Linux 2.6.34-rc3
[pohmelfs.git] / drivers / char / keyboard.c
blobada25bb8941e5c0fa28ff068f66b0e14be700c55
1 /*
2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/sysrq.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
47 extern void ctrl_alt_del(void);
50 * Exported functions/variables
53 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
57 * This seems a good reason to start with NumLock off. On HIL keyboards
58 * of PARISC machines however there is no NumLock key and everyone expects the keypad
59 * to be used for numbers.
62 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
63 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
64 #else
65 #define KBD_DEFLEDS 0
66 #endif
68 #define KBD_DEFLOCK 0
70 void compute_shiftstate(void);
73 * Handler Tables.
76 #define K_HANDLERS\
77 k_self, k_fn, k_spec, k_pad,\
78 k_dead, k_cons, k_cur, k_shift,\
79 k_meta, k_ascii, k_lock, k_lowercase,\
80 k_slock, k_dead2, k_brl, k_ignore
82 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
83 char up_flag);
84 static k_handler_fn K_HANDLERS;
85 k_handler_fn *k_handler[16] = { K_HANDLERS };
86 EXPORT_SYMBOL_GPL(k_handler);
88 #define FN_HANDLERS\
89 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
90 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
91 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
92 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
93 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
95 typedef void (fn_handler_fn)(struct vc_data *vc);
96 static fn_handler_fn FN_HANDLERS;
97 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
100 * Variables exported for vt_ioctl.c
103 /* maximum values each key_handler can handle */
104 const int max_vals[] = {
105 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
106 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
107 255, NR_LOCK - 1, 255, NR_BRL - 1
110 const int NR_TYPES = ARRAY_SIZE(max_vals);
112 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 EXPORT_SYMBOL_GPL(kbd_table);
114 static struct kbd_struct *kbd = kbd_table;
116 struct vt_spawn_console vt_spawn_con = {
117 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
118 .pid = NULL,
119 .sig = 0,
123 * Variables exported for vt.c
126 int shift_state = 0;
129 * Internal Data.
132 static struct input_handler kbd_handler;
133 static DEFINE_SPINLOCK(kbd_event_lock);
134 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
135 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
136 static int dead_key_next;
137 static int npadch = -1; /* -1 or number assembled on pad */
138 static unsigned int diacr;
139 static char rep; /* flag telling character repeat */
141 static unsigned char ledstate = 0xff; /* undefined */
142 static unsigned char ledioctl;
144 static struct ledptr {
145 unsigned int *addr;
146 unsigned int mask;
147 unsigned char valid:1;
148 } ledptrs[3];
150 /* Simple translation table for the SysRq keys */
152 #ifdef CONFIG_MAGIC_SYSRQ
153 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
154 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
155 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
156 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
157 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
158 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
159 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
160 "\r\000/"; /* 0x60 - 0x6f */
161 static int sysrq_down;
162 static int sysrq_alt_use;
163 #endif
164 static int sysrq_alt;
167 * Notifier list for console keyboard events
169 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
171 int register_keyboard_notifier(struct notifier_block *nb)
173 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
175 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
177 int unregister_keyboard_notifier(struct notifier_block *nb)
179 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
181 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
184 * Translation of scancodes to keycodes. We set them on only the first
185 * keyboard in the list that accepts the scancode and keycode.
186 * Explanation for not choosing the first attached keyboard anymore:
187 * USB keyboards for example have two event devices: one for all "normal"
188 * keys and one for extra function keys (like "volume up", "make coffee",
189 * etc.). So this means that scancodes for the extra function keys won't
190 * be valid for the first event device, but will be for the second.
193 struct getset_keycode_data {
194 unsigned int scancode;
195 unsigned int keycode;
196 int error;
199 static int getkeycode_helper(struct input_handle *handle, void *data)
201 struct getset_keycode_data *d = data;
203 d->error = input_get_keycode(handle->dev, d->scancode, &d->keycode);
205 return d->error == 0; /* stop as soon as we successfully get one */
208 int getkeycode(unsigned int scancode)
210 struct getset_keycode_data d = { scancode, 0, -ENODEV };
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
214 return d.error ?: d.keycode;
217 static int setkeycode_helper(struct input_handle *handle, void *data)
219 struct getset_keycode_data *d = data;
221 d->error = input_set_keycode(handle->dev, d->scancode, d->keycode);
223 return d->error == 0; /* stop as soon as we successfully set one */
226 int setkeycode(unsigned int scancode, unsigned int keycode)
228 struct getset_keycode_data d = { scancode, keycode, -ENODEV };
230 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
232 return d.error;
236 * Making beeps and bells. Note that we prefer beeps to bells, but when
237 * shutting the sound off we do both.
240 static int kd_sound_helper(struct input_handle *handle, void *data)
242 unsigned int *hz = data;
243 struct input_dev *dev = handle->dev;
245 if (test_bit(EV_SND, dev->evbit)) {
246 if (test_bit(SND_TONE, dev->sndbit)) {
247 input_inject_event(handle, EV_SND, SND_TONE, *hz);
248 if (*hz)
249 return 0;
251 if (test_bit(SND_BELL, dev->sndbit))
252 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
255 return 0;
258 static void kd_nosound(unsigned long ignored)
260 static unsigned int zero;
262 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
265 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
267 void kd_mksound(unsigned int hz, unsigned int ticks)
269 del_timer_sync(&kd_mksound_timer);
271 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
273 if (hz && ticks)
274 mod_timer(&kd_mksound_timer, jiffies + ticks);
276 EXPORT_SYMBOL(kd_mksound);
279 * Setting the keyboard rate.
282 static int kbd_rate_helper(struct input_handle *handle, void *data)
284 struct input_dev *dev = handle->dev;
285 struct kbd_repeat *rep = data;
287 if (test_bit(EV_REP, dev->evbit)) {
289 if (rep[0].delay > 0)
290 input_inject_event(handle,
291 EV_REP, REP_DELAY, rep[0].delay);
292 if (rep[0].period > 0)
293 input_inject_event(handle,
294 EV_REP, REP_PERIOD, rep[0].period);
296 rep[1].delay = dev->rep[REP_DELAY];
297 rep[1].period = dev->rep[REP_PERIOD];
300 return 0;
303 int kbd_rate(struct kbd_repeat *rep)
305 struct kbd_repeat data[2] = { *rep };
307 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
308 *rep = data[1]; /* Copy currently used settings */
310 return 0;
314 * Helper Functions.
316 static void put_queue(struct vc_data *vc, int ch)
318 struct tty_struct *tty = vc->vc_tty;
320 if (tty) {
321 tty_insert_flip_char(tty, ch, 0);
322 con_schedule_flip(tty);
326 static void puts_queue(struct vc_data *vc, char *cp)
328 struct tty_struct *tty = vc->vc_tty;
330 if (!tty)
331 return;
333 while (*cp) {
334 tty_insert_flip_char(tty, *cp, 0);
335 cp++;
337 con_schedule_flip(tty);
340 static void applkey(struct vc_data *vc, int key, char mode)
342 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
344 buf[1] = (mode ? 'O' : '[');
345 buf[2] = key;
346 puts_queue(vc, buf);
350 * Many other routines do put_queue, but I think either
351 * they produce ASCII, or they produce some user-assigned
352 * string, and in both cases we might assume that it is
353 * in utf-8 already.
355 static void to_utf8(struct vc_data *vc, uint c)
357 if (c < 0x80)
358 /* 0******* */
359 put_queue(vc, c);
360 else if (c < 0x800) {
361 /* 110***** 10****** */
362 put_queue(vc, 0xc0 | (c >> 6));
363 put_queue(vc, 0x80 | (c & 0x3f));
364 } else if (c < 0x10000) {
365 if (c >= 0xD800 && c < 0xE000)
366 return;
367 if (c == 0xFFFF)
368 return;
369 /* 1110**** 10****** 10****** */
370 put_queue(vc, 0xe0 | (c >> 12));
371 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
372 put_queue(vc, 0x80 | (c & 0x3f));
373 } else if (c < 0x110000) {
374 /* 11110*** 10****** 10****** 10****** */
375 put_queue(vc, 0xf0 | (c >> 18));
376 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
377 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
378 put_queue(vc, 0x80 | (c & 0x3f));
383 * Called after returning from RAW mode or when changing consoles - recompute
384 * shift_down[] and shift_state from key_down[] maybe called when keymap is
385 * undefined, so that shiftkey release is seen
387 void compute_shiftstate(void)
389 unsigned int i, j, k, sym, val;
391 shift_state = 0;
392 memset(shift_down, 0, sizeof(shift_down));
394 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
396 if (!key_down[i])
397 continue;
399 k = i * BITS_PER_LONG;
401 for (j = 0; j < BITS_PER_LONG; j++, k++) {
403 if (!test_bit(k, key_down))
404 continue;
406 sym = U(key_maps[0][k]);
407 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
408 continue;
410 val = KVAL(sym);
411 if (val == KVAL(K_CAPSSHIFT))
412 val = KVAL(K_SHIFT);
414 shift_down[val]++;
415 shift_state |= (1 << val);
421 * We have a combining character DIACR here, followed by the character CH.
422 * If the combination occurs in the table, return the corresponding value.
423 * Otherwise, if CH is a space or equals DIACR, return DIACR.
424 * Otherwise, conclude that DIACR was not combining after all,
425 * queue it and return CH.
427 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
429 unsigned int d = diacr;
430 unsigned int i;
432 diacr = 0;
434 if ((d & ~0xff) == BRL_UC_ROW) {
435 if ((ch & ~0xff) == BRL_UC_ROW)
436 return d | ch;
437 } else {
438 for (i = 0; i < accent_table_size; i++)
439 if (accent_table[i].diacr == d && accent_table[i].base == ch)
440 return accent_table[i].result;
443 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
444 return d;
446 if (kbd->kbdmode == VC_UNICODE)
447 to_utf8(vc, d);
448 else {
449 int c = conv_uni_to_8bit(d);
450 if (c != -1)
451 put_queue(vc, c);
454 return ch;
458 * Special function handlers
460 static void fn_enter(struct vc_data *vc)
462 if (diacr) {
463 if (kbd->kbdmode == VC_UNICODE)
464 to_utf8(vc, diacr);
465 else {
466 int c = conv_uni_to_8bit(diacr);
467 if (c != -1)
468 put_queue(vc, c);
470 diacr = 0;
472 put_queue(vc, 13);
473 if (vc_kbd_mode(kbd, VC_CRLF))
474 put_queue(vc, 10);
477 static void fn_caps_toggle(struct vc_data *vc)
479 if (rep)
480 return;
481 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
484 static void fn_caps_on(struct vc_data *vc)
486 if (rep)
487 return;
488 set_vc_kbd_led(kbd, VC_CAPSLOCK);
491 static void fn_show_ptregs(struct vc_data *vc)
493 struct pt_regs *regs = get_irq_regs();
494 if (regs)
495 show_regs(regs);
498 static void fn_hold(struct vc_data *vc)
500 struct tty_struct *tty = vc->vc_tty;
502 if (rep || !tty)
503 return;
506 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
507 * these routines are also activated by ^S/^Q.
508 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
510 if (tty->stopped)
511 start_tty(tty);
512 else
513 stop_tty(tty);
516 static void fn_num(struct vc_data *vc)
518 if (vc_kbd_mode(kbd,VC_APPLIC))
519 applkey(vc, 'P', 1);
520 else
521 fn_bare_num(vc);
525 * Bind this to Shift-NumLock if you work in application keypad mode
526 * but want to be able to change the NumLock flag.
527 * Bind this to NumLock if you prefer that the NumLock key always
528 * changes the NumLock flag.
530 static void fn_bare_num(struct vc_data *vc)
532 if (!rep)
533 chg_vc_kbd_led(kbd, VC_NUMLOCK);
536 static void fn_lastcons(struct vc_data *vc)
538 /* switch to the last used console, ChN */
539 set_console(last_console);
542 static void fn_dec_console(struct vc_data *vc)
544 int i, cur = fg_console;
546 /* Currently switching? Queue this next switch relative to that. */
547 if (want_console != -1)
548 cur = want_console;
550 for (i = cur - 1; i != cur; i--) {
551 if (i == -1)
552 i = MAX_NR_CONSOLES - 1;
553 if (vc_cons_allocated(i))
554 break;
556 set_console(i);
559 static void fn_inc_console(struct vc_data *vc)
561 int i, cur = fg_console;
563 /* Currently switching? Queue this next switch relative to that. */
564 if (want_console != -1)
565 cur = want_console;
567 for (i = cur+1; i != cur; i++) {
568 if (i == MAX_NR_CONSOLES)
569 i = 0;
570 if (vc_cons_allocated(i))
571 break;
573 set_console(i);
576 static void fn_send_intr(struct vc_data *vc)
578 struct tty_struct *tty = vc->vc_tty;
580 if (!tty)
581 return;
582 tty_insert_flip_char(tty, 0, TTY_BREAK);
583 con_schedule_flip(tty);
586 static void fn_scroll_forw(struct vc_data *vc)
588 scrollfront(vc, 0);
591 static void fn_scroll_back(struct vc_data *vc)
593 scrollback(vc, 0);
596 static void fn_show_mem(struct vc_data *vc)
598 show_mem();
601 static void fn_show_state(struct vc_data *vc)
603 show_state();
606 static void fn_boot_it(struct vc_data *vc)
608 ctrl_alt_del();
611 static void fn_compose(struct vc_data *vc)
613 dead_key_next = 1;
616 static void fn_spawn_con(struct vc_data *vc)
618 spin_lock(&vt_spawn_con.lock);
619 if (vt_spawn_con.pid)
620 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
621 put_pid(vt_spawn_con.pid);
622 vt_spawn_con.pid = NULL;
624 spin_unlock(&vt_spawn_con.lock);
627 static void fn_SAK(struct vc_data *vc)
629 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
630 schedule_work(SAK_work);
633 static void fn_null(struct vc_data *vc)
635 compute_shiftstate();
639 * Special key handlers
641 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
645 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
647 if (up_flag)
648 return;
649 if (value >= ARRAY_SIZE(fn_handler))
650 return;
651 if ((kbd->kbdmode == VC_RAW ||
652 kbd->kbdmode == VC_MEDIUMRAW) &&
653 value != KVAL(K_SAK))
654 return; /* SAK is allowed even in raw mode */
655 fn_handler[value](vc);
658 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
660 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
663 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
665 if (up_flag)
666 return; /* no action, if this is a key release */
668 if (diacr)
669 value = handle_diacr(vc, value);
671 if (dead_key_next) {
672 dead_key_next = 0;
673 diacr = value;
674 return;
676 if (kbd->kbdmode == VC_UNICODE)
677 to_utf8(vc, value);
678 else {
679 int c = conv_uni_to_8bit(value);
680 if (c != -1)
681 put_queue(vc, c);
686 * Handle dead key. Note that we now may have several
687 * dead keys modifying the same character. Very useful
688 * for Vietnamese.
690 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
692 if (up_flag)
693 return;
694 diacr = (diacr ? handle_diacr(vc, value) : value);
697 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
699 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
702 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
704 k_deadunicode(vc, value, up_flag);
708 * Obsolete - for backwards compatibility only
710 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
712 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
713 value = ret_diacr[value];
714 k_deadunicode(vc, value, up_flag);
717 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
719 if (up_flag)
720 return;
721 set_console(value);
724 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
726 unsigned v;
728 if (up_flag)
729 return;
730 v = value;
731 if (v < ARRAY_SIZE(func_table)) {
732 if (func_table[value])
733 puts_queue(vc, func_table[value]);
734 } else
735 printk(KERN_ERR "k_fn called with value=%d\n", value);
738 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
740 static const char cur_chars[] = "BDCA";
742 if (up_flag)
743 return;
744 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
747 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
749 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
750 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
752 if (up_flag)
753 return; /* no action, if this is a key release */
755 /* kludge... shift forces cursor/number keys */
756 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
757 applkey(vc, app_map[value], 1);
758 return;
761 if (!vc_kbd_led(kbd, VC_NUMLOCK))
762 switch (value) {
763 case KVAL(K_PCOMMA):
764 case KVAL(K_PDOT):
765 k_fn(vc, KVAL(K_REMOVE), 0);
766 return;
767 case KVAL(K_P0):
768 k_fn(vc, KVAL(K_INSERT), 0);
769 return;
770 case KVAL(K_P1):
771 k_fn(vc, KVAL(K_SELECT), 0);
772 return;
773 case KVAL(K_P2):
774 k_cur(vc, KVAL(K_DOWN), 0);
775 return;
776 case KVAL(K_P3):
777 k_fn(vc, KVAL(K_PGDN), 0);
778 return;
779 case KVAL(K_P4):
780 k_cur(vc, KVAL(K_LEFT), 0);
781 return;
782 case KVAL(K_P6):
783 k_cur(vc, KVAL(K_RIGHT), 0);
784 return;
785 case KVAL(K_P7):
786 k_fn(vc, KVAL(K_FIND), 0);
787 return;
788 case KVAL(K_P8):
789 k_cur(vc, KVAL(K_UP), 0);
790 return;
791 case KVAL(K_P9):
792 k_fn(vc, KVAL(K_PGUP), 0);
793 return;
794 case KVAL(K_P5):
795 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
796 return;
799 put_queue(vc, pad_chars[value]);
800 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
801 put_queue(vc, 10);
804 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
806 int old_state = shift_state;
808 if (rep)
809 return;
811 * Mimic typewriter:
812 * a CapsShift key acts like Shift but undoes CapsLock
814 if (value == KVAL(K_CAPSSHIFT)) {
815 value = KVAL(K_SHIFT);
816 if (!up_flag)
817 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
820 if (up_flag) {
822 * handle the case that two shift or control
823 * keys are depressed simultaneously
825 if (shift_down[value])
826 shift_down[value]--;
827 } else
828 shift_down[value]++;
830 if (shift_down[value])
831 shift_state |= (1 << value);
832 else
833 shift_state &= ~(1 << value);
835 /* kludge */
836 if (up_flag && shift_state != old_state && npadch != -1) {
837 if (kbd->kbdmode == VC_UNICODE)
838 to_utf8(vc, npadch);
839 else
840 put_queue(vc, npadch & 0xff);
841 npadch = -1;
845 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
847 if (up_flag)
848 return;
850 if (vc_kbd_mode(kbd, VC_META)) {
851 put_queue(vc, '\033');
852 put_queue(vc, value);
853 } else
854 put_queue(vc, value | 0x80);
857 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
859 int base;
861 if (up_flag)
862 return;
864 if (value < 10) {
865 /* decimal input of code, while Alt depressed */
866 base = 10;
867 } else {
868 /* hexadecimal input of code, while AltGr depressed */
869 value -= 10;
870 base = 16;
873 if (npadch == -1)
874 npadch = value;
875 else
876 npadch = npadch * base + value;
879 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
881 if (up_flag || rep)
882 return;
883 chg_vc_kbd_lock(kbd, value);
886 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
888 k_shift(vc, value, up_flag);
889 if (up_flag || rep)
890 return;
891 chg_vc_kbd_slock(kbd, value);
892 /* try to make Alt, oops, AltGr and such work */
893 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
894 kbd->slockstate = 0;
895 chg_vc_kbd_slock(kbd, value);
899 /* by default, 300ms interval for combination release */
900 static unsigned brl_timeout = 300;
901 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
902 module_param(brl_timeout, uint, 0644);
904 static unsigned brl_nbchords = 1;
905 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
906 module_param(brl_nbchords, uint, 0644);
908 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
910 static unsigned long chords;
911 static unsigned committed;
913 if (!brl_nbchords)
914 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
915 else {
916 committed |= pattern;
917 chords++;
918 if (chords == brl_nbchords) {
919 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
920 chords = 0;
921 committed = 0;
926 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
928 static unsigned pressed,committing;
929 static unsigned long releasestart;
931 if (kbd->kbdmode != VC_UNICODE) {
932 if (!up_flag)
933 printk("keyboard mode must be unicode for braille patterns\n");
934 return;
937 if (!value) {
938 k_unicode(vc, BRL_UC_ROW, up_flag);
939 return;
942 if (value > 8)
943 return;
945 if (up_flag) {
946 if (brl_timeout) {
947 if (!committing ||
948 time_after(jiffies,
949 releasestart + msecs_to_jiffies(brl_timeout))) {
950 committing = pressed;
951 releasestart = jiffies;
953 pressed &= ~(1 << (value - 1));
954 if (!pressed) {
955 if (committing) {
956 k_brlcommit(vc, committing, 0);
957 committing = 0;
960 } else {
961 if (committing) {
962 k_brlcommit(vc, committing, 0);
963 committing = 0;
965 pressed &= ~(1 << (value - 1));
967 } else {
968 pressed |= 1 << (value - 1);
969 if (!brl_timeout)
970 committing = pressed;
975 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
976 * or (ii) whatever pattern of lights people want to show using KDSETLED,
977 * or (iii) specified bits of specified words in kernel memory.
979 unsigned char getledstate(void)
981 return ledstate;
984 void setledstate(struct kbd_struct *kbd, unsigned int led)
986 if (!(led & ~7)) {
987 ledioctl = led;
988 kbd->ledmode = LED_SHOW_IOCTL;
989 } else
990 kbd->ledmode = LED_SHOW_FLAGS;
991 set_leds();
994 static inline unsigned char getleds(void)
996 struct kbd_struct *kbd = kbd_table + fg_console;
997 unsigned char leds;
998 int i;
1000 if (kbd->ledmode == LED_SHOW_IOCTL)
1001 return ledioctl;
1003 leds = kbd->ledflagstate;
1005 if (kbd->ledmode == LED_SHOW_MEM) {
1006 for (i = 0; i < 3; i++)
1007 if (ledptrs[i].valid) {
1008 if (*ledptrs[i].addr & ledptrs[i].mask)
1009 leds |= (1 << i);
1010 else
1011 leds &= ~(1 << i);
1014 return leds;
1017 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1019 unsigned char leds = *(unsigned char *)data;
1021 if (test_bit(EV_LED, handle->dev->evbit)) {
1022 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1023 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1024 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1025 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1028 return 0;
1032 * This is the tasklet that updates LED state on all keyboards
1033 * attached to the box. The reason we use tasklet is that we
1034 * need to handle the scenario when keyboard handler is not
1035 * registered yet but we already getting updates form VT to
1036 * update led state.
1038 static void kbd_bh(unsigned long dummy)
1040 unsigned char leds = getleds();
1042 if (leds != ledstate) {
1043 input_handler_for_each_handle(&kbd_handler, &leds,
1044 kbd_update_leds_helper);
1045 ledstate = leds;
1049 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1051 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1052 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1053 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1054 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1055 defined(CONFIG_AVR32)
1057 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1058 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1060 static const unsigned short x86_keycodes[256] =
1061 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1062 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1063 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1064 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1065 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1066 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1067 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1068 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1069 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1070 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1071 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1072 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1073 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1074 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1075 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1077 #ifdef CONFIG_SPARC
1078 static int sparc_l1_a_state = 0;
1079 extern void sun_do_break(void);
1080 #endif
1082 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1083 unsigned char up_flag)
1085 int code;
1087 switch (keycode) {
1088 case KEY_PAUSE:
1089 put_queue(vc, 0xe1);
1090 put_queue(vc, 0x1d | up_flag);
1091 put_queue(vc, 0x45 | up_flag);
1092 break;
1094 case KEY_HANGEUL:
1095 if (!up_flag)
1096 put_queue(vc, 0xf2);
1097 break;
1099 case KEY_HANJA:
1100 if (!up_flag)
1101 put_queue(vc, 0xf1);
1102 break;
1104 case KEY_SYSRQ:
1106 * Real AT keyboards (that's what we're trying
1107 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1108 * pressing PrtSc/SysRq alone, but simply 0x54
1109 * when pressing Alt+PrtSc/SysRq.
1111 if (sysrq_alt) {
1112 put_queue(vc, 0x54 | up_flag);
1113 } else {
1114 put_queue(vc, 0xe0);
1115 put_queue(vc, 0x2a | up_flag);
1116 put_queue(vc, 0xe0);
1117 put_queue(vc, 0x37 | up_flag);
1119 break;
1121 default:
1122 if (keycode > 255)
1123 return -1;
1125 code = x86_keycodes[keycode];
1126 if (!code)
1127 return -1;
1129 if (code & 0x100)
1130 put_queue(vc, 0xe0);
1131 put_queue(vc, (code & 0x7f) | up_flag);
1133 break;
1136 return 0;
1139 #else
1141 #define HW_RAW(dev) 0
1143 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1145 if (keycode > 127)
1146 return -1;
1148 put_queue(vc, keycode | up_flag);
1149 return 0;
1151 #endif
1153 static void kbd_rawcode(unsigned char data)
1155 struct vc_data *vc = vc_cons[fg_console].d;
1156 kbd = kbd_table + vc->vc_num;
1157 if (kbd->kbdmode == VC_RAW)
1158 put_queue(vc, data);
1161 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1163 struct vc_data *vc = vc_cons[fg_console].d;
1164 unsigned short keysym, *key_map;
1165 unsigned char type, raw_mode;
1166 struct tty_struct *tty;
1167 int shift_final;
1168 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1170 tty = vc->vc_tty;
1172 if (tty && (!tty->driver_data)) {
1173 /* No driver data? Strange. Okay we fix it then. */
1174 tty->driver_data = vc;
1177 kbd = kbd_table + vc->vc_num;
1179 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1180 sysrq_alt = down ? keycode : 0;
1181 #ifdef CONFIG_SPARC
1182 if (keycode == KEY_STOP)
1183 sparc_l1_a_state = down;
1184 #endif
1186 rep = (down == 2);
1188 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1189 if (emulate_raw(vc, keycode, !down << 7))
1190 if (keycode < BTN_MISC && printk_ratelimit())
1191 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1193 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1194 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1195 if (!sysrq_down) {
1196 sysrq_down = down;
1197 sysrq_alt_use = sysrq_alt;
1199 return;
1201 if (sysrq_down && !down && keycode == sysrq_alt_use)
1202 sysrq_down = 0;
1203 if (sysrq_down && down && !rep) {
1204 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1205 return;
1207 #endif
1208 #ifdef CONFIG_SPARC
1209 if (keycode == KEY_A && sparc_l1_a_state) {
1210 sparc_l1_a_state = 0;
1211 sun_do_break();
1213 #endif
1215 if (kbd->kbdmode == VC_MEDIUMRAW) {
1217 * This is extended medium raw mode, with keys above 127
1218 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1219 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1220 * interfere with anything else. The two bytes after 0 will
1221 * always have the up flag set not to interfere with older
1222 * applications. This allows for 16384 different keycodes,
1223 * which should be enough.
1225 if (keycode < 128) {
1226 put_queue(vc, keycode | (!down << 7));
1227 } else {
1228 put_queue(vc, !down << 7);
1229 put_queue(vc, (keycode >> 7) | 0x80);
1230 put_queue(vc, keycode | 0x80);
1232 raw_mode = 1;
1235 if (down)
1236 set_bit(keycode, key_down);
1237 else
1238 clear_bit(keycode, key_down);
1240 if (rep &&
1241 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1242 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1244 * Don't repeat a key if the input buffers are not empty and the
1245 * characters get aren't echoed locally. This makes key repeat
1246 * usable with slow applications and under heavy loads.
1248 return;
1251 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1252 param.ledstate = kbd->ledflagstate;
1253 key_map = key_maps[shift_final];
1255 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
1256 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
1257 compute_shiftstate();
1258 kbd->slockstate = 0;
1259 return;
1262 if (keycode >= NR_KEYS)
1263 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265 else
1266 return;
1267 else
1268 keysym = key_map[keycode];
1270 type = KTYP(keysym);
1272 if (type < 0xf0) {
1273 param.value = keysym;
1274 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
1275 return;
1276 if (down && !raw_mode)
1277 to_utf8(vc, keysym);
1278 return;
1281 type -= 0xf0;
1283 if (type == KT_LETTER) {
1284 type = KT_LATIN;
1285 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1286 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1287 if (key_map)
1288 keysym = key_map[keycode];
1291 param.value = keysym;
1293 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
1294 return;
1296 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1297 return;
1299 (*k_handler[type])(vc, keysym & 0xff, !down);
1301 param.ledstate = kbd->ledflagstate;
1302 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1304 if (type != KT_SLOCK)
1305 kbd->slockstate = 0;
1308 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1309 unsigned int event_code, int value)
1311 /* We are called with interrupts disabled, just take the lock */
1312 spin_lock(&kbd_event_lock);
1314 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1315 kbd_rawcode(value);
1316 if (event_type == EV_KEY)
1317 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319 spin_unlock(&kbd_event_lock);
1321 tasklet_schedule(&keyboard_tasklet);
1322 do_poke_blanked_console = 1;
1323 schedule_console_callback();
1326 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328 int i;
1330 if (test_bit(EV_SND, dev->evbit))
1331 return true;
1333 if (test_bit(EV_KEY, dev->evbit))
1334 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1335 if (test_bit(i, dev->keybit))
1336 return true;
1338 return false;
1342 * When a keyboard (or other input device) is found, the kbd_connect
1343 * function is called. The function then looks at the device, and if it
1344 * likes it, it can open it and get events from it. In this (kbd_connect)
1345 * function, we should decide which VT to bind that keyboard to initially.
1347 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1348 const struct input_device_id *id)
1350 struct input_handle *handle;
1351 int error;
1353 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1354 if (!handle)
1355 return -ENOMEM;
1357 handle->dev = dev;
1358 handle->handler = handler;
1359 handle->name = "kbd";
1361 error = input_register_handle(handle);
1362 if (error)
1363 goto err_free_handle;
1365 error = input_open_device(handle);
1366 if (error)
1367 goto err_unregister_handle;
1369 return 0;
1371 err_unregister_handle:
1372 input_unregister_handle(handle);
1373 err_free_handle:
1374 kfree(handle);
1375 return error;
1378 static void kbd_disconnect(struct input_handle *handle)
1380 input_close_device(handle);
1381 input_unregister_handle(handle);
1382 kfree(handle);
1386 * Start keyboard handler on the new keyboard by refreshing LED state to
1387 * match the rest of the system.
1389 static void kbd_start(struct input_handle *handle)
1391 tasklet_disable(&keyboard_tasklet);
1393 if (ledstate != 0xff)
1394 kbd_update_leds_helper(handle, &ledstate);
1396 tasklet_enable(&keyboard_tasklet);
1399 static const struct input_device_id kbd_ids[] = {
1401 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1402 .evbit = { BIT_MASK(EV_KEY) },
1406 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407 .evbit = { BIT_MASK(EV_SND) },
1410 { }, /* Terminating entry */
1413 MODULE_DEVICE_TABLE(input, kbd_ids);
1415 static struct input_handler kbd_handler = {
1416 .event = kbd_event,
1417 .match = kbd_match,
1418 .connect = kbd_connect,
1419 .disconnect = kbd_disconnect,
1420 .start = kbd_start,
1421 .name = "kbd",
1422 .id_table = kbd_ids,
1425 int __init kbd_init(void)
1427 int i;
1428 int error;
1430 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1431 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1432 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1433 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1434 kbd_table[i].lockstate = KBD_DEFLOCK;
1435 kbd_table[i].slockstate = 0;
1436 kbd_table[i].modeflags = KBD_DEFMODE;
1437 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1440 error = input_register_handler(&kbd_handler);
1441 if (error)
1442 return error;
1444 tasklet_enable(&keyboard_tasklet);
1445 tasklet_schedule(&keyboard_tasklet);
1447 return 0;