2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
135 #include "therm_pm72.h"
137 #define VERSION "1.3"
142 #define DBG(args...) printk(args)
144 #define DBG(args...) do { } while(0)
152 static struct of_device
* of_dev
;
153 static struct i2c_adapter
* u3_0
;
154 static struct i2c_adapter
* u3_1
;
155 static struct i2c_adapter
* k2
;
156 static struct i2c_client
* fcu
;
157 static struct cpu_pid_state cpu_state
[2];
158 static struct basckside_pid_params backside_params
;
159 static struct backside_pid_state backside_state
;
160 static struct drives_pid_state drives_state
;
161 static struct dimm_pid_state dimms_state
;
162 static struct slots_pid_state slots_state
;
164 static int cpu_count
;
165 static int cpu_pid_type
;
166 static struct task_struct
*ctrl_task
;
167 static struct completion ctrl_complete
;
168 static int critical_state
;
170 static s32 dimm_output_clamp
;
171 static int fcu_rpm_shift
;
172 static int fcu_tickle_ticks
;
173 static DEFINE_MUTEX(driver_lock
);
176 * We have 3 types of CPU PID control. One is "split" old style control
177 * for intake & exhaust fans, the other is "combined" control for both
178 * CPUs that also deals with the pumps when present. To be "compatible"
179 * with OS X at this point, we only use "COMBINED" on the machines that
180 * are identified as having the pumps (though that identification is at
181 * least dodgy). Ultimately, we could probably switch completely to this
182 * algorithm provided we hack it to deal with the UP case
184 #define CPU_PID_TYPE_SPLIT 0
185 #define CPU_PID_TYPE_COMBINED 1
186 #define CPU_PID_TYPE_RACKMAC 2
189 * This table describes all fans in the FCU. The "id" and "type" values
190 * are defaults valid for all earlier machines. Newer machines will
191 * eventually override the table content based on the device-tree
195 char* loc
; /* location code */
196 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
197 int id
; /* id or -1 */
200 #define FCU_FAN_RPM 0
201 #define FCU_FAN_PWM 1
203 #define FCU_FAN_ABSENT_ID -1
205 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
207 struct fcu_fan_table fcu_fans
[] = {
208 [BACKSIDE_FAN_PWM_INDEX
] = {
209 .loc
= "BACKSIDE,SYS CTRLR FAN",
211 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
213 [DRIVES_FAN_RPM_INDEX
] = {
216 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
218 [SLOTS_FAN_PWM_INDEX
] = {
219 .loc
= "SLOT,PCI FAN",
221 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
223 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
224 .loc
= "CPU A INTAKE",
226 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
228 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
229 .loc
= "CPU A EXHAUST",
231 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
233 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
234 .loc
= "CPU B INTAKE",
236 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
238 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
239 .loc
= "CPU B EXHAUST",
241 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
243 /* pumps aren't present by default, have to be looked up in the
246 [CPUA_PUMP_RPM_INDEX
] = {
249 .id
= FCU_FAN_ABSENT_ID
,
251 [CPUB_PUMP_RPM_INDEX
] = {
254 .id
= FCU_FAN_ABSENT_ID
,
257 [CPU_A1_FAN_RPM_INDEX
] = {
260 .id
= FCU_FAN_ABSENT_ID
,
262 [CPU_A2_FAN_RPM_INDEX
] = {
265 .id
= FCU_FAN_ABSENT_ID
,
267 [CPU_A3_FAN_RPM_INDEX
] = {
270 .id
= FCU_FAN_ABSENT_ID
,
272 [CPU_B1_FAN_RPM_INDEX
] = {
275 .id
= FCU_FAN_ABSENT_ID
,
277 [CPU_B2_FAN_RPM_INDEX
] = {
280 .id
= FCU_FAN_ABSENT_ID
,
282 [CPU_B3_FAN_RPM_INDEX
] = {
285 .id
= FCU_FAN_ABSENT_ID
,
289 static struct i2c_driver therm_pm72_driver
;
292 * Utility function to create an i2c_client structure and
293 * attach it to one of u3 adapters
295 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
297 struct i2c_client
*clt
;
298 struct i2c_adapter
*adap
;
299 struct i2c_board_info info
;
310 memset(&info
, 0, sizeof(struct i2c_board_info
));
311 info
.addr
= (id
>> 1) & 0x7f;
312 strlcpy(info
.type
, "therm_pm72", I2C_NAME_SIZE
);
313 clt
= i2c_new_device(adap
, &info
);
315 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
320 * Let i2c-core delete that device on driver removal.
321 * This is safe because i2c-core holds the core_lock mutex for us.
323 list_add_tail(&clt
->detected
, &therm_pm72_driver
.clients
);
328 * Here are the i2c chip access wrappers
331 static void initialize_adc(struct cpu_pid_state
*state
)
336 /* Read ADC the configuration register and cache it. We
337 * also make sure Config2 contains proper values, I've seen
338 * cases where we got stale grabage in there, thus preventing
339 * proper reading of conv. values
345 i2c_master_send(state
->monitor
, buf
, 2);
347 /* Read & cache Config1 */
349 rc
= i2c_master_send(state
->monitor
, buf
, 1);
351 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
353 state
->adc_config
= buf
[0];
354 DBG("ADC config reg: %02x\n", state
->adc_config
);
355 /* Disable shutdown mode */
356 state
->adc_config
&= 0xfe;
358 buf
[1] = state
->adc_config
;
359 rc
= i2c_master_send(state
->monitor
, buf
, 2);
363 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
367 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
369 int rc
, data
, tries
= 0;
375 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
376 rc
= i2c_master_send(state
->monitor
, buf
, 2);
379 /* Wait for convertion */
381 /* Switch to data register */
383 rc
= i2c_master_send(state
->monitor
, buf
, 1);
387 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
390 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
393 DBG("Error reading ADC, retrying...\n");
395 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
402 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
410 rc
= i2c_master_send(chip
, &buf
, 1);
413 rc
= i2c_master_recv(chip
, &buf
, 1);
418 DBG("Error reading LM87, retrying...\n");
420 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
427 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
434 nw
= i2c_master_send(fcu
, buf
, 1);
435 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
441 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
446 nr
= i2c_master_recv(fcu
, buf
, nb
);
447 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
453 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
457 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
460 unsigned char buf
[16];
463 memcpy(buf
+1, ptr
, nb
);
467 nw
= i2c_master_send(fcu
, buf
, nb
);
468 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
474 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
478 static int start_fcu(void)
480 unsigned char buf
= 0xff;
483 rc
= fan_write_reg(0xe, &buf
, 1);
486 rc
= fan_write_reg(0x2e, &buf
, 1);
489 rc
= fan_read_reg(0, &buf
, 1);
492 fcu_rpm_shift
= (buf
== 1) ? 2 : 3;
493 printk(KERN_DEBUG
"FCU Initialized, RPM fan shift is %d\n",
499 static int set_rpm_fan(int fan_index
, int rpm
)
501 unsigned char buf
[2];
502 int rc
, id
, min
, max
;
504 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
506 id
= fcu_fans
[fan_index
].id
;
507 if (id
== FCU_FAN_ABSENT_ID
)
510 min
= 2400 >> fcu_rpm_shift
;
511 max
= 56000 >> fcu_rpm_shift
;
517 buf
[0] = rpm
>> (8 - fcu_rpm_shift
);
518 buf
[1] = rpm
<< fcu_rpm_shift
;
519 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
525 static int get_rpm_fan(int fan_index
, int programmed
)
527 unsigned char failure
;
528 unsigned char active
;
529 unsigned char buf
[2];
530 int rc
, id
, reg_base
;
532 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
534 id
= fcu_fans
[fan_index
].id
;
535 if (id
== FCU_FAN_ABSENT_ID
)
538 rc
= fan_read_reg(0xb, &failure
, 1);
541 if ((failure
& (1 << id
)) != 0)
543 rc
= fan_read_reg(0xd, &active
, 1);
546 if ((active
& (1 << id
)) == 0)
549 /* Programmed value or real current speed */
550 reg_base
= programmed
? 0x10 : 0x11;
551 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
555 return (buf
[0] << (8 - fcu_rpm_shift
)) | buf
[1] >> fcu_rpm_shift
;
558 static int set_pwm_fan(int fan_index
, int pwm
)
560 unsigned char buf
[2];
563 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
565 id
= fcu_fans
[fan_index
].id
;
566 if (id
== FCU_FAN_ABSENT_ID
)
573 pwm
= (pwm
* 2559) / 1000;
575 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
581 static int get_pwm_fan(int fan_index
)
583 unsigned char failure
;
584 unsigned char active
;
585 unsigned char buf
[2];
588 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
590 id
= fcu_fans
[fan_index
].id
;
591 if (id
== FCU_FAN_ABSENT_ID
)
594 rc
= fan_read_reg(0x2b, &failure
, 1);
597 if ((failure
& (1 << id
)) != 0)
599 rc
= fan_read_reg(0x2d, &active
, 1);
602 if ((active
& (1 << id
)) == 0)
605 /* Programmed value or real current speed */
606 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
610 return (buf
[0] * 1000) / 2559;
613 static void tickle_fcu(void)
617 pwm
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
619 DBG("FCU Tickle, slots fan is: %d\n", pwm
);
624 pwm
= SLOTS_FAN_DEFAULT_PWM
;
625 } else if (pwm
< SLOTS_PID_OUTPUT_MIN
)
626 pwm
= SLOTS_PID_OUTPUT_MIN
;
628 /* That is hopefully enough to make the FCU happy */
629 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, pwm
);
634 * Utility routine to read the CPU calibration EEPROM data
635 * from the device-tree
637 static int read_eeprom(int cpu
, struct mpu_data
*out
)
639 struct device_node
*np
;
644 /* prom.c routine for finding a node by path is a bit brain dead
645 * and requires exact @xxx unit numbers. This is a bit ugly but
646 * will work for these machines
648 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
649 np
= of_find_node_by_path(nodename
);
651 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
654 data
= of_get_property(np
, "cpuid", &len
);
656 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
660 memcpy(out
, data
, sizeof(struct mpu_data
));
666 static void fetch_cpu_pumps_minmax(void)
668 struct cpu_pid_state
*state0
= &cpu_state
[0];
669 struct cpu_pid_state
*state1
= &cpu_state
[1];
670 u16 pump_min
= 0, pump_max
= 0xffff;
673 /* Try to fetch pumps min/max infos from eeprom */
675 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
676 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
677 pump_min
= max(pump_min
, tmp
[0]);
678 pump_max
= min(pump_max
, tmp
[1]);
680 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
681 pump_min
= max(pump_min
, tmp
[2]);
682 pump_max
= min(pump_max
, tmp
[3]);
685 /* Double check the values, this _IS_ needed as the EEPROM on
686 * some dual 2.5Ghz G5s seem, at least, to have both min & max
687 * same to the same value ... (grrrr)
689 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
690 pump_min
= CPU_PUMP_OUTPUT_MIN
;
691 pump_max
= CPU_PUMP_OUTPUT_MAX
;
694 state0
->pump_min
= state1
->pump_min
= pump_min
;
695 state0
->pump_max
= state1
->pump_max
= pump_max
;
699 * Now, unfortunately, sysfs doesn't give us a nice void * we could
700 * pass around to the attribute functions, so we don't really have
701 * choice but implement a bunch of them...
703 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
704 * the input twice... I accept patches :)
706 #define BUILD_SHOW_FUNC_FIX(name, data) \
707 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
710 mutex_lock(&driver_lock); \
711 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
712 mutex_unlock(&driver_lock); \
715 #define BUILD_SHOW_FUNC_INT(name, data) \
716 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
718 return sprintf(buf, "%d", data); \
721 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
722 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
723 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
724 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
725 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
727 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
728 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
729 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
730 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
731 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
733 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
734 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
736 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
737 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
739 BUILD_SHOW_FUNC_FIX(slots_temperature
, slots_state
.last_temp
)
740 BUILD_SHOW_FUNC_INT(slots_fan_pwm
, slots_state
.pwm
)
742 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
744 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
745 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
746 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
747 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
748 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
750 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
751 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
752 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
753 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
754 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
756 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
757 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
759 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
760 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
762 static DEVICE_ATTR(slots_temperature
,S_IRUGO
,show_slots_temperature
,NULL
);
763 static DEVICE_ATTR(slots_fan_pwm
,S_IRUGO
,show_slots_fan_pwm
,NULL
);
765 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
768 * CPUs fans control loop
771 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
773 s32 ltemp
, volts
, amps
;
776 /* Default (in case of error) */
777 *temp
= state
->cur_temp
;
778 *power
= state
->cur_power
;
780 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
781 index
= (state
->index
== 0) ?
782 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
784 index
= (state
->index
== 0) ?
785 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
787 /* Read current fan status */
788 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
790 /* XXX What do we do now ? Nothing for now, keep old value, but
791 * return error upstream
793 DBG(" cpu %d, fan reading error !\n", state
->index
);
796 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
799 /* Get some sensor readings and scale it */
800 ltemp
= read_smon_adc(state
, 1);
802 /* XXX What do we do now ? */
806 DBG(" cpu %d, temp reading error !\n", state
->index
);
808 /* Fixup temperature according to diode calibration
810 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
812 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
813 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
814 state
->last_temp
= *temp
;
815 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
819 * Read voltage & current and calculate power
821 volts
= read_smon_adc(state
, 3);
822 amps
= read_smon_adc(state
, 4);
824 /* Scale voltage and current raw sensor values according to fixed scales
825 * obtained in Darwin and calculate power from I and V
827 volts
*= ADC_CPU_VOLTAGE_SCALE
;
828 amps
*= ADC_CPU_CURRENT_SCALE
;
829 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
830 state
->voltage
= volts
;
831 state
->current_a
= amps
;
832 state
->last_power
= *power
;
834 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
835 state
->index
, FIX32TOPRINT(state
->current_a
),
836 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
841 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
843 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
844 s64 integ_p
, deriv_p
, prop_p
, sum
;
847 /* Calculate power target value (could be done once for all)
848 * and convert to a 16.16 fp number
850 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
851 DBG(" power target: %d.%03d, error: %d.%03d\n",
852 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
854 /* Store temperature and power in history array */
855 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
856 state
->temp_history
[state
->cur_temp
] = temp
;
857 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
858 state
->power_history
[state
->cur_power
] = power
;
859 state
->error_history
[state
->cur_power
] = power_target
- power
;
861 /* If first loop, fill the history table */
863 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
864 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
865 state
->power_history
[state
->cur_power
] = power
;
866 state
->error_history
[state
->cur_power
] = power_target
- power
;
868 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
869 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
870 state
->temp_history
[state
->cur_temp
] = temp
;
875 /* Calculate the integral term normally based on the "power" values */
878 for (i
= 0; i
< state
->count_power
; i
++)
879 integral
+= state
->error_history
[i
];
880 integral
*= CPU_PID_INTERVAL
;
881 DBG(" integral: %08x\n", integral
);
883 /* Calculate the adjusted input (sense value).
886 * so the result is 28.36
888 * input target is mpu.ttarget, input max is mpu.tmax
890 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
891 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
892 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
893 adj_in_target
= (state
->mpu
.ttarget
<< 16);
894 if (adj_in_target
> sval
)
895 adj_in_target
= sval
;
896 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
899 /* Calculate the derivative term */
900 derivative
= state
->temp_history
[state
->cur_temp
] -
901 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
902 % CPU_TEMP_HISTORY_SIZE
];
903 derivative
/= CPU_PID_INTERVAL
;
904 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
905 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
908 /* Calculate the proportional term */
909 proportional
= temp
- adj_in_target
;
910 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
911 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
917 DBG(" sum: %d\n", (int)sum
);
918 state
->rpm
+= (s32
)sum
;
921 static void do_monitor_cpu_combined(void)
923 struct cpu_pid_state
*state0
= &cpu_state
[0];
924 struct cpu_pid_state
*state1
= &cpu_state
[1];
925 s32 temp0
, power0
, temp1
, power1
;
926 s32 temp_combi
, power_combi
;
927 int rc
, intake
, pump
;
929 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
931 /* XXX What do we do now ? */
933 state1
->overtemp
= 0;
934 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
936 /* XXX What do we do now ? */
938 if (state1
->overtemp
)
941 temp_combi
= max(temp0
, temp1
);
942 power_combi
= max(power0
, power1
);
944 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
945 * full blown immediately and try to trigger a shutdown
947 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
948 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
950 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
951 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16)) {
953 printk(KERN_WARNING
"Temperature %d above max %d. overtemp %d\n",
954 temp_combi
>> 16, state0
->mpu
.tmax
, state0
->overtemp
);
956 if (state0
->overtemp
)
957 printk(KERN_WARNING
"Temperature back down to %d\n",
959 state0
->overtemp
= 0;
961 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
963 if (state0
->overtemp
> 0) {
964 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
965 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
966 pump
= state0
->pump_max
;
971 do_cpu_pid(state0
, temp_combi
, power_combi
);
974 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
975 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
977 /* Calculate intake fan speed */
978 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
979 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
980 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
981 state0
->intake_rpm
= intake
;
983 /* Calculate pump speed */
984 pump
= (state0
->rpm
* state0
->pump_max
) /
985 state0
->mpu
.rmaxn_exhaust_fan
;
986 pump
= min(pump
, state0
->pump_max
);
987 pump
= max(pump
, state0
->pump_min
);
990 /* We copy values from state 0 to state 1 for /sysfs */
991 state1
->rpm
= state0
->rpm
;
992 state1
->intake_rpm
= state0
->intake_rpm
;
994 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
995 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
997 /* We should check for errors, shouldn't we ? But then, what
998 * do we do once the error occurs ? For FCU notified fan
999 * failures (-EFAULT) we probably want to notify userland
1002 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1003 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1004 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1005 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1007 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1008 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
1009 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1010 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
1013 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
1018 /* Read current fan status */
1019 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1021 /* XXX What do we do now ? */
1024 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1025 * full blown immediately and try to trigger a shutdown
1027 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1028 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1030 state
->index
, temp
>> 16);
1031 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1032 } else if (temp
> (state
->mpu
.tmax
<< 16)) {
1034 printk(KERN_WARNING
"CPU %d temperature %d above max %d. overtemp %d\n",
1035 state
->index
, temp
>> 16, state
->mpu
.tmax
, state
->overtemp
);
1037 if (state
->overtemp
)
1038 printk(KERN_WARNING
"CPU %d temperature back down to %d\n",
1039 state
->index
, temp
>> 16);
1040 state
->overtemp
= 0;
1042 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1044 if (state
->overtemp
> 0) {
1045 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1046 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1051 do_cpu_pid(state
, temp
, power
);
1054 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1055 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1057 /* Calculate intake fan */
1058 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1059 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1060 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1061 state
->intake_rpm
= intake
;
1064 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1065 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1067 /* We should check for errors, shouldn't we ? But then, what
1068 * do we do once the error occurs ? For FCU notified fan
1069 * failures (-EFAULT) we probably want to notify userland
1072 if (state
->index
== 0) {
1073 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1074 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1076 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1077 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1081 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1083 s32 temp
, power
, fan_min
;
1086 /* Read current fan status */
1087 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1089 /* XXX What do we do now ? */
1092 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1093 * full blown immediately and try to trigger a shutdown
1095 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1096 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1098 state
->index
, temp
>> 16);
1099 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1100 } else if (temp
> (state
->mpu
.tmax
<< 16)) {
1102 printk(KERN_WARNING
"CPU %d temperature %d above max %d. overtemp %d\n",
1103 state
->index
, temp
>> 16, state
->mpu
.tmax
, state
->overtemp
);
1105 if (state
->overtemp
)
1106 printk(KERN_WARNING
"CPU %d temperature back down to %d\n",
1107 state
->index
, temp
>> 16);
1108 state
->overtemp
= 0;
1110 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1112 if (state
->overtemp
> 0) {
1113 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1118 do_cpu_pid(state
, temp
, power
);
1120 /* Check clamp from dimms */
1121 fan_min
= dimm_output_clamp
;
1122 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1124 DBG(" CPU min mpu = %d, min dimm = %d\n",
1125 state
->mpu
.rminn_intake_fan
, dimm_output_clamp
);
1127 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1128 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1129 state
->intake_rpm
= state
->rpm
;
1132 DBG("** CPU %d RPM: %d overtemp: %d\n",
1133 state
->index
, (int)state
->rpm
, state
->overtemp
);
1135 /* We should check for errors, shouldn't we ? But then, what
1136 * do we do once the error occurs ? For FCU notified fan
1137 * failures (-EFAULT) we probably want to notify userland
1140 if (state
->index
== 0) {
1141 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1142 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1143 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1145 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1146 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1147 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1152 * Initialize the state structure for one CPU control loop
1154 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1158 state
->index
= index
;
1160 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1161 state
->overtemp
= 0;
1162 state
->adc_config
= 0x00;
1166 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1167 else if (index
== 1)
1168 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1169 if (state
->monitor
== NULL
)
1172 if (read_eeprom(index
, &state
->mpu
))
1175 state
->count_power
= state
->mpu
.tguardband
;
1176 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1177 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1178 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1180 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1183 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1184 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1185 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1186 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1187 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1189 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1190 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1191 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1192 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1193 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1196 printk(KERN_WARNING
"Failed to create some of the atribute"
1197 "files for CPU %d\n", index
);
1201 state
->monitor
= NULL
;
1207 * Dispose of the state data for one CPU control loop
1209 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1211 if (state
->monitor
== NULL
)
1214 if (state
->index
== 0) {
1215 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1216 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1217 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1218 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1219 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1221 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1222 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1223 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1224 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1225 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1228 state
->monitor
= NULL
;
1232 * Motherboard backside & U3 heatsink fan control loop
1234 static void do_monitor_backside(struct backside_pid_state
*state
)
1236 s32 temp
, integral
, derivative
, fan_min
;
1237 s64 integ_p
, deriv_p
, prop_p
, sum
;
1240 if (--state
->ticks
!= 0)
1242 state
->ticks
= backside_params
.interval
;
1246 /* Check fan status */
1247 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1249 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1250 /* XXX What do we do now ? */
1253 DBG(" current pwm: %d\n", state
->pwm
);
1255 /* Get some sensor readings */
1256 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1257 state
->last_temp
= temp
;
1258 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1259 FIX32TOPRINT(backside_params
.input_target
));
1261 /* Store temperature and error in history array */
1262 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1263 state
->sample_history
[state
->cur_sample
] = temp
;
1264 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1266 /* If first loop, fill the history table */
1268 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1269 state
->cur_sample
= (state
->cur_sample
+ 1) %
1270 BACKSIDE_PID_HISTORY_SIZE
;
1271 state
->sample_history
[state
->cur_sample
] = temp
;
1272 state
->error_history
[state
->cur_sample
] =
1273 temp
- backside_params
.input_target
;
1278 /* Calculate the integral term */
1281 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1282 integral
+= state
->error_history
[i
];
1283 integral
*= backside_params
.interval
;
1284 DBG(" integral: %08x\n", integral
);
1285 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1286 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1289 /* Calculate the derivative term */
1290 derivative
= state
->error_history
[state
->cur_sample
] -
1291 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1292 % BACKSIDE_PID_HISTORY_SIZE
];
1293 derivative
/= backside_params
.interval
;
1294 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1295 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1298 /* Calculate the proportional term */
1299 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1300 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1306 DBG(" sum: %d\n", (int)sum
);
1307 if (backside_params
.additive
)
1308 state
->pwm
+= (s32
)sum
;
1312 /* Check for clamp */
1313 fan_min
= (dimm_output_clamp
* 100) / 14000;
1314 fan_min
= max(fan_min
, backside_params
.output_min
);
1316 state
->pwm
= max(state
->pwm
, fan_min
);
1317 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1319 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1320 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1324 * Initialize the state structure for the backside fan control loop
1326 static int init_backside_state(struct backside_pid_state
*state
)
1328 struct device_node
*u3
;
1329 int u3h
= 1; /* conservative by default */
1333 * There are different PID params for machines with U3 and machines
1334 * with U3H, pick the right ones now
1336 u3
= of_find_node_by_path("/u3@0,f8000000");
1338 const u32
*vers
= of_get_property(u3
, "device-rev", NULL
);
1340 if (((*vers
) & 0x3f) < 0x34)
1346 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1347 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1348 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1349 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1350 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1351 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1352 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1353 backside_params
.additive
= 0;
1355 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1356 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1357 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1358 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1359 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1360 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1361 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1362 backside_params
.additive
= 1;
1364 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1365 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1366 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1367 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1368 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1369 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1370 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1371 backside_params
.additive
= 1;
1378 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1379 if (state
->monitor
== NULL
)
1382 err
= device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1383 err
|= device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1385 printk(KERN_WARNING
"Failed to create attribute file(s)"
1386 " for backside fan\n");
1392 * Dispose of the state data for the backside control loop
1394 static void dispose_backside_state(struct backside_pid_state
*state
)
1396 if (state
->monitor
== NULL
)
1399 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1400 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1402 state
->monitor
= NULL
;
1406 * Drives bay fan control loop
1408 static void do_monitor_drives(struct drives_pid_state
*state
)
1410 s32 temp
, integral
, derivative
;
1411 s64 integ_p
, deriv_p
, prop_p
, sum
;
1414 if (--state
->ticks
!= 0)
1416 state
->ticks
= DRIVES_PID_INTERVAL
;
1420 /* Check fan status */
1421 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1423 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1424 /* XXX What do we do now ? */
1427 DBG(" current rpm: %d\n", state
->rpm
);
1429 /* Get some sensor readings */
1430 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1432 state
->last_temp
= temp
;
1433 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1434 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1436 /* Store temperature and error in history array */
1437 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1438 state
->sample_history
[state
->cur_sample
] = temp
;
1439 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1441 /* If first loop, fill the history table */
1443 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1444 state
->cur_sample
= (state
->cur_sample
+ 1) %
1445 DRIVES_PID_HISTORY_SIZE
;
1446 state
->sample_history
[state
->cur_sample
] = temp
;
1447 state
->error_history
[state
->cur_sample
] =
1448 temp
- DRIVES_PID_INPUT_TARGET
;
1453 /* Calculate the integral term */
1456 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1457 integral
+= state
->error_history
[i
];
1458 integral
*= DRIVES_PID_INTERVAL
;
1459 DBG(" integral: %08x\n", integral
);
1460 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1461 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1464 /* Calculate the derivative term */
1465 derivative
= state
->error_history
[state
->cur_sample
] -
1466 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1467 % DRIVES_PID_HISTORY_SIZE
];
1468 derivative
/= DRIVES_PID_INTERVAL
;
1469 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1470 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1473 /* Calculate the proportional term */
1474 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1475 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1481 DBG(" sum: %d\n", (int)sum
);
1482 state
->rpm
+= (s32
)sum
;
1484 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1485 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1487 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1488 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1492 * Initialize the state structure for the drives bay fan control loop
1494 static int init_drives_state(struct drives_pid_state
*state
)
1502 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1503 if (state
->monitor
== NULL
)
1506 err
= device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1507 err
|= device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1509 printk(KERN_WARNING
"Failed to create attribute file(s)"
1510 " for drives bay fan\n");
1516 * Dispose of the state data for the drives control loop
1518 static void dispose_drives_state(struct drives_pid_state
*state
)
1520 if (state
->monitor
== NULL
)
1523 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1524 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1526 state
->monitor
= NULL
;
1530 * DIMMs temp control loop
1532 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1534 s32 temp
, integral
, derivative
, fan_min
;
1535 s64 integ_p
, deriv_p
, prop_p
, sum
;
1538 if (--state
->ticks
!= 0)
1540 state
->ticks
= DIMM_PID_INTERVAL
;
1544 DBG(" current value: %d\n", state
->output
);
1546 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1550 state
->last_temp
= temp
;
1551 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1552 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1554 /* Store temperature and error in history array */
1555 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1556 state
->sample_history
[state
->cur_sample
] = temp
;
1557 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1559 /* If first loop, fill the history table */
1561 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1562 state
->cur_sample
= (state
->cur_sample
+ 1) %
1563 DIMM_PID_HISTORY_SIZE
;
1564 state
->sample_history
[state
->cur_sample
] = temp
;
1565 state
->error_history
[state
->cur_sample
] =
1566 temp
- DIMM_PID_INPUT_TARGET
;
1571 /* Calculate the integral term */
1574 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1575 integral
+= state
->error_history
[i
];
1576 integral
*= DIMM_PID_INTERVAL
;
1577 DBG(" integral: %08x\n", integral
);
1578 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1579 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1582 /* Calculate the derivative term */
1583 derivative
= state
->error_history
[state
->cur_sample
] -
1584 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1585 % DIMM_PID_HISTORY_SIZE
];
1586 derivative
/= DIMM_PID_INTERVAL
;
1587 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1588 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1591 /* Calculate the proportional term */
1592 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1593 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1599 DBG(" sum: %d\n", (int)sum
);
1600 state
->output
= (s32
)sum
;
1601 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1602 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1603 dimm_output_clamp
= state
->output
;
1605 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1607 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1608 fan_min
= (dimm_output_clamp
* 100) / 14000;
1609 fan_min
= max(fan_min
, backside_params
.output_min
);
1610 if (backside_state
.pwm
< fan_min
) {
1611 backside_state
.pwm
= fan_min
;
1612 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1613 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1618 * Initialize the state structure for the DIMM temp control loop
1620 static int init_dimms_state(struct dimm_pid_state
*state
)
1624 state
->output
= 4000;
1626 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1627 if (state
->monitor
== NULL
)
1630 if (device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
))
1631 printk(KERN_WARNING
"Failed to create attribute file"
1632 " for DIMM temperature\n");
1638 * Dispose of the state data for the DIMM control loop
1640 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1642 if (state
->monitor
== NULL
)
1645 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1647 state
->monitor
= NULL
;
1651 * Slots fan control loop
1653 static void do_monitor_slots(struct slots_pid_state
*state
)
1655 s32 temp
, integral
, derivative
;
1656 s64 integ_p
, deriv_p
, prop_p
, sum
;
1659 if (--state
->ticks
!= 0)
1661 state
->ticks
= SLOTS_PID_INTERVAL
;
1665 /* Check fan status */
1666 rc
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
1668 printk(KERN_WARNING
"Error %d reading slots fan !\n", rc
);
1669 /* XXX What do we do now ? */
1672 DBG(" current pwm: %d\n", state
->pwm
);
1674 /* Get some sensor readings */
1675 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1677 state
->last_temp
= temp
;
1678 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1679 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET
));
1681 /* Store temperature and error in history array */
1682 state
->cur_sample
= (state
->cur_sample
+ 1) % SLOTS_PID_HISTORY_SIZE
;
1683 state
->sample_history
[state
->cur_sample
] = temp
;
1684 state
->error_history
[state
->cur_sample
] = temp
- SLOTS_PID_INPUT_TARGET
;
1686 /* If first loop, fill the history table */
1688 for (i
= 0; i
< (SLOTS_PID_HISTORY_SIZE
- 1); i
++) {
1689 state
->cur_sample
= (state
->cur_sample
+ 1) %
1690 SLOTS_PID_HISTORY_SIZE
;
1691 state
->sample_history
[state
->cur_sample
] = temp
;
1692 state
->error_history
[state
->cur_sample
] =
1693 temp
- SLOTS_PID_INPUT_TARGET
;
1698 /* Calculate the integral term */
1701 for (i
= 0; i
< SLOTS_PID_HISTORY_SIZE
; i
++)
1702 integral
+= state
->error_history
[i
];
1703 integral
*= SLOTS_PID_INTERVAL
;
1704 DBG(" integral: %08x\n", integral
);
1705 integ_p
= ((s64
)SLOTS_PID_G_r
) * (s64
)integral
;
1706 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1709 /* Calculate the derivative term */
1710 derivative
= state
->error_history
[state
->cur_sample
] -
1711 state
->error_history
[(state
->cur_sample
+ SLOTS_PID_HISTORY_SIZE
- 1)
1712 % SLOTS_PID_HISTORY_SIZE
];
1713 derivative
/= SLOTS_PID_INTERVAL
;
1714 deriv_p
= ((s64
)SLOTS_PID_G_d
) * (s64
)derivative
;
1715 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1718 /* Calculate the proportional term */
1719 prop_p
= ((s64
)SLOTS_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1720 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1726 DBG(" sum: %d\n", (int)sum
);
1727 state
->pwm
= (s32
)sum
;
1729 state
->pwm
= max(state
->pwm
, SLOTS_PID_OUTPUT_MIN
);
1730 state
->pwm
= min(state
->pwm
, SLOTS_PID_OUTPUT_MAX
);
1732 DBG("** DRIVES PWM: %d\n", (int)state
->pwm
);
1733 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, state
->pwm
);
1737 * Initialize the state structure for the slots bay fan control loop
1739 static int init_slots_state(struct slots_pid_state
*state
)
1747 state
->monitor
= attach_i2c_chip(XSERVE_SLOTS_LM75
, "slots_temp");
1748 if (state
->monitor
== NULL
)
1751 err
= device_create_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1752 err
|= device_create_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1754 printk(KERN_WARNING
"Failed to create attribute file(s)"
1755 " for slots bay fan\n");
1761 * Dispose of the state data for the slots control loop
1763 static void dispose_slots_state(struct slots_pid_state
*state
)
1765 if (state
->monitor
== NULL
)
1768 device_remove_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1769 device_remove_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1771 state
->monitor
= NULL
;
1775 static int call_critical_overtemp(void)
1777 char *argv
[] = { critical_overtemp_path
, NULL
};
1778 static char *envp
[] = { "HOME=/",
1780 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1783 return call_usermodehelper(critical_overtemp_path
,
1784 argv
, envp
, UMH_WAIT_EXEC
);
1789 * Here's the kernel thread that calls the various control loops
1791 static int main_control_loop(void *x
)
1793 DBG("main_control_loop started\n");
1795 mutex_lock(&driver_lock
);
1797 if (start_fcu() < 0) {
1798 printk(KERN_ERR
"kfand: failed to start FCU\n");
1799 mutex_unlock(&driver_lock
);
1803 /* Set the PCI fan once for now on non-RackMac */
1805 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1807 /* Initialize ADCs */
1808 initialize_adc(&cpu_state
[0]);
1809 if (cpu_state
[1].monitor
!= NULL
)
1810 initialize_adc(&cpu_state
[1]);
1812 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1814 mutex_unlock(&driver_lock
);
1816 while (state
== state_attached
) {
1817 unsigned long elapsed
, start
;
1821 mutex_lock(&driver_lock
);
1823 /* Tickle the FCU just in case */
1824 if (--fcu_tickle_ticks
< 0) {
1825 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1829 /* First, we always calculate the new DIMMs state on an Xserve */
1831 do_monitor_dimms(&dimms_state
);
1833 /* Then, the CPUs */
1834 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1835 do_monitor_cpu_combined();
1836 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1837 do_monitor_cpu_rack(&cpu_state
[0]);
1838 if (cpu_state
[1].monitor
!= NULL
)
1839 do_monitor_cpu_rack(&cpu_state
[1]);
1840 // better deal with UP
1842 do_monitor_cpu_split(&cpu_state
[0]);
1843 if (cpu_state
[1].monitor
!= NULL
)
1844 do_monitor_cpu_split(&cpu_state
[1]);
1845 // better deal with UP
1847 /* Then, the rest */
1848 do_monitor_backside(&backside_state
);
1850 do_monitor_slots(&slots_state
);
1852 do_monitor_drives(&drives_state
);
1853 mutex_unlock(&driver_lock
);
1855 if (critical_state
== 1) {
1856 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1857 printk(KERN_WARNING
"Attempting to shut down...\n");
1858 if (call_critical_overtemp()) {
1859 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1860 critical_overtemp_path
);
1861 machine_power_off();
1864 if (critical_state
> 0)
1866 if (critical_state
> MAX_CRITICAL_STATE
) {
1867 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1868 machine_power_off();
1871 // FIXME: Deal with signals
1872 elapsed
= jiffies
- start
;
1874 schedule_timeout_interruptible(HZ
- elapsed
);
1878 DBG("main_control_loop ended\n");
1881 complete_and_exit(&ctrl_complete
, 0);
1885 * Dispose the control loops when tearing down
1887 static void dispose_control_loops(void)
1889 dispose_cpu_state(&cpu_state
[0]);
1890 dispose_cpu_state(&cpu_state
[1]);
1891 dispose_backside_state(&backside_state
);
1892 dispose_drives_state(&drives_state
);
1893 dispose_slots_state(&slots_state
);
1894 dispose_dimms_state(&dimms_state
);
1898 * Create the control loops. U3-0 i2c bus is up, so we can now
1899 * get to the various sensors
1901 static int create_control_loops(void)
1903 struct device_node
*np
;
1905 /* Count CPUs from the device-tree, we don't care how many are
1906 * actually used by Linux
1909 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1912 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1914 /* Decide the type of PID algorithm to use based on the presence of
1915 * the pumps, though that may not be the best way, that is good enough
1919 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1920 else if (of_machine_is_compatible("PowerMac7,3")
1922 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1923 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1924 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1925 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1927 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1929 /* Create control loops for everything. If any fail, everything
1932 if (init_cpu_state(&cpu_state
[0], 0))
1934 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1935 fetch_cpu_pumps_minmax();
1937 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1939 if (init_backside_state(&backside_state
))
1941 if (rackmac
&& init_dimms_state(&dimms_state
))
1943 if (rackmac
&& init_slots_state(&slots_state
))
1945 if (!rackmac
&& init_drives_state(&drives_state
))
1948 DBG("all control loops up !\n");
1953 DBG("failure creating control loops, disposing\n");
1955 dispose_control_loops();
1961 * Start the control loops after everything is up, that is create
1962 * the thread that will make them run
1964 static void start_control_loops(void)
1966 init_completion(&ctrl_complete
);
1968 ctrl_task
= kthread_run(main_control_loop
, NULL
, "kfand");
1972 * Stop the control loops when tearing down
1974 static void stop_control_loops(void)
1977 wait_for_completion(&ctrl_complete
);
1981 * Attach to the i2c FCU after detecting U3-1 bus
1983 static int attach_fcu(void)
1985 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1989 DBG("FCU attached\n");
1995 * Detach from the i2c FCU when tearing down
1997 static void detach_fcu(void)
2003 * Attach to the i2c controller. We probe the various chips based
2004 * on the device-tree nodes and build everything for the driver to
2005 * run, we then kick the driver monitoring thread
2007 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
2009 mutex_lock(&driver_lock
);
2012 if (state
== state_detached
)
2013 state
= state_attaching
;
2014 if (state
!= state_attaching
) {
2015 mutex_unlock(&driver_lock
);
2019 /* Check if we are looking for one of these */
2020 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2022 DBG("found U3-0\n");
2024 if (create_control_loops())
2026 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2028 DBG("found U3-1, attaching FCU\n");
2031 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
2034 if (u3_0
&& rackmac
)
2035 if (create_control_loops())
2038 /* We got all we need, start control loops */
2039 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
2040 DBG("everything up, starting control loops\n");
2041 state
= state_attached
;
2042 start_control_loops();
2044 mutex_unlock(&driver_lock
);
2049 static int therm_pm72_probe(struct i2c_client
*client
,
2050 const struct i2c_device_id
*id
)
2052 /* Always succeed, the real work was done in therm_pm72_attach() */
2057 * Called when any of the devices which participates into thermal management
2060 static int therm_pm72_remove(struct i2c_client
*client
)
2062 struct i2c_adapter
*adapter
= client
->adapter
;
2064 mutex_lock(&driver_lock
);
2066 if (state
!= state_detached
)
2067 state
= state_detaching
;
2069 /* Stop control loops if any */
2070 DBG("stopping control loops\n");
2071 mutex_unlock(&driver_lock
);
2072 stop_control_loops();
2073 mutex_lock(&driver_lock
);
2075 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2076 DBG("lost U3-0, disposing control loops\n");
2077 dispose_control_loops();
2081 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2082 DBG("lost U3-1, detaching FCU\n");
2086 if (u3_0
== NULL
&& u3_1
== NULL
)
2087 state
= state_detached
;
2089 mutex_unlock(&driver_lock
);
2095 * i2c_driver structure to attach to the host i2c controller
2098 static const struct i2c_device_id therm_pm72_id
[] = {
2100 * Fake device name, thermal management is done by several
2101 * chips but we don't need to differentiate between them at
2104 { "therm_pm72", 0 },
2108 static struct i2c_driver therm_pm72_driver
= {
2110 .name
= "therm_pm72",
2112 .attach_adapter
= therm_pm72_attach
,
2113 .probe
= therm_pm72_probe
,
2114 .remove
= therm_pm72_remove
,
2115 .id_table
= therm_pm72_id
,
2118 static int fan_check_loc_match(const char *loc
, int fan
)
2123 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
2130 if (strcmp(loc
, c
) == 0)
2139 static void fcu_lookup_fans(struct device_node
*fcu_node
)
2141 struct device_node
*np
= NULL
;
2144 /* The table is filled by default with values that are suitable
2145 * for the old machines without device-tree informations. We scan
2146 * the device-tree and override those values with whatever is
2150 DBG("Looking up FCU controls in device-tree...\n");
2152 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
2157 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
2159 /* Detect control type */
2160 if (!strcmp(np
->type
, "fan-rpm-control") ||
2161 !strcmp(np
->type
, "fan-rpm"))
2163 if (!strcmp(np
->type
, "fan-pwm-control") ||
2164 !strcmp(np
->type
, "fan-pwm"))
2166 /* Only care about fans for now */
2170 /* Lookup for a matching location */
2171 loc
= of_get_property(np
, "location", NULL
);
2172 reg
= of_get_property(np
, "reg", NULL
);
2173 if (loc
== NULL
|| reg
== NULL
)
2175 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
2177 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2180 if (!fan_check_loc_match(loc
, i
))
2182 DBG(" location match, index: %d\n", i
);
2183 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
2184 if (type
!= fcu_fans
[i
].type
) {
2185 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
2186 "in device-tree for %s\n", np
->full_name
);
2189 if (type
== FCU_FAN_RPM
)
2190 fan_id
= ((*reg
) - 0x10) / 2;
2192 fan_id
= ((*reg
) - 0x30) / 2;
2194 printk(KERN_WARNING
"therm_pm72: Can't parse "
2195 "fan ID in device-tree for %s\n", np
->full_name
);
2198 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
2199 fcu_fans
[i
].id
= fan_id
;
2203 /* Now dump the array */
2204 printk(KERN_INFO
"Detected fan controls:\n");
2205 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2206 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
2208 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
2209 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
2210 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
2214 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
2216 state
= state_detached
;
2218 /* Lookup the fans in the device tree */
2219 fcu_lookup_fans(dev
->node
);
2221 /* Add the driver */
2222 return i2c_add_driver(&therm_pm72_driver
);
2225 static int fcu_of_remove(struct of_device
* dev
)
2227 i2c_del_driver(&therm_pm72_driver
);
2232 static const struct of_device_id fcu_match
[] =
2240 static struct of_platform_driver fcu_of_platform_driver
=
2242 .name
= "temperature",
2243 .match_table
= fcu_match
,
2244 .probe
= fcu_of_probe
,
2245 .remove
= fcu_of_remove
2249 * Check machine type, attach to i2c controller
2251 static int __init
therm_pm72_init(void)
2253 struct device_node
*np
;
2255 rackmac
= of_machine_is_compatible("RackMac3,1");
2257 if (!of_machine_is_compatible("PowerMac7,2") &&
2258 !of_machine_is_compatible("PowerMac7,3") &&
2262 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2264 np
= of_find_node_by_type(NULL
, "fcu");
2266 /* Some machines have strangely broken device-tree */
2267 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2269 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2273 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2274 if (of_dev
== NULL
) {
2275 printk(KERN_ERR
"Can't register FCU platform device !\n");
2279 of_register_platform_driver(&fcu_of_platform_driver
);
2284 static void __exit
therm_pm72_exit(void)
2286 of_unregister_platform_driver(&fcu_of_platform_driver
);
2289 of_device_unregister(of_dev
);
2292 module_init(therm_pm72_init
);
2293 module_exit(therm_pm72_exit
);
2295 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2296 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2297 MODULE_LICENSE("GPL");