2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pcconn/88ALP01.jsp
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/i2c.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/videodev2.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-ioctl.h>
36 #include <media/v4l2-chip-ident.h>
37 #include <linux/device.h>
38 #include <linux/wait.h>
39 #include <linux/list.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/delay.h>
42 #include <linux/jiffies.h>
43 #include <linux/vmalloc.h>
45 #include <asm/uaccess.h>
48 #include "cafe_ccic-regs.h"
50 #define CAFE_VERSION 0x000002
56 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
57 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
58 MODULE_LICENSE("GPL");
59 MODULE_SUPPORTED_DEVICE("Video");
62 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
63 * we must have physically contiguous buffers to bring frames into.
64 * These parameters control how many buffers we use, whether we
65 * allocate them at load time (better chance of success, but nails down
66 * memory) or when somebody tries to use the camera (riskier), and,
67 * for load-time allocation, how big they should be.
69 * The controller can cycle through three buffers. We could use
70 * more by flipping pointers around, but it probably makes little
74 #define MAX_DMA_BUFS 3
75 static int alloc_bufs_at_read
;
76 module_param(alloc_bufs_at_read
, bool, 0444);
77 MODULE_PARM_DESC(alloc_bufs_at_read
,
78 "Non-zero value causes DMA buffers to be allocated when the "
79 "video capture device is read, rather than at module load "
80 "time. This saves memory, but decreases the chances of "
81 "successfully getting those buffers.");
83 static int n_dma_bufs
= 3;
84 module_param(n_dma_bufs
, uint
, 0644);
85 MODULE_PARM_DESC(n_dma_bufs
,
86 "The number of DMA buffers to allocate. Can be either two "
87 "(saves memory, makes timing tighter) or three.");
89 static int dma_buf_size
= VGA_WIDTH
* VGA_HEIGHT
* 2; /* Worst case */
90 module_param(dma_buf_size
, uint
, 0444);
91 MODULE_PARM_DESC(dma_buf_size
,
92 "The size of the allocated DMA buffers. If actual operating "
93 "parameters require larger buffers, an attempt to reallocate "
96 static int min_buffers
= 1;
97 module_param(min_buffers
, uint
, 0644);
98 MODULE_PARM_DESC(min_buffers
,
99 "The minimum number of streaming I/O buffers we are willing "
102 static int max_buffers
= 10;
103 module_param(max_buffers
, uint
, 0644);
104 MODULE_PARM_DESC(max_buffers
,
105 "The maximum number of streaming I/O buffers an application "
106 "will be allowed to allocate. These buffers are big and live "
107 "in vmalloc space.");
110 module_param(flip
, bool, 0444);
111 MODULE_PARM_DESC(flip
,
112 "If set, the sensor will be instructed to flip the image "
117 S_NOTREADY
, /* Not yet initialized */
118 S_IDLE
, /* Just hanging around */
119 S_FLAKED
, /* Some sort of problem */
120 S_SINGLEREAD
, /* In read() */
121 S_SPECREAD
, /* Speculative read (for future read()) */
122 S_STREAMING
/* Streaming data */
126 * Tracking of streaming I/O buffers.
128 struct cafe_sio_buffer
{
129 struct list_head list
;
130 struct v4l2_buffer v4lbuf
;
131 char *buffer
; /* Where it lives in kernel space */
133 struct cafe_camera
*cam
;
137 * A description of one of our devices.
138 * Locking: controlled by s_mutex. Certain fields, however, require
139 * the dev_lock spinlock; they are marked as such by comments.
140 * dev_lock is also required for access to device registers.
144 struct v4l2_device v4l2_dev
;
145 enum cafe_state state
;
146 unsigned long flags
; /* Buffer status, mainly (dev_lock) */
147 int users
; /* How many open FDs */
148 struct file
*owner
; /* Who has data access (v4l2) */
151 * Subsystem structures.
153 struct pci_dev
*pdev
;
154 struct video_device vdev
;
155 struct i2c_adapter i2c_adapter
;
156 struct v4l2_subdev
*sensor
;
157 unsigned short sensor_addr
;
159 unsigned char __iomem
*regs
;
160 struct list_head dev_list
; /* link to other devices */
163 unsigned int nbufs
; /* How many are alloc'd */
164 int next_buf
; /* Next to consume (dev_lock) */
165 unsigned int dma_buf_size
; /* allocated size */
166 void *dma_bufs
[MAX_DMA_BUFS
]; /* Internal buffer addresses */
167 dma_addr_t dma_handles
[MAX_DMA_BUFS
]; /* Buffer bus addresses */
168 unsigned int specframes
; /* Unconsumed spec frames (dev_lock) */
169 unsigned int sequence
; /* Frame sequence number */
170 unsigned int buf_seq
[MAX_DMA_BUFS
]; /* Sequence for individual buffers */
172 /* Streaming buffers */
173 unsigned int n_sbufs
; /* How many we have */
174 struct cafe_sio_buffer
*sb_bufs
; /* The array of housekeeping structs */
175 struct list_head sb_avail
; /* Available for data (we own) (dev_lock) */
176 struct list_head sb_full
; /* With data (user space owns) (dev_lock) */
177 struct tasklet_struct s_tasklet
;
179 /* Current operating parameters */
180 u32 sensor_type
; /* Currently ov7670 only */
181 struct v4l2_pix_format pix_format
;
184 struct mutex s_mutex
; /* Access to this structure */
185 spinlock_t dev_lock
; /* Access to device */
188 wait_queue_head_t smbus_wait
; /* Waiting on i2c events */
189 wait_queue_head_t iowait
; /* Waiting on frame data */
193 * Status flags. Always manipulated with bit operations.
195 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
196 #define CF_BUF1_VALID 1
197 #define CF_BUF2_VALID 2
198 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
199 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
201 #define sensor_call(cam, o, f, args...) \
202 v4l2_subdev_call(cam->sensor, o, f, ##args)
204 static inline struct cafe_camera
*to_cam(struct v4l2_device
*dev
)
206 return container_of(dev
, struct cafe_camera
, v4l2_dev
);
211 * Start over with DMA buffers - dev_lock needed.
213 static void cafe_reset_buffers(struct cafe_camera
*cam
)
218 for (i
= 0; i
< cam
->nbufs
; i
++)
219 clear_bit(i
, &cam
->flags
);
223 static inline int cafe_needs_config(struct cafe_camera
*cam
)
225 return test_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
228 static void cafe_set_config_needed(struct cafe_camera
*cam
, int needed
)
231 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
233 clear_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
240 * Debugging and related.
242 #define cam_err(cam, fmt, arg...) \
243 dev_err(&(cam)->pdev->dev, fmt, ##arg);
244 #define cam_warn(cam, fmt, arg...) \
245 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
246 #define cam_dbg(cam, fmt, arg...) \
247 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
250 /* ---------------------------------------------------------------------*/
253 * Device register I/O
255 static inline void cafe_reg_write(struct cafe_camera
*cam
, unsigned int reg
,
258 iowrite32(val
, cam
->regs
+ reg
);
261 static inline unsigned int cafe_reg_read(struct cafe_camera
*cam
,
264 return ioread32(cam
->regs
+ reg
);
268 static inline void cafe_reg_write_mask(struct cafe_camera
*cam
, unsigned int reg
,
269 unsigned int val
, unsigned int mask
)
271 unsigned int v
= cafe_reg_read(cam
, reg
);
273 v
= (v
& ~mask
) | (val
& mask
);
274 cafe_reg_write(cam
, reg
, v
);
277 static inline void cafe_reg_clear_bit(struct cafe_camera
*cam
,
278 unsigned int reg
, unsigned int val
)
280 cafe_reg_write_mask(cam
, reg
, 0, val
);
283 static inline void cafe_reg_set_bit(struct cafe_camera
*cam
,
284 unsigned int reg
, unsigned int val
)
286 cafe_reg_write_mask(cam
, reg
, val
, val
);
291 /* -------------------------------------------------------------------- */
293 * The I2C/SMBUS interface to the camera itself starts here. The
294 * controller handles SMBUS itself, presenting a relatively simple register
295 * interface; all we have to do is to tell it where to route the data.
297 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
299 static int cafe_smbus_write_done(struct cafe_camera
*cam
)
305 * We must delay after the interrupt, or the controller gets confused
306 * and never does give us good status. Fortunately, we don't do this
310 spin_lock_irqsave(&cam
->dev_lock
, flags
);
311 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
312 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
313 return (c1
& (TWSIC1_WSTAT
|TWSIC1_ERROR
)) != TWSIC1_WSTAT
;
316 static int cafe_smbus_write_data(struct cafe_camera
*cam
,
317 u16 addr
, u8 command
, u8 value
)
321 DEFINE_WAIT(the_wait
);
323 spin_lock_irqsave(&cam
->dev_lock
, flags
);
324 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
325 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
327 * Marvell sez set clkdiv to all 1's for now.
329 rval
|= TWSIC0_CLKDIV
;
330 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
331 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
332 rval
= value
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
333 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
334 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
337 * Time to wait for the write to complete. THIS IS A RACY
338 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
339 * register too quickly after starting the operation sends
340 * the device into a place that may be kinder and better, but
341 * which is absolutely useless for controlling the sensor. In
342 * practice we have plenty of time to get into our sleep state
343 * before the interrupt hits, and the worst case is that we
344 * time out and then see that things completed, so this seems
345 * the best way for now.
348 prepare_to_wait(&cam
->smbus_wait
, &the_wait
,
349 TASK_UNINTERRUPTIBLE
);
350 schedule_timeout(1); /* even 1 jiffy is too long */
351 finish_wait(&cam
->smbus_wait
, &the_wait
);
352 } while (!cafe_smbus_write_done(cam
));
354 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
355 wait_event_timeout(cam
->smbus_wait
, cafe_smbus_write_done(cam
),
358 spin_lock_irqsave(&cam
->dev_lock
, flags
);
359 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
360 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
362 if (rval
& TWSIC1_WSTAT
) {
363 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) timed out\n", addr
,
367 if (rval
& TWSIC1_ERROR
) {
368 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) error\n", addr
,
377 static int cafe_smbus_read_done(struct cafe_camera
*cam
)
383 * We must delay after the interrupt, or the controller gets confused
384 * and never does give us good status. Fortunately, we don't do this
388 spin_lock_irqsave(&cam
->dev_lock
, flags
);
389 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
390 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
391 return c1
& (TWSIC1_RVALID
|TWSIC1_ERROR
);
396 static int cafe_smbus_read_data(struct cafe_camera
*cam
,
397 u16 addr
, u8 command
, u8
*value
)
402 spin_lock_irqsave(&cam
->dev_lock
, flags
);
403 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
404 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
406 * Marvel sez set clkdiv to all 1's for now.
408 rval
|= TWSIC0_CLKDIV
;
409 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
410 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
411 rval
= TWSIC1_READ
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
412 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
413 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
415 wait_event_timeout(cam
->smbus_wait
,
416 cafe_smbus_read_done(cam
), CAFE_SMBUS_TIMEOUT
);
417 spin_lock_irqsave(&cam
->dev_lock
, flags
);
418 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
419 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
421 if (rval
& TWSIC1_ERROR
) {
422 cam_err(cam
, "SMBUS read (%02x/%02x) error\n", addr
, command
);
425 if (! (rval
& TWSIC1_RVALID
)) {
426 cam_err(cam
, "SMBUS read (%02x/%02x) timed out\n", addr
,
430 *value
= rval
& 0xff;
435 * Perform a transfer over SMBUS. This thing is called under
436 * the i2c bus lock, so we shouldn't race with ourselves...
438 static int cafe_smbus_xfer(struct i2c_adapter
*adapter
, u16 addr
,
439 unsigned short flags
, char rw
, u8 command
,
440 int size
, union i2c_smbus_data
*data
)
442 struct v4l2_device
*v4l2_dev
= i2c_get_adapdata(adapter
);
443 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
447 * This interface would appear to only do byte data ops. OK
448 * it can do word too, but the cam chip has no use for that.
450 if (size
!= I2C_SMBUS_BYTE_DATA
) {
451 cam_err(cam
, "funky xfer size %d\n", size
);
455 if (rw
== I2C_SMBUS_WRITE
)
456 ret
= cafe_smbus_write_data(cam
, addr
, command
, data
->byte
);
457 else if (rw
== I2C_SMBUS_READ
)
458 ret
= cafe_smbus_read_data(cam
, addr
, command
, &data
->byte
);
463 static void cafe_smbus_enable_irq(struct cafe_camera
*cam
)
467 spin_lock_irqsave(&cam
->dev_lock
, flags
);
468 cafe_reg_set_bit(cam
, REG_IRQMASK
, TWSIIRQS
);
469 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
472 static u32
cafe_smbus_func(struct i2c_adapter
*adapter
)
474 return I2C_FUNC_SMBUS_READ_BYTE_DATA
|
475 I2C_FUNC_SMBUS_WRITE_BYTE_DATA
;
478 static struct i2c_algorithm cafe_smbus_algo
= {
479 .smbus_xfer
= cafe_smbus_xfer
,
480 .functionality
= cafe_smbus_func
483 /* Somebody is on the bus */
484 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
);
485 static void cafe_ctlr_power_down(struct cafe_camera
*cam
);
487 static int cafe_smbus_setup(struct cafe_camera
*cam
)
489 struct i2c_adapter
*adap
= &cam
->i2c_adapter
;
492 cafe_smbus_enable_irq(cam
);
493 adap
->owner
= THIS_MODULE
;
494 adap
->algo
= &cafe_smbus_algo
;
495 strcpy(adap
->name
, "cafe_ccic");
496 adap
->dev
.parent
= &cam
->pdev
->dev
;
497 i2c_set_adapdata(adap
, &cam
->v4l2_dev
);
498 ret
= i2c_add_adapter(adap
);
500 printk(KERN_ERR
"Unable to register cafe i2c adapter\n");
504 static void cafe_smbus_shutdown(struct cafe_camera
*cam
)
506 i2c_del_adapter(&cam
->i2c_adapter
);
510 /* ------------------------------------------------------------------- */
512 * Deal with the controller.
516 * Do everything we think we need to have the interface operating
517 * according to the desired format.
519 static void cafe_ctlr_dma(struct cafe_camera
*cam
)
522 * Store the first two Y buffers (we aren't supporting
523 * planar formats for now, so no UV bufs). Then either
524 * set the third if it exists, or tell the controller
527 cafe_reg_write(cam
, REG_Y0BAR
, cam
->dma_handles
[0]);
528 cafe_reg_write(cam
, REG_Y1BAR
, cam
->dma_handles
[1]);
529 if (cam
->nbufs
> 2) {
530 cafe_reg_write(cam
, REG_Y2BAR
, cam
->dma_handles
[2]);
531 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
534 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
535 cafe_reg_write(cam
, REG_UBAR
, 0); /* 32 bits only for now */
538 static void cafe_ctlr_image(struct cafe_camera
*cam
)
541 struct v4l2_pix_format
*fmt
= &cam
->pix_format
;
543 imgsz
= ((fmt
->height
<< IMGSZ_V_SHIFT
) & IMGSZ_V_MASK
) |
544 (fmt
->bytesperline
& IMGSZ_H_MASK
);
545 cafe_reg_write(cam
, REG_IMGSIZE
, imgsz
);
546 cafe_reg_write(cam
, REG_IMGOFFSET
, 0);
547 /* YPITCH just drops the last two bits */
548 cafe_reg_write_mask(cam
, REG_IMGPITCH
, fmt
->bytesperline
,
551 * Tell the controller about the image format we are using.
553 switch (cam
->pix_format
.pixelformat
) {
554 case V4L2_PIX_FMT_YUYV
:
555 cafe_reg_write_mask(cam
, REG_CTRL0
,
556 C0_DF_YUV
|C0_YUV_PACKED
|C0_YUVE_YUYV
,
560 case V4L2_PIX_FMT_RGB444
:
561 cafe_reg_write_mask(cam
, REG_CTRL0
,
562 C0_DF_RGB
|C0_RGBF_444
|C0_RGB4_XRGB
,
567 case V4L2_PIX_FMT_RGB565
:
568 cafe_reg_write_mask(cam
, REG_CTRL0
,
569 C0_DF_RGB
|C0_RGBF_565
|C0_RGB5_BGGR
,
574 cam_err(cam
, "Unknown format %x\n", cam
->pix_format
.pixelformat
);
578 * Make sure it knows we want to use hsync/vsync.
580 cafe_reg_write_mask(cam
, REG_CTRL0
, C0_SIF_HVSYNC
,
586 * Configure the controller for operation; caller holds the
589 static int cafe_ctlr_configure(struct cafe_camera
*cam
)
593 spin_lock_irqsave(&cam
->dev_lock
, flags
);
595 cafe_ctlr_image(cam
);
596 cafe_set_config_needed(cam
, 0);
597 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
601 static void cafe_ctlr_irq_enable(struct cafe_camera
*cam
)
604 * Clear any pending interrupts, since we do not
605 * expect to have I/O active prior to enabling.
607 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
);
608 cafe_reg_set_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
611 static void cafe_ctlr_irq_disable(struct cafe_camera
*cam
)
613 cafe_reg_clear_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
617 * Make the controller start grabbing images. Everything must
618 * be set up before doing this.
620 static void cafe_ctlr_start(struct cafe_camera
*cam
)
622 /* set_bit performs a read, so no other barrier should be
624 cafe_reg_set_bit(cam
, REG_CTRL0
, C0_ENABLE
);
627 static void cafe_ctlr_stop(struct cafe_camera
*cam
)
629 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
632 static void cafe_ctlr_init(struct cafe_camera
*cam
)
636 spin_lock_irqsave(&cam
->dev_lock
, flags
);
638 * Added magic to bring up the hardware on the B-Test board
640 cafe_reg_write(cam
, 0x3038, 0x8);
641 cafe_reg_write(cam
, 0x315c, 0x80008);
643 * Go through the dance needed to wake the device up.
644 * Note that these registers are global and shared
645 * with the NAND and SD devices. Interaction between the
646 * three still needs to be examined.
648 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRS
|GCSR_MRS
); /* Needed? */
649 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRC
);
650 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRS
);
652 * Here we must wait a bit for the controller to come around.
654 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
656 spin_lock_irqsave(&cam
->dev_lock
, flags
);
658 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_CCIC_EN
|GCSR_SRC
|GCSR_MRC
);
659 cafe_reg_set_bit(cam
, REG_GL_IMASK
, GIMSK_CCIC_EN
);
661 * Make sure it's not powered down.
663 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
665 * Turn off the enable bit. It sure should be off anyway,
666 * but it's good to be sure.
668 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
670 * Mask all interrupts.
672 cafe_reg_write(cam
, REG_IRQMASK
, 0);
674 * Clock the sensor appropriately. Controller clock should
675 * be 48MHz, sensor "typical" value is half that.
677 cafe_reg_write_mask(cam
, REG_CLKCTRL
, 2, CLK_DIV_MASK
);
678 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
683 * Stop the controller, and don't return until we're really sure that no
684 * further DMA is going on.
686 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
)
691 * Theory: stop the camera controller (whether it is operating
692 * or not). Delay briefly just in case we race with the SOF
693 * interrupt, then wait until no DMA is active.
695 spin_lock_irqsave(&cam
->dev_lock
, flags
);
697 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
699 wait_event_timeout(cam
->iowait
,
700 !test_bit(CF_DMA_ACTIVE
, &cam
->flags
), HZ
);
701 if (test_bit(CF_DMA_ACTIVE
, &cam
->flags
))
702 cam_err(cam
, "Timeout waiting for DMA to end\n");
703 /* This would be bad news - what now? */
704 spin_lock_irqsave(&cam
->dev_lock
, flags
);
706 cafe_ctlr_irq_disable(cam
);
707 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
713 static void cafe_ctlr_power_up(struct cafe_camera
*cam
)
717 spin_lock_irqsave(&cam
->dev_lock
, flags
);
718 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
720 * Part one of the sensor dance: turn the global
723 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
724 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
|GGPIO_VAL
);
726 * Put the sensor into operational mode (assumes OLPC-style
727 * wiring). Control 0 is reset - set to 1 to operate.
728 * Control 1 is power down, set to 0 to operate.
730 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
); /* pwr up, reset */
731 /* mdelay(1); */ /* Marvell says 1ms will do it */
732 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C0
);
733 /* mdelay(1); */ /* Enough? */
734 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
735 msleep(5); /* Just to be sure */
738 static void cafe_ctlr_power_down(struct cafe_camera
*cam
)
742 spin_lock_irqsave(&cam
->dev_lock
, flags
);
743 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C1
);
744 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
745 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
);
746 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
747 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
750 /* -------------------------------------------------------------------- */
752 * Communications with the sensor.
755 static int __cafe_cam_reset(struct cafe_camera
*cam
)
757 return sensor_call(cam
, core
, reset
, 0);
761 * We have found the sensor on the i2c. Let's try to have a
764 static int cafe_cam_init(struct cafe_camera
*cam
)
766 struct v4l2_dbg_chip_ident chip
;
769 mutex_lock(&cam
->s_mutex
);
770 if (cam
->state
!= S_NOTREADY
)
771 cam_warn(cam
, "Cam init with device in funky state %d",
773 ret
= __cafe_cam_reset(cam
);
776 chip
.ident
= V4L2_IDENT_NONE
;
777 chip
.match
.type
= V4L2_CHIP_MATCH_I2C_ADDR
;
778 chip
.match
.addr
= cam
->sensor_addr
;
779 ret
= sensor_call(cam
, core
, g_chip_ident
, &chip
);
782 cam
->sensor_type
= chip
.ident
;
783 if (cam
->sensor_type
!= V4L2_IDENT_OV7670
) {
784 cam_err(cam
, "Unsupported sensor type 0x%x", cam
->sensor_type
);
788 /* Get/set parameters? */
792 cafe_ctlr_power_down(cam
);
793 mutex_unlock(&cam
->s_mutex
);
798 * Configure the sensor to match the parameters we have. Caller should
801 static int cafe_cam_set_flip(struct cafe_camera
*cam
)
803 struct v4l2_control ctrl
;
805 memset(&ctrl
, 0, sizeof(ctrl
));
806 ctrl
.id
= V4L2_CID_VFLIP
;
808 return sensor_call(cam
, core
, s_ctrl
, &ctrl
);
812 static int cafe_cam_configure(struct cafe_camera
*cam
)
814 struct v4l2_format fmt
;
817 if (cam
->state
!= S_IDLE
)
819 fmt
.fmt
.pix
= cam
->pix_format
;
820 ret
= sensor_call(cam
, core
, init
, 0);
822 ret
= sensor_call(cam
, video
, s_fmt
, &fmt
);
824 * OV7670 does weird things if flip is set *before* format...
826 ret
+= cafe_cam_set_flip(cam
);
830 /* -------------------------------------------------------------------- */
832 * DMA buffer management. These functions need s_mutex held.
835 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
836 * does a get_free_pages() call, and we waste a good chunk of an orderN
837 * allocation. Should try to allocate the whole set in one chunk.
839 static int cafe_alloc_dma_bufs(struct cafe_camera
*cam
, int loadtime
)
843 cafe_set_config_needed(cam
, 1);
845 cam
->dma_buf_size
= dma_buf_size
;
847 cam
->dma_buf_size
= cam
->pix_format
.sizeimage
;
852 for (i
= 0; i
< n_dma_bufs
; i
++) {
853 cam
->dma_bufs
[i
] = dma_alloc_coherent(&cam
->pdev
->dev
,
854 cam
->dma_buf_size
, cam
->dma_handles
+ i
,
856 if (cam
->dma_bufs
[i
] == NULL
) {
857 cam_warn(cam
, "Failed to allocate DMA buffer\n");
860 /* For debug, remove eventually */
861 memset(cam
->dma_bufs
[i
], 0xcc, cam
->dma_buf_size
);
865 switch (cam
->nbufs
) {
867 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
868 cam
->dma_bufs
[0], cam
->dma_handles
[0]);
871 cam_err(cam
, "Insufficient DMA buffers, cannot operate\n");
876 cam_warn(cam
, "Will limp along with only 2 buffers\n");
882 static void cafe_free_dma_bufs(struct cafe_camera
*cam
)
886 for (i
= 0; i
< cam
->nbufs
; i
++) {
887 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
888 cam
->dma_bufs
[i
], cam
->dma_handles
[i
]);
889 cam
->dma_bufs
[i
] = NULL
;
898 /* ----------------------------------------------------------------------- */
900 * Here starts the V4L2 interface code.
904 * Read an image from the device.
906 static ssize_t
cafe_deliver_buffer(struct cafe_camera
*cam
,
907 char __user
*buffer
, size_t len
, loff_t
*pos
)
912 spin_lock_irqsave(&cam
->dev_lock
, flags
);
913 if (cam
->next_buf
< 0) {
914 cam_err(cam
, "deliver_buffer: No next buffer\n");
915 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
918 bufno
= cam
->next_buf
;
919 clear_bit(bufno
, &cam
->flags
);
920 if (++(cam
->next_buf
) >= cam
->nbufs
)
922 if (! test_bit(cam
->next_buf
, &cam
->flags
))
925 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
927 if (len
> cam
->pix_format
.sizeimage
)
928 len
= cam
->pix_format
.sizeimage
;
929 if (copy_to_user(buffer
, cam
->dma_bufs
[bufno
], len
))
936 * Get everything ready, and start grabbing frames.
938 static int cafe_read_setup(struct cafe_camera
*cam
, enum cafe_state state
)
944 * Configuration. If we still don't have DMA buffers,
945 * make one last, desperate attempt.
948 if (cafe_alloc_dma_bufs(cam
, 0))
951 if (cafe_needs_config(cam
)) {
952 cafe_cam_configure(cam
);
953 ret
= cafe_ctlr_configure(cam
);
961 spin_lock_irqsave(&cam
->dev_lock
, flags
);
962 cafe_reset_buffers(cam
);
963 cafe_ctlr_irq_enable(cam
);
965 cafe_ctlr_start(cam
);
966 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
971 static ssize_t
cafe_v4l_read(struct file
*filp
,
972 char __user
*buffer
, size_t len
, loff_t
*pos
)
974 struct cafe_camera
*cam
= filp
->private_data
;
978 * Perhaps we're in speculative read mode and already
981 mutex_lock(&cam
->s_mutex
);
982 if (cam
->state
== S_SPECREAD
) {
983 if (cam
->next_buf
>= 0) {
984 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
988 } else if (cam
->state
== S_FLAKED
|| cam
->state
== S_NOTREADY
) {
991 } else if (cam
->state
!= S_IDLE
) {
997 * v4l2: multiple processes can open the device, but only
998 * one gets to grab data from it.
1000 if (cam
->owner
&& cam
->owner
!= filp
) {
1007 * Do setup if need be.
1009 if (cam
->state
!= S_SPECREAD
) {
1010 ret
= cafe_read_setup(cam
, S_SINGLEREAD
);
1015 * Wait for something to happen. This should probably
1016 * be interruptible (FIXME).
1018 wait_event_timeout(cam
->iowait
, cam
->next_buf
>= 0, HZ
);
1019 if (cam
->next_buf
< 0) {
1020 cam_err(cam
, "read() operation timed out\n");
1021 cafe_ctlr_stop_dma(cam
);
1026 * Give them their data and we should be done.
1028 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
1031 mutex_unlock(&cam
->s_mutex
);
1043 * Streaming I/O support.
1048 static int cafe_vidioc_streamon(struct file
*filp
, void *priv
,
1049 enum v4l2_buf_type type
)
1051 struct cafe_camera
*cam
= filp
->private_data
;
1054 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1056 mutex_lock(&cam
->s_mutex
);
1057 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
== 0)
1061 ret
= cafe_read_setup(cam
, S_STREAMING
);
1064 mutex_unlock(&cam
->s_mutex
);
1070 static int cafe_vidioc_streamoff(struct file
*filp
, void *priv
,
1071 enum v4l2_buf_type type
)
1073 struct cafe_camera
*cam
= filp
->private_data
;
1076 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1078 mutex_lock(&cam
->s_mutex
);
1079 if (cam
->state
!= S_STREAMING
)
1082 cafe_ctlr_stop_dma(cam
);
1086 mutex_unlock(&cam
->s_mutex
);
1093 static int cafe_setup_siobuf(struct cafe_camera
*cam
, int index
)
1095 struct cafe_sio_buffer
*buf
= cam
->sb_bufs
+ index
;
1097 INIT_LIST_HEAD(&buf
->list
);
1098 buf
->v4lbuf
.length
= PAGE_ALIGN(cam
->pix_format
.sizeimage
);
1099 buf
->buffer
= vmalloc_user(buf
->v4lbuf
.length
);
1100 if (buf
->buffer
== NULL
)
1105 buf
->v4lbuf
.index
= index
;
1106 buf
->v4lbuf
.type
= V4L2_BUF_TYPE_VIDEO_CAPTURE
;
1107 buf
->v4lbuf
.field
= V4L2_FIELD_NONE
;
1108 buf
->v4lbuf
.memory
= V4L2_MEMORY_MMAP
;
1110 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1111 * just uses the length times the index, but the spec warns
1112 * against doing just that - vma merging problems. So we
1113 * leave a gap between each pair of buffers.
1115 buf
->v4lbuf
.m
.offset
= 2*index
*buf
->v4lbuf
.length
;
1119 static int cafe_free_sio_buffers(struct cafe_camera
*cam
)
1124 * If any buffers are mapped, we cannot free them at all.
1126 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1127 if (cam
->sb_bufs
[i
].mapcount
> 0)
1132 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1133 vfree(cam
->sb_bufs
[i
].buffer
);
1135 kfree(cam
->sb_bufs
);
1136 cam
->sb_bufs
= NULL
;
1137 INIT_LIST_HEAD(&cam
->sb_avail
);
1138 INIT_LIST_HEAD(&cam
->sb_full
);
1144 static int cafe_vidioc_reqbufs(struct file
*filp
, void *priv
,
1145 struct v4l2_requestbuffers
*req
)
1147 struct cafe_camera
*cam
= filp
->private_data
;
1148 int ret
= 0; /* Silence warning */
1151 * Make sure it's something we can do. User pointers could be
1152 * implemented without great pain, but that's not been done yet.
1154 if (req
->memory
!= V4L2_MEMORY_MMAP
)
1157 * If they ask for zero buffers, they really want us to stop streaming
1158 * (if it's happening) and free everything. Should we check owner?
1160 mutex_lock(&cam
->s_mutex
);
1161 if (req
->count
== 0) {
1162 if (cam
->state
== S_STREAMING
)
1163 cafe_ctlr_stop_dma(cam
);
1164 ret
= cafe_free_sio_buffers (cam
);
1168 * Device needs to be idle and working. We *could* try to do the
1169 * right thing in S_SPECREAD by shutting things down, but it
1170 * probably doesn't matter.
1172 if (cam
->state
!= S_IDLE
|| (cam
->owner
&& cam
->owner
!= filp
)) {
1178 if (req
->count
< min_buffers
)
1179 req
->count
= min_buffers
;
1180 else if (req
->count
> max_buffers
)
1181 req
->count
= max_buffers
;
1182 if (cam
->n_sbufs
> 0) {
1183 ret
= cafe_free_sio_buffers(cam
);
1188 cam
->sb_bufs
= kzalloc(req
->count
*sizeof(struct cafe_sio_buffer
),
1190 if (cam
->sb_bufs
== NULL
) {
1194 for (cam
->n_sbufs
= 0; cam
->n_sbufs
< req
->count
; (cam
->n_sbufs
++)) {
1195 ret
= cafe_setup_siobuf(cam
, cam
->n_sbufs
);
1200 if (cam
->n_sbufs
== 0) /* no luck at all - ret already set */
1201 kfree(cam
->sb_bufs
);
1202 req
->count
= cam
->n_sbufs
; /* In case of partial success */
1205 mutex_unlock(&cam
->s_mutex
);
1210 static int cafe_vidioc_querybuf(struct file
*filp
, void *priv
,
1211 struct v4l2_buffer
*buf
)
1213 struct cafe_camera
*cam
= filp
->private_data
;
1216 mutex_lock(&cam
->s_mutex
);
1217 if (buf
->index
>= cam
->n_sbufs
)
1219 *buf
= cam
->sb_bufs
[buf
->index
].v4lbuf
;
1222 mutex_unlock(&cam
->s_mutex
);
1226 static int cafe_vidioc_qbuf(struct file
*filp
, void *priv
,
1227 struct v4l2_buffer
*buf
)
1229 struct cafe_camera
*cam
= filp
->private_data
;
1230 struct cafe_sio_buffer
*sbuf
;
1232 unsigned long flags
;
1234 mutex_lock(&cam
->s_mutex
);
1235 if (buf
->index
>= cam
->n_sbufs
)
1237 sbuf
= cam
->sb_bufs
+ buf
->index
;
1238 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_QUEUED
) {
1239 ret
= 0; /* Already queued?? */
1242 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_DONE
) {
1243 /* Spec doesn't say anything, seems appropriate tho */
1247 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_QUEUED
;
1248 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1249 list_add(&sbuf
->list
, &cam
->sb_avail
);
1250 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1253 mutex_unlock(&cam
->s_mutex
);
1257 static int cafe_vidioc_dqbuf(struct file
*filp
, void *priv
,
1258 struct v4l2_buffer
*buf
)
1260 struct cafe_camera
*cam
= filp
->private_data
;
1261 struct cafe_sio_buffer
*sbuf
;
1263 unsigned long flags
;
1265 mutex_lock(&cam
->s_mutex
);
1266 if (cam
->state
!= S_STREAMING
)
1268 if (list_empty(&cam
->sb_full
) && filp
->f_flags
& O_NONBLOCK
) {
1273 while (list_empty(&cam
->sb_full
) && cam
->state
== S_STREAMING
) {
1274 mutex_unlock(&cam
->s_mutex
);
1275 if (wait_event_interruptible(cam
->iowait
,
1276 !list_empty(&cam
->sb_full
))) {
1280 mutex_lock(&cam
->s_mutex
);
1283 if (cam
->state
!= S_STREAMING
)
1286 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1287 /* Should probably recheck !list_empty() here */
1288 sbuf
= list_entry(cam
->sb_full
.next
,
1289 struct cafe_sio_buffer
, list
);
1290 list_del_init(&sbuf
->list
);
1291 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1292 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_DONE
;
1293 *buf
= sbuf
->v4lbuf
;
1298 mutex_unlock(&cam
->s_mutex
);
1305 static void cafe_v4l_vm_open(struct vm_area_struct
*vma
)
1307 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1309 * Locking: done under mmap_sem, so we don't need to
1310 * go back to the camera lock here.
1316 static void cafe_v4l_vm_close(struct vm_area_struct
*vma
)
1318 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1320 mutex_lock(&sbuf
->cam
->s_mutex
);
1322 /* Docs say we should stop I/O too... */
1323 if (sbuf
->mapcount
== 0)
1324 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_MAPPED
;
1325 mutex_unlock(&sbuf
->cam
->s_mutex
);
1328 static const struct vm_operations_struct cafe_v4l_vm_ops
= {
1329 .open
= cafe_v4l_vm_open
,
1330 .close
= cafe_v4l_vm_close
1334 static int cafe_v4l_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1336 struct cafe_camera
*cam
= filp
->private_data
;
1337 unsigned long offset
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1340 struct cafe_sio_buffer
*sbuf
= NULL
;
1342 if (! (vma
->vm_flags
& VM_WRITE
) || ! (vma
->vm_flags
& VM_SHARED
))
1345 * Find the buffer they are looking for.
1347 mutex_lock(&cam
->s_mutex
);
1348 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1349 if (cam
->sb_bufs
[i
].v4lbuf
.m
.offset
== offset
) {
1350 sbuf
= cam
->sb_bufs
+ i
;
1356 ret
= remap_vmalloc_range(vma
, sbuf
->buffer
, 0);
1359 vma
->vm_flags
|= VM_DONTEXPAND
;
1360 vma
->vm_private_data
= sbuf
;
1361 vma
->vm_ops
= &cafe_v4l_vm_ops
;
1362 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_MAPPED
;
1363 cafe_v4l_vm_open(vma
);
1366 mutex_unlock(&cam
->s_mutex
);
1372 static int cafe_v4l_open(struct file
*filp
)
1374 struct cafe_camera
*cam
= video_drvdata(filp
);
1376 filp
->private_data
= cam
;
1378 mutex_lock(&cam
->s_mutex
);
1379 if (cam
->users
== 0) {
1380 cafe_ctlr_power_up(cam
);
1381 __cafe_cam_reset(cam
);
1382 cafe_set_config_needed(cam
, 1);
1383 /* FIXME make sure this is complete */
1386 mutex_unlock(&cam
->s_mutex
);
1391 static int cafe_v4l_release(struct file
*filp
)
1393 struct cafe_camera
*cam
= filp
->private_data
;
1395 mutex_lock(&cam
->s_mutex
);
1397 if (filp
== cam
->owner
) {
1398 cafe_ctlr_stop_dma(cam
);
1399 cafe_free_sio_buffers(cam
);
1402 if (cam
->users
== 0) {
1403 cafe_ctlr_power_down(cam
);
1404 if (alloc_bufs_at_read
)
1405 cafe_free_dma_bufs(cam
);
1407 mutex_unlock(&cam
->s_mutex
);
1413 static unsigned int cafe_v4l_poll(struct file
*filp
,
1414 struct poll_table_struct
*pt
)
1416 struct cafe_camera
*cam
= filp
->private_data
;
1418 poll_wait(filp
, &cam
->iowait
, pt
);
1419 if (cam
->next_buf
>= 0)
1420 return POLLIN
| POLLRDNORM
;
1426 static int cafe_vidioc_queryctrl(struct file
*filp
, void *priv
,
1427 struct v4l2_queryctrl
*qc
)
1429 struct cafe_camera
*cam
= priv
;
1432 mutex_lock(&cam
->s_mutex
);
1433 ret
= sensor_call(cam
, core
, queryctrl
, qc
);
1434 mutex_unlock(&cam
->s_mutex
);
1439 static int cafe_vidioc_g_ctrl(struct file
*filp
, void *priv
,
1440 struct v4l2_control
*ctrl
)
1442 struct cafe_camera
*cam
= priv
;
1445 mutex_lock(&cam
->s_mutex
);
1446 ret
= sensor_call(cam
, core
, g_ctrl
, ctrl
);
1447 mutex_unlock(&cam
->s_mutex
);
1452 static int cafe_vidioc_s_ctrl(struct file
*filp
, void *priv
,
1453 struct v4l2_control
*ctrl
)
1455 struct cafe_camera
*cam
= priv
;
1458 mutex_lock(&cam
->s_mutex
);
1459 ret
= sensor_call(cam
, core
, s_ctrl
, ctrl
);
1460 mutex_unlock(&cam
->s_mutex
);
1468 static int cafe_vidioc_querycap(struct file
*file
, void *priv
,
1469 struct v4l2_capability
*cap
)
1471 strcpy(cap
->driver
, "cafe_ccic");
1472 strcpy(cap
->card
, "cafe_ccic");
1473 cap
->version
= CAFE_VERSION
;
1474 cap
->capabilities
= V4L2_CAP_VIDEO_CAPTURE
|
1475 V4L2_CAP_READWRITE
| V4L2_CAP_STREAMING
;
1481 * The default format we use until somebody says otherwise.
1483 static struct v4l2_pix_format cafe_def_pix_format
= {
1485 .height
= VGA_HEIGHT
,
1486 .pixelformat
= V4L2_PIX_FMT_YUYV
,
1487 .field
= V4L2_FIELD_NONE
,
1488 .bytesperline
= VGA_WIDTH
*2,
1489 .sizeimage
= VGA_WIDTH
*VGA_HEIGHT
*2,
1492 static int cafe_vidioc_enum_fmt_vid_cap(struct file
*filp
,
1493 void *priv
, struct v4l2_fmtdesc
*fmt
)
1495 struct cafe_camera
*cam
= priv
;
1498 mutex_lock(&cam
->s_mutex
);
1499 ret
= sensor_call(cam
, video
, enum_fmt
, fmt
);
1500 mutex_unlock(&cam
->s_mutex
);
1505 static int cafe_vidioc_try_fmt_vid_cap(struct file
*filp
, void *priv
,
1506 struct v4l2_format
*fmt
)
1508 struct cafe_camera
*cam
= priv
;
1511 mutex_lock(&cam
->s_mutex
);
1512 ret
= sensor_call(cam
, video
, try_fmt
, fmt
);
1513 mutex_unlock(&cam
->s_mutex
);
1517 static int cafe_vidioc_s_fmt_vid_cap(struct file
*filp
, void *priv
,
1518 struct v4l2_format
*fmt
)
1520 struct cafe_camera
*cam
= priv
;
1524 * Can't do anything if the device is not idle
1525 * Also can't if there are streaming buffers in place.
1527 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
> 0)
1530 * See if the formatting works in principle.
1532 ret
= cafe_vidioc_try_fmt_vid_cap(filp
, priv
, fmt
);
1536 * Now we start to change things for real, so let's do it
1539 mutex_lock(&cam
->s_mutex
);
1540 cam
->pix_format
= fmt
->fmt
.pix
;
1542 * Make sure we have appropriate DMA buffers.
1545 if (cam
->nbufs
> 0 && cam
->dma_buf_size
< cam
->pix_format
.sizeimage
)
1546 cafe_free_dma_bufs(cam
);
1547 if (cam
->nbufs
== 0) {
1548 if (cafe_alloc_dma_bufs(cam
, 0))
1552 * It looks like this might work, so let's program the sensor.
1554 ret
= cafe_cam_configure(cam
);
1556 ret
= cafe_ctlr_configure(cam
);
1558 mutex_unlock(&cam
->s_mutex
);
1563 * Return our stored notion of how the camera is/should be configured.
1564 * The V4l2 spec wants us to be smarter, and actually get this from
1565 * the camera (and not mess with it at open time). Someday.
1567 static int cafe_vidioc_g_fmt_vid_cap(struct file
*filp
, void *priv
,
1568 struct v4l2_format
*f
)
1570 struct cafe_camera
*cam
= priv
;
1572 f
->fmt
.pix
= cam
->pix_format
;
1577 * We only have one input - the sensor - so minimize the nonsense here.
1579 static int cafe_vidioc_enum_input(struct file
*filp
, void *priv
,
1580 struct v4l2_input
*input
)
1582 if (input
->index
!= 0)
1585 input
->type
= V4L2_INPUT_TYPE_CAMERA
;
1586 input
->std
= V4L2_STD_ALL
; /* Not sure what should go here */
1587 strcpy(input
->name
, "Camera");
1591 static int cafe_vidioc_g_input(struct file
*filp
, void *priv
, unsigned int *i
)
1597 static int cafe_vidioc_s_input(struct file
*filp
, void *priv
, unsigned int i
)
1605 static int cafe_vidioc_s_std(struct file
*filp
, void *priv
, v4l2_std_id
*a
)
1611 * G/S_PARM. Most of this is done by the sensor, but we are
1612 * the level which controls the number of read buffers.
1614 static int cafe_vidioc_g_parm(struct file
*filp
, void *priv
,
1615 struct v4l2_streamparm
*parms
)
1617 struct cafe_camera
*cam
= priv
;
1620 mutex_lock(&cam
->s_mutex
);
1621 ret
= sensor_call(cam
, video
, g_parm
, parms
);
1622 mutex_unlock(&cam
->s_mutex
);
1623 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1627 static int cafe_vidioc_s_parm(struct file
*filp
, void *priv
,
1628 struct v4l2_streamparm
*parms
)
1630 struct cafe_camera
*cam
= priv
;
1633 mutex_lock(&cam
->s_mutex
);
1634 ret
= sensor_call(cam
, video
, s_parm
, parms
);
1635 mutex_unlock(&cam
->s_mutex
);
1636 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1640 static int cafe_vidioc_g_chip_ident(struct file
*file
, void *priv
,
1641 struct v4l2_dbg_chip_ident
*chip
)
1643 struct cafe_camera
*cam
= priv
;
1645 chip
->ident
= V4L2_IDENT_NONE
;
1647 if (v4l2_chip_match_host(&chip
->match
)) {
1648 chip
->ident
= V4L2_IDENT_CAFE
;
1651 return sensor_call(cam
, core
, g_chip_ident
, chip
);
1654 #ifdef CONFIG_VIDEO_ADV_DEBUG
1655 static int cafe_vidioc_g_register(struct file
*file
, void *priv
,
1656 struct v4l2_dbg_register
*reg
)
1658 struct cafe_camera
*cam
= priv
;
1660 if (v4l2_chip_match_host(®
->match
)) {
1661 reg
->val
= cafe_reg_read(cam
, reg
->reg
);
1665 return sensor_call(cam
, core
, g_register
, reg
);
1668 static int cafe_vidioc_s_register(struct file
*file
, void *priv
,
1669 struct v4l2_dbg_register
*reg
)
1671 struct cafe_camera
*cam
= priv
;
1673 if (v4l2_chip_match_host(®
->match
)) {
1674 cafe_reg_write(cam
, reg
->reg
, reg
->val
);
1677 return sensor_call(cam
, core
, s_register
, reg
);
1682 * This template device holds all of those v4l2 methods; we
1683 * clone it for specific real devices.
1686 static const struct v4l2_file_operations cafe_v4l_fops
= {
1687 .owner
= THIS_MODULE
,
1688 .open
= cafe_v4l_open
,
1689 .release
= cafe_v4l_release
,
1690 .read
= cafe_v4l_read
,
1691 .poll
= cafe_v4l_poll
,
1692 .mmap
= cafe_v4l_mmap
,
1693 .ioctl
= video_ioctl2
,
1696 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops
= {
1697 .vidioc_querycap
= cafe_vidioc_querycap
,
1698 .vidioc_enum_fmt_vid_cap
= cafe_vidioc_enum_fmt_vid_cap
,
1699 .vidioc_try_fmt_vid_cap
= cafe_vidioc_try_fmt_vid_cap
,
1700 .vidioc_s_fmt_vid_cap
= cafe_vidioc_s_fmt_vid_cap
,
1701 .vidioc_g_fmt_vid_cap
= cafe_vidioc_g_fmt_vid_cap
,
1702 .vidioc_enum_input
= cafe_vidioc_enum_input
,
1703 .vidioc_g_input
= cafe_vidioc_g_input
,
1704 .vidioc_s_input
= cafe_vidioc_s_input
,
1705 .vidioc_s_std
= cafe_vidioc_s_std
,
1706 .vidioc_reqbufs
= cafe_vidioc_reqbufs
,
1707 .vidioc_querybuf
= cafe_vidioc_querybuf
,
1708 .vidioc_qbuf
= cafe_vidioc_qbuf
,
1709 .vidioc_dqbuf
= cafe_vidioc_dqbuf
,
1710 .vidioc_streamon
= cafe_vidioc_streamon
,
1711 .vidioc_streamoff
= cafe_vidioc_streamoff
,
1712 .vidioc_queryctrl
= cafe_vidioc_queryctrl
,
1713 .vidioc_g_ctrl
= cafe_vidioc_g_ctrl
,
1714 .vidioc_s_ctrl
= cafe_vidioc_s_ctrl
,
1715 .vidioc_g_parm
= cafe_vidioc_g_parm
,
1716 .vidioc_s_parm
= cafe_vidioc_s_parm
,
1717 .vidioc_g_chip_ident
= cafe_vidioc_g_chip_ident
,
1718 #ifdef CONFIG_VIDEO_ADV_DEBUG
1719 .vidioc_g_register
= cafe_vidioc_g_register
,
1720 .vidioc_s_register
= cafe_vidioc_s_register
,
1724 static struct video_device cafe_v4l_template
= {
1726 .tvnorms
= V4L2_STD_NTSC_M
,
1727 .current_norm
= V4L2_STD_NTSC_M
, /* make mplayer happy */
1729 .fops
= &cafe_v4l_fops
,
1730 .ioctl_ops
= &cafe_v4l_ioctl_ops
,
1731 .release
= video_device_release_empty
,
1735 /* ---------------------------------------------------------------------- */
1737 * Interrupt handler stuff
1742 static void cafe_frame_tasklet(unsigned long data
)
1744 struct cafe_camera
*cam
= (struct cafe_camera
*) data
;
1746 unsigned long flags
;
1747 struct cafe_sio_buffer
*sbuf
;
1749 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1750 for (i
= 0; i
< cam
->nbufs
; i
++) {
1751 int bufno
= cam
->next_buf
;
1752 if (bufno
< 0) { /* "will never happen" */
1753 cam_err(cam
, "No valid bufs in tasklet!\n");
1756 if (++(cam
->next_buf
) >= cam
->nbufs
)
1758 if (! test_bit(bufno
, &cam
->flags
))
1760 if (list_empty(&cam
->sb_avail
))
1761 break; /* Leave it valid, hope for better later */
1762 clear_bit(bufno
, &cam
->flags
);
1763 sbuf
= list_entry(cam
->sb_avail
.next
,
1764 struct cafe_sio_buffer
, list
);
1766 * Drop the lock during the big copy. This *should* be safe...
1768 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1769 memcpy(sbuf
->buffer
, cam
->dma_bufs
[bufno
],
1770 cam
->pix_format
.sizeimage
);
1771 sbuf
->v4lbuf
.bytesused
= cam
->pix_format
.sizeimage
;
1772 sbuf
->v4lbuf
.sequence
= cam
->buf_seq
[bufno
];
1773 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_QUEUED
;
1774 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_DONE
;
1775 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1776 list_move_tail(&sbuf
->list
, &cam
->sb_full
);
1778 if (! list_empty(&cam
->sb_full
))
1779 wake_up(&cam
->iowait
);
1780 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1785 static void cafe_frame_complete(struct cafe_camera
*cam
, int frame
)
1788 * Basic frame housekeeping.
1790 if (test_bit(frame
, &cam
->flags
) && printk_ratelimit())
1791 cam_err(cam
, "Frame overrun on %d, frames lost\n", frame
);
1792 set_bit(frame
, &cam
->flags
);
1793 clear_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1794 if (cam
->next_buf
< 0)
1795 cam
->next_buf
= frame
;
1796 cam
->buf_seq
[frame
] = ++(cam
->sequence
);
1798 switch (cam
->state
) {
1800 * If in single read mode, try going speculative.
1803 cam
->state
= S_SPECREAD
;
1804 cam
->specframes
= 0;
1805 wake_up(&cam
->iowait
);
1809 * If we are already doing speculative reads, and nobody is
1810 * reading them, just stop.
1813 if (++(cam
->specframes
) >= cam
->nbufs
) {
1814 cafe_ctlr_stop(cam
);
1815 cafe_ctlr_irq_disable(cam
);
1816 cam
->state
= S_IDLE
;
1818 wake_up(&cam
->iowait
);
1821 * For the streaming case, we defer the real work to the
1824 * FIXME: if the application is not consuming the buffers,
1825 * we should eventually put things on hold and restart in
1829 tasklet_schedule(&cam
->s_tasklet
);
1833 cam_err(cam
, "Frame interrupt in non-operational state\n");
1841 static void cafe_frame_irq(struct cafe_camera
*cam
, unsigned int irqs
)
1845 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
); /* Clear'em all */
1847 * Handle any frame completions. There really should
1848 * not be more than one of these, or we have fallen
1851 for (frame
= 0; frame
< cam
->nbufs
; frame
++)
1852 if (irqs
& (IRQ_EOF0
<< frame
))
1853 cafe_frame_complete(cam
, frame
);
1855 * If a frame starts, note that we have DMA active. This
1856 * code assumes that we won't get multiple frame interrupts
1857 * at once; may want to rethink that.
1859 if (irqs
& (IRQ_SOF0
| IRQ_SOF1
| IRQ_SOF2
))
1860 set_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1865 static irqreturn_t
cafe_irq(int irq
, void *data
)
1867 struct cafe_camera
*cam
= data
;
1870 spin_lock(&cam
->dev_lock
);
1871 irqs
= cafe_reg_read(cam
, REG_IRQSTAT
);
1872 if ((irqs
& ALLIRQS
) == 0) {
1873 spin_unlock(&cam
->dev_lock
);
1876 if (irqs
& FRAMEIRQS
)
1877 cafe_frame_irq(cam
, irqs
);
1878 if (irqs
& TWSIIRQS
) {
1879 cafe_reg_write(cam
, REG_IRQSTAT
, TWSIIRQS
);
1880 wake_up(&cam
->smbus_wait
);
1882 spin_unlock(&cam
->dev_lock
);
1887 /* -------------------------------------------------------------------------- */
1889 * PCI interface stuff.
1892 static int cafe_pci_probe(struct pci_dev
*pdev
,
1893 const struct pci_device_id
*id
)
1896 struct cafe_camera
*cam
;
1899 * Start putting together one of our big camera structures.
1902 cam
= kzalloc(sizeof(struct cafe_camera
), GFP_KERNEL
);
1905 ret
= v4l2_device_register(&pdev
->dev
, &cam
->v4l2_dev
);
1909 mutex_init(&cam
->s_mutex
);
1910 spin_lock_init(&cam
->dev_lock
);
1911 cam
->state
= S_NOTREADY
;
1912 cafe_set_config_needed(cam
, 1);
1913 init_waitqueue_head(&cam
->smbus_wait
);
1914 init_waitqueue_head(&cam
->iowait
);
1916 cam
->pix_format
= cafe_def_pix_format
;
1917 INIT_LIST_HEAD(&cam
->dev_list
);
1918 INIT_LIST_HEAD(&cam
->sb_avail
);
1919 INIT_LIST_HEAD(&cam
->sb_full
);
1920 tasklet_init(&cam
->s_tasklet
, cafe_frame_tasklet
, (unsigned long) cam
);
1922 * Get set up on the PCI bus.
1924 ret
= pci_enable_device(pdev
);
1927 pci_set_master(pdev
);
1930 cam
->regs
= pci_iomap(pdev
, 0, 0);
1932 printk(KERN_ERR
"Unable to ioremap cafe-ccic regs\n");
1935 ret
= request_irq(pdev
->irq
, cafe_irq
, IRQF_SHARED
, "cafe-ccic", cam
);
1939 * Initialize the controller and leave it powered up. It will
1940 * stay that way until the sensor driver shows up.
1942 cafe_ctlr_init(cam
);
1943 cafe_ctlr_power_up(cam
);
1945 * Set up I2C/SMBUS communications. We have to drop the mutex here
1946 * because the sensor could attach in this call chain, leading to
1947 * unsightly deadlocks.
1949 ret
= cafe_smbus_setup(cam
);
1953 cam
->sensor_addr
= 0x42;
1954 cam
->sensor
= v4l2_i2c_new_subdev(&cam
->v4l2_dev
, &cam
->i2c_adapter
,
1955 "ov7670", "ov7670", cam
->sensor_addr
, NULL
);
1956 if (cam
->sensor
== NULL
) {
1960 ret
= cafe_cam_init(cam
);
1965 * Get the v4l2 setup done.
1967 mutex_lock(&cam
->s_mutex
);
1968 cam
->vdev
= cafe_v4l_template
;
1969 cam
->vdev
.debug
= 0;
1970 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
1971 cam
->vdev
.v4l2_dev
= &cam
->v4l2_dev
;
1972 ret
= video_register_device(&cam
->vdev
, VFL_TYPE_GRABBER
, -1);
1975 video_set_drvdata(&cam
->vdev
, cam
);
1978 * If so requested, try to get our DMA buffers now.
1980 if (!alloc_bufs_at_read
) {
1981 if (cafe_alloc_dma_bufs(cam
, 1))
1982 cam_warn(cam
, "Unable to alloc DMA buffers at load"
1983 " will try again later.");
1986 mutex_unlock(&cam
->s_mutex
);
1990 mutex_unlock(&cam
->s_mutex
);
1992 cafe_smbus_shutdown(cam
);
1994 cafe_ctlr_power_down(cam
);
1995 free_irq(pdev
->irq
, cam
);
1997 pci_iounmap(pdev
, cam
->regs
);
1999 v4l2_device_unregister(&cam
->v4l2_dev
);
2008 * Shut down an initialized device
2010 static void cafe_shutdown(struct cafe_camera
*cam
)
2012 /* FIXME: Make sure we take care of everything here */
2013 if (cam
->n_sbufs
> 0)
2014 /* What if they are still mapped? Shouldn't be, but... */
2015 cafe_free_sio_buffers(cam
);
2016 cafe_ctlr_stop_dma(cam
);
2017 cafe_ctlr_power_down(cam
);
2018 cafe_smbus_shutdown(cam
);
2019 cafe_free_dma_bufs(cam
);
2020 free_irq(cam
->pdev
->irq
, cam
);
2021 pci_iounmap(cam
->pdev
, cam
->regs
);
2022 video_unregister_device(&cam
->vdev
);
2026 static void cafe_pci_remove(struct pci_dev
*pdev
)
2028 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2029 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2032 printk(KERN_WARNING
"pci_remove on unknown pdev %p\n", pdev
);
2035 mutex_lock(&cam
->s_mutex
);
2037 cam_warn(cam
, "Removing a device with users!\n");
2039 v4l2_device_unregister(&cam
->v4l2_dev
);
2041 /* No unlock - it no longer exists */
2047 * Basic power management.
2049 static int cafe_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2051 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2052 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2054 enum cafe_state cstate
;
2056 ret
= pci_save_state(pdev
);
2059 cstate
= cam
->state
; /* HACK - stop_dma sets to idle */
2060 cafe_ctlr_stop_dma(cam
);
2061 cafe_ctlr_power_down(cam
);
2062 pci_disable_device(pdev
);
2063 cam
->state
= cstate
;
2068 static int cafe_pci_resume(struct pci_dev
*pdev
)
2070 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2071 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2074 ret
= pci_restore_state(pdev
);
2077 ret
= pci_enable_device(pdev
);
2080 cam_warn(cam
, "Unable to re-enable device on resume!\n");
2083 cafe_ctlr_init(cam
);
2084 cafe_ctlr_power_down(cam
);
2086 mutex_lock(&cam
->s_mutex
);
2087 if (cam
->users
> 0) {
2088 cafe_ctlr_power_up(cam
);
2089 __cafe_cam_reset(cam
);
2091 mutex_unlock(&cam
->s_mutex
);
2093 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
2094 if (cam
->state
== S_SPECREAD
)
2095 cam
->state
= S_IDLE
; /* Don't bother restarting */
2096 else if (cam
->state
== S_SINGLEREAD
|| cam
->state
== S_STREAMING
)
2097 ret
= cafe_read_setup(cam
, cam
->state
);
2101 #endif /* CONFIG_PM */
2104 static struct pci_device_id cafe_ids
[] = {
2105 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
,
2106 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC
) },
2110 MODULE_DEVICE_TABLE(pci
, cafe_ids
);
2112 static struct pci_driver cafe_pci_driver
= {
2113 .name
= "cafe1000-ccic",
2114 .id_table
= cafe_ids
,
2115 .probe
= cafe_pci_probe
,
2116 .remove
= cafe_pci_remove
,
2118 .suspend
= cafe_pci_suspend
,
2119 .resume
= cafe_pci_resume
,
2126 static int __init
cafe_init(void)
2130 printk(KERN_NOTICE
"Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2132 ret
= pci_register_driver(&cafe_pci_driver
);
2134 printk(KERN_ERR
"Unable to register cafe_ccic driver\n");
2144 static void __exit
cafe_exit(void)
2146 pci_unregister_driver(&cafe_pci_driver
);
2149 module_init(cafe_init
);
2150 module_exit(cafe_exit
);