2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #define DPRINTK(fmt, args...)
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
79 #define VPRINTK(fmt, args...)
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device
*pkt_devs
[MAX_WRITERS
];
87 static struct proc_dir_entry
*pkt_proc
;
88 static int pktdev_major
;
89 static int write_congestion_on
= PKT_WRITE_CONGESTION_ON
;
90 static int write_congestion_off
= PKT_WRITE_CONGESTION_OFF
;
91 static struct mutex ctl_mutex
; /* Serialize open/close/setup/teardown */
92 static mempool_t
*psd_pool
;
94 static struct class *class_pktcdvd
= NULL
; /* /sys/class/pktcdvd */
95 static struct dentry
*pkt_debugfs_root
= NULL
; /* /sys/kernel/debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev
, dev_t
* pkt_dev
);
99 static int pkt_remove_dev(dev_t pkt_dev
);
100 static int pkt_seq_show(struct seq_file
*m
, void *p
);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj
* pkt_kobj_create(struct pktcdvd_device
*pd
,
109 struct kobject
* parent
,
110 struct kobj_type
* ktype
)
112 struct pktcdvd_kobj
*p
;
115 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
119 error
= kobject_init_and_add(&p
->kobj
, ktype
, parent
, "%s", name
);
121 kobject_put(&p
->kobj
);
124 kobject_uevent(&p
->kobj
, KOBJ_ADD
);
128 * remove a pktcdvd kernel object.
130 static void pkt_kobj_remove(struct pktcdvd_kobj
*p
)
133 kobject_put(&p
->kobj
);
136 * default release function for pktcdvd kernel objects.
138 static void pkt_kobj_release(struct kobject
*kobj
)
140 kfree(to_pktcdvdkobj(kobj
));
144 /**********************************************************
146 * sysfs interface for pktcdvd
147 * by (C) 2006 Thomas Maier <balagi@justmail.de>
149 **********************************************************/
151 #define DEF_ATTR(_obj,_name,_mode) \
152 static struct attribute _obj = { .name = _name, .mode = _mode }
154 /**********************************************************
155 /sys/class/pktcdvd/pktcdvd[0-7]/
158 stat/packets_finished
163 write_queue/congestion_off
164 write_queue/congestion_on
165 **********************************************************/
167 DEF_ATTR(kobj_pkt_attr_st1
, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2
, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3
, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4
, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5
, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6
, "kb_read_gather", 0444);
174 static struct attribute
*kobj_pkt_attrs_stat
[] = {
184 DEF_ATTR(kobj_pkt_attr_wq1
, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2
, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3
, "congestion_on", 0644);
188 static struct attribute
*kobj_pkt_attrs_wqueue
[] = {
195 static ssize_t
kobj_pkt_show(struct kobject
*kobj
,
196 struct attribute
*attr
, char *data
)
198 struct pktcdvd_device
*pd
= to_pktcdvdkobj(kobj
)->pd
;
201 if (strcmp(attr
->name
, "packets_started") == 0) {
202 n
= sprintf(data
, "%lu\n", pd
->stats
.pkt_started
);
204 } else if (strcmp(attr
->name
, "packets_finished") == 0) {
205 n
= sprintf(data
, "%lu\n", pd
->stats
.pkt_ended
);
207 } else if (strcmp(attr
->name
, "kb_written") == 0) {
208 n
= sprintf(data
, "%lu\n", pd
->stats
.secs_w
>> 1);
210 } else if (strcmp(attr
->name
, "kb_read") == 0) {
211 n
= sprintf(data
, "%lu\n", pd
->stats
.secs_r
>> 1);
213 } else if (strcmp(attr
->name
, "kb_read_gather") == 0) {
214 n
= sprintf(data
, "%lu\n", pd
->stats
.secs_rg
>> 1);
216 } else if (strcmp(attr
->name
, "size") == 0) {
217 spin_lock(&pd
->lock
);
218 v
= pd
->bio_queue_size
;
219 spin_unlock(&pd
->lock
);
220 n
= sprintf(data
, "%d\n", v
);
222 } else if (strcmp(attr
->name
, "congestion_off") == 0) {
223 spin_lock(&pd
->lock
);
224 v
= pd
->write_congestion_off
;
225 spin_unlock(&pd
->lock
);
226 n
= sprintf(data
, "%d\n", v
);
228 } else if (strcmp(attr
->name
, "congestion_on") == 0) {
229 spin_lock(&pd
->lock
);
230 v
= pd
->write_congestion_on
;
231 spin_unlock(&pd
->lock
);
232 n
= sprintf(data
, "%d\n", v
);
237 static void init_write_congestion_marks(int* lo
, int* hi
)
241 *hi
= min(*hi
, 1000000);
245 *lo
= min(*lo
, *hi
- 100);
254 static ssize_t
kobj_pkt_store(struct kobject
*kobj
,
255 struct attribute
*attr
,
256 const char *data
, size_t len
)
258 struct pktcdvd_device
*pd
= to_pktcdvdkobj(kobj
)->pd
;
261 if (strcmp(attr
->name
, "reset") == 0 && len
> 0) {
262 pd
->stats
.pkt_started
= 0;
263 pd
->stats
.pkt_ended
= 0;
264 pd
->stats
.secs_w
= 0;
265 pd
->stats
.secs_rg
= 0;
266 pd
->stats
.secs_r
= 0;
268 } else if (strcmp(attr
->name
, "congestion_off") == 0
269 && sscanf(data
, "%d", &val
) == 1) {
270 spin_lock(&pd
->lock
);
271 pd
->write_congestion_off
= val
;
272 init_write_congestion_marks(&pd
->write_congestion_off
,
273 &pd
->write_congestion_on
);
274 spin_unlock(&pd
->lock
);
276 } else if (strcmp(attr
->name
, "congestion_on") == 0
277 && sscanf(data
, "%d", &val
) == 1) {
278 spin_lock(&pd
->lock
);
279 pd
->write_congestion_on
= val
;
280 init_write_congestion_marks(&pd
->write_congestion_off
,
281 &pd
->write_congestion_on
);
282 spin_unlock(&pd
->lock
);
287 static const struct sysfs_ops kobj_pkt_ops
= {
288 .show
= kobj_pkt_show
,
289 .store
= kobj_pkt_store
291 static struct kobj_type kobj_pkt_type_stat
= {
292 .release
= pkt_kobj_release
,
293 .sysfs_ops
= &kobj_pkt_ops
,
294 .default_attrs
= kobj_pkt_attrs_stat
296 static struct kobj_type kobj_pkt_type_wqueue
= {
297 .release
= pkt_kobj_release
,
298 .sysfs_ops
= &kobj_pkt_ops
,
299 .default_attrs
= kobj_pkt_attrs_wqueue
302 static void pkt_sysfs_dev_new(struct pktcdvd_device
*pd
)
305 pd
->dev
= device_create(class_pktcdvd
, NULL
, MKDEV(0, 0), NULL
,
311 pd
->kobj_stat
= pkt_kobj_create(pd
, "stat",
313 &kobj_pkt_type_stat
);
314 pd
->kobj_wqueue
= pkt_kobj_create(pd
, "write_queue",
316 &kobj_pkt_type_wqueue
);
320 static void pkt_sysfs_dev_remove(struct pktcdvd_device
*pd
)
322 pkt_kobj_remove(pd
->kobj_stat
);
323 pkt_kobj_remove(pd
->kobj_wqueue
);
325 device_unregister(pd
->dev
);
329 /********************************************************************
332 remove unmap packet dev
333 device_map show mappings
334 *******************************************************************/
336 static void class_pktcdvd_release(struct class *cls
)
340 static ssize_t
class_pktcdvd_show_map(struct class *c
,
341 struct class_attribute
*attr
,
346 mutex_lock_nested(&ctl_mutex
, SINGLE_DEPTH_NESTING
);
347 for (idx
= 0; idx
< MAX_WRITERS
; idx
++) {
348 struct pktcdvd_device
*pd
= pkt_devs
[idx
];
351 n
+= sprintf(data
+n
, "%s %u:%u %u:%u\n",
353 MAJOR(pd
->pkt_dev
), MINOR(pd
->pkt_dev
),
354 MAJOR(pd
->bdev
->bd_dev
),
355 MINOR(pd
->bdev
->bd_dev
));
357 mutex_unlock(&ctl_mutex
);
361 static ssize_t
class_pktcdvd_store_add(struct class *c
,
362 struct class_attribute
*attr
,
366 unsigned int major
, minor
;
368 if (sscanf(buf
, "%u:%u", &major
, &minor
) == 2) {
369 /* pkt_setup_dev() expects caller to hold reference to self */
370 if (!try_module_get(THIS_MODULE
))
373 pkt_setup_dev(MKDEV(major
, minor
), NULL
);
375 module_put(THIS_MODULE
);
383 static ssize_t
class_pktcdvd_store_remove(struct class *c
,
384 struct class_attribute
*attr
,
388 unsigned int major
, minor
;
389 if (sscanf(buf
, "%u:%u", &major
, &minor
) == 2) {
390 pkt_remove_dev(MKDEV(major
, minor
));
396 static struct class_attribute class_pktcdvd_attrs
[] = {
397 __ATTR(add
, 0200, NULL
, class_pktcdvd_store_add
),
398 __ATTR(remove
, 0200, NULL
, class_pktcdvd_store_remove
),
399 __ATTR(device_map
, 0444, class_pktcdvd_show_map
, NULL
),
404 static int pkt_sysfs_init(void)
409 * create control files in sysfs
410 * /sys/class/pktcdvd/...
412 class_pktcdvd
= kzalloc(sizeof(*class_pktcdvd
), GFP_KERNEL
);
415 class_pktcdvd
->name
= DRIVER_NAME
;
416 class_pktcdvd
->owner
= THIS_MODULE
;
417 class_pktcdvd
->class_release
= class_pktcdvd_release
;
418 class_pktcdvd
->class_attrs
= class_pktcdvd_attrs
;
419 ret
= class_register(class_pktcdvd
);
421 kfree(class_pktcdvd
);
422 class_pktcdvd
= NULL
;
423 printk(DRIVER_NAME
": failed to create class pktcdvd\n");
429 static void pkt_sysfs_cleanup(void)
432 class_destroy(class_pktcdvd
);
433 class_pktcdvd
= NULL
;
436 /********************************************************************
439 /sys/kernel/debug/pktcdvd[0-7]/
442 *******************************************************************/
444 static int pkt_debugfs_seq_show(struct seq_file
*m
, void *p
)
446 return pkt_seq_show(m
, p
);
449 static int pkt_debugfs_fops_open(struct inode
*inode
, struct file
*file
)
451 return single_open(file
, pkt_debugfs_seq_show
, inode
->i_private
);
454 static const struct file_operations debug_fops
= {
455 .open
= pkt_debugfs_fops_open
,
458 .release
= single_release
,
459 .owner
= THIS_MODULE
,
462 static void pkt_debugfs_dev_new(struct pktcdvd_device
*pd
)
464 if (!pkt_debugfs_root
)
466 pd
->dfs_f_info
= NULL
;
467 pd
->dfs_d_root
= debugfs_create_dir(pd
->name
, pkt_debugfs_root
);
468 if (IS_ERR(pd
->dfs_d_root
)) {
469 pd
->dfs_d_root
= NULL
;
472 pd
->dfs_f_info
= debugfs_create_file("info", S_IRUGO
,
473 pd
->dfs_d_root
, pd
, &debug_fops
);
474 if (IS_ERR(pd
->dfs_f_info
)) {
475 pd
->dfs_f_info
= NULL
;
480 static void pkt_debugfs_dev_remove(struct pktcdvd_device
*pd
)
482 if (!pkt_debugfs_root
)
485 debugfs_remove(pd
->dfs_f_info
);
486 pd
->dfs_f_info
= NULL
;
488 debugfs_remove(pd
->dfs_d_root
);
489 pd
->dfs_d_root
= NULL
;
492 static void pkt_debugfs_init(void)
494 pkt_debugfs_root
= debugfs_create_dir(DRIVER_NAME
, NULL
);
495 if (IS_ERR(pkt_debugfs_root
)) {
496 pkt_debugfs_root
= NULL
;
501 static void pkt_debugfs_cleanup(void)
503 if (!pkt_debugfs_root
)
505 debugfs_remove(pkt_debugfs_root
);
506 pkt_debugfs_root
= NULL
;
509 /* ----------------------------------------------------------*/
512 static void pkt_bio_finished(struct pktcdvd_device
*pd
)
514 BUG_ON(atomic_read(&pd
->cdrw
.pending_bios
) <= 0);
515 if (atomic_dec_and_test(&pd
->cdrw
.pending_bios
)) {
516 VPRINTK(DRIVER_NAME
": queue empty\n");
517 atomic_set(&pd
->iosched
.attention
, 1);
518 wake_up(&pd
->wqueue
);
522 static void pkt_bio_destructor(struct bio
*bio
)
524 kfree(bio
->bi_io_vec
);
528 static struct bio
*pkt_bio_alloc(int nr_iovecs
)
530 struct bio_vec
*bvl
= NULL
;
533 bio
= kmalloc(sizeof(struct bio
), GFP_KERNEL
);
538 bvl
= kcalloc(nr_iovecs
, sizeof(struct bio_vec
), GFP_KERNEL
);
542 bio
->bi_max_vecs
= nr_iovecs
;
543 bio
->bi_io_vec
= bvl
;
544 bio
->bi_destructor
= pkt_bio_destructor
;
555 * Allocate a packet_data struct
557 static struct packet_data
*pkt_alloc_packet_data(int frames
)
560 struct packet_data
*pkt
;
562 pkt
= kzalloc(sizeof(struct packet_data
), GFP_KERNEL
);
566 pkt
->frames
= frames
;
567 pkt
->w_bio
= pkt_bio_alloc(frames
);
571 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++) {
572 pkt
->pages
[i
] = alloc_page(GFP_KERNEL
|__GFP_ZERO
);
577 spin_lock_init(&pkt
->lock
);
578 bio_list_init(&pkt
->orig_bios
);
580 for (i
= 0; i
< frames
; i
++) {
581 struct bio
*bio
= pkt_bio_alloc(1);
584 pkt
->r_bios
[i
] = bio
;
590 for (i
= 0; i
< frames
; i
++) {
591 struct bio
*bio
= pkt
->r_bios
[i
];
597 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++)
599 __free_page(pkt
->pages
[i
]);
608 * Free a packet_data struct
610 static void pkt_free_packet_data(struct packet_data
*pkt
)
614 for (i
= 0; i
< pkt
->frames
; i
++) {
615 struct bio
*bio
= pkt
->r_bios
[i
];
619 for (i
= 0; i
< pkt
->frames
/ FRAMES_PER_PAGE
; i
++)
620 __free_page(pkt
->pages
[i
]);
625 static void pkt_shrink_pktlist(struct pktcdvd_device
*pd
)
627 struct packet_data
*pkt
, *next
;
629 BUG_ON(!list_empty(&pd
->cdrw
.pkt_active_list
));
631 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_free_list
, list
) {
632 pkt_free_packet_data(pkt
);
634 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
637 static int pkt_grow_pktlist(struct pktcdvd_device
*pd
, int nr_packets
)
639 struct packet_data
*pkt
;
641 BUG_ON(!list_empty(&pd
->cdrw
.pkt_free_list
));
643 while (nr_packets
> 0) {
644 pkt
= pkt_alloc_packet_data(pd
->settings
.size
>> 2);
646 pkt_shrink_pktlist(pd
);
649 pkt
->id
= nr_packets
;
651 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
657 static inline struct pkt_rb_node
*pkt_rbtree_next(struct pkt_rb_node
*node
)
659 struct rb_node
*n
= rb_next(&node
->rb_node
);
662 return rb_entry(n
, struct pkt_rb_node
, rb_node
);
665 static void pkt_rbtree_erase(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
667 rb_erase(&node
->rb_node
, &pd
->bio_queue
);
668 mempool_free(node
, pd
->rb_pool
);
669 pd
->bio_queue_size
--;
670 BUG_ON(pd
->bio_queue_size
< 0);
674 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
676 static struct pkt_rb_node
*pkt_rbtree_find(struct pktcdvd_device
*pd
, sector_t s
)
678 struct rb_node
*n
= pd
->bio_queue
.rb_node
;
679 struct rb_node
*next
;
680 struct pkt_rb_node
*tmp
;
683 BUG_ON(pd
->bio_queue_size
> 0);
688 tmp
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
689 if (s
<= tmp
->bio
->bi_sector
)
698 if (s
> tmp
->bio
->bi_sector
) {
699 tmp
= pkt_rbtree_next(tmp
);
703 BUG_ON(s
> tmp
->bio
->bi_sector
);
708 * Insert a node into the pd->bio_queue rb tree.
710 static void pkt_rbtree_insert(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
712 struct rb_node
**p
= &pd
->bio_queue
.rb_node
;
713 struct rb_node
*parent
= NULL
;
714 sector_t s
= node
->bio
->bi_sector
;
715 struct pkt_rb_node
*tmp
;
719 tmp
= rb_entry(parent
, struct pkt_rb_node
, rb_node
);
720 if (s
< tmp
->bio
->bi_sector
)
725 rb_link_node(&node
->rb_node
, parent
, p
);
726 rb_insert_color(&node
->rb_node
, &pd
->bio_queue
);
727 pd
->bio_queue_size
++;
731 * Send a packet_command to the underlying block device and
732 * wait for completion.
734 static int pkt_generic_packet(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
736 struct request_queue
*q
= bdev_get_queue(pd
->bdev
);
740 rq
= blk_get_request(q
, (cgc
->data_direction
== CGC_DATA_WRITE
) ?
741 WRITE
: READ
, __GFP_WAIT
);
744 if (blk_rq_map_kern(q
, rq
, cgc
->buffer
, cgc
->buflen
, __GFP_WAIT
))
748 rq
->cmd_len
= COMMAND_SIZE(cgc
->cmd
[0]);
749 memcpy(rq
->cmd
, cgc
->cmd
, CDROM_PACKET_SIZE
);
752 rq
->cmd_type
= REQ_TYPE_BLOCK_PC
;
753 rq
->cmd_flags
|= REQ_HARDBARRIER
;
755 rq
->cmd_flags
|= REQ_QUIET
;
757 blk_execute_rq(rq
->q
, pd
->bdev
->bd_disk
, rq
, 0);
766 * A generic sense dump / resolve mechanism should be implemented across
767 * all ATAPI + SCSI devices.
769 static void pkt_dump_sense(struct packet_command
*cgc
)
771 static char *info
[9] = { "No sense", "Recovered error", "Not ready",
772 "Medium error", "Hardware error", "Illegal request",
773 "Unit attention", "Data protect", "Blank check" };
775 struct request_sense
*sense
= cgc
->sense
;
777 printk(DRIVER_NAME
":");
778 for (i
= 0; i
< CDROM_PACKET_SIZE
; i
++)
779 printk(" %02x", cgc
->cmd
[i
]);
783 printk("no sense\n");
787 printk("sense %02x.%02x.%02x", sense
->sense_key
, sense
->asc
, sense
->ascq
);
789 if (sense
->sense_key
> 8) {
790 printk(" (INVALID)\n");
794 printk(" (%s)\n", info
[sense
->sense_key
]);
798 * flush the drive cache to media
800 static int pkt_flush_cache(struct pktcdvd_device
*pd
)
802 struct packet_command cgc
;
804 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
805 cgc
.cmd
[0] = GPCMD_FLUSH_CACHE
;
809 * the IMMED bit -- we default to not setting it, although that
810 * would allow a much faster close, this is safer
815 return pkt_generic_packet(pd
, &cgc
);
819 * speed is given as the normal factor, e.g. 4 for 4x
821 static noinline_for_stack
int pkt_set_speed(struct pktcdvd_device
*pd
,
822 unsigned write_speed
, unsigned read_speed
)
824 struct packet_command cgc
;
825 struct request_sense sense
;
828 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
830 cgc
.cmd
[0] = GPCMD_SET_SPEED
;
831 cgc
.cmd
[2] = (read_speed
>> 8) & 0xff;
832 cgc
.cmd
[3] = read_speed
& 0xff;
833 cgc
.cmd
[4] = (write_speed
>> 8) & 0xff;
834 cgc
.cmd
[5] = write_speed
& 0xff;
836 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
837 pkt_dump_sense(&cgc
);
843 * Queue a bio for processing by the low-level CD device. Must be called
844 * from process context.
846 static void pkt_queue_bio(struct pktcdvd_device
*pd
, struct bio
*bio
)
848 spin_lock(&pd
->iosched
.lock
);
849 if (bio_data_dir(bio
) == READ
)
850 bio_list_add(&pd
->iosched
.read_queue
, bio
);
852 bio_list_add(&pd
->iosched
.write_queue
, bio
);
853 spin_unlock(&pd
->iosched
.lock
);
855 atomic_set(&pd
->iosched
.attention
, 1);
856 wake_up(&pd
->wqueue
);
860 * Process the queued read/write requests. This function handles special
861 * requirements for CDRW drives:
862 * - A cache flush command must be inserted before a read request if the
863 * previous request was a write.
864 * - Switching between reading and writing is slow, so don't do it more often
866 * - Optimize for throughput at the expense of latency. This means that streaming
867 * writes will never be interrupted by a read, but if the drive has to seek
868 * before the next write, switch to reading instead if there are any pending
870 * - Set the read speed according to current usage pattern. When only reading
871 * from the device, it's best to use the highest possible read speed, but
872 * when switching often between reading and writing, it's better to have the
873 * same read and write speeds.
875 static void pkt_iosched_process_queue(struct pktcdvd_device
*pd
)
878 if (atomic_read(&pd
->iosched
.attention
) == 0)
880 atomic_set(&pd
->iosched
.attention
, 0);
884 int reads_queued
, writes_queued
;
886 spin_lock(&pd
->iosched
.lock
);
887 reads_queued
= !bio_list_empty(&pd
->iosched
.read_queue
);
888 writes_queued
= !bio_list_empty(&pd
->iosched
.write_queue
);
889 spin_unlock(&pd
->iosched
.lock
);
891 if (!reads_queued
&& !writes_queued
)
894 if (pd
->iosched
.writing
) {
895 int need_write_seek
= 1;
896 spin_lock(&pd
->iosched
.lock
);
897 bio
= bio_list_peek(&pd
->iosched
.write_queue
);
898 spin_unlock(&pd
->iosched
.lock
);
899 if (bio
&& (bio
->bi_sector
== pd
->iosched
.last_write
))
901 if (need_write_seek
&& reads_queued
) {
902 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
903 VPRINTK(DRIVER_NAME
": write, waiting\n");
907 pd
->iosched
.writing
= 0;
910 if (!reads_queued
&& writes_queued
) {
911 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
912 VPRINTK(DRIVER_NAME
": read, waiting\n");
915 pd
->iosched
.writing
= 1;
919 spin_lock(&pd
->iosched
.lock
);
920 if (pd
->iosched
.writing
)
921 bio
= bio_list_pop(&pd
->iosched
.write_queue
);
923 bio
= bio_list_pop(&pd
->iosched
.read_queue
);
924 spin_unlock(&pd
->iosched
.lock
);
929 if (bio_data_dir(bio
) == READ
)
930 pd
->iosched
.successive_reads
+= bio
->bi_size
>> 10;
932 pd
->iosched
.successive_reads
= 0;
933 pd
->iosched
.last_write
= bio
->bi_sector
+ bio_sectors(bio
);
935 if (pd
->iosched
.successive_reads
>= HI_SPEED_SWITCH
) {
936 if (pd
->read_speed
== pd
->write_speed
) {
937 pd
->read_speed
= MAX_SPEED
;
938 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
941 if (pd
->read_speed
!= pd
->write_speed
) {
942 pd
->read_speed
= pd
->write_speed
;
943 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
947 atomic_inc(&pd
->cdrw
.pending_bios
);
948 generic_make_request(bio
);
953 * Special care is needed if the underlying block device has a small
954 * max_phys_segments value.
956 static int pkt_set_segment_merging(struct pktcdvd_device
*pd
, struct request_queue
*q
)
958 if ((pd
->settings
.size
<< 9) / CD_FRAMESIZE
959 <= queue_max_segments(q
)) {
961 * The cdrom device can handle one segment/frame
963 clear_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
965 } else if ((pd
->settings
.size
<< 9) / PAGE_SIZE
966 <= queue_max_segments(q
)) {
968 * We can handle this case at the expense of some extra memory
969 * copies during write operations
971 set_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
974 printk(DRIVER_NAME
": cdrom max_phys_segments too small\n");
980 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
982 static void pkt_copy_bio_data(struct bio
*src_bio
, int seg
, int offs
, struct page
*dst_page
, int dst_offs
)
984 unsigned int copy_size
= CD_FRAMESIZE
;
986 while (copy_size
> 0) {
987 struct bio_vec
*src_bvl
= bio_iovec_idx(src_bio
, seg
);
988 void *vfrom
= kmap_atomic(src_bvl
->bv_page
, KM_USER0
) +
989 src_bvl
->bv_offset
+ offs
;
990 void *vto
= page_address(dst_page
) + dst_offs
;
991 int len
= min_t(int, copy_size
, src_bvl
->bv_len
- offs
);
994 memcpy(vto
, vfrom
, len
);
995 kunmap_atomic(vfrom
, KM_USER0
);
1005 * Copy all data for this packet to pkt->pages[], so that
1006 * a) The number of required segments for the write bio is minimized, which
1007 * is necessary for some scsi controllers.
1008 * b) The data can be used as cache to avoid read requests if we receive a
1009 * new write request for the same zone.
1011 static void pkt_make_local_copy(struct packet_data
*pkt
, struct bio_vec
*bvec
)
1015 /* Copy all data to pkt->pages[] */
1018 for (f
= 0; f
< pkt
->frames
; f
++) {
1019 if (bvec
[f
].bv_page
!= pkt
->pages
[p
]) {
1020 void *vfrom
= kmap_atomic(bvec
[f
].bv_page
, KM_USER0
) + bvec
[f
].bv_offset
;
1021 void *vto
= page_address(pkt
->pages
[p
]) + offs
;
1022 memcpy(vto
, vfrom
, CD_FRAMESIZE
);
1023 kunmap_atomic(vfrom
, KM_USER0
);
1024 bvec
[f
].bv_page
= pkt
->pages
[p
];
1025 bvec
[f
].bv_offset
= offs
;
1027 BUG_ON(bvec
[f
].bv_offset
!= offs
);
1029 offs
+= CD_FRAMESIZE
;
1030 if (offs
>= PAGE_SIZE
) {
1037 static void pkt_end_io_read(struct bio
*bio
, int err
)
1039 struct packet_data
*pkt
= bio
->bi_private
;
1040 struct pktcdvd_device
*pd
= pkt
->pd
;
1043 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio
,
1044 (unsigned long long)pkt
->sector
, (unsigned long long)bio
->bi_sector
, err
);
1047 atomic_inc(&pkt
->io_errors
);
1048 if (atomic_dec_and_test(&pkt
->io_wait
)) {
1049 atomic_inc(&pkt
->run_sm
);
1050 wake_up(&pd
->wqueue
);
1052 pkt_bio_finished(pd
);
1055 static void pkt_end_io_packet_write(struct bio
*bio
, int err
)
1057 struct packet_data
*pkt
= bio
->bi_private
;
1058 struct pktcdvd_device
*pd
= pkt
->pd
;
1061 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt
->id
, err
);
1063 pd
->stats
.pkt_ended
++;
1065 pkt_bio_finished(pd
);
1066 atomic_dec(&pkt
->io_wait
);
1067 atomic_inc(&pkt
->run_sm
);
1068 wake_up(&pd
->wqueue
);
1072 * Schedule reads for the holes in a packet
1074 static void pkt_gather_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1076 int frames_read
= 0;
1079 char written
[PACKET_MAX_SIZE
];
1081 BUG_ON(bio_list_empty(&pkt
->orig_bios
));
1083 atomic_set(&pkt
->io_wait
, 0);
1084 atomic_set(&pkt
->io_errors
, 0);
1087 * Figure out which frames we need to read before we can write.
1089 memset(written
, 0, sizeof(written
));
1090 spin_lock(&pkt
->lock
);
1091 bio_list_for_each(bio
, &pkt
->orig_bios
) {
1092 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
1093 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
1094 pd
->stats
.secs_w
+= num_frames
* (CD_FRAMESIZE
>> 9);
1095 BUG_ON(first_frame
< 0);
1096 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
1097 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++)
1100 spin_unlock(&pkt
->lock
);
1102 if (pkt
->cache_valid
) {
1103 VPRINTK("pkt_gather_data: zone %llx cached\n",
1104 (unsigned long long)pkt
->sector
);
1109 * Schedule reads for missing parts of the packet.
1111 for (f
= 0; f
< pkt
->frames
; f
++) {
1112 struct bio_vec
*vec
;
1117 bio
= pkt
->r_bios
[f
];
1118 vec
= bio
->bi_io_vec
;
1120 bio
->bi_max_vecs
= 1;
1121 bio
->bi_sector
= pkt
->sector
+ f
* (CD_FRAMESIZE
>> 9);
1122 bio
->bi_bdev
= pd
->bdev
;
1123 bio
->bi_end_io
= pkt_end_io_read
;
1124 bio
->bi_private
= pkt
;
1125 bio
->bi_io_vec
= vec
;
1126 bio
->bi_destructor
= pkt_bio_destructor
;
1128 p
= (f
* CD_FRAMESIZE
) / PAGE_SIZE
;
1129 offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
1130 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1131 f
, pkt
->pages
[p
], offset
);
1132 if (!bio_add_page(bio
, pkt
->pages
[p
], CD_FRAMESIZE
, offset
))
1135 atomic_inc(&pkt
->io_wait
);
1137 pkt_queue_bio(pd
, bio
);
1142 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1143 frames_read
, (unsigned long long)pkt
->sector
);
1144 pd
->stats
.pkt_started
++;
1145 pd
->stats
.secs_rg
+= frames_read
* (CD_FRAMESIZE
>> 9);
1149 * Find a packet matching zone, or the least recently used packet if
1150 * there is no match.
1152 static struct packet_data
*pkt_get_packet_data(struct pktcdvd_device
*pd
, int zone
)
1154 struct packet_data
*pkt
;
1156 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_free_list
, list
) {
1157 if (pkt
->sector
== zone
|| pkt
->list
.next
== &pd
->cdrw
.pkt_free_list
) {
1158 list_del_init(&pkt
->list
);
1159 if (pkt
->sector
!= zone
)
1160 pkt
->cache_valid
= 0;
1168 static void pkt_put_packet_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1170 if (pkt
->cache_valid
) {
1171 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
1173 list_add_tail(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
1178 * recover a failed write, query for relocation if possible
1180 * returns 1 if recovery is possible, or 0 if not
1183 static int pkt_start_recovery(struct packet_data
*pkt
)
1186 * FIXME. We need help from the file system to implement
1187 * recovery handling.
1191 struct request
*rq
= pkt
->rq
;
1192 struct pktcdvd_device
*pd
= rq
->rq_disk
->private_data
;
1193 struct block_device
*pkt_bdev
;
1194 struct super_block
*sb
= NULL
;
1195 unsigned long old_block
, new_block
;
1196 sector_t new_sector
;
1198 pkt_bdev
= bdget(kdev_t_to_nr(pd
->pkt_dev
));
1200 sb
= get_super(pkt_bdev
);
1207 if (!sb
->s_op
|| !sb
->s_op
->relocate_blocks
)
1210 old_block
= pkt
->sector
/ (CD_FRAMESIZE
>> 9);
1211 if (sb
->s_op
->relocate_blocks(sb
, old_block
, &new_block
))
1214 new_sector
= new_block
* (CD_FRAMESIZE
>> 9);
1215 pkt
->sector
= new_sector
;
1217 pkt
->bio
->bi_sector
= new_sector
;
1218 pkt
->bio
->bi_next
= NULL
;
1219 pkt
->bio
->bi_flags
= 1 << BIO_UPTODATE
;
1220 pkt
->bio
->bi_idx
= 0;
1222 BUG_ON(pkt
->bio
->bi_rw
!= (1 << BIO_RW
));
1223 BUG_ON(pkt
->bio
->bi_vcnt
!= pkt
->frames
);
1224 BUG_ON(pkt
->bio
->bi_size
!= pkt
->frames
* CD_FRAMESIZE
);
1225 BUG_ON(pkt
->bio
->bi_end_io
!= pkt_end_io_packet_write
);
1226 BUG_ON(pkt
->bio
->bi_private
!= pkt
);
1237 static inline void pkt_set_state(struct packet_data
*pkt
, enum packet_data_state state
)
1239 #if PACKET_DEBUG > 1
1240 static const char *state_name
[] = {
1241 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1243 enum packet_data_state old_state
= pkt
->state
;
1244 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt
->id
, (unsigned long long)pkt
->sector
,
1245 state_name
[old_state
], state_name
[state
]);
1251 * Scan the work queue to see if we can start a new packet.
1252 * returns non-zero if any work was done.
1254 static int pkt_handle_queue(struct pktcdvd_device
*pd
)
1256 struct packet_data
*pkt
, *p
;
1257 struct bio
*bio
= NULL
;
1258 sector_t zone
= 0; /* Suppress gcc warning */
1259 struct pkt_rb_node
*node
, *first_node
;
1263 VPRINTK("handle_queue\n");
1265 atomic_set(&pd
->scan_queue
, 0);
1267 if (list_empty(&pd
->cdrw
.pkt_free_list
)) {
1268 VPRINTK("handle_queue: no pkt\n");
1273 * Try to find a zone we are not already working on.
1275 spin_lock(&pd
->lock
);
1276 first_node
= pkt_rbtree_find(pd
, pd
->current_sector
);
1278 n
= rb_first(&pd
->bio_queue
);
1280 first_node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
1285 zone
= ZONE(bio
->bi_sector
, pd
);
1286 list_for_each_entry(p
, &pd
->cdrw
.pkt_active_list
, list
) {
1287 if (p
->sector
== zone
) {
1294 node
= pkt_rbtree_next(node
);
1296 n
= rb_first(&pd
->bio_queue
);
1298 node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
1300 if (node
== first_node
)
1303 spin_unlock(&pd
->lock
);
1305 VPRINTK("handle_queue: no bio\n");
1309 pkt
= pkt_get_packet_data(pd
, zone
);
1311 pd
->current_sector
= zone
+ pd
->settings
.size
;
1313 BUG_ON(pkt
->frames
!= pd
->settings
.size
>> 2);
1314 pkt
->write_size
= 0;
1317 * Scan work queue for bios in the same zone and link them
1320 spin_lock(&pd
->lock
);
1321 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone
);
1322 while ((node
= pkt_rbtree_find(pd
, zone
)) != NULL
) {
1324 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1325 (unsigned long long)ZONE(bio
->bi_sector
, pd
));
1326 if (ZONE(bio
->bi_sector
, pd
) != zone
)
1328 pkt_rbtree_erase(pd
, node
);
1329 spin_lock(&pkt
->lock
);
1330 bio_list_add(&pkt
->orig_bios
, bio
);
1331 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
1332 spin_unlock(&pkt
->lock
);
1334 /* check write congestion marks, and if bio_queue_size is
1335 below, wake up any waiters */
1336 wakeup
= (pd
->write_congestion_on
> 0
1337 && pd
->bio_queue_size
<= pd
->write_congestion_off
);
1338 spin_unlock(&pd
->lock
);
1340 clear_bdi_congested(&pd
->disk
->queue
->backing_dev_info
,
1344 pkt
->sleep_time
= max(PACKET_WAIT_TIME
, 1);
1345 pkt_set_state(pkt
, PACKET_WAITING_STATE
);
1346 atomic_set(&pkt
->run_sm
, 1);
1348 spin_lock(&pd
->cdrw
.active_list_lock
);
1349 list_add(&pkt
->list
, &pd
->cdrw
.pkt_active_list
);
1350 spin_unlock(&pd
->cdrw
.active_list_lock
);
1356 * Assemble a bio to write one packet and queue the bio for processing
1357 * by the underlying block device.
1359 static void pkt_start_write(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1364 struct bio_vec
*bvec
= pkt
->w_bio
->bi_io_vec
;
1366 for (f
= 0; f
< pkt
->frames
; f
++) {
1367 bvec
[f
].bv_page
= pkt
->pages
[(f
* CD_FRAMESIZE
) / PAGE_SIZE
];
1368 bvec
[f
].bv_offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
1372 * Fill-in bvec with data from orig_bios.
1375 spin_lock(&pkt
->lock
);
1376 bio_list_for_each(bio
, &pkt
->orig_bios
) {
1377 int segment
= bio
->bi_idx
;
1379 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
1380 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
1381 BUG_ON(first_frame
< 0);
1382 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
1383 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++) {
1384 struct bio_vec
*src_bvl
= bio_iovec_idx(bio
, segment
);
1386 while (src_offs
>= src_bvl
->bv_len
) {
1387 src_offs
-= src_bvl
->bv_len
;
1389 BUG_ON(segment
>= bio
->bi_vcnt
);
1390 src_bvl
= bio_iovec_idx(bio
, segment
);
1393 if (src_bvl
->bv_len
- src_offs
>= CD_FRAMESIZE
) {
1394 bvec
[f
].bv_page
= src_bvl
->bv_page
;
1395 bvec
[f
].bv_offset
= src_bvl
->bv_offset
+ src_offs
;
1397 pkt_copy_bio_data(bio
, segment
, src_offs
,
1398 bvec
[f
].bv_page
, bvec
[f
].bv_offset
);
1400 src_offs
+= CD_FRAMESIZE
;
1404 pkt_set_state(pkt
, PACKET_WRITE_WAIT_STATE
);
1405 spin_unlock(&pkt
->lock
);
1407 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1408 frames_write
, (unsigned long long)pkt
->sector
);
1409 BUG_ON(frames_write
!= pkt
->write_size
);
1411 if (test_bit(PACKET_MERGE_SEGS
, &pd
->flags
) || (pkt
->write_size
< pkt
->frames
)) {
1412 pkt_make_local_copy(pkt
, bvec
);
1413 pkt
->cache_valid
= 1;
1415 pkt
->cache_valid
= 0;
1418 /* Start the write request */
1419 bio_init(pkt
->w_bio
);
1420 pkt
->w_bio
->bi_max_vecs
= PACKET_MAX_SIZE
;
1421 pkt
->w_bio
->bi_sector
= pkt
->sector
;
1422 pkt
->w_bio
->bi_bdev
= pd
->bdev
;
1423 pkt
->w_bio
->bi_end_io
= pkt_end_io_packet_write
;
1424 pkt
->w_bio
->bi_private
= pkt
;
1425 pkt
->w_bio
->bi_io_vec
= bvec
;
1426 pkt
->w_bio
->bi_destructor
= pkt_bio_destructor
;
1427 for (f
= 0; f
< pkt
->frames
; f
++)
1428 if (!bio_add_page(pkt
->w_bio
, bvec
[f
].bv_page
, CD_FRAMESIZE
, bvec
[f
].bv_offset
))
1430 VPRINTK(DRIVER_NAME
": vcnt=%d\n", pkt
->w_bio
->bi_vcnt
);
1432 atomic_set(&pkt
->io_wait
, 1);
1433 pkt
->w_bio
->bi_rw
= WRITE
;
1434 pkt_queue_bio(pd
, pkt
->w_bio
);
1437 static void pkt_finish_packet(struct packet_data
*pkt
, int uptodate
)
1442 pkt
->cache_valid
= 0;
1444 /* Finish all bios corresponding to this packet */
1445 while ((bio
= bio_list_pop(&pkt
->orig_bios
)))
1446 bio_endio(bio
, uptodate
? 0 : -EIO
);
1449 static void pkt_run_state_machine(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1453 VPRINTK("run_state_machine: pkt %d\n", pkt
->id
);
1456 switch (pkt
->state
) {
1457 case PACKET_WAITING_STATE
:
1458 if ((pkt
->write_size
< pkt
->frames
) && (pkt
->sleep_time
> 0))
1461 pkt
->sleep_time
= 0;
1462 pkt_gather_data(pd
, pkt
);
1463 pkt_set_state(pkt
, PACKET_READ_WAIT_STATE
);
1466 case PACKET_READ_WAIT_STATE
:
1467 if (atomic_read(&pkt
->io_wait
) > 0)
1470 if (atomic_read(&pkt
->io_errors
) > 0) {
1471 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1473 pkt_start_write(pd
, pkt
);
1477 case PACKET_WRITE_WAIT_STATE
:
1478 if (atomic_read(&pkt
->io_wait
) > 0)
1481 if (test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
)) {
1482 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1484 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1488 case PACKET_RECOVERY_STATE
:
1489 if (pkt_start_recovery(pkt
)) {
1490 pkt_start_write(pd
, pkt
);
1492 VPRINTK("No recovery possible\n");
1493 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1497 case PACKET_FINISHED_STATE
:
1498 uptodate
= test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
);
1499 pkt_finish_packet(pkt
, uptodate
);
1509 static void pkt_handle_packets(struct pktcdvd_device
*pd
)
1511 struct packet_data
*pkt
, *next
;
1513 VPRINTK("pkt_handle_packets\n");
1516 * Run state machine for active packets
1518 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1519 if (atomic_read(&pkt
->run_sm
) > 0) {
1520 atomic_set(&pkt
->run_sm
, 0);
1521 pkt_run_state_machine(pd
, pkt
);
1526 * Move no longer active packets to the free list
1528 spin_lock(&pd
->cdrw
.active_list_lock
);
1529 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_active_list
, list
) {
1530 if (pkt
->state
== PACKET_FINISHED_STATE
) {
1531 list_del(&pkt
->list
);
1532 pkt_put_packet_data(pd
, pkt
);
1533 pkt_set_state(pkt
, PACKET_IDLE_STATE
);
1534 atomic_set(&pd
->scan_queue
, 1);
1537 spin_unlock(&pd
->cdrw
.active_list_lock
);
1540 static void pkt_count_states(struct pktcdvd_device
*pd
, int *states
)
1542 struct packet_data
*pkt
;
1545 for (i
= 0; i
< PACKET_NUM_STATES
; i
++)
1548 spin_lock(&pd
->cdrw
.active_list_lock
);
1549 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1550 states
[pkt
->state
]++;
1552 spin_unlock(&pd
->cdrw
.active_list_lock
);
1556 * kcdrwd is woken up when writes have been queued for one of our
1557 * registered devices
1559 static int kcdrwd(void *foobar
)
1561 struct pktcdvd_device
*pd
= foobar
;
1562 struct packet_data
*pkt
;
1563 long min_sleep_time
, residue
;
1565 set_user_nice(current
, -20);
1569 DECLARE_WAITQUEUE(wait
, current
);
1572 * Wait until there is something to do
1574 add_wait_queue(&pd
->wqueue
, &wait
);
1576 set_current_state(TASK_INTERRUPTIBLE
);
1578 /* Check if we need to run pkt_handle_queue */
1579 if (atomic_read(&pd
->scan_queue
) > 0)
1582 /* Check if we need to run the state machine for some packet */
1583 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1584 if (atomic_read(&pkt
->run_sm
) > 0)
1588 /* Check if we need to process the iosched queues */
1589 if (atomic_read(&pd
->iosched
.attention
) != 0)
1592 /* Otherwise, go to sleep */
1593 if (PACKET_DEBUG
> 1) {
1594 int states
[PACKET_NUM_STATES
];
1595 pkt_count_states(pd
, states
);
1596 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1597 states
[0], states
[1], states
[2], states
[3],
1598 states
[4], states
[5]);
1601 min_sleep_time
= MAX_SCHEDULE_TIMEOUT
;
1602 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1603 if (pkt
->sleep_time
&& pkt
->sleep_time
< min_sleep_time
)
1604 min_sleep_time
= pkt
->sleep_time
;
1607 generic_unplug_device(bdev_get_queue(pd
->bdev
));
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue
= schedule_timeout(min_sleep_time
);
1611 VPRINTK("kcdrwd: wake up\n");
1613 /* make swsusp happy with our thread */
1616 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1617 if (!pkt
->sleep_time
)
1619 pkt
->sleep_time
-= min_sleep_time
- residue
;
1620 if (pkt
->sleep_time
<= 0) {
1621 pkt
->sleep_time
= 0;
1622 atomic_inc(&pkt
->run_sm
);
1626 if (kthread_should_stop())
1630 set_current_state(TASK_RUNNING
);
1631 remove_wait_queue(&pd
->wqueue
, &wait
);
1633 if (kthread_should_stop())
1637 * if pkt_handle_queue returns true, we can queue
1640 while (pkt_handle_queue(pd
))
1644 * Handle packet state machine
1646 pkt_handle_packets(pd
);
1649 * Handle iosched queues
1651 pkt_iosched_process_queue(pd
);
1657 static void pkt_print_settings(struct pktcdvd_device
*pd
)
1659 printk(DRIVER_NAME
": %s packets, ", pd
->settings
.fp
? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd
->settings
.size
>> 2);
1661 printk("Mode-%c disc\n", pd
->settings
.block_mode
== 8 ? '1' : '2');
1664 static int pkt_mode_sense(struct pktcdvd_device
*pd
, struct packet_command
*cgc
, int page_code
, int page_control
)
1666 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1668 cgc
->cmd
[0] = GPCMD_MODE_SENSE_10
;
1669 cgc
->cmd
[2] = page_code
| (page_control
<< 6);
1670 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1671 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1672 cgc
->data_direction
= CGC_DATA_READ
;
1673 return pkt_generic_packet(pd
, cgc
);
1676 static int pkt_mode_select(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
1678 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1679 memset(cgc
->buffer
, 0, 2);
1680 cgc
->cmd
[0] = GPCMD_MODE_SELECT_10
;
1681 cgc
->cmd
[1] = 0x10; /* PF */
1682 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1683 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1684 cgc
->data_direction
= CGC_DATA_WRITE
;
1685 return pkt_generic_packet(pd
, cgc
);
1688 static int pkt_get_disc_info(struct pktcdvd_device
*pd
, disc_information
*di
)
1690 struct packet_command cgc
;
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc
, di
, sizeof(*di
), CGC_DATA_READ
);
1695 cgc
.cmd
[0] = GPCMD_READ_DISC_INFO
;
1696 cgc
.cmd
[8] = cgc
.buflen
= 2;
1699 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1705 cgc
.buflen
= be16_to_cpu(di
->disc_information_length
) +
1706 sizeof(di
->disc_information_length
);
1708 if (cgc
.buflen
> sizeof(disc_information
))
1709 cgc
.buflen
= sizeof(disc_information
);
1711 cgc
.cmd
[8] = cgc
.buflen
;
1712 return pkt_generic_packet(pd
, &cgc
);
1715 static int pkt_get_track_info(struct pktcdvd_device
*pd
, __u16 track
, __u8 type
, track_information
*ti
)
1717 struct packet_command cgc
;
1720 init_cdrom_command(&cgc
, ti
, 8, CGC_DATA_READ
);
1721 cgc
.cmd
[0] = GPCMD_READ_TRACK_RZONE_INFO
;
1722 cgc
.cmd
[1] = type
& 3;
1723 cgc
.cmd
[4] = (track
& 0xff00) >> 8;
1724 cgc
.cmd
[5] = track
& 0xff;
1728 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1731 cgc
.buflen
= be16_to_cpu(ti
->track_information_length
) +
1732 sizeof(ti
->track_information_length
);
1734 if (cgc
.buflen
> sizeof(track_information
))
1735 cgc
.buflen
= sizeof(track_information
);
1737 cgc
.cmd
[8] = cgc
.buflen
;
1738 return pkt_generic_packet(pd
, &cgc
);
1741 static noinline_for_stack
int pkt_get_last_written(struct pktcdvd_device
*pd
,
1744 disc_information di
;
1745 track_information ti
;
1749 if ((ret
= pkt_get_disc_info(pd
, &di
)))
1752 last_track
= (di
.last_track_msb
<< 8) | di
.last_track_lsb
;
1753 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1756 /* if this track is blank, try the previous. */
1759 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1763 /* if last recorded field is valid, return it. */
1765 *last_written
= be32_to_cpu(ti
.last_rec_address
);
1767 /* make it up instead */
1768 *last_written
= be32_to_cpu(ti
.track_start
) +
1769 be32_to_cpu(ti
.track_size
);
1771 *last_written
-= (be32_to_cpu(ti
.free_blocks
) + 7);
1777 * write mode select package based on pd->settings
1779 static noinline_for_stack
int pkt_set_write_settings(struct pktcdvd_device
*pd
)
1781 struct packet_command cgc
;
1782 struct request_sense sense
;
1783 write_param_page
*wp
;
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd
->mmc3_profile
== 0x1a) || (pd
->mmc3_profile
== 0x12))
1791 memset(buffer
, 0, sizeof(buffer
));
1792 init_cdrom_command(&cgc
, buffer
, sizeof(*wp
), CGC_DATA_READ
);
1794 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1795 pkt_dump_sense(&cgc
);
1799 size
= 2 + ((buffer
[0] << 8) | (buffer
[1] & 0xff));
1800 pd
->mode_offset
= (buffer
[6] << 8) | (buffer
[7] & 0xff);
1801 if (size
> sizeof(buffer
))
1802 size
= sizeof(buffer
);
1807 init_cdrom_command(&cgc
, buffer
, size
, CGC_DATA_READ
);
1809 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1810 pkt_dump_sense(&cgc
);
1815 * write page is offset header + block descriptor length
1817 wp
= (write_param_page
*) &buffer
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1819 wp
->fp
= pd
->settings
.fp
;
1820 wp
->track_mode
= pd
->settings
.track_mode
;
1821 wp
->write_type
= pd
->settings
.write_type
;
1822 wp
->data_block_type
= pd
->settings
.block_mode
;
1824 wp
->multi_session
= 0;
1826 #ifdef PACKET_USE_LS
1831 if (wp
->data_block_type
== PACKET_BLOCK_MODE1
) {
1832 wp
->session_format
= 0;
1834 } else if (wp
->data_block_type
== PACKET_BLOCK_MODE2
) {
1835 wp
->session_format
= 0x20;
1839 memcpy(&wp
->mcn
[1], PACKET_MCN
, sizeof(wp
->mcn
) - 1);
1845 printk(DRIVER_NAME
": write mode wrong %d\n", wp
->data_block_type
);
1848 wp
->packet_size
= cpu_to_be32(pd
->settings
.size
>> 2);
1850 cgc
.buflen
= cgc
.cmd
[8] = size
;
1851 if ((ret
= pkt_mode_select(pd
, &cgc
))) {
1852 pkt_dump_sense(&cgc
);
1856 pkt_print_settings(pd
);
1861 * 1 -- we can write to this track, 0 -- we can't
1863 static int pkt_writable_track(struct pktcdvd_device
*pd
, track_information
*ti
)
1865 switch (pd
->mmc3_profile
) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1874 if (!ti
->packet
|| !ti
->fp
)
1878 * "good" settings as per Mt Fuji.
1880 if (ti
->rt
== 0 && ti
->blank
== 0)
1883 if (ti
->rt
== 0 && ti
->blank
== 1)
1886 if (ti
->rt
== 1 && ti
->blank
== 0)
1889 printk(DRIVER_NAME
": bad state %d-%d-%d\n", ti
->rt
, ti
->blank
, ti
->packet
);
1894 * 1 -- we can write to this disc, 0 -- we can't
1896 static int pkt_writable_disc(struct pktcdvd_device
*pd
, disc_information
*di
)
1898 switch (pd
->mmc3_profile
) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1907 VPRINTK(DRIVER_NAME
": Wrong disc profile (%x)\n", pd
->mmc3_profile
);
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1915 if (di
->disc_type
== 0xff) {
1916 printk(DRIVER_NAME
": Unknown disc. No track?\n");
1920 if (di
->disc_type
!= 0x20 && di
->disc_type
!= 0) {
1921 printk(DRIVER_NAME
": Wrong disc type (%x)\n", di
->disc_type
);
1925 if (di
->erasable
== 0) {
1926 printk(DRIVER_NAME
": Disc not erasable\n");
1930 if (di
->border_status
== PACKET_SESSION_RESERVED
) {
1931 printk(DRIVER_NAME
": Can't write to last track (reserved)\n");
1938 static noinline_for_stack
int pkt_probe_settings(struct pktcdvd_device
*pd
)
1940 struct packet_command cgc
;
1941 unsigned char buf
[12];
1942 disc_information di
;
1943 track_information ti
;
1946 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1947 cgc
.cmd
[0] = GPCMD_GET_CONFIGURATION
;
1949 ret
= pkt_generic_packet(pd
, &cgc
);
1950 pd
->mmc3_profile
= ret
? 0xffff : buf
[6] << 8 | buf
[7];
1952 memset(&di
, 0, sizeof(disc_information
));
1953 memset(&ti
, 0, sizeof(track_information
));
1955 if ((ret
= pkt_get_disc_info(pd
, &di
))) {
1956 printk("failed get_disc\n");
1960 if (!pkt_writable_disc(pd
, &di
))
1963 pd
->type
= di
.erasable
? PACKET_CDRW
: PACKET_CDR
;
1965 track
= 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret
= pkt_get_track_info(pd
, track
, 1, &ti
))) {
1967 printk(DRIVER_NAME
": failed get_track\n");
1971 if (!pkt_writable_track(pd
, &ti
)) {
1972 printk(DRIVER_NAME
": can't write to this track\n");
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1980 pd
->settings
.size
= be32_to_cpu(ti
.fixed_packet_size
) << 2;
1981 if (pd
->settings
.size
== 0) {
1982 printk(DRIVER_NAME
": detected zero packet size!\n");
1985 if (pd
->settings
.size
> PACKET_MAX_SECTORS
) {
1986 printk(DRIVER_NAME
": packet size is too big\n");
1989 pd
->settings
.fp
= ti
.fp
;
1990 pd
->offset
= (be32_to_cpu(ti
.track_start
) << 2) & (pd
->settings
.size
- 1);
1993 pd
->nwa
= be32_to_cpu(ti
.next_writable
);
1994 set_bit(PACKET_NWA_VALID
, &pd
->flags
);
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2003 pd
->lra
= be32_to_cpu(ti
.last_rec_address
);
2004 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
2006 pd
->lra
= 0xffffffff;
2007 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
2013 pd
->settings
.link_loss
= 7;
2014 pd
->settings
.write_type
= 0; /* packet */
2015 pd
->settings
.track_mode
= ti
.track_mode
;
2018 * mode1 or mode2 disc
2020 switch (ti
.data_mode
) {
2022 pd
->settings
.block_mode
= PACKET_BLOCK_MODE1
;
2025 pd
->settings
.block_mode
= PACKET_BLOCK_MODE2
;
2028 printk(DRIVER_NAME
": unknown data mode\n");
2035 * enable/disable write caching on drive
2037 static noinline_for_stack
int pkt_write_caching(struct pktcdvd_device
*pd
,
2040 struct packet_command cgc
;
2041 struct request_sense sense
;
2042 unsigned char buf
[64];
2045 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
2047 cgc
.buflen
= pd
->mode_offset
+ 12;
2050 * caching mode page might not be there, so quiet this command
2054 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WCACHING_PAGE
, 0)))
2057 buf
[pd
->mode_offset
+ 10] |= (!!set
<< 2);
2059 cgc
.buflen
= cgc
.cmd
[8] = 2 + ((buf
[0] << 8) | (buf
[1] & 0xff));
2060 ret
= pkt_mode_select(pd
, &cgc
);
2062 printk(DRIVER_NAME
": write caching control failed\n");
2063 pkt_dump_sense(&cgc
);
2064 } else if (!ret
&& set
)
2065 printk(DRIVER_NAME
": enabled write caching on %s\n", pd
->name
);
2069 static int pkt_lock_door(struct pktcdvd_device
*pd
, int lockflag
)
2071 struct packet_command cgc
;
2073 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
2074 cgc
.cmd
[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL
;
2075 cgc
.cmd
[4] = lockflag
? 1 : 0;
2076 return pkt_generic_packet(pd
, &cgc
);
2080 * Returns drive maximum write speed
2082 static noinline_for_stack
int pkt_get_max_speed(struct pktcdvd_device
*pd
,
2083 unsigned *write_speed
)
2085 struct packet_command cgc
;
2086 struct request_sense sense
;
2087 unsigned char buf
[256+18];
2088 unsigned char *cap_buf
;
2091 cap_buf
= &buf
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
2092 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_UNKNOWN
);
2095 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
2097 cgc
.buflen
= pd
->mode_offset
+ cap_buf
[1] + 2 +
2098 sizeof(struct mode_page_header
);
2099 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
2101 pkt_dump_sense(&cgc
);
2106 offset
= 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf
[1] >= 28)
2108 offset
= 28; /* Current write speed selected */
2109 if (cap_buf
[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2114 int num_spdb
= (cap_buf
[30] << 8) + cap_buf
[31];
2119 *write_speed
= (cap_buf
[offset
] << 8) | cap_buf
[offset
+ 1];
2123 /* These tables from cdrecord - I don't have orange book */
2124 /* standard speed CD-RW (1-4x) */
2125 static char clv_to_speed
[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2129 /* high speed CD-RW (-10x) */
2130 static char hs_clv_to_speed
[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2134 /* ultra high speed CD-RW */
2135 static char us_clv_to_speed
[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2141 * reads the maximum media speed from ATIP
2143 static noinline_for_stack
int pkt_media_speed(struct pktcdvd_device
*pd
,
2146 struct packet_command cgc
;
2147 struct request_sense sense
;
2148 unsigned char buf
[64];
2149 unsigned int size
, st
, sp
;
2152 init_cdrom_command(&cgc
, buf
, 2, CGC_DATA_READ
);
2154 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
2156 cgc
.cmd
[2] = 4; /* READ ATIP */
2158 ret
= pkt_generic_packet(pd
, &cgc
);
2160 pkt_dump_sense(&cgc
);
2163 size
= ((unsigned int) buf
[0]<<8) + buf
[1] + 2;
2164 if (size
> sizeof(buf
))
2167 init_cdrom_command(&cgc
, buf
, size
, CGC_DATA_READ
);
2169 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
2173 ret
= pkt_generic_packet(pd
, &cgc
);
2175 pkt_dump_sense(&cgc
);
2179 if (!(buf
[6] & 0x40)) {
2180 printk(DRIVER_NAME
": Disc type is not CD-RW\n");
2183 if (!(buf
[6] & 0x4)) {
2184 printk(DRIVER_NAME
": A1 values on media are not valid, maybe not CDRW?\n");
2188 st
= (buf
[6] >> 3) & 0x7; /* disc sub-type */
2190 sp
= buf
[16] & 0xf; /* max speed from ATIP A1 field */
2192 /* Info from cdrecord */
2194 case 0: /* standard speed */
2195 *speed
= clv_to_speed
[sp
];
2197 case 1: /* high speed */
2198 *speed
= hs_clv_to_speed
[sp
];
2200 case 2: /* ultra high speed */
2201 *speed
= us_clv_to_speed
[sp
];
2204 printk(DRIVER_NAME
": Unknown disc sub-type %d\n",st
);
2208 printk(DRIVER_NAME
": Max. media speed: %d\n",*speed
);
2211 printk(DRIVER_NAME
": Unknown speed %d for sub-type %d\n",sp
,st
);
2216 static noinline_for_stack
int pkt_perform_opc(struct pktcdvd_device
*pd
)
2218 struct packet_command cgc
;
2219 struct request_sense sense
;
2222 VPRINTK(DRIVER_NAME
": Performing OPC\n");
2224 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
2226 cgc
.timeout
= 60*HZ
;
2227 cgc
.cmd
[0] = GPCMD_SEND_OPC
;
2229 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
2230 pkt_dump_sense(&cgc
);
2234 static int pkt_open_write(struct pktcdvd_device
*pd
)
2237 unsigned int write_speed
, media_write_speed
, read_speed
;
2239 if ((ret
= pkt_probe_settings(pd
))) {
2240 VPRINTK(DRIVER_NAME
": %s failed probe\n", pd
->name
);
2244 if ((ret
= pkt_set_write_settings(pd
))) {
2245 DPRINTK(DRIVER_NAME
": %s failed saving write settings\n", pd
->name
);
2249 pkt_write_caching(pd
, USE_WCACHING
);
2251 if ((ret
= pkt_get_max_speed(pd
, &write_speed
)))
2252 write_speed
= 16 * 177;
2253 switch (pd
->mmc3_profile
) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME
": write speed %ukB/s\n", write_speed
);
2260 if ((ret
= pkt_media_speed(pd
, &media_write_speed
)))
2261 media_write_speed
= 16;
2262 write_speed
= min(write_speed
, media_write_speed
* 177);
2263 DPRINTK(DRIVER_NAME
": write speed %ux\n", write_speed
/ 176);
2266 read_speed
= write_speed
;
2268 if ((ret
= pkt_set_speed(pd
, write_speed
, read_speed
))) {
2269 DPRINTK(DRIVER_NAME
": %s couldn't set write speed\n", pd
->name
);
2272 pd
->write_speed
= write_speed
;
2273 pd
->read_speed
= read_speed
;
2275 if ((ret
= pkt_perform_opc(pd
))) {
2276 DPRINTK(DRIVER_NAME
": %s Optimum Power Calibration failed\n", pd
->name
);
2283 * called at open time.
2285 static int pkt_open_dev(struct pktcdvd_device
*pd
, fmode_t write
)
2289 struct request_queue
*q
;
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2296 bdget(pd
->bdev
->bd_dev
);
2297 if ((ret
= blkdev_get(pd
->bdev
, FMODE_READ
)))
2300 if ((ret
= bd_claim(pd
->bdev
, pd
)))
2303 if ((ret
= pkt_get_last_written(pd
, &lba
))) {
2304 printk(DRIVER_NAME
": pkt_get_last_written failed\n");
2308 set_capacity(pd
->disk
, lba
<< 2);
2309 set_capacity(pd
->bdev
->bd_disk
, lba
<< 2);
2310 bd_set_size(pd
->bdev
, (loff_t
)lba
<< 11);
2312 q
= bdev_get_queue(pd
->bdev
);
2314 if ((ret
= pkt_open_write(pd
)))
2317 * Some CDRW drives can not handle writes larger than one packet,
2318 * even if the size is a multiple of the packet size.
2320 spin_lock_irq(q
->queue_lock
);
2321 blk_queue_max_hw_sectors(q
, pd
->settings
.size
);
2322 spin_unlock_irq(q
->queue_lock
);
2323 set_bit(PACKET_WRITABLE
, &pd
->flags
);
2325 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
2326 clear_bit(PACKET_WRITABLE
, &pd
->flags
);
2329 if ((ret
= pkt_set_segment_merging(pd
, q
)))
2333 if (!pkt_grow_pktlist(pd
, CONFIG_CDROM_PKTCDVD_BUFFERS
)) {
2334 printk(DRIVER_NAME
": not enough memory for buffers\n");
2338 printk(DRIVER_NAME
": %lukB available on disc\n", lba
<< 1);
2344 bd_release(pd
->bdev
);
2346 blkdev_put(pd
->bdev
, FMODE_READ
);
2352 * called when the device is closed. makes sure that the device flushes
2353 * the internal cache before we close.
2355 static void pkt_release_dev(struct pktcdvd_device
*pd
, int flush
)
2357 if (flush
&& pkt_flush_cache(pd
))
2358 DPRINTK(DRIVER_NAME
": %s not flushing cache\n", pd
->name
);
2360 pkt_lock_door(pd
, 0);
2362 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
2363 bd_release(pd
->bdev
);
2364 blkdev_put(pd
->bdev
, FMODE_READ
);
2366 pkt_shrink_pktlist(pd
);
2369 static struct pktcdvd_device
*pkt_find_dev_from_minor(int dev_minor
)
2371 if (dev_minor
>= MAX_WRITERS
)
2373 return pkt_devs
[dev_minor
];
2376 static int pkt_open(struct block_device
*bdev
, fmode_t mode
)
2378 struct pktcdvd_device
*pd
= NULL
;
2381 VPRINTK(DRIVER_NAME
": entering open\n");
2383 mutex_lock(&ctl_mutex
);
2384 pd
= pkt_find_dev_from_minor(MINOR(bdev
->bd_dev
));
2389 BUG_ON(pd
->refcnt
< 0);
2392 if (pd
->refcnt
> 1) {
2393 if ((mode
& FMODE_WRITE
) &&
2394 !test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2399 ret
= pkt_open_dev(pd
, mode
& FMODE_WRITE
);
2403 * needed here as well, since ext2 (among others) may change
2404 * the blocksize at mount time
2406 set_blocksize(bdev
, CD_FRAMESIZE
);
2409 mutex_unlock(&ctl_mutex
);
2415 VPRINTK(DRIVER_NAME
": failed open (%d)\n", ret
);
2416 mutex_unlock(&ctl_mutex
);
2420 static int pkt_close(struct gendisk
*disk
, fmode_t mode
)
2422 struct pktcdvd_device
*pd
= disk
->private_data
;
2425 mutex_lock(&ctl_mutex
);
2427 BUG_ON(pd
->refcnt
< 0);
2428 if (pd
->refcnt
== 0) {
2429 int flush
= test_bit(PACKET_WRITABLE
, &pd
->flags
);
2430 pkt_release_dev(pd
, flush
);
2432 mutex_unlock(&ctl_mutex
);
2437 static void pkt_end_io_read_cloned(struct bio
*bio
, int err
)
2439 struct packet_stacked_data
*psd
= bio
->bi_private
;
2440 struct pktcdvd_device
*pd
= psd
->pd
;
2443 bio_endio(psd
->bio
, err
);
2444 mempool_free(psd
, psd_pool
);
2445 pkt_bio_finished(pd
);
2448 static int pkt_make_request(struct request_queue
*q
, struct bio
*bio
)
2450 struct pktcdvd_device
*pd
;
2451 char b
[BDEVNAME_SIZE
];
2453 struct packet_data
*pkt
;
2454 int was_empty
, blocked_bio
;
2455 struct pkt_rb_node
*node
;
2459 printk(DRIVER_NAME
": %s incorrect request queue\n", bdevname(bio
->bi_bdev
, b
));
2464 * Clone READ bios so we can have our own bi_end_io callback.
2466 if (bio_data_dir(bio
) == READ
) {
2467 struct bio
*cloned_bio
= bio_clone(bio
, GFP_NOIO
);
2468 struct packet_stacked_data
*psd
= mempool_alloc(psd_pool
, GFP_NOIO
);
2472 cloned_bio
->bi_bdev
= pd
->bdev
;
2473 cloned_bio
->bi_private
= psd
;
2474 cloned_bio
->bi_end_io
= pkt_end_io_read_cloned
;
2475 pd
->stats
.secs_r
+= bio
->bi_size
>> 9;
2476 pkt_queue_bio(pd
, cloned_bio
);
2480 if (!test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2481 printk(DRIVER_NAME
": WRITE for ro device %s (%llu)\n",
2482 pd
->name
, (unsigned long long)bio
->bi_sector
);
2486 if (!bio
->bi_size
|| (bio
->bi_size
% CD_FRAMESIZE
)) {
2487 printk(DRIVER_NAME
": wrong bio size\n");
2491 blk_queue_bounce(q
, &bio
);
2493 zone
= ZONE(bio
->bi_sector
, pd
);
2494 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2495 (unsigned long long)bio
->bi_sector
,
2496 (unsigned long long)(bio
->bi_sector
+ bio_sectors(bio
)));
2498 /* Check if we have to split the bio */
2500 struct bio_pair
*bp
;
2504 last_zone
= ZONE(bio
->bi_sector
+ bio_sectors(bio
) - 1, pd
);
2505 if (last_zone
!= zone
) {
2506 BUG_ON(last_zone
!= zone
+ pd
->settings
.size
);
2507 first_sectors
= last_zone
- bio
->bi_sector
;
2508 bp
= bio_split(bio
, first_sectors
);
2510 pkt_make_request(q
, &bp
->bio1
);
2511 pkt_make_request(q
, &bp
->bio2
);
2512 bio_pair_release(bp
);
2518 * If we find a matching packet in state WAITING or READ_WAIT, we can
2519 * just append this bio to that packet.
2521 spin_lock(&pd
->cdrw
.active_list_lock
);
2523 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
2524 if (pkt
->sector
== zone
) {
2525 spin_lock(&pkt
->lock
);
2526 if ((pkt
->state
== PACKET_WAITING_STATE
) ||
2527 (pkt
->state
== PACKET_READ_WAIT_STATE
)) {
2528 bio_list_add(&pkt
->orig_bios
, bio
);
2529 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
2530 if ((pkt
->write_size
>= pkt
->frames
) &&
2531 (pkt
->state
== PACKET_WAITING_STATE
)) {
2532 atomic_inc(&pkt
->run_sm
);
2533 wake_up(&pd
->wqueue
);
2535 spin_unlock(&pkt
->lock
);
2536 spin_unlock(&pd
->cdrw
.active_list_lock
);
2541 spin_unlock(&pkt
->lock
);
2544 spin_unlock(&pd
->cdrw
.active_list_lock
);
2547 * Test if there is enough room left in the bio work queue
2548 * (queue size >= congestion on mark).
2549 * If not, wait till the work queue size is below the congestion off mark.
2551 spin_lock(&pd
->lock
);
2552 if (pd
->write_congestion_on
> 0
2553 && pd
->bio_queue_size
>= pd
->write_congestion_on
) {
2554 set_bdi_congested(&q
->backing_dev_info
, BLK_RW_ASYNC
);
2556 spin_unlock(&pd
->lock
);
2557 congestion_wait(BLK_RW_ASYNC
, HZ
);
2558 spin_lock(&pd
->lock
);
2559 } while(pd
->bio_queue_size
> pd
->write_congestion_off
);
2561 spin_unlock(&pd
->lock
);
2564 * No matching packet found. Store the bio in the work queue.
2566 node
= mempool_alloc(pd
->rb_pool
, GFP_NOIO
);
2568 spin_lock(&pd
->lock
);
2569 BUG_ON(pd
->bio_queue_size
< 0);
2570 was_empty
= (pd
->bio_queue_size
== 0);
2571 pkt_rbtree_insert(pd
, node
);
2572 spin_unlock(&pd
->lock
);
2575 * Wake up the worker thread.
2577 atomic_set(&pd
->scan_queue
, 1);
2579 /* This wake_up is required for correct operation */
2580 wake_up(&pd
->wqueue
);
2581 } else if (!list_empty(&pd
->cdrw
.pkt_free_list
) && !blocked_bio
) {
2583 * This wake up is not required for correct operation,
2584 * but improves performance in some cases.
2586 wake_up(&pd
->wqueue
);
2596 static int pkt_merge_bvec(struct request_queue
*q
, struct bvec_merge_data
*bmd
,
2597 struct bio_vec
*bvec
)
2599 struct pktcdvd_device
*pd
= q
->queuedata
;
2600 sector_t zone
= ZONE(bmd
->bi_sector
, pd
);
2601 int used
= ((bmd
->bi_sector
- zone
) << 9) + bmd
->bi_size
;
2602 int remaining
= (pd
->settings
.size
<< 9) - used
;
2606 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2607 * boundary, pkt_make_request() will split the bio.
2609 remaining2
= PAGE_SIZE
- bmd
->bi_size
;
2610 remaining
= max(remaining
, remaining2
);
2612 BUG_ON(remaining
< 0);
2616 static void pkt_init_queue(struct pktcdvd_device
*pd
)
2618 struct request_queue
*q
= pd
->disk
->queue
;
2620 blk_queue_make_request(q
, pkt_make_request
);
2621 blk_queue_logical_block_size(q
, CD_FRAMESIZE
);
2622 blk_queue_max_hw_sectors(q
, PACKET_MAX_SECTORS
);
2623 blk_queue_merge_bvec(q
, pkt_merge_bvec
);
2627 static int pkt_seq_show(struct seq_file
*m
, void *p
)
2629 struct pktcdvd_device
*pd
= m
->private;
2631 char bdev_buf
[BDEVNAME_SIZE
];
2632 int states
[PACKET_NUM_STATES
];
2634 seq_printf(m
, "Writer %s mapped to %s:\n", pd
->name
,
2635 bdevname(pd
->bdev
, bdev_buf
));
2637 seq_printf(m
, "\nSettings:\n");
2638 seq_printf(m
, "\tpacket size:\t\t%dkB\n", pd
->settings
.size
/ 2);
2640 if (pd
->settings
.write_type
== 0)
2644 seq_printf(m
, "\twrite type:\t\t%s\n", msg
);
2646 seq_printf(m
, "\tpacket type:\t\t%s\n", pd
->settings
.fp
? "Fixed" : "Variable");
2647 seq_printf(m
, "\tlink loss:\t\t%d\n", pd
->settings
.link_loss
);
2649 seq_printf(m
, "\ttrack mode:\t\t%d\n", pd
->settings
.track_mode
);
2651 if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE1
)
2653 else if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE2
)
2657 seq_printf(m
, "\tblock mode:\t\t%s\n", msg
);
2659 seq_printf(m
, "\nStatistics:\n");
2660 seq_printf(m
, "\tpackets started:\t%lu\n", pd
->stats
.pkt_started
);
2661 seq_printf(m
, "\tpackets ended:\t\t%lu\n", pd
->stats
.pkt_ended
);
2662 seq_printf(m
, "\twritten:\t\t%lukB\n", pd
->stats
.secs_w
>> 1);
2663 seq_printf(m
, "\tread gather:\t\t%lukB\n", pd
->stats
.secs_rg
>> 1);
2664 seq_printf(m
, "\tread:\t\t\t%lukB\n", pd
->stats
.secs_r
>> 1);
2666 seq_printf(m
, "\nMisc:\n");
2667 seq_printf(m
, "\treference count:\t%d\n", pd
->refcnt
);
2668 seq_printf(m
, "\tflags:\t\t\t0x%lx\n", pd
->flags
);
2669 seq_printf(m
, "\tread speed:\t\t%ukB/s\n", pd
->read_speed
);
2670 seq_printf(m
, "\twrite speed:\t\t%ukB/s\n", pd
->write_speed
);
2671 seq_printf(m
, "\tstart offset:\t\t%lu\n", pd
->offset
);
2672 seq_printf(m
, "\tmode page offset:\t%u\n", pd
->mode_offset
);
2674 seq_printf(m
, "\nQueue state:\n");
2675 seq_printf(m
, "\tbios queued:\t\t%d\n", pd
->bio_queue_size
);
2676 seq_printf(m
, "\tbios pending:\t\t%d\n", atomic_read(&pd
->cdrw
.pending_bios
));
2677 seq_printf(m
, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd
->current_sector
);
2679 pkt_count_states(pd
, states
);
2680 seq_printf(m
, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2681 states
[0], states
[1], states
[2], states
[3], states
[4], states
[5]);
2683 seq_printf(m
, "\twrite congestion marks:\toff=%d on=%d\n",
2684 pd
->write_congestion_off
,
2685 pd
->write_congestion_on
);
2689 static int pkt_seq_open(struct inode
*inode
, struct file
*file
)
2691 return single_open(file
, pkt_seq_show
, PDE(inode
)->data
);
2694 static const struct file_operations pkt_proc_fops
= {
2695 .open
= pkt_seq_open
,
2697 .llseek
= seq_lseek
,
2698 .release
= single_release
2701 static int pkt_new_dev(struct pktcdvd_device
*pd
, dev_t dev
)
2705 char b
[BDEVNAME_SIZE
];
2706 struct block_device
*bdev
;
2708 if (pd
->pkt_dev
== dev
) {
2709 printk(DRIVER_NAME
": Recursive setup not allowed\n");
2712 for (i
= 0; i
< MAX_WRITERS
; i
++) {
2713 struct pktcdvd_device
*pd2
= pkt_devs
[i
];
2716 if (pd2
->bdev
->bd_dev
== dev
) {
2717 printk(DRIVER_NAME
": %s already setup\n", bdevname(pd2
->bdev
, b
));
2720 if (pd2
->pkt_dev
== dev
) {
2721 printk(DRIVER_NAME
": Can't chain pktcdvd devices\n");
2729 ret
= blkdev_get(bdev
, FMODE_READ
| FMODE_NDELAY
);
2733 /* This is safe, since we have a reference from open(). */
2734 __module_get(THIS_MODULE
);
2737 set_blocksize(bdev
, CD_FRAMESIZE
);
2741 atomic_set(&pd
->cdrw
.pending_bios
, 0);
2742 pd
->cdrw
.thread
= kthread_run(kcdrwd
, pd
, "%s", pd
->name
);
2743 if (IS_ERR(pd
->cdrw
.thread
)) {
2744 printk(DRIVER_NAME
": can't start kernel thread\n");
2749 proc_create_data(pd
->name
, 0, pkt_proc
, &pkt_proc_fops
, pd
);
2750 DPRINTK(DRIVER_NAME
": writer %s mapped to %s\n", pd
->name
, bdevname(bdev
, b
));
2754 blkdev_put(bdev
, FMODE_READ
| FMODE_NDELAY
);
2755 /* This is safe: open() is still holding a reference. */
2756 module_put(THIS_MODULE
);
2760 static int pkt_ioctl(struct block_device
*bdev
, fmode_t mode
, unsigned int cmd
, unsigned long arg
)
2762 struct pktcdvd_device
*pd
= bdev
->bd_disk
->private_data
;
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd
,
2765 MAJOR(bdev
->bd_dev
), MINOR(bdev
->bd_dev
));
2770 * The door gets locked when the device is opened, so we
2771 * have to unlock it or else the eject command fails.
2773 if (pd
->refcnt
== 1)
2774 pkt_lock_door(pd
, 0);
2777 * forward selected CDROM ioctls to CD-ROM, for UDF
2779 case CDROMMULTISESSION
:
2780 case CDROMREADTOCENTRY
:
2781 case CDROM_LAST_WRITTEN
:
2782 case CDROM_SEND_PACKET
:
2783 case SCSI_IOCTL_SEND_COMMAND
:
2784 return __blkdev_driver_ioctl(pd
->bdev
, mode
, cmd
, arg
);
2787 VPRINTK(DRIVER_NAME
": Unknown ioctl for %s (%x)\n", pd
->name
, cmd
);
2794 static int pkt_media_changed(struct gendisk
*disk
)
2796 struct pktcdvd_device
*pd
= disk
->private_data
;
2797 struct gendisk
*attached_disk
;
2803 attached_disk
= pd
->bdev
->bd_disk
;
2806 return attached_disk
->fops
->media_changed(attached_disk
);
2809 static const struct block_device_operations pktcdvd_ops
= {
2810 .owner
= THIS_MODULE
,
2812 .release
= pkt_close
,
2813 .locked_ioctl
= pkt_ioctl
,
2814 .media_changed
= pkt_media_changed
,
2817 static char *pktcdvd_devnode(struct gendisk
*gd
, mode_t
*mode
)
2819 return kasprintf(GFP_KERNEL
, "pktcdvd/%s", gd
->disk_name
);
2823 * Set up mapping from pktcdvd device to CD-ROM device.
2825 static int pkt_setup_dev(dev_t dev
, dev_t
* pkt_dev
)
2829 struct pktcdvd_device
*pd
;
2830 struct gendisk
*disk
;
2832 mutex_lock_nested(&ctl_mutex
, SINGLE_DEPTH_NESTING
);
2834 for (idx
= 0; idx
< MAX_WRITERS
; idx
++)
2837 if (idx
== MAX_WRITERS
) {
2838 printk(DRIVER_NAME
": max %d writers supported\n", MAX_WRITERS
);
2843 pd
= kzalloc(sizeof(struct pktcdvd_device
), GFP_KERNEL
);
2847 pd
->rb_pool
= mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE
,
2848 sizeof(struct pkt_rb_node
));
2852 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
2853 INIT_LIST_HEAD(&pd
->cdrw
.pkt_active_list
);
2854 spin_lock_init(&pd
->cdrw
.active_list_lock
);
2856 spin_lock_init(&pd
->lock
);
2857 spin_lock_init(&pd
->iosched
.lock
);
2858 bio_list_init(&pd
->iosched
.read_queue
);
2859 bio_list_init(&pd
->iosched
.write_queue
);
2860 sprintf(pd
->name
, DRIVER_NAME
"%d", idx
);
2861 init_waitqueue_head(&pd
->wqueue
);
2862 pd
->bio_queue
= RB_ROOT
;
2864 pd
->write_congestion_on
= write_congestion_on
;
2865 pd
->write_congestion_off
= write_congestion_off
;
2867 disk
= alloc_disk(1);
2871 disk
->major
= pktdev_major
;
2872 disk
->first_minor
= idx
;
2873 disk
->fops
= &pktcdvd_ops
;
2874 disk
->flags
= GENHD_FL_REMOVABLE
;
2875 strcpy(disk
->disk_name
, pd
->name
);
2876 disk
->devnode
= pktcdvd_devnode
;
2877 disk
->private_data
= pd
;
2878 disk
->queue
= blk_alloc_queue(GFP_KERNEL
);
2882 pd
->pkt_dev
= MKDEV(pktdev_major
, idx
);
2883 ret
= pkt_new_dev(pd
, dev
);
2889 pkt_sysfs_dev_new(pd
);
2890 pkt_debugfs_dev_new(pd
);
2894 *pkt_dev
= pd
->pkt_dev
;
2896 mutex_unlock(&ctl_mutex
);
2900 blk_cleanup_queue(disk
->queue
);
2905 mempool_destroy(pd
->rb_pool
);
2908 mutex_unlock(&ctl_mutex
);
2909 printk(DRIVER_NAME
": setup of pktcdvd device failed\n");
2914 * Tear down mapping from pktcdvd device to CD-ROM device.
2916 static int pkt_remove_dev(dev_t pkt_dev
)
2918 struct pktcdvd_device
*pd
;
2922 mutex_lock_nested(&ctl_mutex
, SINGLE_DEPTH_NESTING
);
2924 for (idx
= 0; idx
< MAX_WRITERS
; idx
++) {
2926 if (pd
&& (pd
->pkt_dev
== pkt_dev
))
2929 if (idx
== MAX_WRITERS
) {
2930 DPRINTK(DRIVER_NAME
": dev not setup\n");
2935 if (pd
->refcnt
> 0) {
2939 if (!IS_ERR(pd
->cdrw
.thread
))
2940 kthread_stop(pd
->cdrw
.thread
);
2942 pkt_devs
[idx
] = NULL
;
2944 pkt_debugfs_dev_remove(pd
);
2945 pkt_sysfs_dev_remove(pd
);
2947 blkdev_put(pd
->bdev
, FMODE_READ
| FMODE_NDELAY
);
2949 remove_proc_entry(pd
->name
, pkt_proc
);
2950 DPRINTK(DRIVER_NAME
": writer %s unmapped\n", pd
->name
);
2952 del_gendisk(pd
->disk
);
2953 blk_cleanup_queue(pd
->disk
->queue
);
2956 mempool_destroy(pd
->rb_pool
);
2959 /* This is safe: open() is still holding a reference. */
2960 module_put(THIS_MODULE
);
2963 mutex_unlock(&ctl_mutex
);
2967 static void pkt_get_status(struct pkt_ctrl_command
*ctrl_cmd
)
2969 struct pktcdvd_device
*pd
;
2971 mutex_lock_nested(&ctl_mutex
, SINGLE_DEPTH_NESTING
);
2973 pd
= pkt_find_dev_from_minor(ctrl_cmd
->dev_index
);
2975 ctrl_cmd
->dev
= new_encode_dev(pd
->bdev
->bd_dev
);
2976 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2979 ctrl_cmd
->pkt_dev
= 0;
2981 ctrl_cmd
->num_devices
= MAX_WRITERS
;
2983 mutex_unlock(&ctl_mutex
);
2986 static int pkt_ctl_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2988 void __user
*argp
= (void __user
*)arg
;
2989 struct pkt_ctrl_command ctrl_cmd
;
2993 if (cmd
!= PACKET_CTRL_CMD
)
2996 if (copy_from_user(&ctrl_cmd
, argp
, sizeof(struct pkt_ctrl_command
)))
2999 switch (ctrl_cmd
.command
) {
3000 case PKT_CTRL_CMD_SETUP
:
3001 if (!capable(CAP_SYS_ADMIN
))
3003 ret
= pkt_setup_dev(new_decode_dev(ctrl_cmd
.dev
), &pkt_dev
);
3004 ctrl_cmd
.pkt_dev
= new_encode_dev(pkt_dev
);
3006 case PKT_CTRL_CMD_TEARDOWN
:
3007 if (!capable(CAP_SYS_ADMIN
))
3009 ret
= pkt_remove_dev(new_decode_dev(ctrl_cmd
.pkt_dev
));
3011 case PKT_CTRL_CMD_STATUS
:
3012 pkt_get_status(&ctrl_cmd
);
3018 if (copy_to_user(argp
, &ctrl_cmd
, sizeof(struct pkt_ctrl_command
)))
3024 static const struct file_operations pkt_ctl_fops
= {
3025 .ioctl
= pkt_ctl_ioctl
,
3026 .owner
= THIS_MODULE
,
3029 static struct miscdevice pkt_misc
= {
3030 .minor
= MISC_DYNAMIC_MINOR
,
3031 .name
= DRIVER_NAME
,
3032 .nodename
= "pktcdvd/control",
3033 .fops
= &pkt_ctl_fops
3036 static int __init
pkt_init(void)
3040 mutex_init(&ctl_mutex
);
3042 psd_pool
= mempool_create_kmalloc_pool(PSD_POOL_SIZE
,
3043 sizeof(struct packet_stacked_data
));
3047 ret
= register_blkdev(pktdev_major
, DRIVER_NAME
);
3049 printk(DRIVER_NAME
": Unable to register block device\n");
3055 ret
= pkt_sysfs_init();
3061 ret
= misc_register(&pkt_misc
);
3063 printk(DRIVER_NAME
": Unable to register misc device\n");
3067 pkt_proc
= proc_mkdir("driver/"DRIVER_NAME
, NULL
);
3072 pkt_debugfs_cleanup();
3073 pkt_sysfs_cleanup();
3075 unregister_blkdev(pktdev_major
, DRIVER_NAME
);
3077 mempool_destroy(psd_pool
);
3081 static void __exit
pkt_exit(void)
3083 remove_proc_entry("driver/"DRIVER_NAME
, NULL
);
3084 misc_deregister(&pkt_misc
);
3086 pkt_debugfs_cleanup();
3087 pkt_sysfs_cleanup();
3089 unregister_blkdev(pktdev_major
, DRIVER_NAME
);
3090 mempool_destroy(psd_pool
);
3093 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3094 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3095 MODULE_LICENSE("GPL");
3097 module_init(pkt_init
);
3098 module_exit(pkt_exit
);