Linux 2.6.34-rc3
[pohmelfs.git] / drivers / hwmon / via686a.c
blobf397ce7ad5984d2347372d90053c6612cabfd345
1 /*
2 via686a.c - Part of lm_sensors, Linux kernel modules
3 for hardware monitoring
5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
6 Kyösti Mälkki <kmalkki@cc.hut.fi>,
7 Mark Studebaker <mdsxyz123@yahoo.com>,
8 and Bob Dougherty <bobd@stanford.edu>
9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 Supports the Via VT82C686A, VT82C686B south bridges.
29 Reports all as a 686A.
30 Warning - only supports a single device.
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/jiffies.h>
37 #include <linux/platform_device.h>
38 #include <linux/hwmon.h>
39 #include <linux/hwmon-sysfs.h>
40 #include <linux/err.h>
41 #include <linux/init.h>
42 #include <linux/mutex.h>
43 #include <linux/sysfs.h>
44 #include <linux/acpi.h>
45 #include <linux/io.h>
48 /* If force_addr is set to anything different from 0, we forcibly enable
49 the device at the given address. */
50 static unsigned short force_addr;
51 module_param(force_addr, ushort, 0);
52 MODULE_PARM_DESC(force_addr,
53 "Initialize the base address of the sensors");
55 static struct platform_device *pdev;
58 The Via 686a southbridge has a LM78-like chip integrated on the same IC.
59 This driver is a customized copy of lm78.c
62 /* Many VIA686A constants specified below */
64 /* Length of ISA address segment */
65 #define VIA686A_EXTENT 0x80
66 #define VIA686A_BASE_REG 0x70
67 #define VIA686A_ENABLE_REG 0x74
69 /* The VIA686A registers */
70 /* ins numbered 0-4 */
71 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
72 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
73 #define VIA686A_REG_IN(nr) (0x22 + (nr))
75 /* fans numbered 1-2 */
76 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
77 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
79 /* temps numbered 1-3 */
80 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
81 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
82 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
83 /* bits 7-6 */
84 #define VIA686A_REG_TEMP_LOW1 0x4b
85 /* 2 = bits 5-4, 3 = bits 7-6 */
86 #define VIA686A_REG_TEMP_LOW23 0x49
88 #define VIA686A_REG_ALARM1 0x41
89 #define VIA686A_REG_ALARM2 0x42
90 #define VIA686A_REG_FANDIV 0x47
91 #define VIA686A_REG_CONFIG 0x40
92 /* The following register sets temp interrupt mode (bits 1-0 for temp1,
93 3-2 for temp2, 5-4 for temp3). Modes are:
94 00 interrupt stays as long as value is out-of-range
95 01 interrupt is cleared once register is read (default)
96 10 comparator mode- like 00, but ignores hysteresis
97 11 same as 00 */
98 #define VIA686A_REG_TEMP_MODE 0x4b
99 /* We'll just assume that you want to set all 3 simultaneously: */
100 #define VIA686A_TEMP_MODE_MASK 0x3F
101 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
103 /* Conversions. Limit checking is only done on the TO_REG
104 variants.
106 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
107 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
108 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
109 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
110 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
111 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
112 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
113 in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
114 That is:
115 volts = (25*regVal+133)*factor
116 regVal = (volts/factor-133)/25
117 (These conversions were contributed by Jonathan Teh Soon Yew
118 <j.teh@iname.com>) */
119 static inline u8 IN_TO_REG(long val, int inNum)
121 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
122 Rounding is done (120500 is actually 133000 - 12500).
123 Remember that val is expressed in 0.001V/bit, which is why we divide
124 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
125 for the constants. */
126 if (inNum <= 1)
127 return (u8)
128 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
129 else if (inNum == 2)
130 return (u8)
131 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255);
132 else if (inNum == 3)
133 return (u8)
134 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255);
135 else
136 return (u8)
137 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255);
140 static inline long IN_FROM_REG(u8 val, int inNum)
142 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
143 We also multiply them by 1000 because we want 0.001V/bit for the
144 output value. Rounding is done. */
145 if (inNum <= 1)
146 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
147 else if (inNum == 2)
148 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
149 else if (inNum == 3)
150 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
151 else
152 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
155 /********* FAN RPM CONVERSIONS ********/
156 /* Higher register values = slower fans (the fan's strobe gates a counter).
157 But this chip saturates back at 0, not at 255 like all the other chips.
158 So, 0 means 0 RPM */
159 static inline u8 FAN_TO_REG(long rpm, int div)
161 if (rpm == 0)
162 return 0;
163 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
164 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
167 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
169 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
170 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
171 if(temp<169)
172 return double(temp)*0.427-32.08;
173 else if(temp>=169 && temp<=202)
174 return double(temp)*0.582-58.16;
175 else
176 return double(temp)*0.924-127.33;
178 A fifth-order polynomial fits the unofficial data (provided by Alex van
179 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
180 numbers on my machine (ie. they agree with what my BIOS tells me).
181 Here's the fifth-order fit to the 8-bit data:
182 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
183 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
185 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
186 finding my typos in this formula!)
188 Alas, none of the elegant function-fit solutions will work because we
189 aren't allowed to use floating point in the kernel and doing it with
190 integers doesn't provide enough precision. So we'll do boring old
191 look-up table stuff. The unofficial data (see below) have effectively
192 7-bit resolution (they are rounded to the nearest degree). I'm assuming
193 that the transfer function of the device is monotonic and smooth, so a
194 smooth function fit to the data will allow us to get better precision.
195 I used the 5th-order poly fit described above and solved for
196 VIA register values 0-255. I *10 before rounding, so we get tenth-degree
197 precision. (I could have done all 1024 values for our 10-bit readings,
198 but the function is very linear in the useful range (0-80 deg C), so
199 we'll just use linear interpolation for 10-bit readings.) So, tempLUT
200 is the temp at via register values 0-255: */
201 static const s16 tempLUT[] =
202 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
203 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
204 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
205 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
206 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
207 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
208 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
209 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
210 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
211 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
212 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
213 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
214 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
215 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
216 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
217 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
218 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
219 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
220 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
221 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
222 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
223 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
226 /* the original LUT values from Alex van Kaam <darkside@chello.nl>
227 (for via register values 12-240):
228 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
229 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
230 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
231 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
232 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
233 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
234 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
235 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
236 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
237 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
240 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
241 an extra term for a good fit to these inverse data!) and then
242 solving for each temp value from -50 to 110 (the useable range for
243 this chip). Here's the fit:
244 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
245 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
246 Note that n=161: */
247 static const u8 viaLUT[] =
248 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
249 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
250 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
251 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
252 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
253 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
254 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
255 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
256 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
257 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
258 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
259 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
260 239, 240
263 /* Converting temps to (8-bit) hyst and over registers
264 No interpolation here.
265 The +50 is because the temps start at -50 */
266 static inline u8 TEMP_TO_REG(long val)
268 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
269 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
272 /* for 8-bit temperature hyst and over registers */
273 #define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100)
275 /* for 10-bit temperature readings */
276 static inline long TEMP_FROM_REG10(u16 val)
278 u16 eightBits = val >> 2;
279 u16 twoBits = val & 3;
281 /* no interpolation for these */
282 if (twoBits == 0 || eightBits == 255)
283 return TEMP_FROM_REG(eightBits);
285 /* do some linear interpolation */
286 return (tempLUT[eightBits] * (4 - twoBits) +
287 tempLUT[eightBits + 1] * twoBits) * 25;
290 #define DIV_FROM_REG(val) (1 << (val))
291 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
293 /* For each registered chip, we need to keep some data in memory.
294 The structure is dynamically allocated. */
295 struct via686a_data {
296 unsigned short addr;
297 const char *name;
298 struct device *hwmon_dev;
299 struct mutex update_lock;
300 char valid; /* !=0 if following fields are valid */
301 unsigned long last_updated; /* In jiffies */
303 u8 in[5]; /* Register value */
304 u8 in_max[5]; /* Register value */
305 u8 in_min[5]; /* Register value */
306 u8 fan[2]; /* Register value */
307 u8 fan_min[2]; /* Register value */
308 u16 temp[3]; /* Register value 10 bit */
309 u8 temp_over[3]; /* Register value */
310 u8 temp_hyst[3]; /* Register value */
311 u8 fan_div[2]; /* Register encoding, shifted right */
312 u16 alarms; /* Register encoding, combined */
315 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
317 static int via686a_probe(struct platform_device *pdev);
318 static int __devexit via686a_remove(struct platform_device *pdev);
320 static inline int via686a_read_value(struct via686a_data *data, u8 reg)
322 return inb_p(data->addr + reg);
325 static inline void via686a_write_value(struct via686a_data *data, u8 reg,
326 u8 value)
328 outb_p(value, data->addr + reg);
331 static struct via686a_data *via686a_update_device(struct device *dev);
332 static void via686a_init_device(struct via686a_data *data);
334 /* following are the sysfs callback functions */
336 /* 7 voltage sensors */
337 static ssize_t show_in(struct device *dev, struct device_attribute *da,
338 char *buf) {
339 struct via686a_data *data = via686a_update_device(dev);
340 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
341 int nr = attr->index;
342 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
345 static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
346 char *buf) {
347 struct via686a_data *data = via686a_update_device(dev);
348 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
349 int nr = attr->index;
350 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
353 static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
354 char *buf) {
355 struct via686a_data *data = via686a_update_device(dev);
356 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
357 int nr = attr->index;
358 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
361 static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
362 const char *buf, size_t count) {
363 struct via686a_data *data = dev_get_drvdata(dev);
364 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
365 int nr = attr->index;
366 unsigned long val = simple_strtoul(buf, NULL, 10);
368 mutex_lock(&data->update_lock);
369 data->in_min[nr] = IN_TO_REG(val, nr);
370 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
371 data->in_min[nr]);
372 mutex_unlock(&data->update_lock);
373 return count;
375 static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
376 const char *buf, size_t count) {
377 struct via686a_data *data = dev_get_drvdata(dev);
378 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
379 int nr = attr->index;
380 unsigned long val = simple_strtoul(buf, NULL, 10);
382 mutex_lock(&data->update_lock);
383 data->in_max[nr] = IN_TO_REG(val, nr);
384 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
385 data->in_max[nr]);
386 mutex_unlock(&data->update_lock);
387 return count;
389 #define show_in_offset(offset) \
390 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
391 show_in, NULL, offset); \
392 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
393 show_in_min, set_in_min, offset); \
394 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
395 show_in_max, set_in_max, offset);
397 show_in_offset(0);
398 show_in_offset(1);
399 show_in_offset(2);
400 show_in_offset(3);
401 show_in_offset(4);
403 /* 3 temperatures */
404 static ssize_t show_temp(struct device *dev, struct device_attribute *da,
405 char *buf) {
406 struct via686a_data *data = via686a_update_device(dev);
407 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
408 int nr = attr->index;
409 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
411 static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
412 char *buf) {
413 struct via686a_data *data = via686a_update_device(dev);
414 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
415 int nr = attr->index;
416 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
418 static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
419 char *buf) {
420 struct via686a_data *data = via686a_update_device(dev);
421 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
422 int nr = attr->index;
423 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
425 static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
426 const char *buf, size_t count) {
427 struct via686a_data *data = dev_get_drvdata(dev);
428 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
429 int nr = attr->index;
430 int val = simple_strtol(buf, NULL, 10);
432 mutex_lock(&data->update_lock);
433 data->temp_over[nr] = TEMP_TO_REG(val);
434 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
435 data->temp_over[nr]);
436 mutex_unlock(&data->update_lock);
437 return count;
439 static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
440 const char *buf, size_t count) {
441 struct via686a_data *data = dev_get_drvdata(dev);
442 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
443 int nr = attr->index;
444 int val = simple_strtol(buf, NULL, 10);
446 mutex_lock(&data->update_lock);
447 data->temp_hyst[nr] = TEMP_TO_REG(val);
448 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
449 data->temp_hyst[nr]);
450 mutex_unlock(&data->update_lock);
451 return count;
453 #define show_temp_offset(offset) \
454 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
455 show_temp, NULL, offset - 1); \
456 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
457 show_temp_over, set_temp_over, offset - 1); \
458 static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
459 show_temp_hyst, set_temp_hyst, offset - 1);
461 show_temp_offset(1);
462 show_temp_offset(2);
463 show_temp_offset(3);
465 /* 2 Fans */
466 static ssize_t show_fan(struct device *dev, struct device_attribute *da,
467 char *buf) {
468 struct via686a_data *data = via686a_update_device(dev);
469 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
470 int nr = attr->index;
471 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
472 DIV_FROM_REG(data->fan_div[nr])) );
474 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
475 char *buf) {
476 struct via686a_data *data = via686a_update_device(dev);
477 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
478 int nr = attr->index;
479 return sprintf(buf, "%d\n",
480 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
482 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
483 char *buf) {
484 struct via686a_data *data = via686a_update_device(dev);
485 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
486 int nr = attr->index;
487 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
489 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
490 const char *buf, size_t count) {
491 struct via686a_data *data = dev_get_drvdata(dev);
492 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
493 int nr = attr->index;
494 int val = simple_strtol(buf, NULL, 10);
496 mutex_lock(&data->update_lock);
497 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
498 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
499 mutex_unlock(&data->update_lock);
500 return count;
502 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
503 const char *buf, size_t count) {
504 struct via686a_data *data = dev_get_drvdata(dev);
505 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
506 int nr = attr->index;
507 int val = simple_strtol(buf, NULL, 10);
508 int old;
510 mutex_lock(&data->update_lock);
511 old = via686a_read_value(data, VIA686A_REG_FANDIV);
512 data->fan_div[nr] = DIV_TO_REG(val);
513 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
514 via686a_write_value(data, VIA686A_REG_FANDIV, old);
515 mutex_unlock(&data->update_lock);
516 return count;
519 #define show_fan_offset(offset) \
520 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
521 show_fan, NULL, offset - 1); \
522 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
523 show_fan_min, set_fan_min, offset - 1); \
524 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
525 show_fan_div, set_fan_div, offset - 1);
527 show_fan_offset(1);
528 show_fan_offset(2);
530 /* Alarms */
531 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
532 struct via686a_data *data = via686a_update_device(dev);
533 return sprintf(buf, "%u\n", data->alarms);
535 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
537 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
538 char *buf)
540 int bitnr = to_sensor_dev_attr(attr)->index;
541 struct via686a_data *data = via686a_update_device(dev);
542 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
544 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
545 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
546 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
547 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
548 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
549 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
550 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11);
551 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 15);
552 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
553 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
555 static ssize_t show_name(struct device *dev, struct device_attribute
556 *devattr, char *buf)
558 struct via686a_data *data = dev_get_drvdata(dev);
559 return sprintf(buf, "%s\n", data->name);
561 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
563 static struct attribute *via686a_attributes[] = {
564 &sensor_dev_attr_in0_input.dev_attr.attr,
565 &sensor_dev_attr_in1_input.dev_attr.attr,
566 &sensor_dev_attr_in2_input.dev_attr.attr,
567 &sensor_dev_attr_in3_input.dev_attr.attr,
568 &sensor_dev_attr_in4_input.dev_attr.attr,
569 &sensor_dev_attr_in0_min.dev_attr.attr,
570 &sensor_dev_attr_in1_min.dev_attr.attr,
571 &sensor_dev_attr_in2_min.dev_attr.attr,
572 &sensor_dev_attr_in3_min.dev_attr.attr,
573 &sensor_dev_attr_in4_min.dev_attr.attr,
574 &sensor_dev_attr_in0_max.dev_attr.attr,
575 &sensor_dev_attr_in1_max.dev_attr.attr,
576 &sensor_dev_attr_in2_max.dev_attr.attr,
577 &sensor_dev_attr_in3_max.dev_attr.attr,
578 &sensor_dev_attr_in4_max.dev_attr.attr,
579 &sensor_dev_attr_in0_alarm.dev_attr.attr,
580 &sensor_dev_attr_in1_alarm.dev_attr.attr,
581 &sensor_dev_attr_in2_alarm.dev_attr.attr,
582 &sensor_dev_attr_in3_alarm.dev_attr.attr,
583 &sensor_dev_attr_in4_alarm.dev_attr.attr,
585 &sensor_dev_attr_temp1_input.dev_attr.attr,
586 &sensor_dev_attr_temp2_input.dev_attr.attr,
587 &sensor_dev_attr_temp3_input.dev_attr.attr,
588 &sensor_dev_attr_temp1_max.dev_attr.attr,
589 &sensor_dev_attr_temp2_max.dev_attr.attr,
590 &sensor_dev_attr_temp3_max.dev_attr.attr,
591 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
592 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
593 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
594 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
595 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
596 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
598 &sensor_dev_attr_fan1_input.dev_attr.attr,
599 &sensor_dev_attr_fan2_input.dev_attr.attr,
600 &sensor_dev_attr_fan1_min.dev_attr.attr,
601 &sensor_dev_attr_fan2_min.dev_attr.attr,
602 &sensor_dev_attr_fan1_div.dev_attr.attr,
603 &sensor_dev_attr_fan2_div.dev_attr.attr,
604 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
605 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
607 &dev_attr_alarms.attr,
608 &dev_attr_name.attr,
609 NULL
612 static const struct attribute_group via686a_group = {
613 .attrs = via686a_attributes,
616 static struct platform_driver via686a_driver = {
617 .driver = {
618 .owner = THIS_MODULE,
619 .name = "via686a",
621 .probe = via686a_probe,
622 .remove = __devexit_p(via686a_remove),
626 /* This is called when the module is loaded */
627 static int __devinit via686a_probe(struct platform_device *pdev)
629 struct via686a_data *data;
630 struct resource *res;
631 int err;
633 /* Reserve the ISA region */
634 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
635 if (!request_region(res->start, VIA686A_EXTENT,
636 via686a_driver.driver.name)) {
637 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
638 (unsigned long)res->start, (unsigned long)res->end);
639 return -ENODEV;
642 if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
643 err = -ENOMEM;
644 goto exit_release;
647 platform_set_drvdata(pdev, data);
648 data->addr = res->start;
649 data->name = "via686a";
650 mutex_init(&data->update_lock);
652 /* Initialize the VIA686A chip */
653 via686a_init_device(data);
655 /* Register sysfs hooks */
656 if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group)))
657 goto exit_free;
659 data->hwmon_dev = hwmon_device_register(&pdev->dev);
660 if (IS_ERR(data->hwmon_dev)) {
661 err = PTR_ERR(data->hwmon_dev);
662 goto exit_remove_files;
665 return 0;
667 exit_remove_files:
668 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
669 exit_free:
670 kfree(data);
671 exit_release:
672 release_region(res->start, VIA686A_EXTENT);
673 return err;
676 static int __devexit via686a_remove(struct platform_device *pdev)
678 struct via686a_data *data = platform_get_drvdata(pdev);
680 hwmon_device_unregister(data->hwmon_dev);
681 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
683 release_region(data->addr, VIA686A_EXTENT);
684 platform_set_drvdata(pdev, NULL);
685 kfree(data);
687 return 0;
690 static void __devinit via686a_init_device(struct via686a_data *data)
692 u8 reg;
694 /* Start monitoring */
695 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
696 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
698 /* Configure temp interrupt mode for continuous-interrupt operation */
699 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
700 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
701 (reg & ~VIA686A_TEMP_MODE_MASK)
702 | VIA686A_TEMP_MODE_CONTINUOUS);
705 static struct via686a_data *via686a_update_device(struct device *dev)
707 struct via686a_data *data = dev_get_drvdata(dev);
708 int i;
710 mutex_lock(&data->update_lock);
712 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
713 || !data->valid) {
714 for (i = 0; i <= 4; i++) {
715 data->in[i] =
716 via686a_read_value(data, VIA686A_REG_IN(i));
717 data->in_min[i] = via686a_read_value(data,
718 VIA686A_REG_IN_MIN
719 (i));
720 data->in_max[i] =
721 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
723 for (i = 1; i <= 2; i++) {
724 data->fan[i - 1] =
725 via686a_read_value(data, VIA686A_REG_FAN(i));
726 data->fan_min[i - 1] = via686a_read_value(data,
727 VIA686A_REG_FAN_MIN(i));
729 for (i = 0; i <= 2; i++) {
730 data->temp[i] = via686a_read_value(data,
731 VIA686A_REG_TEMP[i]) << 2;
732 data->temp_over[i] =
733 via686a_read_value(data,
734 VIA686A_REG_TEMP_OVER[i]);
735 data->temp_hyst[i] =
736 via686a_read_value(data,
737 VIA686A_REG_TEMP_HYST[i]);
739 /* add in lower 2 bits
740 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
741 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
742 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
744 data->temp[0] |= (via686a_read_value(data,
745 VIA686A_REG_TEMP_LOW1)
746 & 0xc0) >> 6;
747 data->temp[1] |=
748 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
749 0x30) >> 4;
750 data->temp[2] |=
751 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
752 0xc0) >> 6;
754 i = via686a_read_value(data, VIA686A_REG_FANDIV);
755 data->fan_div[0] = (i >> 4) & 0x03;
756 data->fan_div[1] = i >> 6;
757 data->alarms =
758 via686a_read_value(data,
759 VIA686A_REG_ALARM1) |
760 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
761 data->last_updated = jiffies;
762 data->valid = 1;
765 mutex_unlock(&data->update_lock);
767 return data;
770 static const struct pci_device_id via686a_pci_ids[] = {
771 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
772 { 0, }
775 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
777 static int __devinit via686a_device_add(unsigned short address)
779 struct resource res = {
780 .start = address,
781 .end = address + VIA686A_EXTENT - 1,
782 .name = "via686a",
783 .flags = IORESOURCE_IO,
785 int err;
787 err = acpi_check_resource_conflict(&res);
788 if (err)
789 goto exit;
791 pdev = platform_device_alloc("via686a", address);
792 if (!pdev) {
793 err = -ENOMEM;
794 printk(KERN_ERR "via686a: Device allocation failed\n");
795 goto exit;
798 err = platform_device_add_resources(pdev, &res, 1);
799 if (err) {
800 printk(KERN_ERR "via686a: Device resource addition failed "
801 "(%d)\n", err);
802 goto exit_device_put;
805 err = platform_device_add(pdev);
806 if (err) {
807 printk(KERN_ERR "via686a: Device addition failed (%d)\n",
808 err);
809 goto exit_device_put;
812 return 0;
814 exit_device_put:
815 platform_device_put(pdev);
816 exit:
817 return err;
820 static int __devinit via686a_pci_probe(struct pci_dev *dev,
821 const struct pci_device_id *id)
823 u16 address, val;
825 if (force_addr) {
826 address = force_addr & ~(VIA686A_EXTENT - 1);
827 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
828 if (PCIBIOS_SUCCESSFUL !=
829 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
830 return -ENODEV;
832 if (PCIBIOS_SUCCESSFUL !=
833 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
834 return -ENODEV;
836 address = val & ~(VIA686A_EXTENT - 1);
837 if (address == 0) {
838 dev_err(&dev->dev, "base address not set - upgrade BIOS "
839 "or use force_addr=0xaddr\n");
840 return -ENODEV;
843 if (PCIBIOS_SUCCESSFUL !=
844 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
845 return -ENODEV;
846 if (!(val & 0x0001)) {
847 if (!force_addr) {
848 dev_warn(&dev->dev, "Sensors disabled, enable "
849 "with force_addr=0x%x\n", address);
850 return -ENODEV;
853 dev_warn(&dev->dev, "Enabling sensors\n");
854 if (PCIBIOS_SUCCESSFUL !=
855 pci_write_config_word(dev, VIA686A_ENABLE_REG,
856 val | 0x0001))
857 return -ENODEV;
860 if (platform_driver_register(&via686a_driver))
861 goto exit;
863 /* Sets global pdev as a side effect */
864 if (via686a_device_add(address))
865 goto exit_unregister;
867 /* Always return failure here. This is to allow other drivers to bind
868 * to this pci device. We don't really want to have control over the
869 * pci device, we only wanted to read as few register values from it.
871 s_bridge = pci_dev_get(dev);
872 return -ENODEV;
874 exit_unregister:
875 platform_driver_unregister(&via686a_driver);
876 exit:
877 return -ENODEV;
880 static struct pci_driver via686a_pci_driver = {
881 .name = "via686a",
882 .id_table = via686a_pci_ids,
883 .probe = via686a_pci_probe,
886 static int __init sm_via686a_init(void)
888 return pci_register_driver(&via686a_pci_driver);
891 static void __exit sm_via686a_exit(void)
893 pci_unregister_driver(&via686a_pci_driver);
894 if (s_bridge != NULL) {
895 platform_device_unregister(pdev);
896 platform_driver_unregister(&via686a_driver);
897 pci_dev_put(s_bridge);
898 s_bridge = NULL;
902 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
903 "Mark Studebaker <mdsxyz123@yahoo.com> "
904 "and Bob Dougherty <bobd@stanford.edu>");
905 MODULE_DESCRIPTION("VIA 686A Sensor device");
906 MODULE_LICENSE("GPL");
908 module_init(sm_via686a_init);
909 module_exit(sm_via686a_exit);