Linux 2.6.34-rc3
[pohmelfs.git] / drivers / firewire / core-card.c
blob5045156c5313b0c59114850f003f17ef46945c36
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
39 #include "core.h"
41 int fw_compute_block_crc(__be32 *block)
43 int length;
44 u16 crc;
46 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
47 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
48 *block |= cpu_to_be32(crc);
50 return length;
53 static DEFINE_MUTEX(card_mutex);
54 static LIST_HEAD(card_list);
56 static LIST_HEAD(descriptor_list);
57 static int descriptor_count;
59 static __be32 tmp_config_rom[256];
60 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
61 static size_t config_rom_length = 1 + 4 + 1 + 1;
63 #define BIB_CRC(v) ((v) << 0)
64 #define BIB_CRC_LENGTH(v) ((v) << 16)
65 #define BIB_INFO_LENGTH(v) ((v) << 24)
67 #define BIB_LINK_SPEED(v) ((v) << 0)
68 #define BIB_GENERATION(v) ((v) << 4)
69 #define BIB_MAX_ROM(v) ((v) << 8)
70 #define BIB_MAX_RECEIVE(v) ((v) << 12)
71 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
72 #define BIB_PMC ((1) << 27)
73 #define BIB_BMC ((1) << 28)
74 #define BIB_ISC ((1) << 29)
75 #define BIB_CMC ((1) << 30)
76 #define BIB_IMC ((1) << 31)
78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
80 struct fw_descriptor *desc;
81 int i, j, k, length;
84 * Initialize contents of config rom buffer. On the OHCI
85 * controller, block reads to the config rom accesses the host
86 * memory, but quadlet read access the hardware bus info block
87 * registers. That's just crack, but it means we should make
88 * sure the contents of bus info block in host memory matches
89 * the version stored in the OHCI registers.
92 config_rom[0] = cpu_to_be32(
93 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
94 config_rom[1] = cpu_to_be32(0x31333934);
95 config_rom[2] = cpu_to_be32(
96 BIB_LINK_SPEED(card->link_speed) |
97 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 BIB_MAX_ROM(2) |
99 BIB_MAX_RECEIVE(card->max_receive) |
100 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC);
101 config_rom[3] = cpu_to_be32(card->guid >> 32);
102 config_rom[4] = cpu_to_be32(card->guid);
104 /* Generate root directory. */
105 config_rom[6] = cpu_to_be32(0x0c0083c0); /* node capabilities */
106 i = 7;
107 j = 7 + descriptor_count;
109 /* Generate root directory entries for descriptors. */
110 list_for_each_entry (desc, &descriptor_list, link) {
111 if (desc->immediate > 0)
112 config_rom[i++] = cpu_to_be32(desc->immediate);
113 config_rom[i] = cpu_to_be32(desc->key | (j - i));
114 i++;
115 j += desc->length;
118 /* Update root directory length. */
119 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
121 /* End of root directory, now copy in descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 for (k = 0; k < desc->length; k++)
124 config_rom[i + k] = cpu_to_be32(desc->data[k]);
125 i += desc->length;
128 /* Calculate CRCs for all blocks in the config rom. This
129 * assumes that CRC length and info length are identical for
130 * the bus info block, which is always the case for this
131 * implementation. */
132 for (i = 0; i < j; i += length + 1)
133 length = fw_compute_block_crc(config_rom + i);
135 WARN_ON(j != config_rom_length);
138 static void update_config_roms(void)
140 struct fw_card *card;
142 list_for_each_entry (card, &card_list, link) {
143 generate_config_rom(card, tmp_config_rom);
144 card->driver->set_config_rom(card, tmp_config_rom,
145 config_rom_length);
149 static size_t required_space(struct fw_descriptor *desc)
151 /* descriptor + entry into root dir + optional immediate entry */
152 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
155 int fw_core_add_descriptor(struct fw_descriptor *desc)
157 size_t i;
158 int ret;
161 * Check descriptor is valid; the length of all blocks in the
162 * descriptor has to add up to exactly the length of the
163 * block.
165 i = 0;
166 while (i < desc->length)
167 i += (desc->data[i] >> 16) + 1;
169 if (i != desc->length)
170 return -EINVAL;
172 mutex_lock(&card_mutex);
174 if (config_rom_length + required_space(desc) > 256) {
175 ret = -EBUSY;
176 } else {
177 list_add_tail(&desc->link, &descriptor_list);
178 config_rom_length += required_space(desc);
179 descriptor_count++;
180 if (desc->immediate > 0)
181 descriptor_count++;
182 update_config_roms();
183 ret = 0;
186 mutex_unlock(&card_mutex);
188 return ret;
190 EXPORT_SYMBOL(fw_core_add_descriptor);
192 void fw_core_remove_descriptor(struct fw_descriptor *desc)
194 mutex_lock(&card_mutex);
196 list_del(&desc->link);
197 config_rom_length -= required_space(desc);
198 descriptor_count--;
199 if (desc->immediate > 0)
200 descriptor_count--;
201 update_config_roms();
203 mutex_unlock(&card_mutex);
205 EXPORT_SYMBOL(fw_core_remove_descriptor);
207 static void allocate_broadcast_channel(struct fw_card *card, int generation)
209 int channel, bandwidth = 0;
211 fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
212 &bandwidth, true, card->bm_transaction_data);
213 if (channel == 31) {
214 card->broadcast_channel_allocated = true;
215 device_for_each_child(card->device, (void *)(long)generation,
216 fw_device_set_broadcast_channel);
220 static const char gap_count_table[] = {
221 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
224 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
226 fw_card_get(card);
227 if (!schedule_delayed_work(&card->work, delay))
228 fw_card_put(card);
231 static void fw_card_bm_work(struct work_struct *work)
233 struct fw_card *card = container_of(work, struct fw_card, work.work);
234 struct fw_device *root_device;
235 struct fw_node *root_node;
236 unsigned long flags;
237 int root_id, new_root_id, irm_id, local_id;
238 int gap_count, generation, grace, rcode;
239 bool do_reset = false;
240 bool root_device_is_running;
241 bool root_device_is_cmc;
243 spin_lock_irqsave(&card->lock, flags);
245 if (card->local_node == NULL) {
246 spin_unlock_irqrestore(&card->lock, flags);
247 goto out_put_card;
250 generation = card->generation;
251 root_node = card->root_node;
252 fw_node_get(root_node);
253 root_device = root_node->data;
254 root_device_is_running = root_device &&
255 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
256 root_device_is_cmc = root_device && root_device->cmc;
257 root_id = root_node->node_id;
258 irm_id = card->irm_node->node_id;
259 local_id = card->local_node->node_id;
261 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
263 if (is_next_generation(generation, card->bm_generation) ||
264 (card->bm_generation != generation && grace)) {
266 * This first step is to figure out who is IRM and
267 * then try to become bus manager. If the IRM is not
268 * well defined (e.g. does not have an active link
269 * layer or does not responds to our lock request, we
270 * will have to do a little vigilante bus management.
271 * In that case, we do a goto into the gap count logic
272 * so that when we do the reset, we still optimize the
273 * gap count. That could well save a reset in the
274 * next generation.
277 if (!card->irm_node->link_on) {
278 new_root_id = local_id;
279 fw_notify("IRM has link off, making local node (%02x) root.\n",
280 new_root_id);
281 goto pick_me;
284 card->bm_transaction_data[0] = cpu_to_be32(0x3f);
285 card->bm_transaction_data[1] = cpu_to_be32(local_id);
287 spin_unlock_irqrestore(&card->lock, flags);
289 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
290 irm_id, generation, SCODE_100,
291 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
292 card->bm_transaction_data,
293 sizeof(card->bm_transaction_data));
295 if (rcode == RCODE_GENERATION)
296 /* Another bus reset, BM work has been rescheduled. */
297 goto out;
299 if (rcode == RCODE_COMPLETE &&
300 card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
302 /* Somebody else is BM. Only act as IRM. */
303 if (local_id == irm_id)
304 allocate_broadcast_channel(card, generation);
306 goto out;
309 spin_lock_irqsave(&card->lock, flags);
311 if (rcode != RCODE_COMPLETE) {
313 * The lock request failed, maybe the IRM
314 * isn't really IRM capable after all. Let's
315 * do a bus reset and pick the local node as
316 * root, and thus, IRM.
318 new_root_id = local_id;
319 fw_notify("BM lock failed, making local node (%02x) root.\n",
320 new_root_id);
321 goto pick_me;
323 } else if (card->bm_generation != generation) {
325 * We weren't BM in the last generation, and the last
326 * bus reset is less than 125ms ago. Reschedule this job.
328 spin_unlock_irqrestore(&card->lock, flags);
329 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
330 goto out;
334 * We're bus manager for this generation, so next step is to
335 * make sure we have an active cycle master and do gap count
336 * optimization.
338 card->bm_generation = generation;
340 if (root_device == NULL) {
342 * Either link_on is false, or we failed to read the
343 * config rom. In either case, pick another root.
345 new_root_id = local_id;
346 } else if (!root_device_is_running) {
348 * If we haven't probed this device yet, bail out now
349 * and let's try again once that's done.
351 spin_unlock_irqrestore(&card->lock, flags);
352 goto out;
353 } else if (root_device_is_cmc) {
355 * FIXME: I suppose we should set the cmstr bit in the
356 * STATE_CLEAR register of this node, as described in
357 * 1394-1995, 8.4.2.6. Also, send out a force root
358 * packet for this node.
360 new_root_id = root_id;
361 } else {
363 * Current root has an active link layer and we
364 * successfully read the config rom, but it's not
365 * cycle master capable.
367 new_root_id = local_id;
370 pick_me:
372 * Pick a gap count from 1394a table E-1. The table doesn't cover
373 * the typically much larger 1394b beta repeater delays though.
375 if (!card->beta_repeaters_present &&
376 root_node->max_hops < ARRAY_SIZE(gap_count_table))
377 gap_count = gap_count_table[root_node->max_hops];
378 else
379 gap_count = 63;
382 * Finally, figure out if we should do a reset or not. If we have
383 * done less than 5 resets with the same physical topology and we
384 * have either a new root or a new gap count setting, let's do it.
387 if (card->bm_retries++ < 5 &&
388 (card->gap_count != gap_count || new_root_id != root_id))
389 do_reset = true;
391 spin_unlock_irqrestore(&card->lock, flags);
393 if (do_reset) {
394 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
395 card->index, new_root_id, gap_count);
396 fw_send_phy_config(card, new_root_id, generation, gap_count);
397 fw_core_initiate_bus_reset(card, 1);
398 /* Will allocate broadcast channel after the reset. */
399 } else {
400 if (local_id == irm_id)
401 allocate_broadcast_channel(card, generation);
404 out:
405 fw_node_put(root_node);
406 out_put_card:
407 fw_card_put(card);
410 static void flush_timer_callback(unsigned long data)
412 struct fw_card *card = (struct fw_card *)data;
414 fw_flush_transactions(card);
417 void fw_card_initialize(struct fw_card *card,
418 const struct fw_card_driver *driver,
419 struct device *device)
421 static atomic_t index = ATOMIC_INIT(-1);
423 card->index = atomic_inc_return(&index);
424 card->driver = driver;
425 card->device = device;
426 card->current_tlabel = 0;
427 card->tlabel_mask = 0;
428 card->color = 0;
429 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
431 kref_init(&card->kref);
432 init_completion(&card->done);
433 INIT_LIST_HEAD(&card->transaction_list);
434 spin_lock_init(&card->lock);
435 setup_timer(&card->flush_timer,
436 flush_timer_callback, (unsigned long)card);
438 card->local_node = NULL;
440 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
442 EXPORT_SYMBOL(fw_card_initialize);
444 int fw_card_add(struct fw_card *card,
445 u32 max_receive, u32 link_speed, u64 guid)
447 int ret;
449 card->max_receive = max_receive;
450 card->link_speed = link_speed;
451 card->guid = guid;
453 mutex_lock(&card_mutex);
455 generate_config_rom(card, tmp_config_rom);
456 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
457 if (ret == 0)
458 list_add_tail(&card->link, &card_list);
460 mutex_unlock(&card_mutex);
462 return ret;
464 EXPORT_SYMBOL(fw_card_add);
468 * The next few functions implement a dummy driver that is used once a card
469 * driver shuts down an fw_card. This allows the driver to cleanly unload,
470 * as all IO to the card will be handled (and failed) by the dummy driver
471 * instead of calling into the module. Only functions for iso context
472 * shutdown still need to be provided by the card driver.
475 static int dummy_enable(struct fw_card *card,
476 const __be32 *config_rom, size_t length)
478 BUG();
479 return -1;
482 static int dummy_update_phy_reg(struct fw_card *card, int address,
483 int clear_bits, int set_bits)
485 return -ENODEV;
488 static int dummy_set_config_rom(struct fw_card *card,
489 const __be32 *config_rom, size_t length)
492 * We take the card out of card_list before setting the dummy
493 * driver, so this should never get called.
495 BUG();
496 return -1;
499 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
501 packet->callback(packet, card, -ENODEV);
504 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
506 packet->callback(packet, card, -ENODEV);
509 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
511 return -ENOENT;
514 static int dummy_enable_phys_dma(struct fw_card *card,
515 int node_id, int generation)
517 return -ENODEV;
520 static const struct fw_card_driver dummy_driver_template = {
521 .enable = dummy_enable,
522 .update_phy_reg = dummy_update_phy_reg,
523 .set_config_rom = dummy_set_config_rom,
524 .send_request = dummy_send_request,
525 .cancel_packet = dummy_cancel_packet,
526 .send_response = dummy_send_response,
527 .enable_phys_dma = dummy_enable_phys_dma,
530 void fw_card_release(struct kref *kref)
532 struct fw_card *card = container_of(kref, struct fw_card, kref);
534 complete(&card->done);
537 void fw_core_remove_card(struct fw_card *card)
539 struct fw_card_driver dummy_driver = dummy_driver_template;
541 card->driver->update_phy_reg(card, 4,
542 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
543 fw_core_initiate_bus_reset(card, 1);
545 mutex_lock(&card_mutex);
546 list_del_init(&card->link);
547 mutex_unlock(&card_mutex);
549 /* Switch off most of the card driver interface. */
550 dummy_driver.free_iso_context = card->driver->free_iso_context;
551 dummy_driver.stop_iso = card->driver->stop_iso;
552 card->driver = &dummy_driver;
554 fw_destroy_nodes(card);
556 /* Wait for all users, especially device workqueue jobs, to finish. */
557 fw_card_put(card);
558 wait_for_completion(&card->done);
560 WARN_ON(!list_empty(&card->transaction_list));
561 del_timer_sync(&card->flush_timer);
563 EXPORT_SYMBOL(fw_core_remove_card);
565 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
567 int reg = short_reset ? 5 : 1;
568 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
570 return card->driver->update_phy_reg(card, reg, 0, bit);
572 EXPORT_SYMBOL(fw_core_initiate_bus_reset);