2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * This code is more or less generated from another driver, please
23 * excuse some codingstyle oddities.
27 #include <linux/kernel.h>
28 #include <linux/i2c.h>
30 #include "dvb_frontend.h"
33 #include "dibx000_common.h"
36 module_param(debug
, int, 0644);
37 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
39 #define dprintk(args...) do { \
41 printk(KERN_DEBUG "DiB0090: "); \
47 #define CONFIG_SYS_ISDBT
48 #define CONFIG_BAND_CBAND
49 #define CONFIG_BAND_VHF
50 #define CONFIG_BAND_UHF
51 #define CONFIG_DIB0090_USE_PWM_AGC
53 #define EN_LNA0 0x8000
54 #define EN_LNA1 0x4000
55 #define EN_LNA2 0x2000
56 #define EN_LNA3 0x1000
57 #define EN_MIX0 0x0800
58 #define EN_MIX1 0x0400
59 #define EN_MIX2 0x0200
60 #define EN_MIX3 0x0100
61 #define EN_IQADC 0x0040
66 #define EN_BIAS 0x0001
68 #define EN_IQANA 0x0002
69 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
70 #define EN_CRYSTAL 0x0002
78 #define pgm_read_word(w) (*w)
80 struct dc_calibration
;
82 struct dib0090_tuning
{
83 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
94 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
101 struct dib0090_state
{
102 struct i2c_adapter
*i2c
;
103 struct dvb_frontend
*fe
;
104 const struct dib0090_config
*config
;
108 enum frontend_tune_state tune_state
;
112 s16 wbd_target
; /* in dB */
114 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
115 s16 current_gain
; /* keeps the currently programmed gain */
116 u8 agc_step
; /* new binary search */
118 u16 gain
[2]; /* for channel monitoring */
123 /* for the software AGC ramps */
128 /* for the captrim/dc-offset search */
136 const struct dc_calibration
*dc
;
139 const struct dib0090_tuning
*current_tune_table_index
;
140 const struct dib0090_pll
*current_pll_table_index
;
148 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
151 struct i2c_msg msg
[2] = {
152 {.addr
= state
->config
->i2c_address
, .flags
= 0, .buf
= ®
, .len
= 1},
153 {.addr
= state
->config
->i2c_address
, .flags
= I2C_M_RD
, .buf
= b
, .len
= 2},
155 if (i2c_transfer(state
->i2c
, msg
, 2) != 2) {
156 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
159 return (b
[0] << 8) | b
[1];
162 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
164 u8 b
[3] = { reg
& 0xff, val
>> 8, val
& 0xff };
165 struct i2c_msg msg
= {.addr
= state
->config
->i2c_address
, .flags
= 0, .buf
= b
, .len
= 3 };
166 if (i2c_transfer(state
->i2c
, &msg
, 1) != 1) {
167 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
173 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
174 #define ADC_TARGET -220
178 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
181 dib0090_write_reg(state
, r
++, *b
++);
185 static u16
dib0090_identify(struct dvb_frontend
*fe
)
187 struct dib0090_state
*state
= fe
->tuner_priv
;
190 v
= dib0090_read_reg(state
, 0x1a);
192 #ifdef FIRMWARE_FIREFLY
193 /* pll is not locked locked */
195 dprintk("FE%d : Identification : pll is not yet locked", fe
->id
);
198 /* without PLL lock info */
200 dprintk("P/V: %04x:", v
);
203 dprintk("FE%d : Product ID = 0x%x : KROSUS", fe
->id
, (v
>> 8) & 0xf);
208 if (((v
>> 5) & 0x7) == 0x1)
209 dprintk("FE%d : MP001 : 9090/8096", fe
->id
);
210 else if (((v
>> 5) & 0x7) == 0x4)
211 dprintk("FE%d : MP005 : Single Sband", fe
->id
);
212 else if (((v
>> 5) & 0x7) == 0x6)
213 dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe
->id
);
214 else if (((v
>> 5) & 0x7) == 0x7)
215 dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe
->id
);
220 if ((v
& 0x1f) == 0x3)
221 dprintk("FE%d : P1-D/E/F detected", fe
->id
);
222 else if ((v
& 0x1f) == 0x1)
223 dprintk("FE%d : P1C detected", fe
->id
);
224 else if ((v
& 0x1f) == 0x0) {
225 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
226 dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe
->id
);
227 dib0090_p1b_register(fe
);
229 dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe
->id
);
237 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
239 struct dib0090_state
*state
= fe
->tuner_priv
;
243 dib0090_write_reg(state
, 0x24, EN_PLL
);
244 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
246 /* adcClkOutRatio=8->7, release reset */
247 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
248 if (cfg
->clkoutdrive
!= 0)
249 dib0090_write_reg(state
, 0x23,
250 (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg
->clkoutdrive
<< 5) | (cfg
->
257 dib0090_write_reg(state
, 0x23,
258 (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg
->
259 clkouttobamse
<< 4) | (0
264 /* enable pll, de-activate reset, ratio: 2/1 = 60MHz */
265 dib0090_write_reg(state
, 0x21,
266 (cfg
->io
.pll_bypass
<< 15) | (1 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
));
270 static int dib0090_wakeup(struct dvb_frontend
*fe
)
272 struct dib0090_state
*state
= fe
->tuner_priv
;
273 if (state
->config
->sleep
)
274 state
->config
->sleep(fe
, 0);
278 static int dib0090_sleep(struct dvb_frontend
*fe
)
280 struct dib0090_state
*state
= fe
->tuner_priv
;
281 if (state
->config
->sleep
)
282 state
->config
->sleep(fe
, 1);
286 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
288 struct dib0090_state
*state
= fe
->tuner_priv
;
290 dib0090_write_reg(state
, 0x04, 0);
292 dib0090_write_reg(state
, 0x04, 1);
294 EXPORT_SYMBOL(dib0090_dcc_freq
);
296 static const u16 rf_ramp_pwm_cband
[] = {
297 0, /* max RF gain in 10th of dB */
298 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
299 0, /* ramp_max = maximum X used on the ramp */
300 (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
301 (0 << 10) | 0, /* 0x2d, LNA 1 */
302 (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
303 (0 << 10) | 0, /* 0x2f, LNA 2 */
304 (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
305 (0 << 10) | 0, /* 0x31, LNA 3 */
306 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
307 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
310 static const u16 rf_ramp_vhf
[] = {
311 412, /* max RF gain in 10th of dB */
312 132, 307, 127, /* LNA1, 13.2dB */
313 105, 412, 255, /* LNA2, 10.5dB */
314 50, 50, 127, /* LNA3, 5dB */
315 125, 175, 127, /* LNA4, 12.5dB */
316 0, 0, 127, /* CBAND, 0dB */
319 static const u16 rf_ramp_uhf
[] = {
320 412, /* max RF gain in 10th of dB */
321 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
322 105, 412, 255, /* LNA2 : 10.5 dB */
323 50, 50, 127, /* LNA3 : 5.0 dB */
324 125, 175, 127, /* LNA4 : 12.5 dB */
325 0, 0, 127, /* CBAND : 0.0 dB */
328 static const u16 rf_ramp_cband
[] = {
329 332, /* max RF gain in 10th of dB */
330 132, 252, 127, /* LNA1, dB */
331 80, 332, 255, /* LNA2, dB */
332 0, 0, 127, /* LNA3, dB */
333 0, 0, 127, /* LNA4, dB */
334 120, 120, 127, /* LT1 CBAND */
337 static const u16 rf_ramp_pwm_vhf
[] = {
338 404, /* max RF gain in 10th of dB */
339 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
340 1011, /* ramp_max = maximum X used on the ramp */
341 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
342 (0 << 10) | 756, /* 0x2d, LNA 1 */
343 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
344 (0 << 10) | 1011, /* 0x2f, LNA 2 */
345 (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
346 (0 << 10) | 417, /* 0x31, LNA 3 */
347 (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
348 (0 << 10) | 290, /* GAIN_4_2, LNA 4 */
351 static const u16 rf_ramp_pwm_uhf
[] = {
352 404, /* max RF gain in 10th of dB */
353 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
354 1011, /* ramp_max = maximum X used on the ramp */
355 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
356 (0 << 10) | 756, /* 0x2d, LNA 1 */
357 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
358 (0 << 10) | 1011, /* 0x2f, LNA 2 */
359 (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
360 (0 << 10) | 127, /* 0x31, LNA 3 */
361 (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
362 (0 << 10) | 417, /* GAIN_4_2, LNA 4 */
365 static const u16 bb_ramp_boost
[] = {
366 550, /* max BB gain in 10th of dB */
367 260, 260, 26, /* BB1, 26dB */
368 290, 550, 29, /* BB2, 29dB */
371 static const u16 bb_ramp_pwm_normal
[] = {
372 500, /* max RF gain in 10th of dB */
373 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
375 (2 << 9) | 0, /* 0x35 = 21dB */
376 (0 << 9) | 168, /* 0x36 */
377 (2 << 9) | 168, /* 0x37 = 29dB */
378 (0 << 9) | 400, /* 0x38 */
385 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
390 for (i
= 0; i
< num
; i
++) {
391 if (val
> slopes
[i
].range
)
392 rest
= slopes
[i
].range
;
395 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
401 static const struct slope dib0090_wbd_slopes
[3] = {
402 {66, 120}, /* -64,-52: offset - 65 */
403 {600, 170}, /* -52,-35: 65 - 665 */
404 {170, 250}, /* -45,-10: 665 - 835 */
407 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
410 if (wbd
< state
->wbd_offset
)
413 wbd
-= state
->wbd_offset
;
414 /* -64dB is the floor */
415 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
418 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
422 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
424 if (state
->current_band
== BAND_VHF
)
426 #ifndef FIRMWARE_FIREFLY
427 if (state
->current_band
== BAND_VHF
)
428 offset
= state
->config
->wbd_vhf_offset
;
429 if (state
->current_band
== BAND_CBAND
)
430 offset
= state
->config
->wbd_cband_offset
;
433 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
434 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
437 static const int gain_reg_addr
[4] = {
438 0x08, 0x0a, 0x0f, 0x01
441 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
444 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
447 if (top_delta
< -511)
453 top_delta
*= (1 << WBD_ALPHA
);
454 gain_delta
*= (1 << GAIN_ALPHA
);
457 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
458 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
460 state
->rf_gain_limit
+= top_delta
;
462 if (state
->rf_gain_limit
< 0) /*underflow */
463 state
->rf_gain_limit
= 0;
465 /* use gain as a temporary variable and correct current_gain */
466 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
467 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
468 state
->current_gain
= gain
;
470 state
->current_gain
+= gain_delta
;
471 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
472 if (state
->current_gain
< 0)
473 state
->current_gain
= 0;
475 /* now split total gain to rf and bb gain */
476 gain
= state
->current_gain
>> GAIN_ALPHA
;
478 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
479 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
480 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
482 if (bb
> state
->bb_ramp
[0])
483 bb
= state
->bb_ramp
[0];
484 } else { /* high signal level -> all gains put on RF */
493 /* Start with RF gains */
494 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
496 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
497 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
498 v
= 0; /* force the gain to write for the current amp to be null */
499 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
500 v
= g
[2]; /* force this amp to be full gain */
501 else /* compute the value to set to this amp because we are somewhere in his range */
502 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
504 if (i
== 0) /* LNA 1 reg mapping */
506 else if (i
== 1) /* LNA 2 reg mapping */
507 gain_reg
[0] |= v
<< 7;
508 else if (i
== 2) /* LNA 3 reg mapping */
510 else if (i
== 3) /* LNA 4 reg mapping */
511 gain_reg
[1] |= v
<< 7;
512 else if (i
== 4) /* CBAND LNA reg mapping */
513 gain_reg
[2] = v
| state
->rf_lt_def
;
514 else if (i
== 5) /* BB gain 1 reg mapping */
515 gain_reg
[3] = v
<< 3;
516 else if (i
== 6) /* BB gain 2 reg mapping */
517 gain_reg
[3] |= v
<< 8;
519 g
+= 3; /* go to next gain bloc */
521 /* When RF is finished, start with BB */
523 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
527 gain_reg
[3] |= state
->bb_1_def
;
528 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
531 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf
, bb
, rf
+ bb
,
532 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
535 /* Write the amplifier regs */
536 for (i
= 0; i
< 4; i
++) {
538 if (force
|| state
->gain_reg
[i
] != v
) {
539 state
->gain_reg
[i
] = v
;
540 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
545 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
547 state
->bb_1_def
&= 0xdfff;
548 state
->bb_1_def
|= onoff
<< 13;
551 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
553 state
->rf_ramp
= cfg
;
556 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
558 state
->rf_ramp
= cfg
;
560 dib0090_write_reg(state
, 0x2a, 0xffff);
562 dprintk("total RF gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
564 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
565 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
568 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
570 state
->bb_ramp
= cfg
;
571 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
574 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
576 state
->bb_ramp
= cfg
;
578 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
580 dib0090_write_reg(state
, 0x33, 0xffff);
581 dprintk("total BB gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
582 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
585 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
587 struct dib0090_state
*state
= fe
->tuner_priv
;
590 if (state
->config
->use_pwm_agc
) {
591 #ifdef CONFIG_BAND_SBAND
592 if (state
->current_band
== BAND_SBAND
) {
593 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_sband
);
594 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_boost
);
597 #ifdef CONFIG_BAND_CBAND
598 if (state
->current_band
== BAND_CBAND
) {
599 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband
);
600 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
603 #ifdef CONFIG_BAND_VHF
604 if (state
->current_band
== BAND_VHF
) {
605 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_vhf
);
606 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
610 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf
);
611 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
614 if (state
->rf_ramp
[0] != 0)
615 dib0090_write_reg(state
, 0x32, (3 << 11));
617 dib0090_write_reg(state
, 0x32, (0 << 11));
619 dib0090_write_reg(state
, 0x39, (1 << 10));
622 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
624 int dib0090_gain_control(struct dvb_frontend
*fe
)
626 struct dib0090_state
*state
= fe
->tuner_priv
;
627 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
631 u8 apply_gain_immediatly
= 1;
632 s16 wbd_error
= 0, adc_error
= 0;
634 if (*tune_state
== CT_AGC_START
) {
635 state
->agc_freeze
= 0;
636 dib0090_write_reg(state
, 0x04, 0x0);
638 #ifdef CONFIG_BAND_SBAND
639 if (state
->current_band
== BAND_SBAND
) {
640 dib0090_set_rframp(state
, rf_ramp_sband
);
641 dib0090_set_bbramp(state
, bb_ramp_boost
);
644 #ifdef CONFIG_BAND_VHF
645 if (state
->current_band
== BAND_VHF
) {
646 dib0090_set_rframp(state
, rf_ramp_vhf
);
647 dib0090_set_bbramp(state
, bb_ramp_boost
);
650 #ifdef CONFIG_BAND_CBAND
651 if (state
->current_band
== BAND_CBAND
) {
652 dib0090_set_rframp(state
, rf_ramp_cband
);
653 dib0090_set_bbramp(state
, bb_ramp_boost
);
657 dib0090_set_rframp(state
, rf_ramp_uhf
);
658 dib0090_set_bbramp(state
, bb_ramp_boost
);
661 dib0090_write_reg(state
, 0x32, 0);
662 dib0090_write_reg(state
, 0x39, 0);
664 dib0090_wbd_target(state
, state
->current_rf
);
666 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
667 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
669 *tune_state
= CT_AGC_STEP_0
;
670 } else if (!state
->agc_freeze
) {
674 wbd_val
= dib0090_read_reg(state
, 0x1d);
676 /* read and calc the wbd power */
677 wbd
= dib0090_wbd_to_db(state
, wbd_val
);
678 wbd_error
= state
->wbd_target
- wbd
;
680 if (*tune_state
== CT_AGC_STEP_0
) {
681 if (wbd_error
< 0 && state
->rf_gain_limit
> 0) {
682 #ifdef CONFIG_BAND_CBAND
683 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
684 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
685 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
687 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
692 *tune_state
= CT_AGC_STEP_1
;
695 /* calc the adc power */
696 adc
= state
->config
->get_adc_power(fe
);
697 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
699 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
700 #ifdef CONFIG_STANDARD_DAB
701 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
704 #ifdef CONFIG_STANDARD_DVBT
705 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
706 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
709 #ifdef CONFIG_SYS_ISDBT
710 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
713 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
715 || (state
->fe
->dtv_property_cache
.layer
[0].
716 modulation
== QAM_16
)))
718 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
721 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
723 || (state
->fe
->dtv_property_cache
.layer
[1].
724 modulation
== QAM_16
)))
726 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
729 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
731 || (state
->fe
->dtv_property_cache
.layer
[2].
732 modulation
== QAM_16
)))
738 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
739 if (ABS(adc_error
) < 50 || state
->agc_step
++ > 5) {
741 #ifdef CONFIG_STANDARD_DAB
742 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
743 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
744 dib0090_write_reg(state
, 0x04, 0x0);
748 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
749 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
752 *tune_state
= CT_AGC_STOP
;
755 /* everything higher than or equal to CT_AGC_STOP means tracking */
756 ret
= 100; /* 10ms interval */
757 apply_gain_immediatly
= 0;
762 ("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
763 (u32
) fe
->id
, (u32
) *tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
764 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
769 if (!state
->agc_freeze
)
770 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
773 EXPORT_SYMBOL(dib0090_gain_control
);
775 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
777 struct dib0090_state
*state
= fe
->tuner_priv
;
779 *rf
= state
->gain
[0];
781 *bb
= state
->gain
[1];
783 *rf_gain_limit
= state
->rf_gain_limit
;
785 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
787 EXPORT_SYMBOL(dib0090_get_current_gain
);
789 u16
dib0090_get_wbd_offset(struct dvb_frontend
*tuner
)
791 struct dib0090_state
*st
= tuner
->tuner_priv
;
792 return st
->wbd_offset
;
794 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
796 static const u16 dib0090_defaults
[] = {
832 EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
,
846 static int dib0090_reset(struct dvb_frontend
*fe
)
848 struct dib0090_state
*state
= fe
->tuner_priv
;
851 dib0090_reset_digital(fe
, state
->config
);
852 state
->revision
= dib0090_identify(fe
);
854 /* Revision definition */
855 if (state
->revision
== 0xff)
858 else if ((state
->revision
& 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */
859 dib0090_set_EFUSE(state
);
862 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
863 if (!(state
->revision
& 0x1)) /* it is P1B - reset is already done */
867 /* Upload the default values */
868 n
= (u16
*) dib0090_defaults
;
869 l
= pgm_read_word(n
++);
871 r
= pgm_read_word(n
++);
874 /* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */
875 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
878 l
= pgm_read_word(n
++);
881 /* Congigure in function of the crystal */
882 if (state
->config
->io
.clock_khz
>= 24000)
886 dib0090_write_reg(state
, 0x14, l
);
887 dprintk("Pll lock : %d", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
889 state
->reset
= 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
894 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
895 #define INTERN_WAIT 10
896 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
898 int ret
= INTERN_WAIT
* 10;
900 switch (*tune_state
) {
901 case CT_TUNER_STEP_2
:
902 /* Turns to positive */
903 dib0090_write_reg(state
, 0x1f, 0x7);
904 *tune_state
= CT_TUNER_STEP_3
;
907 case CT_TUNER_STEP_3
:
908 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
910 /* Turns to negative */
911 dib0090_write_reg(state
, 0x1f, 0x4);
912 *tune_state
= CT_TUNER_STEP_4
;
915 case CT_TUNER_STEP_4
:
916 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
917 *tune_state
= CT_TUNER_STEP_5
;
928 struct dc_calibration
{
936 static const struct dc_calibration dc_table
[] = {
937 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
938 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
939 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
940 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
941 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
942 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
946 static void dib0090_set_trim(struct dib0090_state
*state
)
950 if (state
->dc
->addr
== 0x07)
955 *val
&= ~(0x1f << state
->dc
->offset
);
956 *val
|= state
->step
<< state
->dc
->offset
;
958 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
961 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
965 switch (*tune_state
) {
969 dprintk("Internal DC calibration");
972 dib0090_write_reg(state
, 0x24, 0x02ed);
974 /* force vcm2 = 0.8V */
978 state
->dc
= dc_table
;
980 *tune_state
= CT_TUNER_STEP_0
;
984 case CT_TUNER_STEP_0
:
985 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
986 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
990 state
->min_adc_diff
= 1023;
992 *tune_state
= CT_TUNER_STEP_1
;
996 case CT_TUNER_STEP_1
:
997 dib0090_set_trim(state
);
999 *tune_state
= CT_TUNER_STEP_2
;
1002 case CT_TUNER_STEP_2
:
1003 case CT_TUNER_STEP_3
:
1004 case CT_TUNER_STEP_4
:
1005 ret
= dib0090_get_offset(state
, tune_state
);
1008 case CT_TUNER_STEP_5
: /* found an offset */
1009 dprintk("FE%d: IQC read=%d, current=%x", state
->fe
->id
, (u32
) state
->adc_diff
, state
->step
);
1011 /* first turn for this frequency */
1012 if (state
->step
== 0) {
1013 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1015 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1019 state
->adc_diff
= ABS(state
->adc_diff
);
1021 if (state
->adc_diff
< state
->min_adc_diff
&& steps(state
->step
) < 15) { /* stop search when the delta to 0 is increasing */
1023 state
->min_adc_diff
= state
->adc_diff
;
1024 *tune_state
= CT_TUNER_STEP_1
;
1027 /* the minimum was what we have seen in the step before */
1029 dib0090_set_trim(state
);
1031 dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state
->fe
->id
, state
->dc
->addr
, state
->adc_diff
,
1035 if (state
->dc
->addr
== 0) /* done */
1036 *tune_state
= CT_TUNER_STEP_6
;
1038 *tune_state
= CT_TUNER_STEP_0
;
1043 case CT_TUNER_STEP_6
:
1044 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008);
1045 dib0090_write_reg(state
, 0x1f, 0x7);
1046 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1047 state
->reset
&= ~0x1;
1054 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1056 switch (*tune_state
) {
1057 case CT_TUNER_START
:
1058 /* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */
1059 dib0090_write_reg(state
, 0x10, 0xdb09 | (1 << 10));
1060 dib0090_write_reg(state
, 0x24, EN_UHF
& 0x0fff);
1062 *tune_state
= CT_TUNER_STEP_0
;
1063 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1064 case CT_TUNER_STEP_0
:
1065 state
->wbd_offset
= dib0090_read_reg(state
, 0x1d);
1066 dprintk("WBD calibration offset = %d", state
->wbd_offset
);
1068 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1069 state
->reset
&= ~0x2;
1077 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1081 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1083 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1085 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1090 state
->bb_1_def
&= 0x3fff;
1091 state
->bb_1_def
|= tmp
;
1093 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1096 static const struct dib0090_pll dib0090_pll_table
[] = {
1097 #ifdef CONFIG_BAND_CBAND
1098 {56000, 0, 9, 48, 6},
1099 {70000, 1, 9, 48, 6},
1100 {87000, 0, 8, 32, 4},
1101 {105000, 1, 8, 32, 4},
1102 {115000, 0, 7, 24, 6},
1103 {140000, 1, 7, 24, 6},
1104 {170000, 0, 6, 16, 4},
1106 #ifdef CONFIG_BAND_VHF
1107 {200000, 1, 6, 16, 4},
1108 {230000, 0, 5, 12, 6},
1109 {280000, 1, 5, 12, 6},
1110 {340000, 0, 4, 8, 4},
1111 {380000, 1, 4, 8, 4},
1112 {450000, 0, 3, 6, 6},
1114 #ifdef CONFIG_BAND_UHF
1115 {580000, 1, 3, 6, 6},
1116 {700000, 0, 2, 4, 4},
1117 {860000, 1, 2, 4, 4},
1119 #ifdef CONFIG_BAND_LBAND
1120 {1800000, 1, 0, 2, 4},
1122 #ifdef CONFIG_BAND_SBAND
1123 {2900000, 0, 14, 1, 4},
1127 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1129 #ifdef CONFIG_BAND_CBAND
1130 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1131 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1132 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1134 #ifdef CONFIG_BAND_UHF
1135 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1136 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1137 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1138 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1139 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1140 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1142 #ifdef CONFIG_BAND_LBAND
1143 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1144 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1145 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1147 #ifdef CONFIG_BAND_SBAND
1148 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1149 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1153 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1155 #ifdef CONFIG_BAND_CBAND
1156 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1158 #ifdef CONFIG_BAND_VHF
1159 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1160 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1161 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1163 #ifdef CONFIG_BAND_UHF
1164 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1165 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1166 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1167 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1168 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1169 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1171 #ifdef CONFIG_BAND_LBAND
1172 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1173 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1174 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1176 #ifdef CONFIG_BAND_SBAND
1177 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1178 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1182 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
1183 static int dib0090_tune(struct dvb_frontend
*fe
)
1185 struct dib0090_state
*state
= fe
->tuner_priv
;
1186 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
1187 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
1188 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1191 u16 lo4
= 0xe900, lo5
, lo6
, Den
;
1192 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
1195 int ret
= 10; /* 1ms is the default delay most of the time */
1198 state
->current_band
= (u8
) BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000);
1199 rf
= fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
1200 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->freq_offset_khz_vhf
);
1201 /* in any case we first need to do a reset if needed */
1202 if (state
->reset
& 0x1)
1203 return dib0090_dc_offset_calibration(state
, tune_state
);
1204 else if (state
->reset
& 0x2)
1205 return dib0090_wbd_calibration(state
, tune_state
);
1207 /************************* VCO ***************************/
1208 /* Default values for FG */
1209 /* from these are needed : */
1210 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
1212 #ifdef CONFIG_SYS_ISDBT
1213 if (state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1)
1217 if (state
->current_rf
!= rf
) {
1218 state
->tuner_is_tuned
= 0;
1220 tune
= dib0090_tuning_table
;
1222 tmp
= (state
->revision
>> 5) & 0x7;
1223 if (tmp
== 0x4 || tmp
== 0x7) {
1224 /* CBAND tuner version for VHF */
1225 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_VHF
) {
1227 state
->current_band
= BAND_CBAND
;
1228 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
1232 pll
= dib0090_pll_table
;
1233 /* Look for the interval */
1234 while (rf
> tune
->max_freq
)
1236 while (rf
> pll
->max_freq
)
1238 state
->current_tune_table_index
= tune
;
1239 state
->current_pll_table_index
= pll
;
1242 if (*tune_state
== CT_TUNER_START
) {
1244 if (state
->tuner_is_tuned
== 0)
1245 state
->current_rf
= 0;
1247 if (state
->current_rf
!= rf
) {
1249 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
1251 /* external loop filter, otherwise:
1252 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
1256 else if (state
->config
->analog_output
)
1261 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
1263 if (!state
->config
->io
.pll_int_loop_filt
)
1266 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3);
1268 VCOF_kHz
= (pll
->hfdiv
* rf
) * 2;
1270 FREF
= state
->config
->io
.clock_khz
;
1272 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
1273 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
;
1277 else if (Rest
< 2 * LPF
)
1279 else if (Rest
> (FREF
- LPF
)) {
1282 } else if (Rest
> (FREF
- 2 * LPF
))
1283 Rest
= FREF
- 2 * LPF
;
1284 Rest
= (Rest
* 6528) / (FREF
/ 10);
1288 dprintk(" ***** ******* Rest value = %d", Rest
);
1291 if (state
->config
->analog_output
)
1292 lo6
|= (1 << 2) | 2;
1294 lo6
|= (1 << 2) | 1;
1297 #ifdef CONFIG_BAND_SBAND
1298 if (state
->current_band
== BAND_SBAND
)
1302 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
1304 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
1306 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
1308 dib0090_write_reg(state
, 0x19, lo5
);
1310 dib0090_write_reg(state
, 0x1c, lo6
);
1312 lo6
= tune
->tuner_enable
;
1313 if (state
->config
->analog_output
)
1314 lo6
= (lo6
& 0xff9f) | 0x2;
1316 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
1317 #ifdef CONFIG_DIB0090_USE_PWM_AGC
1318 | state
->config
->use_pwm_agc
* EN_CRYSTAL
1322 state
->current_rf
= rf
;
1324 /* prepare a complete captrim */
1325 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
1327 } else { /* we are already tuned to this frequency - the configuration is correct */
1329 /* do a minimal captrim even if the frequency has not changed */
1331 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
1333 state
->adc_diff
= 3000;
1335 dib0090_write_reg(state
, 0x10, 0x2B1);
1337 dib0090_write_reg(state
, 0x1e, 0x0032);
1340 *tune_state
= CT_TUNER_STEP_1
;
1341 } else if (*tune_state
== CT_TUNER_STEP_0
) {
1343 } else if (*tune_state
== CT_TUNER_STEP_1
) {
1345 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
1346 *tune_state
= CT_TUNER_STEP_2
;
1347 } else if (*tune_state
== CT_TUNER_STEP_2
) {
1349 adc
= dib0090_read_reg(state
, 0x1d);
1350 dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32
) fe
->id
, (u32
) state
->captrim
, (u32
) adc
,
1351 (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
1361 if (adc
< state
->adc_diff
) {
1362 dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32
) fe
->id
, (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
1363 state
->adc_diff
= adc
;
1364 state
->fcaptrim
= state
->captrim
;
1368 state
->captrim
+= step_sign
* state
->step
;
1369 if (state
->step
>= 1)
1370 *tune_state
= CT_TUNER_STEP_1
;
1372 *tune_state
= CT_TUNER_STEP_3
;
1375 } else if (*tune_state
== CT_TUNER_STEP_3
) {
1376 /*write the final cptrim config */
1377 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
1379 #ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY
1380 state
->memory
[state
->memory_index
].cap
= state
->fcaptrim
;
1383 *tune_state
= CT_TUNER_STEP_4
;
1384 } else if (*tune_state
== CT_TUNER_STEP_4
) {
1385 dib0090_write_reg(state
, 0x1e, 0x07ff);
1387 dprintk("FE %d Final Captrim: %d", (u32
) fe
->id
, (u32
) state
->fcaptrim
);
1388 dprintk("FE %d HFDIV code: %d", (u32
) fe
->id
, (u32
) pll
->hfdiv_code
);
1389 dprintk("FE %d VCO = %d", (u32
) fe
->id
, (u32
) pll
->vco_band
);
1390 dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32
) fe
->id
, (u32
) ((pll
->hfdiv
* rf
) * 2), (u32
) pll
->hfdiv
, (u32
) rf
);
1391 dprintk("FE %d REFDIV: %d, FREF: %d", (u32
) fe
->id
, (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
1392 dprintk("FE %d FBDIV: %d, Rest: %d", (u32
) fe
->id
, (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
1393 dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32
) fe
->id
, (u32
) dib0090_read_reg(state
, 0x17),
1394 (u32
) (dib0090_read_reg(state
, 0x16) >> 8), (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
1398 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1399 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
)) {
1404 dib0090_write_reg(state
, 0x10, (c
<< 13) | (i
<< 11) | (WBD
1405 #ifdef CONFIG_DIB0090_USE_PWM_AGC
1406 | (state
->config
->use_pwm_agc
<< 1)
1409 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | (tune
->lna_bias
<< 0));
1410 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
1411 dib0090_write_reg(state
, 0x0d, tune
->mix
);
1412 dib0090_write_reg(state
, 0x0e, tune
->load
);
1414 *tune_state
= CT_TUNER_STEP_5
;
1415 } else if (*tune_state
== CT_TUNER_STEP_5
) {
1417 /* initialize the lt gain register */
1418 state
->rf_lt_def
= 0x7c00;
1419 dib0090_write_reg(state
, 0x0f, state
->rf_lt_def
);
1421 dib0090_set_bandwidth(state
);
1422 state
->tuner_is_tuned
= 1;
1423 *tune_state
= CT_TUNER_STOP
;
1425 ret
= FE_CALLBACK_TIME_NEVER
;
1429 static int dib0090_release(struct dvb_frontend
*fe
)
1431 kfree(fe
->tuner_priv
);
1432 fe
->tuner_priv
= NULL
;
1436 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
1438 struct dib0090_state
*state
= fe
->tuner_priv
;
1440 return state
->tune_state
;
1442 EXPORT_SYMBOL(dib0090_get_tune_state
);
1444 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
1446 struct dib0090_state
*state
= fe
->tuner_priv
;
1448 state
->tune_state
= tune_state
;
1451 EXPORT_SYMBOL(dib0090_set_tune_state
);
1453 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
1455 struct dib0090_state
*state
= fe
->tuner_priv
;
1457 *frequency
= 1000 * state
->current_rf
;
1461 static int dib0090_set_params(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*p
)
1463 struct dib0090_state
*state
= fe
->tuner_priv
;
1466 state
->tune_state
= CT_TUNER_START
;
1469 ret
= dib0090_tune(fe
);
1470 if (ret
!= FE_CALLBACK_TIME_NEVER
)
1474 } while (state
->tune_state
!= CT_TUNER_STOP
);
1479 static const struct dvb_tuner_ops dib0090_ops
= {
1481 .name
= "DiBcom DiB0090",
1482 .frequency_min
= 45000000,
1483 .frequency_max
= 860000000,
1484 .frequency_step
= 1000,
1486 .release
= dib0090_release
,
1488 .init
= dib0090_wakeup
,
1489 .sleep
= dib0090_sleep
,
1490 .set_params
= dib0090_set_params
,
1491 .get_frequency
= dib0090_get_frequency
,
1494 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
1496 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
1500 st
->config
= config
;
1503 fe
->tuner_priv
= st
;
1505 if (dib0090_reset(fe
) != 0)
1508 printk(KERN_INFO
"DiB0090: successfully identified\n");
1509 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
1514 fe
->tuner_priv
= NULL
;
1517 EXPORT_SYMBOL(dib0090_register
);
1519 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
1520 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
1521 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
1522 MODULE_LICENSE("GPL");