4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_DEVICES 256
36 * EV_ABS events which should not be cached are listed here.
38 static unsigned int input_abs_bypass_init_data
[] __initdata
= {
52 static unsigned long input_abs_bypass
[BITS_TO_LONGS(ABS_CNT
)];
54 static LIST_HEAD(input_dev_list
);
55 static LIST_HEAD(input_handler_list
);
58 * input_mutex protects access to both input_dev_list and input_handler_list.
59 * This also causes input_[un]register_device and input_[un]register_handler
60 * be mutually exclusive which simplifies locking in drivers implementing
63 static DEFINE_MUTEX(input_mutex
);
65 static struct input_handler
*input_table
[8];
67 static inline int is_event_supported(unsigned int code
,
68 unsigned long *bm
, unsigned int max
)
70 return code
<= max
&& test_bit(code
, bm
);
73 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
76 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
79 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
80 return (old_val
* 3 + value
) / 4;
82 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
83 return (old_val
+ value
) / 2;
90 * Pass event first through all filters and then, if event has not been
91 * filtered out, through all open handles. This function is called with
92 * dev->event_lock held and interrupts disabled.
94 static void input_pass_event(struct input_dev
*dev
,
95 unsigned int type
, unsigned int code
, int value
)
97 struct input_handler
*handler
;
98 struct input_handle
*handle
;
102 handle
= rcu_dereference(dev
->grab
);
104 handle
->handler
->event(handle
, type
, code
, value
);
106 bool filtered
= false;
108 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
112 handler
= handle
->handler
;
113 if (!handler
->filter
) {
117 handler
->event(handle
, type
, code
, value
);
119 } else if (handler
->filter(handle
, type
, code
, value
))
128 * Generate software autorepeat event. Note that we take
129 * dev->event_lock here to avoid racing with input_event
130 * which may cause keys get "stuck".
132 static void input_repeat_key(unsigned long data
)
134 struct input_dev
*dev
= (void *) data
;
137 spin_lock_irqsave(&dev
->event_lock
, flags
);
139 if (test_bit(dev
->repeat_key
, dev
->key
) &&
140 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
142 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
146 * Only send SYN_REPORT if we are not in a middle
147 * of driver parsing a new hardware packet.
148 * Otherwise assume that the driver will send
149 * SYN_REPORT once it's done.
151 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
154 if (dev
->rep
[REP_PERIOD
])
155 mod_timer(&dev
->timer
, jiffies
+
156 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
159 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
162 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
164 if (test_bit(EV_REP
, dev
->evbit
) &&
165 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
167 dev
->repeat_key
= code
;
168 mod_timer(&dev
->timer
,
169 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
173 static void input_stop_autorepeat(struct input_dev
*dev
)
175 del_timer(&dev
->timer
);
178 #define INPUT_IGNORE_EVENT 0
179 #define INPUT_PASS_TO_HANDLERS 1
180 #define INPUT_PASS_TO_DEVICE 2
181 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
183 static void input_handle_event(struct input_dev
*dev
,
184 unsigned int type
, unsigned int code
, int value
)
186 int disposition
= INPUT_IGNORE_EVENT
;
193 disposition
= INPUT_PASS_TO_ALL
;
199 disposition
= INPUT_PASS_TO_HANDLERS
;
204 disposition
= INPUT_PASS_TO_HANDLERS
;
210 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
211 !!test_bit(code
, dev
->key
) != value
) {
214 __change_bit(code
, dev
->key
);
216 input_start_autorepeat(dev
, code
);
218 input_stop_autorepeat(dev
);
221 disposition
= INPUT_PASS_TO_HANDLERS
;
226 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
227 !!test_bit(code
, dev
->sw
) != value
) {
229 __change_bit(code
, dev
->sw
);
230 disposition
= INPUT_PASS_TO_HANDLERS
;
235 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
)) {
237 if (test_bit(code
, input_abs_bypass
)) {
238 disposition
= INPUT_PASS_TO_HANDLERS
;
242 value
= input_defuzz_abs_event(value
,
243 dev
->abs
[code
], dev
->absfuzz
[code
]);
245 if (dev
->abs
[code
] != value
) {
246 dev
->abs
[code
] = value
;
247 disposition
= INPUT_PASS_TO_HANDLERS
;
253 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
254 disposition
= INPUT_PASS_TO_HANDLERS
;
259 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
260 disposition
= INPUT_PASS_TO_ALL
;
265 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
266 !!test_bit(code
, dev
->led
) != value
) {
268 __change_bit(code
, dev
->led
);
269 disposition
= INPUT_PASS_TO_ALL
;
274 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
276 if (!!test_bit(code
, dev
->snd
) != !!value
)
277 __change_bit(code
, dev
->snd
);
278 disposition
= INPUT_PASS_TO_ALL
;
283 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
284 dev
->rep
[code
] = value
;
285 disposition
= INPUT_PASS_TO_ALL
;
291 disposition
= INPUT_PASS_TO_ALL
;
295 disposition
= INPUT_PASS_TO_ALL
;
299 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
302 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
303 dev
->event(dev
, type
, code
, value
);
305 if (disposition
& INPUT_PASS_TO_HANDLERS
)
306 input_pass_event(dev
, type
, code
, value
);
310 * input_event() - report new input event
311 * @dev: device that generated the event
312 * @type: type of the event
314 * @value: value of the event
316 * This function should be used by drivers implementing various input
317 * devices to report input events. See also input_inject_event().
319 * NOTE: input_event() may be safely used right after input device was
320 * allocated with input_allocate_device(), even before it is registered
321 * with input_register_device(), but the event will not reach any of the
322 * input handlers. Such early invocation of input_event() may be used
323 * to 'seed' initial state of a switch or initial position of absolute
326 void input_event(struct input_dev
*dev
,
327 unsigned int type
, unsigned int code
, int value
)
331 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
333 spin_lock_irqsave(&dev
->event_lock
, flags
);
334 add_input_randomness(type
, code
, value
);
335 input_handle_event(dev
, type
, code
, value
);
336 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
339 EXPORT_SYMBOL(input_event
);
342 * input_inject_event() - send input event from input handler
343 * @handle: input handle to send event through
344 * @type: type of the event
346 * @value: value of the event
348 * Similar to input_event() but will ignore event if device is
349 * "grabbed" and handle injecting event is not the one that owns
352 void input_inject_event(struct input_handle
*handle
,
353 unsigned int type
, unsigned int code
, int value
)
355 struct input_dev
*dev
= handle
->dev
;
356 struct input_handle
*grab
;
359 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
360 spin_lock_irqsave(&dev
->event_lock
, flags
);
363 grab
= rcu_dereference(dev
->grab
);
364 if (!grab
|| grab
== handle
)
365 input_handle_event(dev
, type
, code
, value
);
368 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
371 EXPORT_SYMBOL(input_inject_event
);
374 * input_grab_device - grabs device for exclusive use
375 * @handle: input handle that wants to own the device
377 * When a device is grabbed by an input handle all events generated by
378 * the device are delivered only to this handle. Also events injected
379 * by other input handles are ignored while device is grabbed.
381 int input_grab_device(struct input_handle
*handle
)
383 struct input_dev
*dev
= handle
->dev
;
386 retval
= mutex_lock_interruptible(&dev
->mutex
);
395 rcu_assign_pointer(dev
->grab
, handle
);
399 mutex_unlock(&dev
->mutex
);
402 EXPORT_SYMBOL(input_grab_device
);
404 static void __input_release_device(struct input_handle
*handle
)
406 struct input_dev
*dev
= handle
->dev
;
408 if (dev
->grab
== handle
) {
409 rcu_assign_pointer(dev
->grab
, NULL
);
410 /* Make sure input_pass_event() notices that grab is gone */
413 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
414 if (handle
->open
&& handle
->handler
->start
)
415 handle
->handler
->start(handle
);
420 * input_release_device - release previously grabbed device
421 * @handle: input handle that owns the device
423 * Releases previously grabbed device so that other input handles can
424 * start receiving input events. Upon release all handlers attached
425 * to the device have their start() method called so they have a change
426 * to synchronize device state with the rest of the system.
428 void input_release_device(struct input_handle
*handle
)
430 struct input_dev
*dev
= handle
->dev
;
432 mutex_lock(&dev
->mutex
);
433 __input_release_device(handle
);
434 mutex_unlock(&dev
->mutex
);
436 EXPORT_SYMBOL(input_release_device
);
439 * input_open_device - open input device
440 * @handle: handle through which device is being accessed
442 * This function should be called by input handlers when they
443 * want to start receive events from given input device.
445 int input_open_device(struct input_handle
*handle
)
447 struct input_dev
*dev
= handle
->dev
;
450 retval
= mutex_lock_interruptible(&dev
->mutex
);
454 if (dev
->going_away
) {
461 if (!dev
->users
++ && dev
->open
)
462 retval
= dev
->open(dev
);
466 if (!--handle
->open
) {
468 * Make sure we are not delivering any more events
469 * through this handle
476 mutex_unlock(&dev
->mutex
);
479 EXPORT_SYMBOL(input_open_device
);
481 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
483 struct input_dev
*dev
= handle
->dev
;
486 retval
= mutex_lock_interruptible(&dev
->mutex
);
491 retval
= dev
->flush(dev
, file
);
493 mutex_unlock(&dev
->mutex
);
496 EXPORT_SYMBOL(input_flush_device
);
499 * input_close_device - close input device
500 * @handle: handle through which device is being accessed
502 * This function should be called by input handlers when they
503 * want to stop receive events from given input device.
505 void input_close_device(struct input_handle
*handle
)
507 struct input_dev
*dev
= handle
->dev
;
509 mutex_lock(&dev
->mutex
);
511 __input_release_device(handle
);
513 if (!--dev
->users
&& dev
->close
)
516 if (!--handle
->open
) {
518 * synchronize_rcu() makes sure that input_pass_event()
519 * completed and that no more input events are delivered
520 * through this handle
525 mutex_unlock(&dev
->mutex
);
527 EXPORT_SYMBOL(input_close_device
);
530 * Prepare device for unregistering
532 static void input_disconnect_device(struct input_dev
*dev
)
534 struct input_handle
*handle
;
538 * Mark device as going away. Note that we take dev->mutex here
539 * not to protect access to dev->going_away but rather to ensure
540 * that there are no threads in the middle of input_open_device()
542 mutex_lock(&dev
->mutex
);
543 dev
->going_away
= true;
544 mutex_unlock(&dev
->mutex
);
546 spin_lock_irq(&dev
->event_lock
);
549 * Simulate keyup events for all pressed keys so that handlers
550 * are not left with "stuck" keys. The driver may continue
551 * generate events even after we done here but they will not
552 * reach any handlers.
554 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
555 for (code
= 0; code
<= KEY_MAX
; code
++) {
556 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
557 __test_and_clear_bit(code
, dev
->key
)) {
558 input_pass_event(dev
, EV_KEY
, code
, 0);
561 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
564 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
567 spin_unlock_irq(&dev
->event_lock
);
570 static int input_fetch_keycode(struct input_dev
*dev
, int scancode
)
572 switch (dev
->keycodesize
) {
574 return ((u8
*)dev
->keycode
)[scancode
];
577 return ((u16
*)dev
->keycode
)[scancode
];
580 return ((u32
*)dev
->keycode
)[scancode
];
584 static int input_default_getkeycode(struct input_dev
*dev
,
585 unsigned int scancode
,
586 unsigned int *keycode
)
588 if (!dev
->keycodesize
)
591 if (scancode
>= dev
->keycodemax
)
594 *keycode
= input_fetch_keycode(dev
, scancode
);
599 static int input_default_setkeycode(struct input_dev
*dev
,
600 unsigned int scancode
,
601 unsigned int keycode
)
606 if (scancode
>= dev
->keycodemax
)
609 if (!dev
->keycodesize
)
612 if (dev
->keycodesize
< sizeof(keycode
) && (keycode
>> (dev
->keycodesize
* 8)))
615 switch (dev
->keycodesize
) {
617 u8
*k
= (u8
*)dev
->keycode
;
618 old_keycode
= k
[scancode
];
619 k
[scancode
] = keycode
;
623 u16
*k
= (u16
*)dev
->keycode
;
624 old_keycode
= k
[scancode
];
625 k
[scancode
] = keycode
;
629 u32
*k
= (u32
*)dev
->keycode
;
630 old_keycode
= k
[scancode
];
631 k
[scancode
] = keycode
;
636 __clear_bit(old_keycode
, dev
->keybit
);
637 __set_bit(keycode
, dev
->keybit
);
639 for (i
= 0; i
< dev
->keycodemax
; i
++) {
640 if (input_fetch_keycode(dev
, i
) == old_keycode
) {
641 __set_bit(old_keycode
, dev
->keybit
);
642 break; /* Setting the bit twice is useless, so break */
650 * input_get_keycode - retrieve keycode currently mapped to a given scancode
651 * @dev: input device which keymap is being queried
652 * @scancode: scancode (or its equivalent for device in question) for which
656 * This function should be called by anyone interested in retrieving current
657 * keymap. Presently keyboard and evdev handlers use it.
659 int input_get_keycode(struct input_dev
*dev
,
660 unsigned int scancode
, unsigned int *keycode
)
662 return dev
->getkeycode(dev
, scancode
, keycode
);
664 EXPORT_SYMBOL(input_get_keycode
);
667 * input_get_keycode - assign new keycode to a given scancode
668 * @dev: input device which keymap is being updated
669 * @scancode: scancode (or its equivalent for device in question)
670 * @keycode: new keycode to be assigned to the scancode
672 * This function should be called by anyone needing to update current
673 * keymap. Presently keyboard and evdev handlers use it.
675 int input_set_keycode(struct input_dev
*dev
,
676 unsigned int scancode
, unsigned int keycode
)
682 if (keycode
> KEY_MAX
)
685 spin_lock_irqsave(&dev
->event_lock
, flags
);
687 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
691 retval
= dev
->setkeycode(dev
, scancode
, keycode
);
695 /* Make sure KEY_RESERVED did not get enabled. */
696 __clear_bit(KEY_RESERVED
, dev
->keybit
);
699 * Simulate keyup event if keycode is not present
700 * in the keymap anymore
702 if (test_bit(EV_KEY
, dev
->evbit
) &&
703 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
704 __test_and_clear_bit(old_keycode
, dev
->key
)) {
706 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
708 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
712 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
716 EXPORT_SYMBOL(input_set_keycode
);
718 #define MATCH_BIT(bit, max) \
719 for (i = 0; i < BITS_TO_LONGS(max); i++) \
720 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
722 if (i != BITS_TO_LONGS(max)) \
725 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
726 struct input_dev
*dev
)
728 const struct input_device_id
*id
;
731 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
733 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
734 if (id
->bustype
!= dev
->id
.bustype
)
737 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
738 if (id
->vendor
!= dev
->id
.vendor
)
741 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
742 if (id
->product
!= dev
->id
.product
)
745 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
746 if (id
->version
!= dev
->id
.version
)
749 MATCH_BIT(evbit
, EV_MAX
);
750 MATCH_BIT(keybit
, KEY_MAX
);
751 MATCH_BIT(relbit
, REL_MAX
);
752 MATCH_BIT(absbit
, ABS_MAX
);
753 MATCH_BIT(mscbit
, MSC_MAX
);
754 MATCH_BIT(ledbit
, LED_MAX
);
755 MATCH_BIT(sndbit
, SND_MAX
);
756 MATCH_BIT(ffbit
, FF_MAX
);
757 MATCH_BIT(swbit
, SW_MAX
);
759 if (!handler
->match
|| handler
->match(handler
, dev
))
766 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
768 const struct input_device_id
*id
;
771 id
= input_match_device(handler
, dev
);
775 error
= handler
->connect(handler
, dev
, id
);
776 if (error
&& error
!= -ENODEV
)
778 "input: failed to attach handler %s to device %s, "
780 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
787 static int input_bits_to_string(char *buf
, int buf_size
,
788 unsigned long bits
, bool skip_empty
)
792 if (INPUT_COMPAT_TEST
) {
793 u32 dword
= bits
>> 32;
794 if (dword
|| !skip_empty
)
795 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
797 dword
= bits
& 0xffffffffUL
;
798 if (dword
|| !skip_empty
|| len
)
799 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
802 if (bits
|| !skip_empty
)
803 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
809 #else /* !CONFIG_COMPAT */
811 static int input_bits_to_string(char *buf
, int buf_size
,
812 unsigned long bits
, bool skip_empty
)
814 return bits
|| !skip_empty
?
815 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
820 #ifdef CONFIG_PROC_FS
822 static struct proc_dir_entry
*proc_bus_input_dir
;
823 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
824 static int input_devices_state
;
826 static inline void input_wakeup_procfs_readers(void)
828 input_devices_state
++;
829 wake_up(&input_devices_poll_wait
);
832 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
834 poll_wait(file
, &input_devices_poll_wait
, wait
);
835 if (file
->f_version
!= input_devices_state
) {
836 file
->f_version
= input_devices_state
;
837 return POLLIN
| POLLRDNORM
;
843 union input_seq_state
{
851 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
853 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
856 /* We need to fit into seq->private pointer */
857 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
859 error
= mutex_lock_interruptible(&input_mutex
);
861 state
->mutex_acquired
= false;
862 return ERR_PTR(error
);
865 state
->mutex_acquired
= true;
867 return seq_list_start(&input_dev_list
, *pos
);
870 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
872 return seq_list_next(v
, &input_dev_list
, pos
);
875 static void input_seq_stop(struct seq_file
*seq
, void *v
)
877 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
879 if (state
->mutex_acquired
)
880 mutex_unlock(&input_mutex
);
883 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
884 unsigned long *bitmap
, int max
)
887 bool skip_empty
= true;
890 seq_printf(seq
, "B: %s=", name
);
892 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
893 if (input_bits_to_string(buf
, sizeof(buf
),
894 bitmap
[i
], skip_empty
)) {
896 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
901 * If no output was produced print a single 0.
909 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
911 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
912 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
913 struct input_handle
*handle
;
915 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
916 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
918 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
919 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
920 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
921 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
922 seq_printf(seq
, "H: Handlers=");
924 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
925 seq_printf(seq
, "%s ", handle
->name
);
928 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
929 if (test_bit(EV_KEY
, dev
->evbit
))
930 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
931 if (test_bit(EV_REL
, dev
->evbit
))
932 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
933 if (test_bit(EV_ABS
, dev
->evbit
))
934 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
935 if (test_bit(EV_MSC
, dev
->evbit
))
936 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
937 if (test_bit(EV_LED
, dev
->evbit
))
938 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
939 if (test_bit(EV_SND
, dev
->evbit
))
940 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
941 if (test_bit(EV_FF
, dev
->evbit
))
942 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
943 if (test_bit(EV_SW
, dev
->evbit
))
944 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
952 static const struct seq_operations input_devices_seq_ops
= {
953 .start
= input_devices_seq_start
,
954 .next
= input_devices_seq_next
,
955 .stop
= input_seq_stop
,
956 .show
= input_devices_seq_show
,
959 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
961 return seq_open(file
, &input_devices_seq_ops
);
964 static const struct file_operations input_devices_fileops
= {
965 .owner
= THIS_MODULE
,
966 .open
= input_proc_devices_open
,
967 .poll
= input_proc_devices_poll
,
970 .release
= seq_release
,
973 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
975 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
978 /* We need to fit into seq->private pointer */
979 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
981 error
= mutex_lock_interruptible(&input_mutex
);
983 state
->mutex_acquired
= false;
984 return ERR_PTR(error
);
987 state
->mutex_acquired
= true;
990 return seq_list_start(&input_handler_list
, *pos
);
993 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
995 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
997 state
->pos
= *pos
+ 1;
998 return seq_list_next(v
, &input_handler_list
, pos
);
1001 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1003 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1004 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1006 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1007 if (handler
->filter
)
1008 seq_puts(seq
, " (filter)");
1010 seq_printf(seq
, " Minor=%d", handler
->minor
);
1011 seq_putc(seq
, '\n');
1016 static const struct seq_operations input_handlers_seq_ops
= {
1017 .start
= input_handlers_seq_start
,
1018 .next
= input_handlers_seq_next
,
1019 .stop
= input_seq_stop
,
1020 .show
= input_handlers_seq_show
,
1023 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1025 return seq_open(file
, &input_handlers_seq_ops
);
1028 static const struct file_operations input_handlers_fileops
= {
1029 .owner
= THIS_MODULE
,
1030 .open
= input_proc_handlers_open
,
1032 .llseek
= seq_lseek
,
1033 .release
= seq_release
,
1036 static int __init
input_proc_init(void)
1038 struct proc_dir_entry
*entry
;
1040 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1041 if (!proc_bus_input_dir
)
1044 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1045 &input_devices_fileops
);
1049 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1050 &input_handlers_fileops
);
1056 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1057 fail1
: remove_proc_entry("bus/input", NULL
);
1061 static void input_proc_exit(void)
1063 remove_proc_entry("devices", proc_bus_input_dir
);
1064 remove_proc_entry("handlers", proc_bus_input_dir
);
1065 remove_proc_entry("bus/input", NULL
);
1068 #else /* !CONFIG_PROC_FS */
1069 static inline void input_wakeup_procfs_readers(void) { }
1070 static inline int input_proc_init(void) { return 0; }
1071 static inline void input_proc_exit(void) { }
1074 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1075 static ssize_t input_dev_show_##name(struct device *dev, \
1076 struct device_attribute *attr, \
1079 struct input_dev *input_dev = to_input_dev(dev); \
1081 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1082 input_dev->name ? input_dev->name : ""); \
1084 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1086 INPUT_DEV_STRING_ATTR_SHOW(name
);
1087 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1088 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1090 static int input_print_modalias_bits(char *buf
, int size
,
1091 char name
, unsigned long *bm
,
1092 unsigned int min_bit
, unsigned int max_bit
)
1096 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1097 for (i
= min_bit
; i
< max_bit
; i
++)
1098 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1099 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1103 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1108 len
= snprintf(buf
, max(size
, 0),
1109 "input:b%04Xv%04Xp%04Xe%04X-",
1110 id
->id
.bustype
, id
->id
.vendor
,
1111 id
->id
.product
, id
->id
.version
);
1113 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1114 'e', id
->evbit
, 0, EV_MAX
);
1115 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1116 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1117 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1118 'r', id
->relbit
, 0, REL_MAX
);
1119 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1120 'a', id
->absbit
, 0, ABS_MAX
);
1121 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1122 'm', id
->mscbit
, 0, MSC_MAX
);
1123 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1124 'l', id
->ledbit
, 0, LED_MAX
);
1125 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1126 's', id
->sndbit
, 0, SND_MAX
);
1127 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1128 'f', id
->ffbit
, 0, FF_MAX
);
1129 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1130 'w', id
->swbit
, 0, SW_MAX
);
1133 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1138 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1139 struct device_attribute
*attr
,
1142 struct input_dev
*id
= to_input_dev(dev
);
1145 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1147 return min_t(int, len
, PAGE_SIZE
);
1149 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1151 static struct attribute
*input_dev_attrs
[] = {
1152 &dev_attr_name
.attr
,
1153 &dev_attr_phys
.attr
,
1154 &dev_attr_uniq
.attr
,
1155 &dev_attr_modalias
.attr
,
1159 static struct attribute_group input_dev_attr_group
= {
1160 .attrs
= input_dev_attrs
,
1163 #define INPUT_DEV_ID_ATTR(name) \
1164 static ssize_t input_dev_show_id_##name(struct device *dev, \
1165 struct device_attribute *attr, \
1168 struct input_dev *input_dev = to_input_dev(dev); \
1169 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1171 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1173 INPUT_DEV_ID_ATTR(bustype
);
1174 INPUT_DEV_ID_ATTR(vendor
);
1175 INPUT_DEV_ID_ATTR(product
);
1176 INPUT_DEV_ID_ATTR(version
);
1178 static struct attribute
*input_dev_id_attrs
[] = {
1179 &dev_attr_bustype
.attr
,
1180 &dev_attr_vendor
.attr
,
1181 &dev_attr_product
.attr
,
1182 &dev_attr_version
.attr
,
1186 static struct attribute_group input_dev_id_attr_group
= {
1188 .attrs
= input_dev_id_attrs
,
1191 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1192 int max
, int add_cr
)
1196 bool skip_empty
= true;
1198 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1199 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1200 bitmap
[i
], skip_empty
);
1204 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1209 * If no output was produced print a single 0.
1212 len
= snprintf(buf
, buf_size
, "%d", 0);
1215 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1220 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1221 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1222 struct device_attribute *attr, \
1225 struct input_dev *input_dev = to_input_dev(dev); \
1226 int len = input_print_bitmap(buf, PAGE_SIZE, \
1227 input_dev->bm##bit, ev##_MAX, \
1229 return min_t(int, len, PAGE_SIZE); \
1231 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1233 INPUT_DEV_CAP_ATTR(EV
, ev
);
1234 INPUT_DEV_CAP_ATTR(KEY
, key
);
1235 INPUT_DEV_CAP_ATTR(REL
, rel
);
1236 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1237 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1238 INPUT_DEV_CAP_ATTR(LED
, led
);
1239 INPUT_DEV_CAP_ATTR(SND
, snd
);
1240 INPUT_DEV_CAP_ATTR(FF
, ff
);
1241 INPUT_DEV_CAP_ATTR(SW
, sw
);
1243 static struct attribute
*input_dev_caps_attrs
[] = {
1256 static struct attribute_group input_dev_caps_attr_group
= {
1257 .name
= "capabilities",
1258 .attrs
= input_dev_caps_attrs
,
1261 static const struct attribute_group
*input_dev_attr_groups
[] = {
1262 &input_dev_attr_group
,
1263 &input_dev_id_attr_group
,
1264 &input_dev_caps_attr_group
,
1268 static void input_dev_release(struct device
*device
)
1270 struct input_dev
*dev
= to_input_dev(device
);
1272 input_ff_destroy(dev
);
1275 module_put(THIS_MODULE
);
1279 * Input uevent interface - loading event handlers based on
1282 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1283 const char *name
, unsigned long *bitmap
, int max
)
1287 if (add_uevent_var(env
, "%s=", name
))
1290 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1291 sizeof(env
->buf
) - env
->buflen
,
1292 bitmap
, max
, false);
1293 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1300 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1301 struct input_dev
*dev
)
1305 if (add_uevent_var(env
, "MODALIAS="))
1308 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1309 sizeof(env
->buf
) - env
->buflen
,
1311 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1318 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1320 int err = add_uevent_var(env, fmt, val); \
1325 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1327 int err = input_add_uevent_bm_var(env, name, bm, max); \
1332 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1334 int err = input_add_uevent_modalias_var(env, dev); \
1339 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1341 struct input_dev
*dev
= to_input_dev(device
);
1343 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1344 dev
->id
.bustype
, dev
->id
.vendor
,
1345 dev
->id
.product
, dev
->id
.version
);
1347 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1349 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1351 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1353 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1354 if (test_bit(EV_KEY
, dev
->evbit
))
1355 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1356 if (test_bit(EV_REL
, dev
->evbit
))
1357 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1358 if (test_bit(EV_ABS
, dev
->evbit
))
1359 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1360 if (test_bit(EV_MSC
, dev
->evbit
))
1361 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1362 if (test_bit(EV_LED
, dev
->evbit
))
1363 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1364 if (test_bit(EV_SND
, dev
->evbit
))
1365 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1366 if (test_bit(EV_FF
, dev
->evbit
))
1367 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1368 if (test_bit(EV_SW
, dev
->evbit
))
1369 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1371 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1376 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1381 if (!test_bit(EV_##type, dev->evbit)) \
1384 for (i = 0; i < type##_MAX; i++) { \
1385 if (!test_bit(i, dev->bits##bit)) \
1388 active = test_bit(i, dev->bits); \
1389 if (!active && !on) \
1392 dev->event(dev, EV_##type, i, on ? active : 0); \
1397 static void input_dev_reset(struct input_dev
*dev
, bool activate
)
1402 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1403 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1405 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1406 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1407 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1411 static int input_dev_suspend(struct device
*dev
)
1413 struct input_dev
*input_dev
= to_input_dev(dev
);
1415 mutex_lock(&input_dev
->mutex
);
1416 input_dev_reset(input_dev
, false);
1417 mutex_unlock(&input_dev
->mutex
);
1422 static int input_dev_resume(struct device
*dev
)
1424 struct input_dev
*input_dev
= to_input_dev(dev
);
1426 mutex_lock(&input_dev
->mutex
);
1427 input_dev_reset(input_dev
, true);
1428 mutex_unlock(&input_dev
->mutex
);
1433 static const struct dev_pm_ops input_dev_pm_ops
= {
1434 .suspend
= input_dev_suspend
,
1435 .resume
= input_dev_resume
,
1436 .poweroff
= input_dev_suspend
,
1437 .restore
= input_dev_resume
,
1439 #endif /* CONFIG_PM */
1441 static struct device_type input_dev_type
= {
1442 .groups
= input_dev_attr_groups
,
1443 .release
= input_dev_release
,
1444 .uevent
= input_dev_uevent
,
1446 .pm
= &input_dev_pm_ops
,
1450 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1452 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1455 struct class input_class
= {
1457 .devnode
= input_devnode
,
1459 EXPORT_SYMBOL_GPL(input_class
);
1462 * input_allocate_device - allocate memory for new input device
1464 * Returns prepared struct input_dev or NULL.
1466 * NOTE: Use input_free_device() to free devices that have not been
1467 * registered; input_unregister_device() should be used for already
1468 * registered devices.
1470 struct input_dev
*input_allocate_device(void)
1472 struct input_dev
*dev
;
1474 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1476 dev
->dev
.type
= &input_dev_type
;
1477 dev
->dev
.class = &input_class
;
1478 device_initialize(&dev
->dev
);
1479 mutex_init(&dev
->mutex
);
1480 spin_lock_init(&dev
->event_lock
);
1481 INIT_LIST_HEAD(&dev
->h_list
);
1482 INIT_LIST_HEAD(&dev
->node
);
1484 __module_get(THIS_MODULE
);
1489 EXPORT_SYMBOL(input_allocate_device
);
1492 * input_free_device - free memory occupied by input_dev structure
1493 * @dev: input device to free
1495 * This function should only be used if input_register_device()
1496 * was not called yet or if it failed. Once device was registered
1497 * use input_unregister_device() and memory will be freed once last
1498 * reference to the device is dropped.
1500 * Device should be allocated by input_allocate_device().
1502 * NOTE: If there are references to the input device then memory
1503 * will not be freed until last reference is dropped.
1505 void input_free_device(struct input_dev
*dev
)
1508 input_put_device(dev
);
1510 EXPORT_SYMBOL(input_free_device
);
1513 * input_set_capability - mark device as capable of a certain event
1514 * @dev: device that is capable of emitting or accepting event
1515 * @type: type of the event (EV_KEY, EV_REL, etc...)
1518 * In addition to setting up corresponding bit in appropriate capability
1519 * bitmap the function also adjusts dev->evbit.
1521 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1525 __set_bit(code
, dev
->keybit
);
1529 __set_bit(code
, dev
->relbit
);
1533 __set_bit(code
, dev
->absbit
);
1537 __set_bit(code
, dev
->mscbit
);
1541 __set_bit(code
, dev
->swbit
);
1545 __set_bit(code
, dev
->ledbit
);
1549 __set_bit(code
, dev
->sndbit
);
1553 __set_bit(code
, dev
->ffbit
);
1562 "input_set_capability: unknown type %u (code %u)\n",
1568 __set_bit(type
, dev
->evbit
);
1570 EXPORT_SYMBOL(input_set_capability
);
1572 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1574 if (!test_bit(EV_##type, dev->evbit)) \
1575 memset(dev->bits##bit, 0, \
1576 sizeof(dev->bits##bit)); \
1579 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1581 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1582 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1583 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1584 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1585 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1586 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1587 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1588 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1592 * input_register_device - register device with input core
1593 * @dev: device to be registered
1595 * This function registers device with input core. The device must be
1596 * allocated with input_allocate_device() and all it's capabilities
1597 * set up before registering.
1598 * If function fails the device must be freed with input_free_device().
1599 * Once device has been successfully registered it can be unregistered
1600 * with input_unregister_device(); input_free_device() should not be
1601 * called in this case.
1603 int input_register_device(struct input_dev
*dev
)
1605 static atomic_t input_no
= ATOMIC_INIT(0);
1606 struct input_handler
*handler
;
1610 /* Every input device generates EV_SYN/SYN_REPORT events. */
1611 __set_bit(EV_SYN
, dev
->evbit
);
1613 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1614 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1616 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1617 input_cleanse_bitmasks(dev
);
1620 * If delay and period are pre-set by the driver, then autorepeating
1621 * is handled by the driver itself and we don't do it in input.c.
1623 init_timer(&dev
->timer
);
1624 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1625 dev
->timer
.data
= (long) dev
;
1626 dev
->timer
.function
= input_repeat_key
;
1627 dev
->rep
[REP_DELAY
] = 250;
1628 dev
->rep
[REP_PERIOD
] = 33;
1631 if (!dev
->getkeycode
)
1632 dev
->getkeycode
= input_default_getkeycode
;
1634 if (!dev
->setkeycode
)
1635 dev
->setkeycode
= input_default_setkeycode
;
1637 dev_set_name(&dev
->dev
, "input%ld",
1638 (unsigned long) atomic_inc_return(&input_no
) - 1);
1640 error
= device_add(&dev
->dev
);
1644 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1645 printk(KERN_INFO
"input: %s as %s\n",
1646 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1649 error
= mutex_lock_interruptible(&input_mutex
);
1651 device_del(&dev
->dev
);
1655 list_add_tail(&dev
->node
, &input_dev_list
);
1657 list_for_each_entry(handler
, &input_handler_list
, node
)
1658 input_attach_handler(dev
, handler
);
1660 input_wakeup_procfs_readers();
1662 mutex_unlock(&input_mutex
);
1666 EXPORT_SYMBOL(input_register_device
);
1669 * input_unregister_device - unregister previously registered device
1670 * @dev: device to be unregistered
1672 * This function unregisters an input device. Once device is unregistered
1673 * the caller should not try to access it as it may get freed at any moment.
1675 void input_unregister_device(struct input_dev
*dev
)
1677 struct input_handle
*handle
, *next
;
1679 input_disconnect_device(dev
);
1681 mutex_lock(&input_mutex
);
1683 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1684 handle
->handler
->disconnect(handle
);
1685 WARN_ON(!list_empty(&dev
->h_list
));
1687 del_timer_sync(&dev
->timer
);
1688 list_del_init(&dev
->node
);
1690 input_wakeup_procfs_readers();
1692 mutex_unlock(&input_mutex
);
1694 device_unregister(&dev
->dev
);
1696 EXPORT_SYMBOL(input_unregister_device
);
1699 * input_register_handler - register a new input handler
1700 * @handler: handler to be registered
1702 * This function registers a new input handler (interface) for input
1703 * devices in the system and attaches it to all input devices that
1704 * are compatible with the handler.
1706 int input_register_handler(struct input_handler
*handler
)
1708 struct input_dev
*dev
;
1711 retval
= mutex_lock_interruptible(&input_mutex
);
1715 INIT_LIST_HEAD(&handler
->h_list
);
1717 if (handler
->fops
!= NULL
) {
1718 if (input_table
[handler
->minor
>> 5]) {
1722 input_table
[handler
->minor
>> 5] = handler
;
1725 list_add_tail(&handler
->node
, &input_handler_list
);
1727 list_for_each_entry(dev
, &input_dev_list
, node
)
1728 input_attach_handler(dev
, handler
);
1730 input_wakeup_procfs_readers();
1733 mutex_unlock(&input_mutex
);
1736 EXPORT_SYMBOL(input_register_handler
);
1739 * input_unregister_handler - unregisters an input handler
1740 * @handler: handler to be unregistered
1742 * This function disconnects a handler from its input devices and
1743 * removes it from lists of known handlers.
1745 void input_unregister_handler(struct input_handler
*handler
)
1747 struct input_handle
*handle
, *next
;
1749 mutex_lock(&input_mutex
);
1751 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1752 handler
->disconnect(handle
);
1753 WARN_ON(!list_empty(&handler
->h_list
));
1755 list_del_init(&handler
->node
);
1757 if (handler
->fops
!= NULL
)
1758 input_table
[handler
->minor
>> 5] = NULL
;
1760 input_wakeup_procfs_readers();
1762 mutex_unlock(&input_mutex
);
1764 EXPORT_SYMBOL(input_unregister_handler
);
1767 * input_handler_for_each_handle - handle iterator
1768 * @handler: input handler to iterate
1769 * @data: data for the callback
1770 * @fn: function to be called for each handle
1772 * Iterate over @bus's list of devices, and call @fn for each, passing
1773 * it @data and stop when @fn returns a non-zero value. The function is
1774 * using RCU to traverse the list and therefore may be usind in atonic
1775 * contexts. The @fn callback is invoked from RCU critical section and
1776 * thus must not sleep.
1778 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1779 int (*fn
)(struct input_handle
*, void *))
1781 struct input_handle
*handle
;
1786 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
1787 retval
= fn(handle
, data
);
1796 EXPORT_SYMBOL(input_handler_for_each_handle
);
1799 * input_register_handle - register a new input handle
1800 * @handle: handle to register
1802 * This function puts a new input handle onto device's
1803 * and handler's lists so that events can flow through
1804 * it once it is opened using input_open_device().
1806 * This function is supposed to be called from handler's
1809 int input_register_handle(struct input_handle
*handle
)
1811 struct input_handler
*handler
= handle
->handler
;
1812 struct input_dev
*dev
= handle
->dev
;
1816 * We take dev->mutex here to prevent race with
1817 * input_release_device().
1819 error
= mutex_lock_interruptible(&dev
->mutex
);
1824 * Filters go to the head of the list, normal handlers
1827 if (handler
->filter
)
1828 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
1830 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
1832 mutex_unlock(&dev
->mutex
);
1835 * Since we are supposed to be called from ->connect()
1836 * which is mutually exclusive with ->disconnect()
1837 * we can't be racing with input_unregister_handle()
1838 * and so separate lock is not needed here.
1840 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
1843 handler
->start(handle
);
1847 EXPORT_SYMBOL(input_register_handle
);
1850 * input_unregister_handle - unregister an input handle
1851 * @handle: handle to unregister
1853 * This function removes input handle from device's
1854 * and handler's lists.
1856 * This function is supposed to be called from handler's
1857 * disconnect() method.
1859 void input_unregister_handle(struct input_handle
*handle
)
1861 struct input_dev
*dev
= handle
->dev
;
1863 list_del_rcu(&handle
->h_node
);
1866 * Take dev->mutex to prevent race with input_release_device().
1868 mutex_lock(&dev
->mutex
);
1869 list_del_rcu(&handle
->d_node
);
1870 mutex_unlock(&dev
->mutex
);
1874 EXPORT_SYMBOL(input_unregister_handle
);
1876 static int input_open_file(struct inode
*inode
, struct file
*file
)
1878 struct input_handler
*handler
;
1879 const struct file_operations
*old_fops
, *new_fops
= NULL
;
1882 err
= mutex_lock_interruptible(&input_mutex
);
1886 /* No load-on-demand here? */
1887 handler
= input_table
[iminor(inode
) >> 5];
1889 new_fops
= fops_get(handler
->fops
);
1891 mutex_unlock(&input_mutex
);
1894 * That's _really_ odd. Usually NULL ->open means "nothing special",
1895 * not "no device". Oh, well...
1897 if (!new_fops
|| !new_fops
->open
) {
1903 old_fops
= file
->f_op
;
1904 file
->f_op
= new_fops
;
1906 err
= new_fops
->open(inode
, file
);
1908 fops_put(file
->f_op
);
1909 file
->f_op
= fops_get(old_fops
);
1916 static const struct file_operations input_fops
= {
1917 .owner
= THIS_MODULE
,
1918 .open
= input_open_file
,
1921 static void __init
input_init_abs_bypass(void)
1923 const unsigned int *p
;
1925 for (p
= input_abs_bypass_init_data
; *p
; p
++)
1926 input_abs_bypass
[BIT_WORD(*p
)] |= BIT_MASK(*p
);
1929 static int __init
input_init(void)
1933 input_init_abs_bypass();
1935 err
= class_register(&input_class
);
1937 printk(KERN_ERR
"input: unable to register input_dev class\n");
1941 err
= input_proc_init();
1945 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
1947 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
1953 fail2
: input_proc_exit();
1954 fail1
: class_unregister(&input_class
);
1958 static void __exit
input_exit(void)
1961 unregister_chrdev(INPUT_MAJOR
, "input");
1962 class_unregister(&input_class
);
1965 subsys_initcall(input_init
);
1966 module_exit(input_exit
);