldMTU = conn->peer->ifMTU;
6336 /* If we thought we could send more, perhaps things got worse.
6337 * Shrink by 128 bytes and try again. */
6338 if (conn->peer->maxPacketSize < conn->lastPacketSize)
6339 /* maxPacketSize will be cleared in rxi_SetPeerMtu */
6340 newmtu = MAX(conn->peer->maxPacketSize + RX_HEADER_SIZE,
6341 conn->lastPacketSize - 128 + RX_HEADER_SIZE);
6342 else
6343 newmtu = conn->lastPacketSize - 128 + RX_HEADER_SIZE;
6345 /* minimum capped in SetPeerMtu */
6346 rxi_SetPeerMtu(conn->peer, 0, 0, newmtu);
6348 /* clean up */
6349 conn->lastPacketSize = conn->lastPacketSizeSeq = 0;
6351 /* needed so ResetCall doesn't clobber us. */
6352 call->MTU = conn->peer->ifMTU;
6354 /* if we never succeeded, let the error pass out as-is */
6355 if (conn->peer->maxPacketSize && oldMTU != conn->peer->ifMTU)
6356 cerror = conn->msgsizeRetryErr;
6359 rxi_CallError(call, cerror);
6360 return -1;
6363 void
6364 rxi_NatKeepAliveEvent(struct rxevent *event, void *arg1,
6365 void *dummy, int dummy2)
6367 struct rx_connection *conn = arg1;
6368 struct rx_header theader;
6369 char tbuffer[1 + sizeof(struct rx_header)];
6370 struct sockaddr_in taddr;
6371 char *tp;
6372 char a[1] = { 0 };
6373 int resched = 0;
6374 struct iovec tmpiov[2];
6375 osi_socket socket =
6376 (conn->type ==
6377 RX_CLIENT_CONNECTION ? rx_socket : conn->service->socket);
6380 tp = &tbuffer[sizeof(struct rx_header)];
6381 taddr.sin_family = AF_INET;
6382 taddr.sin_port = rx_PortOf(rx_PeerOf(conn));
6383 taddr.sin_addr.s_addr = rx_HostOf(rx_PeerOf(conn));
6384 memset(&taddr.sin_zero, 0, sizeof(taddr.sin_zero));
6385 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
6386 taddr.sin_len = sizeof(struct sockaddr_in);
6387 #endif
6388 memset(&theader, 0, sizeof(theader));
6389 theader.epoch = htonl(999);
6390 theader.cid = 0;
6391 theader.callNumber = 0;
6392 theader.seq = 0;
6393 theader.serial = 0;
6394 theader.type = RX_PACKET_TYPE_VERSION;
6395 theader.flags = RX_LAST_PACKET;
6396 theader.serviceId = 0;
6398 memcpy(tbuffer, &theader, sizeof(theader));
6399 memcpy(tp, &a, sizeof(a));
6400 tmpiov[0].iov_base = tbuffer;
6401 tmpiov[0].iov_len = 1 + sizeof(struct rx_header);
6403 osi_NetSend(socket, &taddr, tmpiov, 1, 1 + sizeof(struct rx_header), 1);
6405 MUTEX_ENTER(&conn->conn_data_lock);
6406 /* We ran, so the handle is no longer needed to try to cancel ourselves. */
6407 if (event == conn->natKeepAliveEvent)
6408 rxevent_Put(&conn->natKeepAliveEvent);
6409 MUTEX_ENTER(&rx_refcnt_mutex);
6410 /* Only reschedule ourselves if the connection would not be destroyed */
6411 if (conn->refCount > 1)
6412 resched = 1;
6413 if (conn->refCount <= 0) {
6414 #ifdef RX_REFCOUNT_CHECK
6415 osi_Assert(conn->refCount == 0);
6416 #endif
6417 if (rx_stats_active) {
6418 MUTEX_ENTER(&rx_stats_mutex);
6419 rxi_lowConnRefCount++;
6420 MUTEX_EXIT(&rx_stats_mutex);
6423 MUTEX_EXIT(&rx_refcnt_mutex);
6424 if (resched)
6425 rxi_ScheduleNatKeepAliveEvent(conn);
6426 MUTEX_EXIT(&conn->conn_data_lock);
6427 putConnection(conn);
6430 static void
6431 rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn)
6433 MUTEX_ASSERT(&conn->conn_data_lock);
6434 if (!conn->natKeepAliveEvent && conn->secondsUntilNatPing) {
6435 struct clock when, now;
6436 clock_GetTime(&now);
6437 when = now;
6438 when.sec += conn->secondsUntilNatPing;
6439 rx_GetConnection(conn);
6440 conn->natKeepAliveEvent =
6441 rxevent_Post(&when, &now, rxi_NatKeepAliveEvent, conn, NULL, 0);
6445 void
6446 rx_SetConnSecondsUntilNatPing(struct rx_connection *conn, afs_int32 seconds)
6448 MUTEX_ENTER(&conn->conn_data_lock);
6449 conn->secondsUntilNatPing = seconds;
6450 if (seconds != 0) {
6451 if (!(conn->flags & RX_CONN_ATTACHWAIT))
6452 rxi_ScheduleNatKeepAliveEvent(conn);
6453 else
6454 conn->flags |= RX_CONN_NAT_PING;
6456 MUTEX_EXIT(&conn->conn_data_lock);
6459 /* When a call is in progress, this routine is called occasionally to
6460 * make sure that some traffic has arrived (or been sent to) the peer.
6461 * If nothing has arrived in a reasonable amount of time, the call is
6462 * declared dead; if nothing has been sent for a while, we send a
6463 * keep-alive packet (if we're actually trying to keep the call alive)
6465 void
6466 rxi_KeepAliveEvent(struct rxevent *event, void *arg1, void *dummy,
6467 int dummy2)
6469 struct rx_call *call = arg1;
6470 struct rx_connection *conn;
6471 afs_uint32 now;
6473 MUTEX_ENTER(&call->lock);
6475 if (event == call->keepAliveEvent)
6476 rxevent_Put(&call->keepAliveEvent);
6478 now = clock_Sec();
6480 if (rxi_CheckCall(call, 0)) {
6481 MUTEX_EXIT(&call->lock);
6482 CALL_RELE(call, RX_CALL_REFCOUNT_ALIVE);
6483 return;
6486 /* Don't try to keep alive dallying calls */
6487 if (call->state == RX_STATE_DALLY) {
6488 MUTEX_EXIT(&call->lock);
6489 CALL_RELE(call, RX_CALL_REFCOUNT_ALIVE);
6490 return;
6493 conn = call->conn;
6494 if ((now - call->lastSendTime) > conn->secondsUntilPing) {
6495 /* Don't try to send keepalives if there is unacknowledged data */
6496 /* the rexmit code should be good enough, this little hack
6497 * doesn't quite work XXX */
6498 (void)rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
6500 rxi_ScheduleKeepAliveEvent(call);
6501 MUTEX_EXIT(&call->lock);
6502 CALL_RELE(call, RX_CALL_REFCOUNT_ALIVE);
6505 /* Does what's on the nameplate. */
6506 void
6507 rxi_GrowMTUEvent(struct rxevent *event, void *arg1, void *dummy, int dummy2)
6509 struct rx_call *call = arg1;
6510 struct rx_connection *conn;
6512 MUTEX_ENTER(&call->lock);
6514 if (event == call->growMTUEvent)
6515 rxevent_Put(&call->growMTUEvent);
6517 if (rxi_CheckCall(call, 0))
6518 goto out;
6520 /* Don't bother with dallying calls */
6521 if (call->state == RX_STATE_DALLY)
6522 goto out;
6524 conn = call->conn;
6527 * keep being scheduled, just don't do anything if we're at peak,
6528 * or we're not set up to be properly handled (idle timeout required)
6530 if ((conn->peer->maxPacketSize != 0) &&
6531 (conn->peer->natMTU < RX_MAX_PACKET_SIZE) &&
6532 conn->idleDeadTime)
6533 (void)rxi_SendAck(call, NULL, 0, RX_ACK_MTU, 0);
6534 rxi_ScheduleGrowMTUEvent(call, 0);
6535 out:
6536 MUTEX_EXIT(&call->lock);
6537 CALL_RELE(call, RX_CALL_REFCOUNT_MTU);
6540 static void
6541 rxi_ScheduleKeepAliveEvent(struct rx_call *call)
6543 MUTEX_ASSERT(&call->lock);
6544 if (!call->keepAliveEvent) {
6545 struct clock when, now;
6546 clock_GetTime(&now);
6547 when = now;
6548 when.sec += call->conn->secondsUntilPing;
6549 CALL_HOLD(call, RX_CALL_REFCOUNT_ALIVE);
6550 call->keepAliveEvent =
6551 rxevent_Post(&when, &now, rxi_KeepAliveEvent, call, NULL, 0);
6555 static void
6556 rxi_CancelKeepAliveEvent(struct rx_call *call) {
6557 MUTEX_ASSERT(&call->lock);
6558 if (rxevent_Cancel(&call->keepAliveEvent))
6559 CALL_RELE(call, RX_CALL_REFCOUNT_ALIVE);
6562 static void
6563 rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs)
6565 MUTEX_ASSERT(&call->lock);
6566 if (!call->growMTUEvent) {
6567 struct clock when, now;
6569 clock_GetTime(&now);
6570 when = now;
6571 if (!secs) {
6572 if (call->conn->secondsUntilPing)
6573 secs = (6*call->conn->secondsUntilPing)-1;
6575 if (call->conn->secondsUntilDead)
6576 secs = MIN(secs, (call->conn->secondsUntilDead-1));
6579 when.sec += secs;
6580 CALL_HOLD(call, RX_CALL_REFCOUNT_MTU);
6581 call->growMTUEvent =
6582 rxevent_Post(&when, &now, rxi_GrowMTUEvent, call, NULL, 0);
6586 static void
6587 rxi_CancelGrowMTUEvent(struct rx_call *call)
6589 MUTEX_ASSERT(&call->lock);
6590 if (rxevent_Cancel(&call->growMTUEvent))
6591 CALL_RELE(call, RX_CALL_REFCOUNT_MTU);
6595 * Increment the counter for the next connection ID, handling overflow.
6597 static void
6598 update_nextCid(void)
6600 /* Overflow is technically undefined behavior; avoid it. */
6601 if (rx_nextCid > MAX_AFS_INT32 - (1 << RX_CIDSHIFT))
6602 rx_nextCid = -1 * ((MAX_AFS_INT32 / RX_CIDSHIFT) * RX_CIDSHIFT);
6603 else
6604 rx_nextCid += 1 << RX_CIDSHIFT;
6607 static void
6608 rxi_KeepAliveOn(struct rx_call *call)
6610 /* Pretend last packet received was received now--i.e. if another
6611 * packet isn't received within the keep alive time, then the call
6612 * will die; Initialize last send time to the current time--even
6613 * if a packet hasn't been sent yet. This will guarantee that a
6614 * keep-alive is sent within the ping time */
6615 call->lastReceiveTime = call->lastSendTime = clock_Sec();
6616 rxi_ScheduleKeepAliveEvent(call);
6619 static void
6620 rxi_GrowMTUOn(struct rx_call *call)
6622 struct rx_connection *conn = call->conn;
6623 MUTEX_ENTER(&conn->conn_data_lock);
6624 conn->lastPingSizeSer = conn->lastPingSize = 0;
6625 MUTEX_EXIT(&conn->conn_data_lock);
6626 rxi_ScheduleGrowMTUEvent(call, 1);
6629 /* This routine is called to send connection abort messages
6630 * that have been delayed to throttle looping clients. */
6631 static void
6632 rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1, void *unused,
6633 int unused2)
6635 struct rx_connection *conn = arg1;
6637 afs_int32 error;
6638 struct rx_packet *packet;
6640 MUTEX_ENTER(&conn->conn_data_lock);
6641 if (event == conn->delayedAbortEvent)
6642 rxevent_Put(&conn->delayedAbortEvent);
6643 error = htonl(conn->error);
6644 conn->abortCount++;
6645 MUTEX_EXIT(&conn->conn_data_lock);
6646 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
6647 if (packet) {
6648 packet =
6649 rxi_SendSpecial((struct rx_call *)0, conn, packet,
6650 RX_PACKET_TYPE_ABORT, (char *)&error,
6651 sizeof(error), 0);
6652 rxi_FreePacket(packet);
6654 putConnection(conn);
6657 /* This routine is called to send call abort messages
6658 * that have been delayed to throttle looping clients. */
6659 static void
6660 rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1, void *dummy,
6661 int dummy2)
6663 struct rx_call *call = arg1;
6665 afs_int32 error;
6666 struct rx_packet *packet;
6668 MUTEX_ENTER(&call->lock);
6669 if (event == call->delayedAbortEvent)
6670 rxevent_Put(&call->delayedAbortEvent);
6671 error = htonl(call->error);
6672 call->abortCount++;
6673 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
6674 if (packet) {
6675 packet =
6676 rxi_SendSpecial(call, call->conn, packet, RX_PACKET_TYPE_ABORT,
6677 (char *)&error, sizeof(error), 0);
6678 rxi_FreePacket(packet);
6680 MUTEX_EXIT(&call->lock);
6681 CALL_RELE(call, RX_CALL_REFCOUNT_ABORT);
6685 * This routine is called periodically (every RX_AUTH_REQUEST_TIMEOUT
6686 * seconds) to ask the client to authenticate itself. The routine
6687 * issues a challenge to the client, which is obtained from the
6688 * security object associated with the connection
6690 * This routine is both an event handler and a function called directly;
6691 * when called directly the passed |event| is NULL and the
6692 * conn->conn->data>lock must must not be held.
6694 static void
6695 rxi_ChallengeEvent(struct rxevent *event,
6696 void *arg0, void *arg1, int tries)
6698 struct rx_connection *conn = arg0;
6700 MUTEX_ENTER(&conn->conn_data_lock);
6701 if (event != NULL && event == conn->challengeEvent)
6702 rxevent_Put(&conn->challengeEvent);
6703 MUTEX_EXIT(&conn->conn_data_lock);
6705 /* If there are no active calls it is not worth re-issuing the
6706 * challenge. If the client issues another call on this connection
6707 * the challenge can be requested at that time.
6709 if (!rxi_HasActiveCalls(conn)) {
6710 putConnection(conn);
6711 return;
6714 if (RXS_CheckAuthentication(conn->securityObject, conn) != 0) {
6715 struct rx_packet *packet;
6716 struct clock when, now;
6718 if (tries <= 0) {
6719 /* We've failed to authenticate for too long.
6720 * Reset any calls waiting for authentication;
6721 * they are all in RX_STATE_PRECALL.
6723 int i;
6725 MUTEX_ENTER(&conn->conn_call_lock);
6726 for (i = 0; i < RX_MAXCALLS; i++) {
6727 struct rx_call *call = conn->call[i];
6728 if (call) {
6729 MUTEX_ENTER(&call->lock);
6730 if (call->state == RX_STATE_PRECALL) {
6731 rxi_CallError(call, RX_CALL_DEAD);
6732 rxi_SendCallAbort(call, NULL, 0, 0);
6734 MUTEX_EXIT(&call->lock);
6737 MUTEX_EXIT(&conn->conn_call_lock);
6738 putConnection(conn);
6739 return;
6742 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
6743 if (packet) {
6744 /* If there's no packet available, do this later. */
6745 RXS_GetChallenge(conn->securityObject, conn, packet);
6746 rxi_SendSpecial((struct rx_call *)0, conn, packet,
6747 RX_PACKET_TYPE_CHALLENGE, NULL, -1, 0);
6748 rxi_FreePacket(packet);
6749 conn->securityChallengeSent = 1;
6751 clock_GetTime(&now);
6752 when = now;
6753 when.sec += RX_CHALLENGE_TIMEOUT;
6754 MUTEX_ENTER(&conn->conn_data_lock);
6755 /* Only reschedule ourselves if not already pending. */
6756 if (conn->challengeEvent == NULL) {
6757 rx_GetConnection(conn);
6758 conn->challengeEvent =
6759 rxevent_Post(&when, &now, rxi_ChallengeEvent, conn, 0,
6760 (tries - 1));
6762 MUTEX_EXIT(&conn->conn_data_lock);
6764 putConnection(conn);
6767 /* Call this routine to start requesting the client to authenticate
6768 * itself. This will continue until authentication is established,
6769 * the call times out, or an invalid response is returned. The
6770 * security object associated with the connection is asked to create
6771 * the challenge at this time. */
6772 static void
6773 rxi_ChallengeOn(struct rx_connection *conn)
6775 int start = 0;
6776 MUTEX_ENTER(&conn->conn_data_lock);
6777 if (!conn->challengeEvent)
6778 start = 1;
6779 MUTEX_EXIT(&conn->conn_data_lock);
6780 if (start) {
6781 RXS_CreateChallenge(conn->securityObject, conn);
6782 rxi_ChallengeEvent(NULL, conn, 0, RX_CHALLENGE_MAXTRIES);
6787 /* rxi_ComputeRoundTripTime is called with peer locked. */
6788 /* peer may be null */
6789 static void
6790 rxi_ComputeRoundTripTime(struct rx_packet *p,
6791 struct rx_ackPacket *ack,
6792 struct rx_call *call,
6793 struct rx_peer *peer,
6794 struct clock *now)
6796 struct clock thisRtt, *sentp;
6797 int rtt_timeout;
6798 int serial;
6800 /* If the ACK is delayed, then do nothing */
6801 if (ack->reason == RX_ACK_DELAY)
6802 return;
6804 /* On the wire, jumbograms are a single UDP packet. We shouldn't count
6805 * their RTT multiple times, so only include the RTT of the last packet
6806 * in a jumbogram */
6807 if (p->flags & RX_JUMBO_PACKET)
6808 return;
6810 /* Use the serial number to determine which transmission the ACK is for,
6811 * and set the sent time to match this. If we have no serial number, then
6812 * only use the ACK for RTT calculations if the packet has not been
6813 * retransmitted
6816 serial = ntohl(ack->serial);
6817 if (serial) {
6818 if (serial == p->header.serial) {
6819 sentp = &p->timeSent;
6820 } else if (serial == p->firstSerial) {
6821 sentp = &p->firstSent;
6822 } else if (clock_Eq(&p->timeSent, &p->firstSent)) {
6823 sentp = &p->firstSent;
6824 } else
6825 return;
6826 } else {
6827 if (clock_Eq(&p->timeSent, &p->firstSent)) {
6828 sentp = &p->firstSent;
6829 } else
6830 return;
6833 thisRtt = *now;
6835 if (clock_Lt(&thisRtt, sentp))
6836 return; /* somebody set the clock back, don't count this time. */
6838 clock_Sub(&thisRtt, sentp);
6839 dpf(("rxi_ComputeRoundTripTime(call=%d packet=%"AFS_PTR_FMT" rttp=%d.%06d sec)\n",
6840 p->header.callNumber, p, thisRtt.sec, thisRtt.usec));
6842 if (clock_IsZero(&thisRtt)) {
6844 * The actual round trip time is shorter than the
6845 * clock_GetTime resolution. It is most likely 1ms or 100ns.
6846 * Since we can't tell which at the moment we will assume 1ms.
6848 thisRtt.usec = 1000;
6851 if (rx_stats_active) {
6852 MUTEX_ENTER(&rx_stats_mutex);
6853 if (clock_Lt(&thisRtt, &rx_stats.minRtt))
6854 rx_stats.minRtt = thisRtt;
6855 if (clock_Gt(&thisRtt, &rx_stats.maxRtt)) {
6856 if (thisRtt.sec > 60) {
6857 MUTEX_EXIT(&rx_stats_mutex);
6858 return; /* somebody set the clock ahead */
6860 rx_stats.maxRtt = thisRtt;
6862 clock_Add(&rx_stats.totalRtt, &thisRtt);
6863 rx_atomic_inc(&rx_stats.nRttSamples);
6864 MUTEX_EXIT(&rx_stats_mutex);
6867 /* better rtt calculation courtesy of UMich crew (dave,larry,peter,?) */
6869 /* Apply VanJacobson round-trip estimations */
6870 if (call->rtt) {
6871 int delta;
6874 * srtt (call->rtt) is in units of one-eighth-milliseconds.
6875 * srtt is stored as fixed point with 3 bits after the binary
6876 * point (i.e., scaled by 8). The following magic is
6877 * equivalent to the smoothing algorithm in rfc793 with an
6878 * alpha of .875 (srtt' = rtt/8 + srtt*7/8 in fixed point).
6879 * srtt'*8 = rtt + srtt*7
6880 * srtt'*8 = srtt*8 + rtt - srtt
6881 * srtt' = srtt + rtt/8 - srtt/8
6882 * srtt' = srtt + (rtt - srtt)/8
6885 delta = _8THMSEC(&thisRtt) - call->rtt;
6886 call->rtt += (delta >> 3);
6889 * We accumulate a smoothed rtt variance (actually, a smoothed
6890 * mean difference), then set the retransmit timer to smoothed
6891 * rtt + 4 times the smoothed variance (was 2x in van's original
6892 * paper, but 4x works better for me, and apparently for him as
6893 * well).
6894 * rttvar is stored as
6895 * fixed point with 2 bits after the binary point (scaled by
6896 * 4). The following is equivalent to rfc793 smoothing with
6897 * an alpha of .75 (rttvar' = rttvar*3/4 + |delta| / 4).
6898 * rttvar'*4 = rttvar*3 + |delta|
6899 * rttvar'*4 = rttvar*4 + |delta| - rttvar
6900 * rttvar' = rttvar + |delta|/4 - rttvar/4
6901 * rttvar' = rttvar + (|delta| - rttvar)/4
6902 * This replaces rfc793's wired-in beta.
6903 * dev*4 = dev*4 + (|actual - expected| - dev)
6906 if (delta < 0)
6907 delta = -delta;
6909 delta -= (call->rtt_dev << 1);
6910 call->rtt_dev += (delta >> 3);
6911 } else {
6912 /* I don't have a stored RTT so I start with this value. Since I'm
6913 * probably just starting a call, and will be pushing more data down
6914 * this, I expect congestion to increase rapidly. So I fudge a
6915 * little, and I set deviance to half the rtt. In practice,
6916 * deviance tends to approach something a little less than
6917 * half the smoothed rtt. */
6918 call->rtt = _8THMSEC(&thisRtt) + 8;
6919 call->rtt_dev = call->rtt >> 2; /* rtt/2: they're scaled differently */
6921 /* the smoothed RTT time is RTT + 4*MDEV
6923 * We allow a user specified minimum to be set for this, to allow clamping
6924 * at a minimum value in the same way as TCP. In addition, we have to allow
6925 * for the possibility that this packet is answered by a delayed ACK, so we
6926 * add on a fixed 200ms to account for that timer expiring.
6929 rtt_timeout = MAX(((call->rtt >> 3) + call->rtt_dev),
6930 rx_minPeerTimeout) + 200;
6931 clock_Zero(&call->rto);
6932 clock_Addmsec(&call->rto, rtt_timeout);
6934 /* Update the peer, so any new calls start with our values */
6935 peer->rtt_dev = call->rtt_dev;
6936 peer->rtt = call->rtt;
6938 dpf(("rxi_ComputeRoundTripTime(call=%d packet=%"AFS_PTR_FMT" rtt=%d ms, srtt=%d ms, rtt_dev=%d ms, timeout=%d.%06d sec)\n",
6939 p->header.callNumber, p, MSEC(&thisRtt), call->rtt >> 3, call->rtt_dev >> 2, (call->rto.sec), (call->rto.usec)));
6943 /* Find all server connections that have not been active for a long time, and
6944 * toss them */
6945 static void
6946 rxi_ReapConnections(struct rxevent *unused, void *unused1, void *unused2,
6947 int unused3)
6949 struct clock now, when;
6950 struct rxevent *event;
6951 clock_GetTime(&now);
6953 /* Find server connection structures that haven't been used for
6954 * greater than rx_idleConnectionTime */
6956 struct rx_connection **conn_ptr, **conn_end;
6957 int i, havecalls = 0;
6958 MUTEX_ENTER(&rx_connHashTable_lock);
6959 for (conn_ptr = &rx_connHashTable[0], conn_end =
6960 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
6961 conn_ptr++) {
6962 struct rx_connection *conn, *next;
6963 struct rx_call *call;
6964 int result;
6966 rereap:
6967 for (conn = *conn_ptr; conn; conn = next) {
6968 /* XXX -- Shouldn't the connection be locked? */
6969 next = conn->next;
6970 havecalls = 0;
6971 for (i = 0; i < RX_MAXCALLS; i++) {
6972 call = conn->call[i];
6973 if (call) {
6974 int code;
6975 havecalls = 1;
6976 code = MUTEX_TRYENTER(&call->lock);
6977 if (!code)
6978 continue;
6979 result = rxi_CheckCall(call, 1);
6980 MUTEX_EXIT(&call->lock);
6981 if (result == -2) {
6982 /* If CheckCall freed the call, it might
6983 * have destroyed the connection as well,
6984 * which screws up the linked lists.
6986 goto rereap;
6990 if (conn->type == RX_SERVER_CONNECTION) {
6991 /* This only actually destroys the connection if
6992 * there are no outstanding calls */
6993 MUTEX_ENTER(&conn->conn_data_lock);
6994 MUTEX_ENTER(&rx_refcnt_mutex);
6995 if (!havecalls && !conn->refCount
6996 && ((conn->lastSendTime + rx_idleConnectionTime) <
6997 now.sec)) {
6998 conn->refCount++; /* it will be decr in rx_DestroyConn */
6999 MUTEX_EXIT(&rx_refcnt_mutex);
7000 MUTEX_EXIT(&conn->conn_data_lock);
7001 #ifdef RX_ENABLE_LOCKS
7002 rxi_DestroyConnectionNoLock(conn);
7003 #else /* RX_ENABLE_LOCKS */
7004 rxi_DestroyConnection(conn);
7005 #endif /* RX_ENABLE_LOCKS */
7007 #ifdef RX_ENABLE_LOCKS
7008 else {
7009 MUTEX_EXIT(&rx_refcnt_mutex);
7010 MUTEX_EXIT(&conn->conn_data_lock);
7012 #endif /* RX_ENABLE_LOCKS */
7016 #ifdef RX_ENABLE_LOCKS
7017 while (rx_connCleanup_list) {
7018 struct rx_connection *conn;
7019 conn = rx_connCleanup_list;
7020 rx_connCleanup_list = rx_connCleanup_list->next;
7021 MUTEX_EXIT(&rx_connHashTable_lock);
7022 rxi_CleanupConnection(conn);
7023 MUTEX_ENTER(&rx_connHashTable_lock);
7025 MUTEX_EXIT(&rx_connHashTable_lock);
7026 #endif /* RX_ENABLE_LOCKS */
7029 /* Find any peer structures that haven't been used (haven't had an
7030 * associated connection) for greater than rx_idlePeerTime */
7032 struct rx_peer **peer_ptr, **peer_end;
7033 int code;
7036 * Why do we need to hold the rx_peerHashTable_lock across
7037 * the incrementing of peer_ptr since the rx_peerHashTable
7038 * array is not changing? We don't.
7040 * By dropping the lock periodically we can permit other
7041 * activities to be performed while a rxi_ReapConnections
7042 * call is in progress. The goal of reap connections
7043 * is to clean up quickly without causing large amounts
7044 * of contention. Therefore, it is important that global
7045 * mutexes not be held for extended periods of time.
7047 for (peer_ptr = &rx_peerHashTable[0], peer_end =
7048 &rx_peerHashTable[rx_hashTableSize]; peer_ptr < peer_end;
7049 peer_ptr++) {
7050 struct rx_peer *peer, *next, *prev;
7052 MUTEX_ENTER(&rx_peerHashTable_lock);
7053 for (prev = peer = *peer_ptr; peer; peer = next) {
7054 next = peer->next;
7055 code = MUTEX_TRYENTER(&peer->peer_lock);
7056 if ((code) && (peer->refCount == 0)
7057 && ((peer->idleWhen + rx_idlePeerTime) < now.sec)) {
7058 struct opr_queue *cursor, *store;
7059 size_t space;
7062 * now know that this peer object is one to be
7063 * removed from the hash table. Once it is removed
7064 * it can't be referenced by other threads.
7065 * Lets remove it first and decrement the struct
7066 * nPeerStructs count.
7068 if (peer == *peer_ptr) {
7069 *peer_ptr = next;
7070 prev = next;
7071 } else
7072 prev->next = next;
7074 if (rx_stats_active)
7075 rx_atomic_dec(&rx_stats.nPeerStructs);
7078 * Now if we hold references on 'prev' and 'next'
7079 * we can safely drop the rx_peerHashTable_lock
7080 * while we destroy this 'peer' object.
7082 if (next)
7083 next->refCount++;
7084 if (prev)
7085 prev->refCount++;
7086 MUTEX_EXIT(&rx_peerHashTable_lock);
7088 MUTEX_EXIT(&peer->peer_lock);
7089 MUTEX_DESTROY(&peer->peer_lock);
7091 for (opr_queue_ScanSafe(&peer->rpcStats, cursor, store)) {
7092 unsigned int num_funcs;
7093 struct rx_interface_stat *rpc_stat
7094 = opr_queue_Entry(cursor, struct rx_interface_stat,
7095 entry);
7096 if (!rpc_stat)
7097 break;
7099 opr_queue_Remove(&rpc_stat->entry);
7100 opr_queue_Remove(&rpc_stat->entryPeers);
7102 num_funcs = rpc_stat->stats[0].func_total;
7103 space =
7104 sizeof(rx_interface_stat_t) +
7105 rpc_stat->stats[0].func_total *
7106 sizeof(rx_function_entry_v1_t);
7108 rxi_Free(rpc_stat, space);
7110 MUTEX_ENTER(&rx_rpc_stats);
7111 rxi_rpc_peer_stat_cnt -= num_funcs;
7112 MUTEX_EXIT(&rx_rpc_stats);
7114 rxi_FreePeer(peer);
7117 * Regain the rx_peerHashTable_lock and
7118 * decrement the reference count on 'prev'
7119 * and 'next'.
7121 MUTEX_ENTER(&rx_peerHashTable_lock);
7122 if (next)
7123 next->refCount--;
7124 if (prev)
7125 prev->refCount--;
7126 } else {
7127 if (code) {
7128 MUTEX_EXIT(&peer->peer_lock);
7130 prev = peer;
7133 MUTEX_EXIT(&rx_peerHashTable_lock);
7137 /* THIS HACK IS A TEMPORARY HACK. The idea is that the race condition in
7138 * rxi_AllocSendPacket, if it hits, will be handled at the next conn
7139 * GC, just below. Really, we shouldn't have to keep moving packets from
7140 * one place to another, but instead ought to always know if we can
7141 * afford to hold onto a packet in its particular use. */
7142 MUTEX_ENTER(&rx_freePktQ_lock);
7143 if (rx_waitingForPackets) {
7144 rx_waitingForPackets = 0;
7145 #ifdef RX_ENABLE_LOCKS
7146 CV_BROADCAST(&rx_waitingForPackets_cv);
7147 #else
7148 osi_rxWakeup(&rx_waitingForPackets);
7149 #endif
7151 MUTEX_EXIT(&rx_freePktQ_lock);
7153 when = now;
7154 when.sec += RX_REAP_TIME; /* Check every RX_REAP_TIME seconds */
7155 event = rxevent_Post(&when, &now, rxi_ReapConnections, 0, NULL, 0);
7156 rxevent_Put(&event);
7160 /* rxs_Release - This isn't strictly necessary but, since the macro name from
7161 * rx.h is sort of strange this is better. This is called with a security
7162 * object before it is discarded. Each connection using a security object has
7163 * its own refcount to the object so it won't actually be freed until the last
7164 * connection is destroyed.
7166 * This is the only rxs module call. A hold could also be written but no one
7167 * needs it. */
7170 rxs_Release(struct rx_securityClass *aobj)
7172 return RXS_Close(aobj);
7175 void
7176 rxi_DebugInit(void)
7178 #ifdef RXDEBUG
7179 #ifdef AFS_NT40_ENV
7180 #define TRACE_OPTION_RX_DEBUG 16
7181 HKEY parmKey;
7182 DWORD dummyLen;
7183 DWORD TraceOption;
7184 long code;
7186 rxdebug_active = 0;
7188 code = RegOpenKeyEx(HKEY_LOCAL_MACHINE, AFSREG_CLT_SVC_PARAM_SUBKEY,
7189 0, KEY_QUERY_VALUE, &parmKey);
7190 if (code != ERROR_SUCCESS)
7191 return;
7193 dummyLen = sizeof(TraceOption);
7194 code = RegQueryValueEx(parmKey, "TraceOption", NULL, NULL,
7195 (BYTE *) &TraceOption, &dummyLen);
7196 if (code == ERROR_SUCCESS) {
7197 rxdebug_active = (TraceOption & TRACE_OPTION_RX_DEBUG) ? 1 : 0;
7199 RegCloseKey (parmKey);
7200 #endif /* AFS_NT40_ENV */
7201 #endif
7204 void
7205 rx_DebugOnOff(int on)
7207 #ifdef RXDEBUG
7208 #ifdef AFS_NT40_ENV
7209 rxdebug_active = on;
7210 #endif
7211 #endif
7214 void
7215 rx_StatsOnOff(int on)
7217 rx_stats_active = on;
7221 /* Don't call this debugging routine directly; use dpf */
7222 void
7223 rxi_DebugPrint(char *format, ...)
7225 #ifdef RXDEBUG
7226 va_list ap;
7227 #ifdef AFS_NT40_ENV
7228 char msg[512];
7229 char tformat[256];
7230 size_t len;
7232 va_start(ap, format);
7234 len = _snprintf(tformat, sizeof(tformat), "tid[%d] %s", GetCurrentThreadId(), format);
7236 if (len > 0) {
7237 len = _vsnprintf(msg, sizeof(msg)-2, tformat, ap);
7238 if (len > 0)
7239 OutputDebugString(msg);
7241 va_end(ap);
7242 #else
7243 struct clock now;
7245 va_start(ap, format);
7247 clock_GetTime(&now);
7248 fprintf(rx_Log, " %d.%06d:", (unsigned int)now.sec,
7249 (unsigned int)now.usec);
7250 vfprintf(rx_Log, format, ap);
7251 va_end(ap);
7252 #endif
7253 #endif
7256 #ifndef KERNEL
7258 * This function is used to process the rx_stats structure that is local
7259 * to a process as well as an rx_stats structure received from a remote
7260 * process (via rxdebug). Therefore, it needs to do minimal version
7261 * checking.
7263 void
7264 rx_PrintTheseStats(FILE * file, struct rx_statistics *s, int size,
7265 afs_int32 freePackets, char version)
7267 int i;
7269 if (size != sizeof(struct rx_statistics)) {
7270 fprintf(file,
7271 "Unexpected size of stats structure: was %d, expected %" AFS_SIZET_FMT "\n",
7272 size, sizeof(struct rx_statistics));
7275 fprintf(file, "rx stats: free packets %d, allocs %d, ", (int)freePackets,
7276 s->packetRequests);
7278 if (version >= RX_DEBUGI_VERSION_W_NEWPACKETTYPES) {
7279 fprintf(file, "alloc-failures(rcv %u/%u,send %u/%u,ack %u)\n",
7280 s->receivePktAllocFailures, s->receiveCbufPktAllocFailures,
7281 s->sendPktAllocFailures, s->sendCbufPktAllocFailures,
7282 s->specialPktAllocFailures);
7283 } else {
7284 fprintf(file, "alloc-failures(rcv %u,send %u,ack %u)\n",
7285 s->receivePktAllocFailures, s->sendPktAllocFailures,
7286 s->specialPktAllocFailures);
7289 fprintf(file,
7290 " greedy %u, " "bogusReads %u (last from host %x), "
7291 "noPackets %u, " "noBuffers %u, " "selects %u, "
7292 "sendSelects %u\n", s->socketGreedy, s->bogusPacketOnRead,
7293 s->bogusHost, s->noPacketOnRead, s->noPacketBuffersOnRead,
7294 s->selects, s->sendSelects);
7296 fprintf(file, " packets read: ");
7297 for (i = 0; i < RX_N_PACKET_TYPES; i++) {
7298 fprintf(file, "%s %u ", rx_packetTypes[i], s->packetsRead[i]);
7300 fprintf(file, "\n");
7302 fprintf(file,
7303 " other read counters: data %u, " "ack %u, " "dup %u "
7304 "spurious %u " "dally %u\n", s->dataPacketsRead,
7305 s->ackPacketsRead, s->dupPacketsRead, s->spuriousPacketsRead,
7306 s->ignorePacketDally);
7308 fprintf(file, " packets sent: ");
7309 for (i = 0; i < RX_N_PACKET_TYPES; i++) {
7310 fprintf(file, "%s %u ", rx_packetTypes[i], s->packetsSent[i]);
7312 fprintf(file, "\n");
7314 fprintf(file,
7315 " other send counters: ack %u, " "data %u (not resends), "
7316 "resends %u, " "pushed %u, " "acked&ignored %u\n",
7317 s->ackPacketsSent, s->dataPacketsSent, s->dataPacketsReSent,
7318 s->dataPacketsPushed, s->ignoreAckedPacket);
7320 fprintf(file,
7321 " \t(these should be small) sendFailed %u, " "fatalErrors %u\n",
7322 s->netSendFailures, (int)s->fatalErrors);
7324 if (s->nRttSamples) {
7325 fprintf(file, " Average rtt is %0.3f, with %d samples\n",
7326 clock_Float(&s->totalRtt) / s->nRttSamples, s->nRttSamples);
7328 fprintf(file, " Minimum rtt is %0.3f, maximum is %0.3f\n",
7329 clock_Float(&s->minRtt), clock_Float(&s->maxRtt));
7332 fprintf(file,
7333 " %d server connections, " "%d client connections, "
7334 "%d peer structs, " "%d call structs, " "%d free call structs\n",
7335 s->nServerConns, s->nClientConns, s->nPeerStructs,
7336 s->nCallStructs, s->nFreeCallStructs);
7338 #if !defined(AFS_PTHREAD_ENV) && !defined(AFS_USE_GETTIMEOFDAY)
7339 fprintf(file, " %d clock updates\n", clock_nUpdates);
7340 #endif
7343 /* for backward compatibility */
7344 void
7345 rx_PrintStats(FILE * file)
7347 MUTEX_ENTER(&rx_stats_mutex);
7348 rx_PrintTheseStats(file, (struct rx_statistics *) &rx_stats,
7349 sizeof(rx_stats), rx_nFreePackets,
7350 RX_DEBUGI_VERSION);
7351 MUTEX_EXIT(&rx_stats_mutex);
7354 void
7355 rx_PrintPeerStats(FILE * file, struct rx_peer *peer)
7357 fprintf(file, "Peer %x.%d.\n",
7358 ntohl(peer->host), (int)ntohs(peer->port));
7360 fprintf(file,
7361 " Rtt %d, " "total sent %d, " "resent %d\n",
7362 peer->rtt, peer->nSent, peer->reSends);
7364 fprintf(file, " Packet size %d\n", peer->ifMTU);
7366 #endif
7368 #if defined(AFS_PTHREAD_ENV) && defined(RXDEBUG)
7370 * This mutex protects the following static variables:
7371 * counter
7374 #define LOCK_RX_DEBUG MUTEX_ENTER(&rx_debug_mutex)
7375 #define UNLOCK_RX_DEBUG MUTEX_EXIT(&rx_debug_mutex)
7376 #else
7377 #define LOCK_RX_DEBUG
7378 #define UNLOCK_RX_DEBUG
7379 #endif /* AFS_PTHREAD_ENV */
7381 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7382 static int
7383 MakeDebugCall(osi_socket socket, afs_uint32 remoteAddr, afs_uint16 remotePort,
7384 u_char type, void *inputData, size_t inputLength,
7385 void *outputData, size_t outputLength)
7387 static afs_int32 counter = 100;
7388 time_t waitTime, waitCount;
7389 struct rx_header theader;
7390 char tbuffer[1500];
7391 afs_int32 code;
7392 struct timeval tv_now, tv_wake, tv_delta;
7393 struct sockaddr_in taddr, faddr;
7394 #ifdef AFS_NT40_ENV
7395 int faddrLen;
7396 #else
7397 socklen_t faddrLen;
7398 #endif
7399 fd_set imask;
7400 char *tp;
7402 waitTime = 1;
7403 waitCount = 5;
7404 LOCK_RX_DEBUG;
7405 counter++;
7406 UNLOCK_RX_DEBUG;
7407 tp = &tbuffer[sizeof(struct rx_header)];
7408 taddr.sin_family = AF_INET;
7409 taddr.sin_port = remotePort;
7410 taddr.sin_addr.s_addr = remoteAddr;
7411 memset(&taddr.sin_zero, 0, sizeof(taddr.sin_zero));
7412 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
7413 taddr.sin_len = sizeof(struct sockaddr_in);
7414 #endif
7415 while (1) {
7416 memset(&theader, 0, sizeof(theader));
7417 theader.epoch = htonl(999);
7418 theader.cid = 0;
7419 theader.callNumber = htonl(counter);
7420 theader.seq = 0;
7421 theader.serial = 0;
7422 theader.type = type;
7423 theader.flags = RX_CLIENT_INITIATED | RX_LAST_PACKET;
7424 theader.serviceId = 0;
7426 memcpy(tbuffer, &theader, sizeof(theader));
7427 memcpy(tp, inputData, inputLength);
7428 code =
7429 sendto(socket, tbuffer, inputLength + sizeof(struct rx_header), 0,
7430 (struct sockaddr *)&taddr, sizeof(struct sockaddr_in));
7432 /* see if there's a packet available */
7433 gettimeofday(&tv_wake, NULL);
7434 tv_wake.tv_sec += waitTime;
7435 for (;;) {
7436 FD_ZERO(&imask);
7437 FD_SET(socket, &imask);
7438 tv_delta.tv_sec = tv_wake.tv_sec;
7439 tv_delta.tv_usec = tv_wake.tv_usec;
7440 gettimeofday(&tv_now, NULL);
7442 if (tv_delta.tv_usec < tv_now.tv_usec) {
7443 /* borrow */
7444 tv_delta.tv_usec += 1000000;
7445 tv_delta.tv_sec--;
7447 tv_delta.tv_usec -= tv_now.tv_usec;
7449 if (tv_delta.tv_sec < tv_now.tv_sec) {
7450 /* time expired */
7451 break;
7453 tv_delta.tv_sec -= tv_now.tv_sec;
7455 #ifdef AFS_NT40_ENV
7456 code = select(0, &imask, 0, 0, &tv_delta);
7457 #else /* AFS_NT40_ENV */
7458 code = select(socket + 1, &imask, 0, 0, &tv_delta);
7459 #endif /* AFS_NT40_ENV */
7460 if (code == 1 && FD_ISSET(socket, &imask)) {
7461 /* now receive a packet */
7462 faddrLen = sizeof(struct sockaddr_in);
7463 code =
7464 recvfrom(socket, tbuffer, sizeof(tbuffer), 0,
7465 (struct sockaddr *)&faddr, &faddrLen);
7467 if (code > 0) {
7468 memcpy(&theader, tbuffer, sizeof(struct rx_header));
7469 if (counter == ntohl(theader.callNumber))
7470 goto success;
7471 continue;
7474 break;
7477 /* see if we've timed out */
7478 if (!--waitCount) {
7479 return -1;
7481 waitTime <<= 1;
7484 success:
7485 code -= sizeof(struct rx_header);
7486 if (code > outputLength)
7487 code = outputLength;
7488 memcpy(outputData, tp, code);
7489 return code;
7491 #endif /* RXDEBUG */
7493 afs_int32
7494 rx_GetServerDebug(osi_socket socket, afs_uint32 remoteAddr,
7495 afs_uint16 remotePort, struct rx_debugStats * stat,
7496 afs_uint32 * supportedValues)
7498 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7499 afs_int32 rc = 0;
7500 struct rx_debugIn in;
7502 *supportedValues = 0;
7503 in.type = htonl(RX_DEBUGI_GETSTATS);
7504 in.index = 0;
7506 rc = MakeDebugCall(socket, remoteAddr, remotePort, RX_PACKET_TYPE_DEBUG,
7507 &in, sizeof(in), stat, sizeof(*stat));
7510 * If the call was successful, fixup the version and indicate
7511 * what contents of the stat structure are valid.
7512 * Also do net to host conversion of fields here.
7515 if (rc >= 0) {
7516 if (stat->version >= RX_DEBUGI_VERSION_W_SECSTATS) {
7517 *supportedValues |= RX_SERVER_DEBUG_SEC_STATS;
7519 if (stat->version >= RX_DEBUGI_VERSION_W_GETALLCONN) {
7520 *supportedValues |= RX_SERVER_DEBUG_ALL_CONN;
7522 if (stat->version >= RX_DEBUGI_VERSION_W_RXSTATS) {
7523 *supportedValues |= RX_SERVER_DEBUG_RX_STATS;
7525 if (stat->version >= RX_DEBUGI_VERSION_W_WAITERS) {
7526 *supportedValues |= RX_SERVER_DEBUG_WAITER_CNT;
7528 if (stat->version >= RX_DEBUGI_VERSION_W_IDLETHREADS) {
7529 *supportedValues |= RX_SERVER_DEBUG_IDLE_THREADS;
7531 if (stat->version >= RX_DEBUGI_VERSION_W_NEWPACKETTYPES) {
7532 *supportedValues |= RX_SERVER_DEBUG_NEW_PACKETS;
7534 if (stat->version >= RX_DEBUGI_VERSION_W_GETPEER) {
7535 *supportedValues |= RX_SERVER_DEBUG_ALL_PEER;
7537 if (stat->version >= RX_DEBUGI_VERSION_W_WAITED) {
7538 *supportedValues |= RX_SERVER_DEBUG_WAITED_CNT;
7540 if (stat->version >= RX_DEBUGI_VERSION_W_PACKETS) {
7541 *supportedValues |= RX_SERVER_DEBUG_PACKETS_CNT;
7543 stat->nFreePackets = ntohl(stat->nFreePackets);
7544 stat->packetReclaims = ntohl(stat->packetReclaims);
7545 stat->callsExecuted = ntohl(stat->callsExecuted);
7546 stat->nWaiting = ntohl(stat->nWaiting);
7547 stat->idleThreads = ntohl(stat->idleThreads);
7548 stat->nWaited = ntohl(stat->nWaited);
7549 stat->nPackets = ntohl(stat->nPackets);
7551 #else
7552 afs_int32 rc = -1;
7553 #endif
7554 return rc;
7557 afs_int32
7558 rx_GetServerStats(osi_socket socket, afs_uint32 remoteAddr,
7559 afs_uint16 remotePort, struct rx_statistics * stat,
7560 afs_uint32 * supportedValues)
7562 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7563 afs_int32 rc = 0;
7564 struct rx_debugIn in;
7565 afs_int32 *lp = (afs_int32 *) stat;
7566 int i;
7569 * supportedValues is currently unused, but added to allow future
7570 * versioning of this function.
7573 *supportedValues = 0;
7574 in.type = htonl(RX_DEBUGI_RXSTATS);
7575 in.index = 0;
7576 memset(stat, 0, sizeof(*stat));
7578 rc = MakeDebugCall(socket, remoteAddr, remotePort, RX_PACKET_TYPE_DEBUG,
7579 &in, sizeof(in), stat, sizeof(*stat));
7581 if (rc >= 0) {
7584 * Do net to host conversion here
7587 for (i = 0; i < sizeof(*stat) / sizeof(afs_int32); i++, lp++) {
7588 *lp = ntohl(*lp);
7591 #else
7592 afs_int32 rc = -1;
7593 #endif
7594 return rc;
7597 afs_int32
7598 rx_GetServerVersion(osi_socket socket, afs_uint32 remoteAddr,
7599 afs_uint16 remotePort, size_t version_length,
7600 char *version)
7602 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7603 char a[1] = { 0 };
7604 return MakeDebugCall(socket, remoteAddr, remotePort,
7605 RX_PACKET_TYPE_VERSION, a, 1, version,
7606 version_length);
7607 #else
7608 return -1;
7609 #endif
7612 afs_int32
7613 rx_GetServerConnections(osi_socket socket, afs_uint32 remoteAddr,
7614 afs_uint16 remotePort, afs_int32 * nextConnection,
7615 int allConnections, afs_uint32 debugSupportedValues,
7616 struct rx_debugConn * conn,
7617 afs_uint32 * supportedValues)
7619 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7620 afs_int32 rc = 0;
7621 struct rx_debugIn in;
7622 int i;
7625 * supportedValues is currently unused, but added to allow future
7626 * versioning of this function.
7629 *supportedValues = 0;
7630 if (allConnections) {
7631 in.type = htonl(RX_DEBUGI_GETALLCONN);
7632 } else {
7633 in.type = htonl(RX_DEBUGI_GETCONN);
7635 in.index = htonl(*nextConnection);
7636 memset(conn, 0, sizeof(*conn));
7638 rc = MakeDebugCall(socket, remoteAddr, remotePort, RX_PACKET_TYPE_DEBUG,
7639 &in, sizeof(in), conn, sizeof(*conn));
7641 if (rc >= 0) {
7642 *nextConnection += 1;
7645 * Convert old connection format to new structure.
7648 if (debugSupportedValues & RX_SERVER_DEBUG_OLD_CONN) {
7649 struct rx_debugConn_vL *vL = (struct rx_debugConn_vL *)conn;
7650 #define MOVEvL(a) (conn->a = vL->a)
7652 /* any old or unrecognized version... */
7653 for (i = 0; i < RX_MAXCALLS; i++) {
7654 MOVEvL(callState[i]);
7655 MOVEvL(callMode[i]);
7656 MOVEvL(callFlags[i]);
7657 MOVEvL(callOther[i]);
7659 if (debugSupportedValues & RX_SERVER_DEBUG_SEC_STATS) {
7660 MOVEvL(secStats.type);
7661 MOVEvL(secStats.level);
7662 MOVEvL(secStats.flags);
7663 MOVEvL(secStats.expires);
7664 MOVEvL(secStats.packetsReceived);
7665 MOVEvL(secStats.packetsSent);
7666 MOVEvL(secStats.bytesReceived);
7667 MOVEvL(secStats.bytesSent);
7672 * Do net to host conversion here
7673 * NOTE:
7674 * I don't convert host or port since we are most likely
7675 * going to want these in NBO.
7677 conn->cid = ntohl(conn->cid);
7678 conn->serial = ntohl(conn->serial);
7679 for (i = 0; i < RX_MAXCALLS; i++) {
7680 conn->callNumber[i] = ntohl(conn->callNumber[i]);
7682 conn->error = ntohl(conn->error);
7683 conn->secStats.flags = ntohl(conn->secStats.flags);
7684 conn->secStats.expires = ntohl(conn->secStats.expires);
7685 conn->secStats.packetsReceived =
7686 ntohl(conn->secStats.packetsReceived);
7687 conn->secStats.packetsSent = ntohl(conn->secStats.packetsSent);
7688 conn->secStats.bytesReceived = ntohl(conn->secStats.bytesReceived);
7689 conn->secStats.bytesSent = ntohl(conn->secStats.bytesSent);
7690 conn->epoch = ntohl(conn->epoch);
7691 conn->natMTU = ntohl(conn->natMTU);
7693 #else
7694 afs_int32 rc = -1;
7695 #endif
7696 return rc;
7699 afs_int32
7700 rx_GetServerPeers(osi_socket socket, afs_uint32 remoteAddr,
7701 afs_uint16 remotePort, afs_int32 * nextPeer,
7702 afs_uint32 debugSupportedValues, struct rx_debugPeer * peer,
7703 afs_uint32 * supportedValues)
7705 #if defined(RXDEBUG) || defined(MAKEDEBUGCALL)
7706 afs_int32 rc = 0;
7707 struct rx_debugIn in;
7710 * supportedValues is currently unused, but added to allow future
7711 * versioning of this function.
7714 *supportedValues = 0;
7715 in.type = htonl(RX_DEBUGI_GETPEER);
7716 in.index = htonl(*nextPeer);
7717 memset(peer, 0, sizeof(*peer));
7719 rc = MakeDebugCall(socket, remoteAddr, remotePort, RX_PACKET_TYPE_DEBUG,
7720 &in, sizeof(in), peer, sizeof(*peer));
7722 if (rc >= 0) {
7723 *nextPeer += 1;
7726 * Do net to host conversion here
7727 * NOTE:
7728 * I don't convert host or port since we are most likely
7729 * going to want these in NBO.
7731 peer->ifMTU = ntohs(peer->ifMTU);
7732 peer->idleWhen = ntohl(peer->idleWhen);
7733 peer->refCount = ntohs(peer->refCount);
7734 peer->rtt = ntohl(peer->rtt);
7735 peer->rtt_dev = ntohl(peer->rtt_dev);
7736 peer->timeout.sec = 0;
7737 peer->timeout.usec = 0;
7738 peer->nSent = ntohl(peer->nSent);
7739 peer->reSends = ntohl(peer->reSends);
7740 peer->natMTU = ntohs(peer->natMTU);
7741 peer->maxMTU = ntohs(peer->maxMTU);
7742 peer->maxDgramPackets = ntohs(peer->maxDgramPackets);
7743 peer->ifDgramPackets = ntohs(peer->ifDgramPackets);
7744 peer->MTU = ntohs(peer->MTU);
7745 peer->cwind = ntohs(peer->cwind);
7746 peer->nDgramPackets = ntohs(peer->nDgramPackets);
7747 peer->congestSeq = ntohs(peer->congestSeq);
7748 peer->bytesSent.high = ntohl(peer->bytesSent.high);
7749 peer->bytesSent.low = ntohl(peer->bytesSent.low);
7750 peer->bytesReceived.high = ntohl(peer->bytesReceived.high);
7751 peer->bytesReceived.low = ntohl(peer->bytesReceived.low);
7753 #else
7754 afs_int32 rc = -1;
7755 #endif
7756 return rc;
7759 afs_int32
7760 rx_GetLocalPeers(afs_uint32 peerHost, afs_uint16 peerPort,
7761 struct rx_debugPeer * peerStats)
7763 struct rx_peer *tp;
7764 afs_int32 error = 1; /* default to "did not succeed" */
7765 afs_uint32 hashValue = PEER_HASH(peerHost, peerPort);
7767 MUTEX_ENTER(&rx_peerHashTable_lock);
7768 for(tp = rx_peerHashTable[hashValue];
7769 tp != NULL; tp = tp->next) {
7770 if (tp->host == peerHost)
7771 break;
7774 if (tp) {
7775 tp->refCount++;
7776 MUTEX_EXIT(&rx_peerHashTable_lock);
7778 error = 0;
7780 MUTEX_ENTER(&tp->peer_lock);
7781 peerStats->host = tp->host;
7782 peerStats->port = tp->port;
7783 peerStats->ifMTU = tp->ifMTU;
7784 peerStats->idleWhen = tp->idleWhen;
7785 peerStats->refCount = tp->refCount;
7786 peerStats->burstSize = 0;
7787 peerStats->burst = 0;
7788 peerStats->burstWait.sec = 0;
7789 peerStats->burstWait.usec = 0;
7790 peerStats->rtt = tp->rtt;
7791 peerStats->rtt_dev = tp->rtt_dev;
7792 peerStats->timeout.sec = 0;
7793 peerStats->timeout.usec = 0;
7794 peerStats->nSent = tp->nSent;
7795 peerStats->reSends = tp->reSends;
7796 peerStats->natMTU = tp->natMTU;
7797 peerStats->maxMTU = tp->maxMTU;
7798 peerStats->maxDgramPackets = tp->maxDgramPackets;
7799 peerStats->ifDgramPackets = tp->ifDgramPackets;
7800 peerStats->MTU = tp->MTU;
7801 peerStats->cwind = tp->cwind;
7802 peerStats->nDgramPackets = tp->nDgramPackets;
7803 peerStats->congestSeq = tp->congestSeq;
7804 peerStats->bytesSent.high = tp->bytesSent >> 32;
7805 peerStats->bytesSent.low = tp->bytesSent & MAX_AFS_UINT32;
7806 peerStats->bytesReceived.high = tp->bytesReceived >> 32;
7807 peerStats->bytesReceived.low
7808 = tp->bytesReceived & MAX_AFS_UINT32;
7809 MUTEX_EXIT(&tp->peer_lock);
7811 MUTEX_ENTER(&rx_peerHashTable_lock);
7812 tp->refCount--;
7814 MUTEX_EXIT(&rx_peerHashTable_lock);
7816 return error;
7819 void
7820 shutdown_rx(void)
7822 struct rx_serverQueueEntry *np;
7823 int i, j;
7824 #ifndef KERNEL
7825 struct rx_call *call;
7826 struct rx_serverQueueEntry *sq;
7827 #endif /* KERNEL */
7829 if (rx_atomic_test_and_set_bit(&rxinit_status, 0))
7830 return; /* Already shutdown. */
7832 #ifndef KERNEL
7833 rx_port = 0;
7834 #ifndef AFS_PTHREAD_ENV
7835 FD_ZERO(&rx_selectMask);
7836 #endif /* AFS_PTHREAD_ENV */
7837 rxi_dataQuota = RX_MAX_QUOTA;
7838 #ifndef AFS_PTHREAD_ENV
7839 rxi_StopListener();
7840 #endif /* AFS_PTHREAD_ENV */
7841 shutdown_rxevent();
7842 rx_epoch = 0;
7843 #ifndef AFS_PTHREAD_ENV
7844 #ifndef AFS_USE_GETTIMEOFDAY
7845 clock_UnInit();
7846 #endif /* AFS_USE_GETTIMEOFDAY */
7847 #endif /* AFS_PTHREAD_ENV */
7849 while (!opr_queue_IsEmpty(&rx_freeCallQueue)) {
7850 call = opr_queue_First(&rx_freeCallQueue, struct rx_call, entry);
7851 opr_queue_Remove(&call->entry);
7852 rxi_Free(call, sizeof(struct rx_call));
7855 while (!opr_queue_IsEmpty(&rx_idleServerQueue)) {
7856 sq = opr_queue_First(&rx_idleServerQueue, struct rx_serverQueueEntry,
7857 entry);
7858 opr_queue_Remove(&sq->entry);
7860 #endif /* KERNEL */
7863 struct rx_peer **peer_ptr, **peer_end;
7864 for (peer_ptr = &rx_peerHashTable[0], peer_end =
7865 &rx_peerHashTable[rx_hashTableSize]; peer_ptr < peer_end;
7866 peer_ptr++) {
7867 struct rx_peer *peer, *next;
7869 MUTEX_ENTER(&rx_peerHashTable_lock);
7870 for (peer = *peer_ptr; peer; peer = next) {
7871 struct opr_queue *cursor, *store;
7872 size_t space;
7874 MUTEX_ENTER(&rx_rpc_stats);
7875 MUTEX_ENTER(&peer->peer_lock);
7876 for (opr_queue_ScanSafe(&peer->rpcStats, cursor, store)) {
7877 unsigned int num_funcs;
7878 struct rx_interface_stat *rpc_stat
7879 = opr_queue_Entry(cursor, struct rx_interface_stat,
7880 entry);
7881 if (!rpc_stat)
7882 break;
7883 opr_queue_Remove(&rpc_stat->entry);
7884 opr_queue_Remove(&rpc_stat->entryPeers);
7885 num_funcs = rpc_stat->stats[0].func_total;
7886 space =
7887 sizeof(rx_interface_stat_t) +
7888 rpc_stat->stats[0].func_total *
7889 sizeof(rx_function_entry_v1_t);
7891 rxi_Free(rpc_stat, space);
7893 /* rx_rpc_stats must be held */
7894 rxi_rpc_peer_stat_cnt -= num_funcs;
7896 MUTEX_EXIT(&peer->peer_lock);
7897 MUTEX_EXIT(&rx_rpc_stats);
7899 next = peer->next;
7900 rxi_FreePeer(peer);
7901 if (rx_stats_active)
7902 rx_atomic_dec(&rx_stats.nPeerStructs);
7904 MUTEX_EXIT(&rx_peerHashTable_lock);
7907 for (i = 0; i < RX_MAX_SERVICES; i++) {
7908 if (rx_services[i])
7909 rxi_Free(rx_services[i], sizeof(*rx_services[i]));
7911 for (i = 0; i < rx_hashTableSize; i++) {
7912 struct rx_connection *tc, *ntc;
7913 MUTEX_ENTER(&rx_connHashTable_lock);
7914 for (tc = rx_connHashTable[i]; tc; tc = ntc) {
7915 ntc = tc->next;
7916 for (j = 0; j < RX_MAXCALLS; j++) {
7917 if (tc->call[j]) {
7918 rxi_Free(tc->call[j], sizeof(*tc->call[j]));
7921 rxi_Free(tc, sizeof(*tc));
7923 MUTEX_EXIT(&rx_connHashTable_lock);
7926 MUTEX_ENTER(&freeSQEList_lock);
7928 while ((np = rx_FreeSQEList)) {
7929 rx_FreeSQEList = *(struct rx_serverQueueEntry **)np;
7930 MUTEX_DESTROY(&np->lock);
7931 rxi_Free(np, sizeof(*np));
7934 MUTEX_EXIT(&freeSQEList_lock);
7935 MUTEX_DESTROY(&freeSQEList_lock);
7936 MUTEX_DESTROY(&rx_freeCallQueue_lock);
7937 MUTEX_DESTROY(&rx_connHashTable_lock);
7938 MUTEX_DESTROY(&rx_peerHashTable_lock);
7939 MUTEX_DESTROY(&rx_serverPool_lock);
7941 osi_Free(rx_connHashTable,
7942 rx_hashTableSize * sizeof(struct rx_connection *));
7943 osi_Free(rx_peerHashTable, rx_hashTableSize * sizeof(struct rx_peer *));
7945 UNPIN(rx_connHashTable,
7946 rx_hashTableSize * sizeof(struct rx_connection *));
7947 UNPIN(rx_peerHashTable, rx_hashTableSize * sizeof(struct rx_peer *));
7949 MUTEX_ENTER(&rx_quota_mutex);
7950 rxi_dataQuota = RX_MAX_QUOTA;
7951 rxi_availProcs = rxi_totalMin = rxi_minDeficit = 0;
7952 MUTEX_EXIT(&rx_quota_mutex);
7955 #ifndef KERNEL
7958 * Routines to implement connection specific data.
7962 rx_KeyCreate(rx_destructor_t rtn)
7964 int key;
7965 MUTEX_ENTER(&rxi_keyCreate_lock);
7966 key = rxi_keyCreate_counter++;
7967 rxi_keyCreate_destructor = (rx_destructor_t *)
7968 realloc((void *)rxi_keyCreate_destructor,
7969 (key + 1) * sizeof(rx_destructor_t));
7970 rxi_keyCreate_destructor[key] = rtn;
7971 MUTEX_EXIT(&rxi_keyCreate_lock);
7972 return key;
7975 void
7976 rx_SetSpecific(struct rx_connection *conn, int key, void *ptr)
7978 int i;
7979 MUTEX_ENTER(&conn->conn_data_lock);
7980 if (!conn->specific) {
7981 conn->specific = malloc((key + 1) * sizeof(void *));
7982 for (i = 0; i < key; i++)
7983 conn->specific[i] = NULL;
7984 conn->nSpecific = key + 1;
7985 conn->specific[key] = ptr;
7986 } else if (key >= conn->nSpecific) {
7987 conn->specific = (void **)
7988 realloc(conn->specific, (key + 1) * sizeof(void *));
7989 for (i = conn->nSpecific; i < key; i++)
7990 conn->specific[i] = NULL;
7991 conn->nSpecific = key + 1;
7992 conn->specific[key] = ptr;
7993 } else {
7994 if (conn->specific[key] && rxi_keyCreate_destructor[key])
7995 (*rxi_keyCreate_destructor[key]) (conn->specific[key]);
7996 conn->specific[key] = ptr;
7998 MUTEX_EXIT(&conn->conn_data_lock);
8001 void
8002 rx_SetServiceSpecific(struct rx_service *svc, int key, void *ptr)
8004 int i;
8005 MUTEX_ENTER(&svc->svc_data_lock);
8006 if (!svc->specific) {
8007 svc->specific = malloc((key + 1) * sizeof(void *));
8008 for (i = 0; i < key; i++)
8009 svc->specific[i] = NULL;
8010 svc->nSpecific = key + 1;
8011 svc->specific[key] = ptr;
8012 } else if (key >= svc->nSpecific) {
8013 svc->specific = (void **)
8014 realloc(svc->specific, (key + 1) * sizeof(void *));
8015 for (i = svc->nSpecific; i < key; i++)
8016 svc->specific[i] = NULL;
8017 svc->nSpecific = key + 1;
8018 svc->specific[key] = ptr;
8019 } else {
8020 if (svc->specific[key] && rxi_keyCreate_destructor[key])
8021 (*rxi_keyCreate_destructor[key]) (svc->specific[key]);
8022 svc->specific[key] = ptr;
8024 MUTEX_EXIT(&svc->svc_data_lock);
8027 void *
8028 rx_GetSpecific(struct rx_connection *conn, int key)
8030 void *ptr;
8031 MUTEX_ENTER(&conn->conn_data_lock);
8032 if (key >= conn->nSpecific)
8033 ptr = NULL;
8034 else
8035 ptr = conn->specific[key];
8036 MUTEX_EXIT(&conn->conn_data_lock);
8037 return ptr;
8040 void *
8041 rx_GetServiceSpecific(struct rx_service *svc, int key)
8043 void *ptr;
8044 MUTEX_ENTER(&svc->svc_data_lock);
8045 if (key >= svc->nSpecific)
8046 ptr = NULL;
8047 else
8048 ptr = svc->specific[key];
8049 MUTEX_EXIT(&svc->svc_data_lock);
8050 return ptr;
8054 #endif /* !KERNEL */
8057 * processStats is a queue used to store the statistics for the local
8058 * process. Its contents are similar to the contents of the rpcStats
8059 * queue on a rx_peer structure, but the actual data stored within
8060 * this queue contains totals across the lifetime of the process (assuming
8061 * the stats have not been reset) - unlike the per peer structures
8062 * which can come and go based upon the peer lifetime.
8065 static struct opr_queue processStats = { &processStats, &processStats };
8068 * peerStats is a queue used to store the statistics for all peer structs.
8069 * Its contents are the union of all the peer rpcStats queues.
8072 static struct opr_queue peerStats = { &peerStats, &peerStats };
8075 * rxi_monitor_processStats is used to turn process wide stat collection
8076 * on and off
8079 static int rxi_monitor_processStats = 0;
8082 * rxi_monitor_peerStats is used to turn per peer stat collection on and off
8085 static int rxi_monitor_peerStats = 0;
8088 void
8089 rxi_ClearRPCOpStat(rx_function_entry_v1_p rpc_stat)
8091 rpc_stat->invocations = 0;
8092 rpc_stat->bytes_sent = 0;
8093 rpc_stat->bytes_rcvd = 0;
8094 rpc_stat->queue_time_sum.sec = 0;
8095 rpc_stat->queue_time_sum.usec = 0;
8096 rpc_stat->queue_time_sum_sqr.sec = 0;
8097 rpc_stat->queue_time_sum_sqr.usec = 0;
8098 rpc_stat->queue_time_min.sec = 9999999;
8099 rpc_stat->queue_time_min.usec = 9999999;
8100 rpc_stat->queue_time_max.sec = 0;
8101 rpc_stat->queue_time_max.usec = 0;
8102 rpc_stat->execution_time_sum.sec = 0;
8103 rpc_stat->execution_time_sum.usec = 0;
8104 rpc_stat->execution_time_sum_sqr.sec = 0;
8105 rpc_stat->execution_time_sum_sqr.usec = 0;
8106 rpc_stat->execution_time_min.sec = 9999999;
8107 rpc_stat->execution_time_min.usec = 9999999;
8108 rpc_stat->execution_time_max.sec = 0;
8109 rpc_stat->execution_time_max.usec = 0;
8113 * Given all of the information for a particular rpc
8114 * call, find or create (if requested) the stat structure for the rpc.
8116 * @param stats
8117 * the queue of stats that will be updated with the new value
8119 * @param rxInterface
8120 * a unique number that identifies the rpc interface
8122 * @param totalFunc
8123 * the total number of functions in this interface. this is only
8124 * required if create is true
8126 * @param isServer
8127 * if true, this invocation was made to a server
8129 * @param remoteHost
8130 * the ip address of the remote host. this is only required if create
8131 * and addToPeerList are true
8133 * @param remotePort
8134 * the port of the remote host. this is only required if create
8135 * and addToPeerList are true
8137 * @param addToPeerList
8138 * if != 0, add newly created stat to the global peer list
8140 * @param counter
8141 * if a new stats structure is allocated, the counter will
8142 * be updated with the new number of allocated stat structures.
8143 * only required if create is true
8145 * @param create
8146 * if no stats structure exists, allocate one
8150 static rx_interface_stat_p
8151 rxi_FindRpcStat(struct opr_queue *stats, afs_uint32 rxInterface,
8152 afs_uint32 totalFunc, int isServer, afs_uint32 remoteHost,
8153 afs_uint32 remotePort, int addToPeerList,
8154 unsigned int *counter, int create)
8156 rx_interface_stat_p rpc_stat = NULL;
8157 struct opr_queue *cursor;
8160 * See if there's already a structure for this interface
8163 for (opr_queue_Scan(stats, cursor)) {
8164 rpc_stat = opr_queue_Entry(cursor, struct rx_interface_stat, entry);
8166 if ((rpc_stat->stats[0].interfaceId == rxInterface)
8167 && (rpc_stat->stats[0].remote_is_server == isServer))
8168 break;
8171 /* if they didn't ask us to create, we're done */
8172 if (!create) {
8173 if (opr_queue_IsEnd(stats, cursor))
8174 return NULL;
8175 else
8176 return rpc_stat;
8179 /* can't proceed without these */
8180 if (!totalFunc || !counter)
8181 return NULL;
8184 * Didn't find a match so allocate a new structure and add it to the
8185 * queue.
8188 if (opr_queue_IsEnd(stats, cursor) || (rpc_stat == NULL)
8189 || (rpc_stat->stats[0].interfaceId != rxInterface)
8190 || (rpc_stat->stats[0].remote_is_server != isServer)) {
8191 int i;
8192 size_t space;
8194 space =
8195 sizeof(rx_interface_stat_t) +
8196 totalFunc * sizeof(rx_function_entry_v1_t);
8198 rpc_stat = rxi_Alloc(space);
8199 if (rpc_stat == NULL)
8200 return NULL;
8202 *counter += totalFunc;
8203 for (i = 0; i < totalFunc; i++) {
8204 rxi_ClearRPCOpStat(&(rpc_stat->stats[i]));
8205 rpc_stat->stats[i].remote_peer = remoteHost;
8206 rpc_stat->stats[i].remote_port = remotePort;
8207 rpc_stat->stats[i].remote_is_server = isServer;
8208 rpc_stat->stats[i].interfaceId = rxInterface;
8209 rpc_stat->stats[i].func_total = totalFunc;
8210 rpc_stat->stats[i].func_index = i;
8212 opr_queue_Prepend(stats, &rpc_stat->entry);
8213 if (addToPeerList) {
8214 opr_queue_Prepend(&peerStats, &rpc_stat->entryPeers);
8217 return rpc_stat;
8220 void
8221 rx_ClearProcessRPCStats(afs_int32 rxInterface)
8223 rx_interface_stat_p rpc_stat;
8224 int totalFunc, i;
8226 if (rxInterface == -1)
8227 return;
8229 MUTEX_ENTER(&rx_rpc_stats);
8230 rpc_stat = rxi_FindRpcStat(&processStats, rxInterface, 0, 0,
8231 0, 0, 0, 0, 0);
8232 if (rpc_stat) {
8233 totalFunc = rpc_stat->stats[0].func_total;
8234 for (i = 0; i < totalFunc; i++)
8235 rxi_ClearRPCOpStat(&(rpc_stat->stats[i]));
8237 MUTEX_EXIT(&rx_rpc_stats);
8238 return;
8241 void
8242 rx_ClearPeerRPCStats(afs_int32 rxInterface, afs_uint32 peerHost, afs_uint16 peerPort)
8244 rx_interface_stat_p rpc_stat;
8245 int totalFunc, i;
8246 struct rx_peer * peer;
8248 if (rxInterface == -1)
8249 return;
8251 peer = rxi_FindPeer(peerHost, peerPort, 0);
8252 if (!peer)
8253 return;
8255 MUTEX_ENTER(&rx_rpc_stats);
8256 rpc_stat = rxi_FindRpcStat(&peer->rpcStats, rxInterface, 0, 1,
8257 0, 0, 0, 0, 0);
8258 if (rpc_stat) {
8259 totalFunc = rpc_stat->stats[0].func_total;
8260 for (i = 0; i < totalFunc; i++)
8261 rxi_ClearRPCOpStat(&(rpc_stat->stats[i]));
8263 MUTEX_EXIT(&rx_rpc_stats);
8264 return;
8267 void *
8268 rx_CopyProcessRPCStats(afs_uint64 op)
8270 rx_interface_stat_p rpc_stat;
8271 rx_function_entry_v1_p rpcop_stat =
8272 rxi_Alloc(sizeof(rx_function_entry_v1_t));
8273 int currentFunc = (op & MAX_AFS_UINT32);
8274 afs_int32 rxInterface = (op >> 32);
8276 if (!rxi_monitor_processStats)
8277 return NULL;
8279 if (rxInterface == -1)
8280 return NULL;
8282 if (rpcop_stat == NULL)
8283 return NULL;
8285 MUTEX_ENTER(&rx_rpc_stats);
8286 rpc_stat = rxi_FindRpcStat(&processStats, rxInterface, 0, 0,
8287 0, 0, 0, 0, 0);
8288 if (rpc_stat)
8289 memcpy(rpcop_stat, &(rpc_stat->stats[currentFunc]),
8290 sizeof(rx_function_entry_v1_t));
8291 MUTEX_EXIT(&rx_rpc_stats);
8292 if (!rpc_stat) {
8293 rxi_Free(rpcop_stat, sizeof(rx_function_entry_v1_t));
8294 return NULL;
8296 return rpcop_stat;
8299 void *
8300 rx_CopyPeerRPCStats(afs_uint64 op, afs_uint32 peerHost, afs_uint16 peerPort)
8302 rx_interface_stat_p rpc_stat;
8303 rx_function_entry_v1_p rpcop_stat =
8304 rxi_Alloc(sizeof(rx_function_entry_v1_t));
8305 int currentFunc = (op & MAX_AFS_UINT32);
8306 afs_int32 rxInterface = (op >> 32);
8307 struct rx_peer *peer;
8309 if (!rxi_monitor_peerStats)
8310 return NULL;
8312 if (rxInterface == -1)
8313 return NULL;
8315 if (rpcop_stat == NULL)
8316 return NULL;
8318 peer = rxi_FindPeer(peerHost, peerPort, 0);
8319 if (!peer)
8320 return NULL;
8322 MUTEX_ENTER(&rx_rpc_stats);
8323 rpc_stat = rxi_FindRpcStat(&peer->rpcStats, rxInterface, 0, 1,
8324 0, 0, 0, 0, 0);
8325 if (rpc_stat)
8326 memcpy(rpcop_stat, &(rpc_stat->stats[currentFunc]),
8327 sizeof(rx_function_entry_v1_t));
8328 MUTEX_EXIT(&rx_rpc_stats);
8329 if (!rpc_stat) {
8330 rxi_Free(rpcop_stat, sizeof(rx_function_entry_v1_t));
8331 return NULL;
8333 return rpcop_stat;
8336 void
8337 rx_ReleaseRPCStats(void *stats)
8339 if (stats)
8340 rxi_Free(stats, sizeof(rx_function_entry_v1_t));
8344 * Given all of the information for a particular rpc
8345 * call, create (if needed) and update the stat totals for the rpc.
8347 * @param stats
8348 * the queue of stats that will be updated with the new value
8350 * @param rxInterface
8351 * a unique number that identifies the rpc interface
8353 * @param currentFunc
8354 * the index of the function being invoked
8356 * @param totalFunc
8357 * the total number of functions in this interface
8359 * @param queueTime
8360 * the amount of time this function waited for a thread
8362 * @param execTime
8363 * the amount of time this function invocation took to execute
8365 * @param bytesSent
8366 * the number bytes sent by this invocation
8368 * @param bytesRcvd
8369 * the number bytes received by this invocation
8371 * @param isServer
8372 * if true, this invocation was made to a server
8374 * @param remoteHost
8375 * the ip address of the remote host
8377 * @param remotePort
8378 * the port of the remote host
8380 * @param addToPeerList
8381 * if != 0, add newly created stat to the global peer list
8383 * @param counter
8384 * if a new stats structure is allocated, the counter will
8385 * be updated with the new number of allocated stat structures
8389 static int
8390 rxi_AddRpcStat(struct opr_queue *stats, afs_uint32 rxInterface,
8391 afs_uint32 currentFunc, afs_uint32 totalFunc,
8392 struct clock *queueTime, struct clock *execTime,
8393 afs_uint64 bytesSent, afs_uint64 bytesRcvd, int isServer,
8394 afs_uint32 remoteHost, afs_uint32 remotePort,
8395 int addToPeerList, unsigned int *counter)
8397 int rc = 0;
8398 rx_interface_stat_p rpc_stat;
8400 rpc_stat = rxi_FindRpcStat(stats, rxInterface, totalFunc, isServer,
8401 remoteHost, remotePort, addToPeerList, counter,
8403 if (!rpc_stat) {
8404 rc = -1;
8405 goto fail;
8409 * Increment the stats for this function
8412 rpc_stat->stats[currentFunc].invocations++;
8413 rpc_stat->stats[currentFunc].bytes_sent += bytesSent;
8414 rpc_stat->stats[currentFunc].bytes_rcvd += bytesRcvd;
8415 clock_Add(&rpc_stat->stats[currentFunc].queue_time_sum, queueTime);
8416 clock_AddSq(&rpc_stat->stats[currentFunc].queue_time_sum_sqr, queueTime);
8417 if (clock_Lt(queueTime, &rpc_stat->stats[currentFunc].queue_time_min)) {
8418 rpc_stat->stats[currentFunc].queue_time_min = *queueTime;
8420 if (clock_Gt(queueTime, &rpc_stat->stats[currentFunc].queue_time_max)) {
8421 rpc_stat->stats[currentFunc].queue_time_max = *queueTime;
8423 clock_Add(&rpc_stat->stats[currentFunc].execution_time_sum, execTime);
8424 clock_AddSq(&rpc_stat->stats[currentFunc].execution_time_sum_sqr,
8425 execTime);
8426 if (clock_Lt(execTime, &rpc_stat->stats[currentFunc].execution_time_min)) {
8427 rpc_stat->stats[currentFunc].execution_time_min = *execTime;
8429 if (clock_Gt(execTime, &rpc_stat->stats[currentFunc].execution_time_max)) {
8430 rpc_stat->stats[currentFunc].execution_time_max = *execTime;
8433 fail:
8434 return rc;
8437 void
8438 rxi_IncrementTimeAndCount(struct rx_peer *peer, afs_uint32 rxInterface,
8439 afs_uint32 currentFunc, afs_uint32 totalFunc,
8440 struct clock *queueTime, struct clock *execTime,
8441 afs_uint64 bytesSent, afs_uint64 bytesRcvd,
8442 int isServer)
8445 if (!(rxi_monitor_peerStats || rxi_monitor_processStats))
8446 return;
8448 MUTEX_ENTER(&rx_rpc_stats);
8450 if (rxi_monitor_peerStats) {
8451 MUTEX_ENTER(&peer->peer_lock);
8452 rxi_AddRpcStat(&peer->rpcStats, rxInterface, currentFunc, totalFunc,
8453 queueTime, execTime, bytesSent, bytesRcvd, isServer,
8454 peer->host, peer->port, 1, &rxi_rpc_peer_stat_cnt);
8455 MUTEX_EXIT(&peer->peer_lock);
8458 if (rxi_monitor_processStats) {
8459 rxi_AddRpcStat(&processStats, rxInterface, currentFunc, totalFunc,
8460 queueTime, execTime, bytesSent, bytesRcvd, isServer,
8461 0xffffffff, 0xffffffff, 0, &rxi_rpc_process_stat_cnt);
8464 MUTEX_EXIT(&rx_rpc_stats);
8468 * Increment the times and count for a particular rpc function.
8470 * Traditionally this call was invoked from rxgen stubs. Modern stubs
8471 * call rx_RecordCallStatistics instead, so the public version of this
8472 * function is left purely for legacy callers.
8474 * @param peer
8475 * The peer who invoked the rpc
8477 * @param rxInterface
8478 * A unique number that identifies the rpc interface
8480 * @param currentFunc
8481 * The index of the function being invoked
8483 * @param totalFunc
8484 * The total number of functions in this interface
8486 * @param queueTime
8487 * The amount of time this function waited for a thread
8489 * @param execTime
8490 * The amount of time this function invocation took to execute
8492 * @param bytesSent
8493 * The number bytes sent by this invocation
8495 * @param bytesRcvd
8496 * The number bytes received by this invocation
8498 * @param isServer
8499 * If true, this invocation was made to a server
8502 void
8503 rx_IncrementTimeAndCount(struct rx_peer *peer, afs_uint32 rxInterface,
8504 afs_uint32 currentFunc, afs_uint32 totalFunc,
8505 struct clock *queueTime, struct clock *execTime,
8506 afs_hyper_t * bytesSent, afs_hyper_t * bytesRcvd,
8507 int isServer)
8509 afs_uint64 sent64;
8510 afs_uint64 rcvd64;
8512 sent64 = ((afs_uint64)bytesSent->high << 32) + bytesSent->low;
8513 rcvd64 = ((afs_uint64)bytesRcvd->high << 32) + bytesRcvd->low;
8515 rxi_IncrementTimeAndCount(peer, rxInterface, currentFunc, totalFunc,
8516 queueTime, execTime, sent64, rcvd64,
8517 isServer);
8523 * rx_MarshallProcessRPCStats - marshall an array of rpc statistics
8525 * PARAMETERS
8527 * IN callerVersion - the rpc stat version of the caller.
8529 * IN count - the number of entries to marshall.
8531 * IN stats - pointer to stats to be marshalled.
8533 * OUT ptr - Where to store the marshalled data.
8535 * RETURN CODES
8537 * Returns void.
8539 void
8540 rx_MarshallProcessRPCStats(afs_uint32 callerVersion, int count,
8541 rx_function_entry_v1_t * stats, afs_uint32 ** ptrP)
8543 int i;
8544 afs_uint32 *ptr;
8547 * We only support the first version
8549 for (ptr = *ptrP, i = 0; i < count; i++, stats++) {
8550 *(ptr++) = stats->remote_peer;
8551 *(ptr++) = stats->remote_port;
8552 *(ptr++) = stats->remote_is_server;
8553 *(ptr++) = stats->interfaceId;
8554 *(ptr++) = stats->func_total;
8555 *(ptr++) = stats->func_index;
8556 *(ptr++) = stats->invocations >> 32;
8557 *(ptr++) = stats->invocations & MAX_AFS_UINT32;
8558 *(ptr++) = stats->bytes_sent >> 32;
8559 *(ptr++) = stats->bytes_sent & MAX_AFS_UINT32;
8560 *(ptr++) = stats->bytes_rcvd >> 32;
8561 *(ptr++) = stats->bytes_rcvd & MAX_AFS_UINT32;
8562 *(ptr++) = stats->queue_time_sum.sec;
8563 *(ptr++) = stats->queue_time_sum.usec;
8564 *(ptr++) = stats->queue_time_sum_sqr.sec;
8565 *(ptr++) = stats->queue_time_sum_sqr.usec;
8566 *(ptr++) = stats->queue_time_min.sec;
8567 *(ptr++) = stats->queue_time_min.usec;
8568 *(ptr++) = stats->queue_time_max.sec;
8569 *(ptr++) = stats->queue_time_max.usec;
8570 *(ptr++) = stats->execution_time_sum.sec;
8571 *(ptr++) = stats->execution_time_sum.usec;
8572 *(ptr++) = stats->execution_time_sum_sqr.sec;
8573 *(ptr++) = stats->execution_time_sum_sqr.usec;
8574 *(ptr++) = stats->execution_time_min.sec;
8575 *(ptr++) = stats->execution_time_min.usec;
8576 *(ptr++) = stats->execution_time_max.sec;
8577 *(ptr++) = stats->execution_time_max.usec;
8579 *ptrP = ptr;
8583 * rx_RetrieveProcessRPCStats - retrieve all of the rpc statistics for
8584 * this process
8586 * PARAMETERS
8588 * IN callerVersion - the rpc stat version of the caller
8590 * OUT myVersion - the rpc stat version of this function
8592 * OUT clock_sec - local time seconds
8594 * OUT clock_usec - local time microseconds
8596 * OUT allocSize - the number of bytes allocated to contain stats
8598 * OUT statCount - the number stats retrieved from this process.
8600 * OUT stats - the actual stats retrieved from this process.
8602 * RETURN CODES
8604 * Returns void. If successful, stats will != NULL.
8608 rx_RetrieveProcessRPCStats(afs_uint32 callerVersion, afs_uint32 * myVersion,
8609 afs_uint32 * clock_sec, afs_uint32 * clock_usec,
8610 size_t * allocSize, afs_uint32 * statCount,
8611 afs_uint32 ** stats)
8613 size_t space = 0;
8614 afs_uint32 *ptr;
8615 struct clock now;
8616 int rc = 0;
8618 *stats = 0;
8619 *allocSize = 0;
8620 *statCount = 0;
8621 *myVersion = RX_STATS_RETRIEVAL_VERSION;
8624 * Check to see if stats are enabled
8627 MUTEX_ENTER(&rx_rpc_stats);
8628 if (!rxi_monitor_processStats) {
8629 MUTEX_EXIT(&rx_rpc_stats);
8630 return rc;
8633 clock_GetTime(&now);
8634 *clock_sec = now.sec;
8635 *clock_usec = now.usec;
8638 * Allocate the space based upon the caller version
8640 * If the client is at an older version than we are,
8641 * we return the statistic data in the older data format, but
8642 * we still return our version number so the client knows we
8643 * are maintaining more data than it can retrieve.
8646 if (callerVersion >= RX_STATS_RETRIEVAL_FIRST_EDITION) {
8647 space = rxi_rpc_process_stat_cnt * sizeof(rx_function_entry_v1_t);
8648 *statCount = rxi_rpc_process_stat_cnt;
8649 } else {
8651 * This can't happen yet, but in the future version changes
8652 * can be handled by adding additional code here
8656 if (space > (size_t) 0) {
8657 *allocSize = space;
8658 ptr = *stats = rxi_Alloc(space);
8660 if (ptr != NULL) {
8661 struct opr_queue *cursor;
8663 for (opr_queue_Scan(&processStats, cursor)) {
8664 struct rx_interface_stat *rpc_stat =
8665 opr_queue_Entry(cursor, struct rx_interface_stat, entry);
8667 * Copy the data based upon the caller version
8669 rx_MarshallProcessRPCStats(callerVersion,
8670 rpc_stat->stats[0].func_total,
8671 rpc_stat->stats, &ptr);
8673 } else {
8674 rc = ENOMEM;
8677 MUTEX_EXIT(&rx_rpc_stats);
8678 return rc;
8682 * rx_RetrievePeerRPCStats - retrieve all of the rpc statistics for the peers
8684 * PARAMETERS
8686 * IN callerVersion - the rpc stat version of the caller
8688 * OUT myVersion - the rpc stat version of this function
8690 * OUT clock_sec - local time seconds
8692 * OUT clock_usec - local time microseconds
8694 * OUT allocSize - the number of bytes allocated to contain stats
8696 * OUT statCount - the number of stats retrieved from the individual
8697 * peer structures.
8699 * OUT stats - the actual stats retrieved from the individual peer structures.
8701 * RETURN CODES
8703 * Returns void. If successful, stats will != NULL.
8707 rx_RetrievePeerRPCStats(afs_uint32 callerVersion, afs_uint32 * myVersion,
8708 afs_uint32 * clock_sec, afs_uint32 * clock_usec,
8709 size_t * allocSize, afs_uint32 * statCount,
8710 afs_uint32 ** stats)
8712 size_t space = 0;
8713 afs_uint32 *ptr;
8714 struct clock now;
8715 int rc = 0;
8717 *stats = 0;
8718 *statCount = 0;
8719 *allocSize = 0;
8720 *myVersion = RX_STATS_RETRIEVAL_VERSION;
8723 * Check to see if stats are enabled
8726 MUTEX_ENTER(&rx_rpc_stats);
8727 if (!rxi_monitor_peerStats) {
8728 MUTEX_EXIT(&rx_rpc_stats);
8729 return rc;
8732 clock_GetTime(&now);
8733 *clock_sec = now.sec;
8734 *clock_usec = now.usec;
8737 * Allocate the space based upon the caller version
8739 * If the client is at an older version than we are,
8740 * we return the statistic data in the older data format, but
8741 * we still return our version number so the client knows we
8742 * are maintaining more data than it can retrieve.
8745 if (callerVersion >= RX_STATS_RETRIEVAL_FIRST_EDITION) {
8746 space = rxi_rpc_peer_stat_cnt * sizeof(rx_function_entry_v1_t);
8747 *statCount = rxi_rpc_peer_stat_cnt;
8748 } else {
8750 * This can't happen yet, but in the future version changes
8751 * can be handled by adding additional code here
8755 if (space > (size_t) 0) {
8756 *allocSize = space;
8757 ptr = *stats = rxi_Alloc(space);
8759 if (ptr != NULL) {
8760 struct opr_queue *cursor;
8762 for (opr_queue_Scan(&peerStats, cursor)) {
8763 struct rx_interface_stat *rpc_stat
8764 = opr_queue_Entry(cursor, struct rx_interface_stat,
8765 entryPeers);
8768 * Copy the data based upon the caller version
8770 rx_MarshallProcessRPCStats(callerVersion,
8771 rpc_stat->stats[0].func_total,
8772 rpc_stat->stats, &ptr);
8774 } else {
8775 rc = ENOMEM;
8778 MUTEX_EXIT(&rx_rpc_stats);
8779 return rc;
8783 * rx_FreeRPCStats - free memory allocated by
8784 * rx_RetrieveProcessRPCStats and rx_RetrievePeerRPCStats
8786 * PARAMETERS
8788 * IN stats - stats previously returned by rx_RetrieveProcessRPCStats or
8789 * rx_RetrievePeerRPCStats
8791 * IN allocSize - the number of bytes in stats.
8793 * RETURN CODES
8795 * Returns void.
8798 void
8799 rx_FreeRPCStats(afs_uint32 * stats, size_t allocSize)
8801 rxi_Free(stats, allocSize);
8805 * rx_queryProcessRPCStats - see if process rpc stat collection is
8806 * currently enabled.
8808 * PARAMETERS
8810 * RETURN CODES
8812 * Returns 0 if stats are not enabled != 0 otherwise
8816 rx_queryProcessRPCStats(void)
8818 int rc;
8819 MUTEX_ENTER(&rx_rpc_stats);
8820 rc = rxi_monitor_processStats;
8821 MUTEX_EXIT(&rx_rpc_stats);
8822 return rc;
8826 * rx_queryPeerRPCStats - see if peer stat collection is currently enabled.
8828 * PARAMETERS
8830 * RETURN CODES
8832 * Returns 0 if stats are not enabled != 0 otherwise
8836 rx_queryPeerRPCStats(void)
8838 int rc;
8839 MUTEX_ENTER(&rx_rpc_stats);
8840 rc = rxi_monitor_peerStats;
8841 MUTEX_EXIT(&rx_rpc_stats);
8842 return rc;
8846 * rx_enableProcessRPCStats - begin rpc stat collection for entire process
8848 * PARAMETERS
8850 * RETURN CODES
8852 * Returns void.
8855 void
8856 rx_enableProcessRPCStats(void)
8858 MUTEX_ENTER(&rx_rpc_stats);
8859 rx_enable_stats = 1;
8860 rxi_monitor_processStats = 1;
8861 MUTEX_EXIT(&rx_rpc_stats);
8865 * rx_enablePeerRPCStats - begin rpc stat collection per peer structure
8867 * PARAMETERS
8869 * RETURN CODES
8871 * Returns void.
8874 void
8875 rx_enablePeerRPCStats(void)
8877 MUTEX_ENTER(&rx_rpc_stats);
8878 rx_enable_stats = 1;
8879 rxi_monitor_peerStats = 1;
8880 MUTEX_EXIT(&rx_rpc_stats);
8884 * rx_disableProcessRPCStats - stop rpc stat collection for entire process
8886 * PARAMETERS
8888 * RETURN CODES
8890 * Returns void.
8893 void
8894 rx_disableProcessRPCStats(void)
8896 struct opr_queue *cursor, *store;
8897 size_t space;
8899 MUTEX_ENTER(&rx_rpc_stats);
8902 * Turn off process statistics and if peer stats is also off, turn
8903 * off everything
8906 rxi_monitor_processStats = 0;
8907 if (rxi_monitor_peerStats == 0) {
8908 rx_enable_stats = 0;
8911 for (opr_queue_ScanSafe(&processStats, cursor, store)) {
8912 unsigned int num_funcs = 0;
8913 struct rx_interface_stat *rpc_stat
8914 = opr_queue_Entry(cursor, struct rx_interface_stat, entry);
8916 opr_queue_Remove(&rpc_stat->entry);
8918 num_funcs = rpc_stat->stats[0].func_total;
8919 space =
8920 sizeof(rx_interface_stat_t) +
8921 rpc_stat->stats[0].func_total * sizeof(rx_function_entry_v1_t);
8923 rxi_Free(rpc_stat, space);
8924 rxi_rpc_process_stat_cnt -= num_funcs;
8926 MUTEX_EXIT(&rx_rpc_stats);
8930 * rx_disablePeerRPCStats - stop rpc stat collection for peers
8932 * PARAMETERS
8934 * RETURN CODES
8936 * Returns void.
8939 void
8940 rx_disablePeerRPCStats(void)
8942 struct rx_peer **peer_ptr, **peer_end;
8943 int code;
8946 * Turn off peer statistics and if process stats is also off, turn
8947 * off everything
8950 rxi_monitor_peerStats = 0;
8951 if (rxi_monitor_processStats == 0) {
8952 rx_enable_stats = 0;
8955 for (peer_ptr = &rx_peerHashTable[0], peer_end =
8956 &rx_peerHashTable[rx_hashTableSize]; peer_ptr < peer_end;
8957 peer_ptr++) {
8958 struct rx_peer *peer, *next, *prev;
8960 MUTEX_ENTER(&rx_peerHashTable_lock);
8961 MUTEX_ENTER(&rx_rpc_stats);
8962 for (prev = peer = *peer_ptr; peer; peer = next) {
8963 next = peer->next;
8964 code = MUTEX_TRYENTER(&peer->peer_lock);
8965 if (code) {
8966 size_t space;
8967 struct opr_queue *cursor, *store;
8969 if (prev == *peer_ptr) {
8970 *peer_ptr = next;
8971 prev = next;
8972 } else
8973 prev->next = next;
8975 if (next)
8976 next->refCount++;
8977 if (prev)
8978 prev->refCount++;
8979 peer->refCount++;
8980 MUTEX_EXIT(&rx_peerHashTable_lock);
8982 for (opr_queue_ScanSafe(&peer->rpcStats, cursor, store)) {
8983 unsigned int num_funcs = 0;
8984 struct rx_interface_stat *rpc_stat
8985 = opr_queue_Entry(cursor, struct rx_interface_stat,
8986 entry);
8988 opr_queue_Remove(&rpc_stat->entry);
8989 opr_queue_Remove(&rpc_stat->entryPeers);
8990 num_funcs = rpc_stat->stats[0].func_total;
8991 space =
8992 sizeof(rx_interface_stat_t) +
8993 rpc_stat->stats[0].func_total *
8994 sizeof(rx_function_entry_v1_t);
8996 rxi_Free(rpc_stat, space);
8997 rxi_rpc_peer_stat_cnt -= num_funcs;
8999 MUTEX_EXIT(&peer->peer_lock);
9001 MUTEX_ENTER(&rx_peerHashTable_lock);
9002 if (next)
9003 next->refCount--;
9004 if (prev)
9005 prev->refCount--;
9006 peer->refCount--;
9007 } else {
9008 prev = peer;
9011 MUTEX_EXIT(&rx_rpc_stats);
9012 MUTEX_EXIT(&rx_peerHashTable_lock);
9017 * rx_clearProcessRPCStats - clear the contents of the rpc stats according
9018 * to clearFlag
9020 * PARAMETERS
9022 * IN clearFlag - flag indicating which stats to clear
9024 * RETURN CODES
9026 * Returns void.
9029 void
9030 rx_clearProcessRPCStats(afs_uint32 clearFlag)
9032 struct opr_queue *cursor;
9034 MUTEX_ENTER(&rx_rpc_stats);
9036 for (opr_queue_Scan(&processStats, cursor)) {
9037 unsigned int num_funcs = 0, i;
9038 struct rx_interface_stat *rpc_stat
9039 = opr_queue_Entry(cursor, struct rx_interface_stat, entry);
9041 num_funcs = rpc_stat->stats[0].func_total;
9042 for (i = 0; i < num_funcs; i++) {
9043 if (clearFlag & AFS_RX_STATS_CLEAR_INVOCATIONS) {
9044 rpc_stat->stats[i].invocations = 0;
9046 if (clearFlag & AFS_RX_STATS_CLEAR_BYTES_SENT) {
9047 rpc_stat->stats[i].bytes_sent = 0;
9049 if (clearFlag & AFS_RX_STATS_CLEAR_BYTES_RCVD) {
9050 rpc_stat->stats[i].bytes_rcvd = 0;
9052 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_SUM) {
9053 rpc_stat->stats[i].queue_time_sum.sec = 0;
9054 rpc_stat->stats[i].queue_time_sum.usec = 0;
9056 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_SQUARE) {
9057 rpc_stat->stats[i].queue_time_sum_sqr.sec = 0;
9058 rpc_stat->stats[i].queue_time_sum_sqr.usec = 0;
9060 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_MIN) {
9061 rpc_stat->stats[i].queue_time_min.sec = 9999999;
9062 rpc_stat->stats[i].queue_time_min.usec = 9999999;
9064 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_MAX) {
9065 rpc_stat->stats[i].queue_time_max.sec = 0;
9066 rpc_stat->stats[i].queue_time_max.usec = 0;
9068 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_SUM) {
9069 rpc_stat->stats[i].execution_time_sum.sec = 0;
9070 rpc_stat->stats[i].execution_time_sum.usec = 0;
9072 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_SQUARE) {
9073 rpc_stat->stats[i].execution_time_sum_sqr.sec = 0;
9074 rpc_stat->stats[i].execution_time_sum_sqr.usec = 0;
9076 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_MIN) {
9077 rpc_stat->stats[i].execution_time_min.sec = 9999999;
9078 rpc_stat->stats[i].execution_time_min.usec = 9999999;
9080 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_MAX) {
9081 rpc_stat->stats[i].execution_time_max.sec = 0;
9082 rpc_stat->stats[i].execution_time_max.usec = 0;
9087 MUTEX_EXIT(&rx_rpc_stats);
9091 * rx_clearPeerRPCStats - clear the contents of the rpc stats according
9092 * to clearFlag
9094 * PARAMETERS
9096 * IN clearFlag - flag indicating which stats to clear
9098 * RETURN CODES
9100 * Returns void.
9103 void
9104 rx_clearPeerRPCStats(afs_uint32 clearFlag)
9106 struct opr_queue *cursor;
9108 MUTEX_ENTER(&rx_rpc_stats);
9110 for (opr_queue_Scan(&peerStats, cursor)) {
9111 unsigned int num_funcs, i;
9112 struct rx_interface_stat *rpc_stat
9113 = opr_queue_Entry(cursor, struct rx_interface_stat, entryPeers);
9115 num_funcs = rpc_stat->stats[0].func_total;
9116 for (i = 0; i < num_funcs; i++) {
9117 if (clearFlag & AFS_RX_STATS_CLEAR_INVOCATIONS) {
9118 rpc_stat->stats[i].invocations = 0;
9120 if (clearFlag & AFS_RX_STATS_CLEAR_BYTES_SENT) {
9121 rpc_stat->stats[i].bytes_sent = 0;
9123 if (clearFlag & AFS_RX_STATS_CLEAR_BYTES_RCVD) {
9124 rpc_stat->stats[i].bytes_rcvd = 0;
9126 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_SUM) {
9127 rpc_stat->stats[i].queue_time_sum.sec = 0;
9128 rpc_stat->stats[i].queue_time_sum.usec = 0;
9130 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_SQUARE) {
9131 rpc_stat->stats[i].queue_time_sum_sqr.sec = 0;
9132 rpc_stat->stats[i].queue_time_sum_sqr.usec = 0;
9134 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_MIN) {
9135 rpc_stat->stats[i].queue_time_min.sec = 9999999;
9136 rpc_stat->stats[i].queue_time_min.usec = 9999999;
9138 if (clearFlag & AFS_RX_STATS_CLEAR_QUEUE_TIME_MAX) {
9139 rpc_stat->stats[i].queue_time_max.sec = 0;
9140 rpc_stat->stats[i].queue_time_max.usec = 0;
9142 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_SUM) {
9143 rpc_stat->stats[i].execution_time_sum.sec = 0;
9144 rpc_stat->stats[i].execution_time_sum.usec = 0;
9146 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_SQUARE) {
9147 rpc_stat->stats[i].execution_time_sum_sqr.sec = 0;
9148 rpc_stat->stats[i].execution_time_sum_sqr.usec = 0;
9150 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_MIN) {
9151 rpc_stat->stats[i].execution_time_min.sec = 9999999;
9152 rpc_stat->stats[i].execution_time_min.usec = 9999999;
9154 if (clearFlag & AFS_RX_STATS_CLEAR_EXEC_TIME_MAX) {
9155 rpc_stat->stats[i].execution_time_max.sec = 0;
9156 rpc_stat->stats[i].execution_time_max.usec = 0;
9161 MUTEX_EXIT(&rx_rpc_stats);
9165 * rxi_rxstat_userok points to a routine that returns 1 if the caller
9166 * is authorized to enable/disable/clear RX statistics.
9168 static int (*rxi_rxstat_userok) (struct rx_call * call) = NULL;
9170 void
9171 rx_SetRxStatUserOk(int (*proc) (struct rx_call * call))
9173 rxi_rxstat_userok = proc;
9177 rx_RxStatUserOk(struct rx_call *call)
9179 if (!rxi_rxstat_userok)
9180 return 0;
9181 return rxi_rxstat_userok(call);
9184 #ifdef AFS_NT40_ENV
9186 * DllMain() -- Entry-point function called by the DllMainCRTStartup()
9187 * function in the MSVC runtime DLL (msvcrt.dll).
9189 * Note: the system serializes calls to this function.
9191 BOOL WINAPI
9192 DllMain(HINSTANCE dllInstHandle, /* instance handle for this DLL module */
9193 DWORD reason, /* reason function is being called */
9194 LPVOID reserved) /* reserved for future use */
9196 switch (reason) {
9197 case DLL_PROCESS_ATTACH:
9198 /* library is being attached to a process */
9199 INIT_PTHREAD_LOCKS;
9200 return TRUE;
9202 case DLL_PROCESS_DETACH:
9203 return TRUE;
9205 default:
9206 return FALSE;
9209 #endif /* AFS_NT40_ENV */
9211 #ifndef KERNEL
9212 int rx_DumpCalls(FILE *outputFile, char *cookie)
9214 #ifdef RXDEBUG_PACKET
9215 #ifdef KDUMP_RX_LOCK
9216 struct rx_call_rx_lock *c;
9217 #else
9218 struct rx_call *c;
9219 #endif
9220 #ifdef AFS_NT40_ENV
9221 int zilch;
9222 char output[2048];
9223 #define RXDPRINTF sprintf
9224 #define RXDPRINTOUT output
9225 #else
9226 #define RXDPRINTF fprintf
9227 #define RXDPRINTOUT outputFile
9228 #endif
9230 RXDPRINTF(RXDPRINTOUT, "%s - Start dumping all Rx Calls - count=%u\r\n", cookie, rx_stats.nCallStructs);
9231 #ifdef AFS_NT40_ENV
9232 WriteFile(outputFile, output, (DWORD)strlen(output), &zilch, NULL);
9233 #endif
9235 for (c = rx_allCallsp; c; c = c->allNextp) {
9236 u_short rqc, tqc, iovqc;
9238 MUTEX_ENTER(&c->lock);
9239 rqc = opr_queue_Count(&c->rq);
9240 tqc = opr_queue_Count(&c->tq);
9241 iovqc = opr_queue_Count(&c->app.iovq);
9243 RXDPRINTF(RXDPRINTOUT, "%s - call=0x%p, id=%u, state=%u, mode=%u, conn=%p, epoch=%u, cid=%u, callNum=%u, connFlags=0x%x, flags=0x%x, "
9244 "rqc=%u,%u, tqc=%u,%u, iovqc=%u,%u, "
9245 "lstatus=%u, rstatus=%u, error=%d, timeout=%u, "
9246 "resendEvent=%d, keepAliveEvt=%d, delayedAckEvt=%d, delayedAbortEvt=%d, abortCode=%d, abortCount=%d, "
9247 "lastSendTime=%u, lastRecvTime=%u"
9248 #ifdef RX_ENABLE_LOCKS
9249 ", refCount=%u"
9250 #endif
9251 #ifdef RX_REFCOUNT_CHECK
9252 ", refCountBegin=%u, refCountResend=%u, refCountDelay=%u, "
9253 "refCountAlive=%u, refCountPacket=%u, refCountSend=%u, refCountAckAll=%u, refCountAbort=%u"
9254 #endif
9255 "\r\n",
9256 cookie, c, c->call_id, (afs_uint32)c->state, (afs_uint32)c->app.mode, c->conn, c->conn?c->conn->epoch:0, c->conn?c->conn->cid:0,
9257 c->callNumber?*c->callNumber:0, c->conn?c->conn->flags:0, c->flags,
9258 (afs_uint32)c->rqc, (afs_uint32)rqc, (afs_uint32)c->tqc, (afs_uint32)tqc, (afs_uint32)c->iovqc, (afs_uint32)iovqc,
9259 (afs_uint32)c->localStatus, (afs_uint32)c->remoteStatus, c->error, c->timeout,
9260 c->resendEvent?1:0, c->keepAliveEvent?1:0, c->delayedAckEvent?1:0, c->delayedAbortEvent?1:0,
9261 c->abortCode, c->abortCount, c->lastSendTime, c->lastReceiveTime
9262 #ifdef RX_ENABLE_LOCKS
9263 , (afs_uint32)c->refCount
9264 #endif
9265 #ifdef RX_REFCOUNT_CHECK
9266 , c->refCDebug[0],c->refCDebug[1],c->refCDebug[2],c->refCDebug[3],c->refCDebug[4],c->refCDebug[5],c->refCDebug[6],c->refCDebug[7]
9267 #endif
9269 MUTEX_EXIT(&c->lock);
9271 #ifdef AFS_NT40_ENV
9272 WriteFile(outputFile, output, (DWORD)strlen(output), &zilch, NULL);
9273 #endif
9275 RXDPRINTF(RXDPRINTOUT, "%s - End dumping all Rx Calls\r\n", cookie);
9276 #ifdef AFS_NT40_ENV
9277 WriteFile(outputFile, output, (DWORD)strlen(output), &zilch, NULL);
9278 #endif
9279 #endif /* RXDEBUG_PACKET */
9280 return 0;
9282 #endif