Linux 2.6.34-rc3
[pohmelfs.git] / drivers / media / video / cafe_ccic.c
blobcbbf7e80d2cf856b5de2aed6ab6ca4d14b8d76f9
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pcconn/88ALP01.jsp
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/fs.h>
28 #include <linux/mm.h>
29 #include <linux/pci.h>
30 #include <linux/i2c.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/videodev2.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-ioctl.h>
36 #include <media/v4l2-chip-ident.h>
37 #include <linux/device.h>
38 #include <linux/wait.h>
39 #include <linux/list.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/delay.h>
42 #include <linux/jiffies.h>
43 #include <linux/vmalloc.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
48 #include "cafe_ccic-regs.h"
50 #define CAFE_VERSION 0x000002
54 * Parameters.
56 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
57 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
58 MODULE_LICENSE("GPL");
59 MODULE_SUPPORTED_DEVICE("Video");
62 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
63 * we must have physically contiguous buffers to bring frames into.
64 * These parameters control how many buffers we use, whether we
65 * allocate them at load time (better chance of success, but nails down
66 * memory) or when somebody tries to use the camera (riskier), and,
67 * for load-time allocation, how big they should be.
69 * The controller can cycle through three buffers. We could use
70 * more by flipping pointers around, but it probably makes little
71 * sense.
74 #define MAX_DMA_BUFS 3
75 static int alloc_bufs_at_read;
76 module_param(alloc_bufs_at_read, bool, 0444);
77 MODULE_PARM_DESC(alloc_bufs_at_read,
78 "Non-zero value causes DMA buffers to be allocated when the "
79 "video capture device is read, rather than at module load "
80 "time. This saves memory, but decreases the chances of "
81 "successfully getting those buffers.");
83 static int n_dma_bufs = 3;
84 module_param(n_dma_bufs, uint, 0644);
85 MODULE_PARM_DESC(n_dma_bufs,
86 "The number of DMA buffers to allocate. Can be either two "
87 "(saves memory, makes timing tighter) or three.");
89 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
90 module_param(dma_buf_size, uint, 0444);
91 MODULE_PARM_DESC(dma_buf_size,
92 "The size of the allocated DMA buffers. If actual operating "
93 "parameters require larger buffers, an attempt to reallocate "
94 "will be made.");
96 static int min_buffers = 1;
97 module_param(min_buffers, uint, 0644);
98 MODULE_PARM_DESC(min_buffers,
99 "The minimum number of streaming I/O buffers we are willing "
100 "to work with.");
102 static int max_buffers = 10;
103 module_param(max_buffers, uint, 0644);
104 MODULE_PARM_DESC(max_buffers,
105 "The maximum number of streaming I/O buffers an application "
106 "will be allowed to allocate. These buffers are big and live "
107 "in vmalloc space.");
109 static int flip;
110 module_param(flip, bool, 0444);
111 MODULE_PARM_DESC(flip,
112 "If set, the sensor will be instructed to flip the image "
113 "vertically.");
116 enum cafe_state {
117 S_NOTREADY, /* Not yet initialized */
118 S_IDLE, /* Just hanging around */
119 S_FLAKED, /* Some sort of problem */
120 S_SINGLEREAD, /* In read() */
121 S_SPECREAD, /* Speculative read (for future read()) */
122 S_STREAMING /* Streaming data */
126 * Tracking of streaming I/O buffers.
128 struct cafe_sio_buffer {
129 struct list_head list;
130 struct v4l2_buffer v4lbuf;
131 char *buffer; /* Where it lives in kernel space */
132 int mapcount;
133 struct cafe_camera *cam;
137 * A description of one of our devices.
138 * Locking: controlled by s_mutex. Certain fields, however, require
139 * the dev_lock spinlock; they are marked as such by comments.
140 * dev_lock is also required for access to device registers.
142 struct cafe_camera
144 struct v4l2_device v4l2_dev;
145 enum cafe_state state;
146 unsigned long flags; /* Buffer status, mainly (dev_lock) */
147 int users; /* How many open FDs */
148 struct file *owner; /* Who has data access (v4l2) */
151 * Subsystem structures.
153 struct pci_dev *pdev;
154 struct video_device vdev;
155 struct i2c_adapter i2c_adapter;
156 struct v4l2_subdev *sensor;
157 unsigned short sensor_addr;
159 unsigned char __iomem *regs;
160 struct list_head dev_list; /* link to other devices */
162 /* DMA buffers */
163 unsigned int nbufs; /* How many are alloc'd */
164 int next_buf; /* Next to consume (dev_lock) */
165 unsigned int dma_buf_size; /* allocated size */
166 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
167 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
168 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
169 unsigned int sequence; /* Frame sequence number */
170 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
172 /* Streaming buffers */
173 unsigned int n_sbufs; /* How many we have */
174 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
175 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
176 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
177 struct tasklet_struct s_tasklet;
179 /* Current operating parameters */
180 u32 sensor_type; /* Currently ov7670 only */
181 struct v4l2_pix_format pix_format;
183 /* Locks */
184 struct mutex s_mutex; /* Access to this structure */
185 spinlock_t dev_lock; /* Access to device */
187 /* Misc */
188 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
189 wait_queue_head_t iowait; /* Waiting on frame data */
193 * Status flags. Always manipulated with bit operations.
195 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
196 #define CF_BUF1_VALID 1
197 #define CF_BUF2_VALID 2
198 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
199 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
201 #define sensor_call(cam, o, f, args...) \
202 v4l2_subdev_call(cam->sensor, o, f, ##args)
204 static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
206 return container_of(dev, struct cafe_camera, v4l2_dev);
211 * Start over with DMA buffers - dev_lock needed.
213 static void cafe_reset_buffers(struct cafe_camera *cam)
215 int i;
217 cam->next_buf = -1;
218 for (i = 0; i < cam->nbufs; i++)
219 clear_bit(i, &cam->flags);
220 cam->specframes = 0;
223 static inline int cafe_needs_config(struct cafe_camera *cam)
225 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
228 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
230 if (needed)
231 set_bit(CF_CONFIG_NEEDED, &cam->flags);
232 else
233 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
240 * Debugging and related.
242 #define cam_err(cam, fmt, arg...) \
243 dev_err(&(cam)->pdev->dev, fmt, ##arg);
244 #define cam_warn(cam, fmt, arg...) \
245 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
246 #define cam_dbg(cam, fmt, arg...) \
247 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
250 /* ---------------------------------------------------------------------*/
253 * Device register I/O
255 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
256 unsigned int val)
258 iowrite32(val, cam->regs + reg);
261 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
262 unsigned int reg)
264 return ioread32(cam->regs + reg);
268 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
269 unsigned int val, unsigned int mask)
271 unsigned int v = cafe_reg_read(cam, reg);
273 v = (v & ~mask) | (val & mask);
274 cafe_reg_write(cam, reg, v);
277 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
278 unsigned int reg, unsigned int val)
280 cafe_reg_write_mask(cam, reg, 0, val);
283 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
284 unsigned int reg, unsigned int val)
286 cafe_reg_write_mask(cam, reg, val, val);
291 /* -------------------------------------------------------------------- */
293 * The I2C/SMBUS interface to the camera itself starts here. The
294 * controller handles SMBUS itself, presenting a relatively simple register
295 * interface; all we have to do is to tell it where to route the data.
297 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
299 static int cafe_smbus_write_done(struct cafe_camera *cam)
301 unsigned long flags;
302 int c1;
305 * We must delay after the interrupt, or the controller gets confused
306 * and never does give us good status. Fortunately, we don't do this
307 * often.
309 udelay(20);
310 spin_lock_irqsave(&cam->dev_lock, flags);
311 c1 = cafe_reg_read(cam, REG_TWSIC1);
312 spin_unlock_irqrestore(&cam->dev_lock, flags);
313 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
316 static int cafe_smbus_write_data(struct cafe_camera *cam,
317 u16 addr, u8 command, u8 value)
319 unsigned int rval;
320 unsigned long flags;
321 DEFINE_WAIT(the_wait);
323 spin_lock_irqsave(&cam->dev_lock, flags);
324 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
325 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
327 * Marvell sez set clkdiv to all 1's for now.
329 rval |= TWSIC0_CLKDIV;
330 cafe_reg_write(cam, REG_TWSIC0, rval);
331 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
332 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
333 cafe_reg_write(cam, REG_TWSIC1, rval);
334 spin_unlock_irqrestore(&cam->dev_lock, flags);
337 * Time to wait for the write to complete. THIS IS A RACY
338 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
339 * register too quickly after starting the operation sends
340 * the device into a place that may be kinder and better, but
341 * which is absolutely useless for controlling the sensor. In
342 * practice we have plenty of time to get into our sleep state
343 * before the interrupt hits, and the worst case is that we
344 * time out and then see that things completed, so this seems
345 * the best way for now.
347 do {
348 prepare_to_wait(&cam->smbus_wait, &the_wait,
349 TASK_UNINTERRUPTIBLE);
350 schedule_timeout(1); /* even 1 jiffy is too long */
351 finish_wait(&cam->smbus_wait, &the_wait);
352 } while (!cafe_smbus_write_done(cam));
354 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
355 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
356 CAFE_SMBUS_TIMEOUT);
357 #endif
358 spin_lock_irqsave(&cam->dev_lock, flags);
359 rval = cafe_reg_read(cam, REG_TWSIC1);
360 spin_unlock_irqrestore(&cam->dev_lock, flags);
362 if (rval & TWSIC1_WSTAT) {
363 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
364 command, value);
365 return -EIO;
367 if (rval & TWSIC1_ERROR) {
368 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
369 command, value);
370 return -EIO;
372 return 0;
377 static int cafe_smbus_read_done(struct cafe_camera *cam)
379 unsigned long flags;
380 int c1;
383 * We must delay after the interrupt, or the controller gets confused
384 * and never does give us good status. Fortunately, we don't do this
385 * often.
387 udelay(20);
388 spin_lock_irqsave(&cam->dev_lock, flags);
389 c1 = cafe_reg_read(cam, REG_TWSIC1);
390 spin_unlock_irqrestore(&cam->dev_lock, flags);
391 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
396 static int cafe_smbus_read_data(struct cafe_camera *cam,
397 u16 addr, u8 command, u8 *value)
399 unsigned int rval;
400 unsigned long flags;
402 spin_lock_irqsave(&cam->dev_lock, flags);
403 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
404 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
406 * Marvel sez set clkdiv to all 1's for now.
408 rval |= TWSIC0_CLKDIV;
409 cafe_reg_write(cam, REG_TWSIC0, rval);
410 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
411 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
412 cafe_reg_write(cam, REG_TWSIC1, rval);
413 spin_unlock_irqrestore(&cam->dev_lock, flags);
415 wait_event_timeout(cam->smbus_wait,
416 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
417 spin_lock_irqsave(&cam->dev_lock, flags);
418 rval = cafe_reg_read(cam, REG_TWSIC1);
419 spin_unlock_irqrestore(&cam->dev_lock, flags);
421 if (rval & TWSIC1_ERROR) {
422 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
423 return -EIO;
425 if (! (rval & TWSIC1_RVALID)) {
426 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
427 command);
428 return -EIO;
430 *value = rval & 0xff;
431 return 0;
435 * Perform a transfer over SMBUS. This thing is called under
436 * the i2c bus lock, so we shouldn't race with ourselves...
438 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
439 unsigned short flags, char rw, u8 command,
440 int size, union i2c_smbus_data *data)
442 struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter);
443 struct cafe_camera *cam = to_cam(v4l2_dev);
444 int ret = -EINVAL;
447 * This interface would appear to only do byte data ops. OK
448 * it can do word too, but the cam chip has no use for that.
450 if (size != I2C_SMBUS_BYTE_DATA) {
451 cam_err(cam, "funky xfer size %d\n", size);
452 return -EINVAL;
455 if (rw == I2C_SMBUS_WRITE)
456 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
457 else if (rw == I2C_SMBUS_READ)
458 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
459 return ret;
463 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
465 unsigned long flags;
467 spin_lock_irqsave(&cam->dev_lock, flags);
468 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
469 spin_unlock_irqrestore(&cam->dev_lock, flags);
472 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
474 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
475 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
478 static struct i2c_algorithm cafe_smbus_algo = {
479 .smbus_xfer = cafe_smbus_xfer,
480 .functionality = cafe_smbus_func
483 /* Somebody is on the bus */
484 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
485 static void cafe_ctlr_power_down(struct cafe_camera *cam);
487 static int cafe_smbus_setup(struct cafe_camera *cam)
489 struct i2c_adapter *adap = &cam->i2c_adapter;
490 int ret;
492 cafe_smbus_enable_irq(cam);
493 adap->owner = THIS_MODULE;
494 adap->algo = &cafe_smbus_algo;
495 strcpy(adap->name, "cafe_ccic");
496 adap->dev.parent = &cam->pdev->dev;
497 i2c_set_adapdata(adap, &cam->v4l2_dev);
498 ret = i2c_add_adapter(adap);
499 if (ret)
500 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
501 return ret;
504 static void cafe_smbus_shutdown(struct cafe_camera *cam)
506 i2c_del_adapter(&cam->i2c_adapter);
510 /* ------------------------------------------------------------------- */
512 * Deal with the controller.
516 * Do everything we think we need to have the interface operating
517 * according to the desired format.
519 static void cafe_ctlr_dma(struct cafe_camera *cam)
522 * Store the first two Y buffers (we aren't supporting
523 * planar formats for now, so no UV bufs). Then either
524 * set the third if it exists, or tell the controller
525 * to just use two.
527 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
528 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
529 if (cam->nbufs > 2) {
530 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
531 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
533 else
534 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
535 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
538 static void cafe_ctlr_image(struct cafe_camera *cam)
540 int imgsz;
541 struct v4l2_pix_format *fmt = &cam->pix_format;
543 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
544 (fmt->bytesperline & IMGSZ_H_MASK);
545 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
546 cafe_reg_write(cam, REG_IMGOFFSET, 0);
547 /* YPITCH just drops the last two bits */
548 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
549 IMGP_YP_MASK);
551 * Tell the controller about the image format we are using.
553 switch (cam->pix_format.pixelformat) {
554 case V4L2_PIX_FMT_YUYV:
555 cafe_reg_write_mask(cam, REG_CTRL0,
556 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
557 C0_DF_MASK);
558 break;
560 case V4L2_PIX_FMT_RGB444:
561 cafe_reg_write_mask(cam, REG_CTRL0,
562 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
563 C0_DF_MASK);
564 /* Alpha value? */
565 break;
567 case V4L2_PIX_FMT_RGB565:
568 cafe_reg_write_mask(cam, REG_CTRL0,
569 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
570 C0_DF_MASK);
571 break;
573 default:
574 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
575 break;
578 * Make sure it knows we want to use hsync/vsync.
580 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
581 C0_SIFM_MASK);
586 * Configure the controller for operation; caller holds the
587 * device mutex.
589 static int cafe_ctlr_configure(struct cafe_camera *cam)
591 unsigned long flags;
593 spin_lock_irqsave(&cam->dev_lock, flags);
594 cafe_ctlr_dma(cam);
595 cafe_ctlr_image(cam);
596 cafe_set_config_needed(cam, 0);
597 spin_unlock_irqrestore(&cam->dev_lock, flags);
598 return 0;
601 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
604 * Clear any pending interrupts, since we do not
605 * expect to have I/O active prior to enabling.
607 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
608 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
611 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
613 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
617 * Make the controller start grabbing images. Everything must
618 * be set up before doing this.
620 static void cafe_ctlr_start(struct cafe_camera *cam)
622 /* set_bit performs a read, so no other barrier should be
623 needed here */
624 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
627 static void cafe_ctlr_stop(struct cafe_camera *cam)
629 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
632 static void cafe_ctlr_init(struct cafe_camera *cam)
634 unsigned long flags;
636 spin_lock_irqsave(&cam->dev_lock, flags);
638 * Added magic to bring up the hardware on the B-Test board
640 cafe_reg_write(cam, 0x3038, 0x8);
641 cafe_reg_write(cam, 0x315c, 0x80008);
643 * Go through the dance needed to wake the device up.
644 * Note that these registers are global and shared
645 * with the NAND and SD devices. Interaction between the
646 * three still needs to be examined.
648 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
649 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
650 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
652 * Here we must wait a bit for the controller to come around.
654 spin_unlock_irqrestore(&cam->dev_lock, flags);
655 msleep(5);
656 spin_lock_irqsave(&cam->dev_lock, flags);
658 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
659 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
661 * Make sure it's not powered down.
663 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
665 * Turn off the enable bit. It sure should be off anyway,
666 * but it's good to be sure.
668 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
670 * Mask all interrupts.
672 cafe_reg_write(cam, REG_IRQMASK, 0);
674 * Clock the sensor appropriately. Controller clock should
675 * be 48MHz, sensor "typical" value is half that.
677 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
678 spin_unlock_irqrestore(&cam->dev_lock, flags);
683 * Stop the controller, and don't return until we're really sure that no
684 * further DMA is going on.
686 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
688 unsigned long flags;
691 * Theory: stop the camera controller (whether it is operating
692 * or not). Delay briefly just in case we race with the SOF
693 * interrupt, then wait until no DMA is active.
695 spin_lock_irqsave(&cam->dev_lock, flags);
696 cafe_ctlr_stop(cam);
697 spin_unlock_irqrestore(&cam->dev_lock, flags);
698 mdelay(1);
699 wait_event_timeout(cam->iowait,
700 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
701 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
702 cam_err(cam, "Timeout waiting for DMA to end\n");
703 /* This would be bad news - what now? */
704 spin_lock_irqsave(&cam->dev_lock, flags);
705 cam->state = S_IDLE;
706 cafe_ctlr_irq_disable(cam);
707 spin_unlock_irqrestore(&cam->dev_lock, flags);
711 * Power up and down.
713 static void cafe_ctlr_power_up(struct cafe_camera *cam)
715 unsigned long flags;
717 spin_lock_irqsave(&cam->dev_lock, flags);
718 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
720 * Part one of the sensor dance: turn the global
721 * GPIO signal on.
723 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
724 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
726 * Put the sensor into operational mode (assumes OLPC-style
727 * wiring). Control 0 is reset - set to 1 to operate.
728 * Control 1 is power down, set to 0 to operate.
730 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
731 /* mdelay(1); */ /* Marvell says 1ms will do it */
732 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
733 /* mdelay(1); */ /* Enough? */
734 spin_unlock_irqrestore(&cam->dev_lock, flags);
735 msleep(5); /* Just to be sure */
738 static void cafe_ctlr_power_down(struct cafe_camera *cam)
740 unsigned long flags;
742 spin_lock_irqsave(&cam->dev_lock, flags);
743 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
744 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
745 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
746 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
747 spin_unlock_irqrestore(&cam->dev_lock, flags);
750 /* -------------------------------------------------------------------- */
752 * Communications with the sensor.
755 static int __cafe_cam_reset(struct cafe_camera *cam)
757 return sensor_call(cam, core, reset, 0);
761 * We have found the sensor on the i2c. Let's try to have a
762 * conversation.
764 static int cafe_cam_init(struct cafe_camera *cam)
766 struct v4l2_dbg_chip_ident chip;
767 int ret;
769 mutex_lock(&cam->s_mutex);
770 if (cam->state != S_NOTREADY)
771 cam_warn(cam, "Cam init with device in funky state %d",
772 cam->state);
773 ret = __cafe_cam_reset(cam);
774 if (ret)
775 goto out;
776 chip.ident = V4L2_IDENT_NONE;
777 chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
778 chip.match.addr = cam->sensor_addr;
779 ret = sensor_call(cam, core, g_chip_ident, &chip);
780 if (ret)
781 goto out;
782 cam->sensor_type = chip.ident;
783 if (cam->sensor_type != V4L2_IDENT_OV7670) {
784 cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
785 ret = -EINVAL;
786 goto out;
788 /* Get/set parameters? */
789 ret = 0;
790 cam->state = S_IDLE;
791 out:
792 cafe_ctlr_power_down(cam);
793 mutex_unlock(&cam->s_mutex);
794 return ret;
798 * Configure the sensor to match the parameters we have. Caller should
799 * hold s_mutex
801 static int cafe_cam_set_flip(struct cafe_camera *cam)
803 struct v4l2_control ctrl;
805 memset(&ctrl, 0, sizeof(ctrl));
806 ctrl.id = V4L2_CID_VFLIP;
807 ctrl.value = flip;
808 return sensor_call(cam, core, s_ctrl, &ctrl);
812 static int cafe_cam_configure(struct cafe_camera *cam)
814 struct v4l2_format fmt;
815 int ret;
817 if (cam->state != S_IDLE)
818 return -EINVAL;
819 fmt.fmt.pix = cam->pix_format;
820 ret = sensor_call(cam, core, init, 0);
821 if (ret == 0)
822 ret = sensor_call(cam, video, s_fmt, &fmt);
824 * OV7670 does weird things if flip is set *before* format...
826 ret += cafe_cam_set_flip(cam);
827 return ret;
830 /* -------------------------------------------------------------------- */
832 * DMA buffer management. These functions need s_mutex held.
835 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
836 * does a get_free_pages() call, and we waste a good chunk of an orderN
837 * allocation. Should try to allocate the whole set in one chunk.
839 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
841 int i;
843 cafe_set_config_needed(cam, 1);
844 if (loadtime)
845 cam->dma_buf_size = dma_buf_size;
846 else
847 cam->dma_buf_size = cam->pix_format.sizeimage;
848 if (n_dma_bufs > 3)
849 n_dma_bufs = 3;
851 cam->nbufs = 0;
852 for (i = 0; i < n_dma_bufs; i++) {
853 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
854 cam->dma_buf_size, cam->dma_handles + i,
855 GFP_KERNEL);
856 if (cam->dma_bufs[i] == NULL) {
857 cam_warn(cam, "Failed to allocate DMA buffer\n");
858 break;
860 /* For debug, remove eventually */
861 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
862 (cam->nbufs)++;
865 switch (cam->nbufs) {
866 case 1:
867 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
868 cam->dma_bufs[0], cam->dma_handles[0]);
869 cam->nbufs = 0;
870 case 0:
871 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
872 return -ENOMEM;
874 case 2:
875 if (n_dma_bufs > 2)
876 cam_warn(cam, "Will limp along with only 2 buffers\n");
877 break;
879 return 0;
882 static void cafe_free_dma_bufs(struct cafe_camera *cam)
884 int i;
886 for (i = 0; i < cam->nbufs; i++) {
887 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
888 cam->dma_bufs[i], cam->dma_handles[i]);
889 cam->dma_bufs[i] = NULL;
891 cam->nbufs = 0;
898 /* ----------------------------------------------------------------------- */
900 * Here starts the V4L2 interface code.
904 * Read an image from the device.
906 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
907 char __user *buffer, size_t len, loff_t *pos)
909 int bufno;
910 unsigned long flags;
912 spin_lock_irqsave(&cam->dev_lock, flags);
913 if (cam->next_buf < 0) {
914 cam_err(cam, "deliver_buffer: No next buffer\n");
915 spin_unlock_irqrestore(&cam->dev_lock, flags);
916 return -EIO;
918 bufno = cam->next_buf;
919 clear_bit(bufno, &cam->flags);
920 if (++(cam->next_buf) >= cam->nbufs)
921 cam->next_buf = 0;
922 if (! test_bit(cam->next_buf, &cam->flags))
923 cam->next_buf = -1;
924 cam->specframes = 0;
925 spin_unlock_irqrestore(&cam->dev_lock, flags);
927 if (len > cam->pix_format.sizeimage)
928 len = cam->pix_format.sizeimage;
929 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
930 return -EFAULT;
931 (*pos) += len;
932 return len;
936 * Get everything ready, and start grabbing frames.
938 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
940 int ret;
941 unsigned long flags;
944 * Configuration. If we still don't have DMA buffers,
945 * make one last, desperate attempt.
947 if (cam->nbufs == 0)
948 if (cafe_alloc_dma_bufs(cam, 0))
949 return -ENOMEM;
951 if (cafe_needs_config(cam)) {
952 cafe_cam_configure(cam);
953 ret = cafe_ctlr_configure(cam);
954 if (ret)
955 return ret;
959 * Turn it loose.
961 spin_lock_irqsave(&cam->dev_lock, flags);
962 cafe_reset_buffers(cam);
963 cafe_ctlr_irq_enable(cam);
964 cam->state = state;
965 cafe_ctlr_start(cam);
966 spin_unlock_irqrestore(&cam->dev_lock, flags);
967 return 0;
971 static ssize_t cafe_v4l_read(struct file *filp,
972 char __user *buffer, size_t len, loff_t *pos)
974 struct cafe_camera *cam = filp->private_data;
975 int ret = 0;
978 * Perhaps we're in speculative read mode and already
979 * have data?
981 mutex_lock(&cam->s_mutex);
982 if (cam->state == S_SPECREAD) {
983 if (cam->next_buf >= 0) {
984 ret = cafe_deliver_buffer(cam, buffer, len, pos);
985 if (ret != 0)
986 goto out_unlock;
988 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
989 ret = -EIO;
990 goto out_unlock;
991 } else if (cam->state != S_IDLE) {
992 ret = -EBUSY;
993 goto out_unlock;
997 * v4l2: multiple processes can open the device, but only
998 * one gets to grab data from it.
1000 if (cam->owner && cam->owner != filp) {
1001 ret = -EBUSY;
1002 goto out_unlock;
1004 cam->owner = filp;
1007 * Do setup if need be.
1009 if (cam->state != S_SPECREAD) {
1010 ret = cafe_read_setup(cam, S_SINGLEREAD);
1011 if (ret)
1012 goto out_unlock;
1015 * Wait for something to happen. This should probably
1016 * be interruptible (FIXME).
1018 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1019 if (cam->next_buf < 0) {
1020 cam_err(cam, "read() operation timed out\n");
1021 cafe_ctlr_stop_dma(cam);
1022 ret = -EIO;
1023 goto out_unlock;
1026 * Give them their data and we should be done.
1028 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1030 out_unlock:
1031 mutex_unlock(&cam->s_mutex);
1032 return ret;
1043 * Streaming I/O support.
1048 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1049 enum v4l2_buf_type type)
1051 struct cafe_camera *cam = filp->private_data;
1052 int ret = -EINVAL;
1054 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1055 goto out;
1056 mutex_lock(&cam->s_mutex);
1057 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1058 goto out_unlock;
1060 cam->sequence = 0;
1061 ret = cafe_read_setup(cam, S_STREAMING);
1063 out_unlock:
1064 mutex_unlock(&cam->s_mutex);
1065 out:
1066 return ret;
1070 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1071 enum v4l2_buf_type type)
1073 struct cafe_camera *cam = filp->private_data;
1074 int ret = -EINVAL;
1076 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1077 goto out;
1078 mutex_lock(&cam->s_mutex);
1079 if (cam->state != S_STREAMING)
1080 goto out_unlock;
1082 cafe_ctlr_stop_dma(cam);
1083 ret = 0;
1085 out_unlock:
1086 mutex_unlock(&cam->s_mutex);
1087 out:
1088 return ret;
1093 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1095 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1097 INIT_LIST_HEAD(&buf->list);
1098 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1099 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1100 if (buf->buffer == NULL)
1101 return -ENOMEM;
1102 buf->mapcount = 0;
1103 buf->cam = cam;
1105 buf->v4lbuf.index = index;
1106 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1107 buf->v4lbuf.field = V4L2_FIELD_NONE;
1108 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1110 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1111 * just uses the length times the index, but the spec warns
1112 * against doing just that - vma merging problems. So we
1113 * leave a gap between each pair of buffers.
1115 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1116 return 0;
1119 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1121 int i;
1124 * If any buffers are mapped, we cannot free them at all.
1126 for (i = 0; i < cam->n_sbufs; i++)
1127 if (cam->sb_bufs[i].mapcount > 0)
1128 return -EBUSY;
1130 * OK, let's do it.
1132 for (i = 0; i < cam->n_sbufs; i++)
1133 vfree(cam->sb_bufs[i].buffer);
1134 cam->n_sbufs = 0;
1135 kfree(cam->sb_bufs);
1136 cam->sb_bufs = NULL;
1137 INIT_LIST_HEAD(&cam->sb_avail);
1138 INIT_LIST_HEAD(&cam->sb_full);
1139 return 0;
1144 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1145 struct v4l2_requestbuffers *req)
1147 struct cafe_camera *cam = filp->private_data;
1148 int ret = 0; /* Silence warning */
1151 * Make sure it's something we can do. User pointers could be
1152 * implemented without great pain, but that's not been done yet.
1154 if (req->memory != V4L2_MEMORY_MMAP)
1155 return -EINVAL;
1157 * If they ask for zero buffers, they really want us to stop streaming
1158 * (if it's happening) and free everything. Should we check owner?
1160 mutex_lock(&cam->s_mutex);
1161 if (req->count == 0) {
1162 if (cam->state == S_STREAMING)
1163 cafe_ctlr_stop_dma(cam);
1164 ret = cafe_free_sio_buffers (cam);
1165 goto out;
1168 * Device needs to be idle and working. We *could* try to do the
1169 * right thing in S_SPECREAD by shutting things down, but it
1170 * probably doesn't matter.
1172 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1173 ret = -EBUSY;
1174 goto out;
1176 cam->owner = filp;
1178 if (req->count < min_buffers)
1179 req->count = min_buffers;
1180 else if (req->count > max_buffers)
1181 req->count = max_buffers;
1182 if (cam->n_sbufs > 0) {
1183 ret = cafe_free_sio_buffers(cam);
1184 if (ret)
1185 goto out;
1188 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1189 GFP_KERNEL);
1190 if (cam->sb_bufs == NULL) {
1191 ret = -ENOMEM;
1192 goto out;
1194 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1195 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1196 if (ret)
1197 break;
1200 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1201 kfree(cam->sb_bufs);
1202 req->count = cam->n_sbufs; /* In case of partial success */
1204 out:
1205 mutex_unlock(&cam->s_mutex);
1206 return ret;
1210 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1211 struct v4l2_buffer *buf)
1213 struct cafe_camera *cam = filp->private_data;
1214 int ret = -EINVAL;
1216 mutex_lock(&cam->s_mutex);
1217 if (buf->index >= cam->n_sbufs)
1218 goto out;
1219 *buf = cam->sb_bufs[buf->index].v4lbuf;
1220 ret = 0;
1221 out:
1222 mutex_unlock(&cam->s_mutex);
1223 return ret;
1226 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1227 struct v4l2_buffer *buf)
1229 struct cafe_camera *cam = filp->private_data;
1230 struct cafe_sio_buffer *sbuf;
1231 int ret = -EINVAL;
1232 unsigned long flags;
1234 mutex_lock(&cam->s_mutex);
1235 if (buf->index >= cam->n_sbufs)
1236 goto out;
1237 sbuf = cam->sb_bufs + buf->index;
1238 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1239 ret = 0; /* Already queued?? */
1240 goto out;
1242 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1243 /* Spec doesn't say anything, seems appropriate tho */
1244 ret = -EBUSY;
1245 goto out;
1247 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1248 spin_lock_irqsave(&cam->dev_lock, flags);
1249 list_add(&sbuf->list, &cam->sb_avail);
1250 spin_unlock_irqrestore(&cam->dev_lock, flags);
1251 ret = 0;
1252 out:
1253 mutex_unlock(&cam->s_mutex);
1254 return ret;
1257 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1258 struct v4l2_buffer *buf)
1260 struct cafe_camera *cam = filp->private_data;
1261 struct cafe_sio_buffer *sbuf;
1262 int ret = -EINVAL;
1263 unsigned long flags;
1265 mutex_lock(&cam->s_mutex);
1266 if (cam->state != S_STREAMING)
1267 goto out_unlock;
1268 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1269 ret = -EAGAIN;
1270 goto out_unlock;
1273 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1274 mutex_unlock(&cam->s_mutex);
1275 if (wait_event_interruptible(cam->iowait,
1276 !list_empty(&cam->sb_full))) {
1277 ret = -ERESTARTSYS;
1278 goto out;
1280 mutex_lock(&cam->s_mutex);
1283 if (cam->state != S_STREAMING)
1284 ret = -EINTR;
1285 else {
1286 spin_lock_irqsave(&cam->dev_lock, flags);
1287 /* Should probably recheck !list_empty() here */
1288 sbuf = list_entry(cam->sb_full.next,
1289 struct cafe_sio_buffer, list);
1290 list_del_init(&sbuf->list);
1291 spin_unlock_irqrestore(&cam->dev_lock, flags);
1292 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1293 *buf = sbuf->v4lbuf;
1294 ret = 0;
1297 out_unlock:
1298 mutex_unlock(&cam->s_mutex);
1299 out:
1300 return ret;
1305 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1307 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1309 * Locking: done under mmap_sem, so we don't need to
1310 * go back to the camera lock here.
1312 sbuf->mapcount++;
1316 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1318 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1320 mutex_lock(&sbuf->cam->s_mutex);
1321 sbuf->mapcount--;
1322 /* Docs say we should stop I/O too... */
1323 if (sbuf->mapcount == 0)
1324 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1325 mutex_unlock(&sbuf->cam->s_mutex);
1328 static const struct vm_operations_struct cafe_v4l_vm_ops = {
1329 .open = cafe_v4l_vm_open,
1330 .close = cafe_v4l_vm_close
1334 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1336 struct cafe_camera *cam = filp->private_data;
1337 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1338 int ret = -EINVAL;
1339 int i;
1340 struct cafe_sio_buffer *sbuf = NULL;
1342 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1343 return -EINVAL;
1345 * Find the buffer they are looking for.
1347 mutex_lock(&cam->s_mutex);
1348 for (i = 0; i < cam->n_sbufs; i++)
1349 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1350 sbuf = cam->sb_bufs + i;
1351 break;
1353 if (sbuf == NULL)
1354 goto out;
1356 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1357 if (ret)
1358 goto out;
1359 vma->vm_flags |= VM_DONTEXPAND;
1360 vma->vm_private_data = sbuf;
1361 vma->vm_ops = &cafe_v4l_vm_ops;
1362 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1363 cafe_v4l_vm_open(vma);
1364 ret = 0;
1365 out:
1366 mutex_unlock(&cam->s_mutex);
1367 return ret;
1372 static int cafe_v4l_open(struct file *filp)
1374 struct cafe_camera *cam = video_drvdata(filp);
1376 filp->private_data = cam;
1378 mutex_lock(&cam->s_mutex);
1379 if (cam->users == 0) {
1380 cafe_ctlr_power_up(cam);
1381 __cafe_cam_reset(cam);
1382 cafe_set_config_needed(cam, 1);
1383 /* FIXME make sure this is complete */
1385 (cam->users)++;
1386 mutex_unlock(&cam->s_mutex);
1387 return 0;
1391 static int cafe_v4l_release(struct file *filp)
1393 struct cafe_camera *cam = filp->private_data;
1395 mutex_lock(&cam->s_mutex);
1396 (cam->users)--;
1397 if (filp == cam->owner) {
1398 cafe_ctlr_stop_dma(cam);
1399 cafe_free_sio_buffers(cam);
1400 cam->owner = NULL;
1402 if (cam->users == 0) {
1403 cafe_ctlr_power_down(cam);
1404 if (alloc_bufs_at_read)
1405 cafe_free_dma_bufs(cam);
1407 mutex_unlock(&cam->s_mutex);
1408 return 0;
1413 static unsigned int cafe_v4l_poll(struct file *filp,
1414 struct poll_table_struct *pt)
1416 struct cafe_camera *cam = filp->private_data;
1418 poll_wait(filp, &cam->iowait, pt);
1419 if (cam->next_buf >= 0)
1420 return POLLIN | POLLRDNORM;
1421 return 0;
1426 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1427 struct v4l2_queryctrl *qc)
1429 struct cafe_camera *cam = priv;
1430 int ret;
1432 mutex_lock(&cam->s_mutex);
1433 ret = sensor_call(cam, core, queryctrl, qc);
1434 mutex_unlock(&cam->s_mutex);
1435 return ret;
1439 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1440 struct v4l2_control *ctrl)
1442 struct cafe_camera *cam = priv;
1443 int ret;
1445 mutex_lock(&cam->s_mutex);
1446 ret = sensor_call(cam, core, g_ctrl, ctrl);
1447 mutex_unlock(&cam->s_mutex);
1448 return ret;
1452 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1453 struct v4l2_control *ctrl)
1455 struct cafe_camera *cam = priv;
1456 int ret;
1458 mutex_lock(&cam->s_mutex);
1459 ret = sensor_call(cam, core, s_ctrl, ctrl);
1460 mutex_unlock(&cam->s_mutex);
1461 return ret;
1468 static int cafe_vidioc_querycap(struct file *file, void *priv,
1469 struct v4l2_capability *cap)
1471 strcpy(cap->driver, "cafe_ccic");
1472 strcpy(cap->card, "cafe_ccic");
1473 cap->version = CAFE_VERSION;
1474 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1475 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1476 return 0;
1481 * The default format we use until somebody says otherwise.
1483 static struct v4l2_pix_format cafe_def_pix_format = {
1484 .width = VGA_WIDTH,
1485 .height = VGA_HEIGHT,
1486 .pixelformat = V4L2_PIX_FMT_YUYV,
1487 .field = V4L2_FIELD_NONE,
1488 .bytesperline = VGA_WIDTH*2,
1489 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1492 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1493 void *priv, struct v4l2_fmtdesc *fmt)
1495 struct cafe_camera *cam = priv;
1496 int ret;
1498 mutex_lock(&cam->s_mutex);
1499 ret = sensor_call(cam, video, enum_fmt, fmt);
1500 mutex_unlock(&cam->s_mutex);
1501 return ret;
1505 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1506 struct v4l2_format *fmt)
1508 struct cafe_camera *cam = priv;
1509 int ret;
1511 mutex_lock(&cam->s_mutex);
1512 ret = sensor_call(cam, video, try_fmt, fmt);
1513 mutex_unlock(&cam->s_mutex);
1514 return ret;
1517 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1518 struct v4l2_format *fmt)
1520 struct cafe_camera *cam = priv;
1521 int ret;
1524 * Can't do anything if the device is not idle
1525 * Also can't if there are streaming buffers in place.
1527 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1528 return -EBUSY;
1530 * See if the formatting works in principle.
1532 ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1533 if (ret)
1534 return ret;
1536 * Now we start to change things for real, so let's do it
1537 * under lock.
1539 mutex_lock(&cam->s_mutex);
1540 cam->pix_format = fmt->fmt.pix;
1542 * Make sure we have appropriate DMA buffers.
1544 ret = -ENOMEM;
1545 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1546 cafe_free_dma_bufs(cam);
1547 if (cam->nbufs == 0) {
1548 if (cafe_alloc_dma_bufs(cam, 0))
1549 goto out;
1552 * It looks like this might work, so let's program the sensor.
1554 ret = cafe_cam_configure(cam);
1555 if (! ret)
1556 ret = cafe_ctlr_configure(cam);
1557 out:
1558 mutex_unlock(&cam->s_mutex);
1559 return ret;
1563 * Return our stored notion of how the camera is/should be configured.
1564 * The V4l2 spec wants us to be smarter, and actually get this from
1565 * the camera (and not mess with it at open time). Someday.
1567 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1568 struct v4l2_format *f)
1570 struct cafe_camera *cam = priv;
1572 f->fmt.pix = cam->pix_format;
1573 return 0;
1577 * We only have one input - the sensor - so minimize the nonsense here.
1579 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1580 struct v4l2_input *input)
1582 if (input->index != 0)
1583 return -EINVAL;
1585 input->type = V4L2_INPUT_TYPE_CAMERA;
1586 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1587 strcpy(input->name, "Camera");
1588 return 0;
1591 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1593 *i = 0;
1594 return 0;
1597 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1599 if (i != 0)
1600 return -EINVAL;
1601 return 0;
1604 /* from vivi.c */
1605 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1607 return 0;
1611 * G/S_PARM. Most of this is done by the sensor, but we are
1612 * the level which controls the number of read buffers.
1614 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1615 struct v4l2_streamparm *parms)
1617 struct cafe_camera *cam = priv;
1618 int ret;
1620 mutex_lock(&cam->s_mutex);
1621 ret = sensor_call(cam, video, g_parm, parms);
1622 mutex_unlock(&cam->s_mutex);
1623 parms->parm.capture.readbuffers = n_dma_bufs;
1624 return ret;
1627 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1628 struct v4l2_streamparm *parms)
1630 struct cafe_camera *cam = priv;
1631 int ret;
1633 mutex_lock(&cam->s_mutex);
1634 ret = sensor_call(cam, video, s_parm, parms);
1635 mutex_unlock(&cam->s_mutex);
1636 parms->parm.capture.readbuffers = n_dma_bufs;
1637 return ret;
1640 static int cafe_vidioc_g_chip_ident(struct file *file, void *priv,
1641 struct v4l2_dbg_chip_ident *chip)
1643 struct cafe_camera *cam = priv;
1645 chip->ident = V4L2_IDENT_NONE;
1646 chip->revision = 0;
1647 if (v4l2_chip_match_host(&chip->match)) {
1648 chip->ident = V4L2_IDENT_CAFE;
1649 return 0;
1651 return sensor_call(cam, core, g_chip_ident, chip);
1654 #ifdef CONFIG_VIDEO_ADV_DEBUG
1655 static int cafe_vidioc_g_register(struct file *file, void *priv,
1656 struct v4l2_dbg_register *reg)
1658 struct cafe_camera *cam = priv;
1660 if (v4l2_chip_match_host(&reg->match)) {
1661 reg->val = cafe_reg_read(cam, reg->reg);
1662 reg->size = 4;
1663 return 0;
1665 return sensor_call(cam, core, g_register, reg);
1668 static int cafe_vidioc_s_register(struct file *file, void *priv,
1669 struct v4l2_dbg_register *reg)
1671 struct cafe_camera *cam = priv;
1673 if (v4l2_chip_match_host(&reg->match)) {
1674 cafe_reg_write(cam, reg->reg, reg->val);
1675 return 0;
1677 return sensor_call(cam, core, s_register, reg);
1679 #endif
1682 * This template device holds all of those v4l2 methods; we
1683 * clone it for specific real devices.
1686 static const struct v4l2_file_operations cafe_v4l_fops = {
1687 .owner = THIS_MODULE,
1688 .open = cafe_v4l_open,
1689 .release = cafe_v4l_release,
1690 .read = cafe_v4l_read,
1691 .poll = cafe_v4l_poll,
1692 .mmap = cafe_v4l_mmap,
1693 .ioctl = video_ioctl2,
1696 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1697 .vidioc_querycap = cafe_vidioc_querycap,
1698 .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1699 .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1700 .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1701 .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1702 .vidioc_enum_input = cafe_vidioc_enum_input,
1703 .vidioc_g_input = cafe_vidioc_g_input,
1704 .vidioc_s_input = cafe_vidioc_s_input,
1705 .vidioc_s_std = cafe_vidioc_s_std,
1706 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1707 .vidioc_querybuf = cafe_vidioc_querybuf,
1708 .vidioc_qbuf = cafe_vidioc_qbuf,
1709 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1710 .vidioc_streamon = cafe_vidioc_streamon,
1711 .vidioc_streamoff = cafe_vidioc_streamoff,
1712 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1713 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1714 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1715 .vidioc_g_parm = cafe_vidioc_g_parm,
1716 .vidioc_s_parm = cafe_vidioc_s_parm,
1717 .vidioc_g_chip_ident = cafe_vidioc_g_chip_ident,
1718 #ifdef CONFIG_VIDEO_ADV_DEBUG
1719 .vidioc_g_register = cafe_vidioc_g_register,
1720 .vidioc_s_register = cafe_vidioc_s_register,
1721 #endif
1724 static struct video_device cafe_v4l_template = {
1725 .name = "cafe",
1726 .tvnorms = V4L2_STD_NTSC_M,
1727 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1729 .fops = &cafe_v4l_fops,
1730 .ioctl_ops = &cafe_v4l_ioctl_ops,
1731 .release = video_device_release_empty,
1735 /* ---------------------------------------------------------------------- */
1737 * Interrupt handler stuff
1742 static void cafe_frame_tasklet(unsigned long data)
1744 struct cafe_camera *cam = (struct cafe_camera *) data;
1745 int i;
1746 unsigned long flags;
1747 struct cafe_sio_buffer *sbuf;
1749 spin_lock_irqsave(&cam->dev_lock, flags);
1750 for (i = 0; i < cam->nbufs; i++) {
1751 int bufno = cam->next_buf;
1752 if (bufno < 0) { /* "will never happen" */
1753 cam_err(cam, "No valid bufs in tasklet!\n");
1754 break;
1756 if (++(cam->next_buf) >= cam->nbufs)
1757 cam->next_buf = 0;
1758 if (! test_bit(bufno, &cam->flags))
1759 continue;
1760 if (list_empty(&cam->sb_avail))
1761 break; /* Leave it valid, hope for better later */
1762 clear_bit(bufno, &cam->flags);
1763 sbuf = list_entry(cam->sb_avail.next,
1764 struct cafe_sio_buffer, list);
1766 * Drop the lock during the big copy. This *should* be safe...
1768 spin_unlock_irqrestore(&cam->dev_lock, flags);
1769 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1770 cam->pix_format.sizeimage);
1771 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1772 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1773 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1774 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1775 spin_lock_irqsave(&cam->dev_lock, flags);
1776 list_move_tail(&sbuf->list, &cam->sb_full);
1778 if (! list_empty(&cam->sb_full))
1779 wake_up(&cam->iowait);
1780 spin_unlock_irqrestore(&cam->dev_lock, flags);
1785 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1788 * Basic frame housekeeping.
1790 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1791 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1792 set_bit(frame, &cam->flags);
1793 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1794 if (cam->next_buf < 0)
1795 cam->next_buf = frame;
1796 cam->buf_seq[frame] = ++(cam->sequence);
1798 switch (cam->state) {
1800 * If in single read mode, try going speculative.
1802 case S_SINGLEREAD:
1803 cam->state = S_SPECREAD;
1804 cam->specframes = 0;
1805 wake_up(&cam->iowait);
1806 break;
1809 * If we are already doing speculative reads, and nobody is
1810 * reading them, just stop.
1812 case S_SPECREAD:
1813 if (++(cam->specframes) >= cam->nbufs) {
1814 cafe_ctlr_stop(cam);
1815 cafe_ctlr_irq_disable(cam);
1816 cam->state = S_IDLE;
1818 wake_up(&cam->iowait);
1819 break;
1821 * For the streaming case, we defer the real work to the
1822 * camera tasklet.
1824 * FIXME: if the application is not consuming the buffers,
1825 * we should eventually put things on hold and restart in
1826 * vidioc_dqbuf().
1828 case S_STREAMING:
1829 tasklet_schedule(&cam->s_tasklet);
1830 break;
1832 default:
1833 cam_err(cam, "Frame interrupt in non-operational state\n");
1834 break;
1841 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1843 unsigned int frame;
1845 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1847 * Handle any frame completions. There really should
1848 * not be more than one of these, or we have fallen
1849 * far behind.
1851 for (frame = 0; frame < cam->nbufs; frame++)
1852 if (irqs & (IRQ_EOF0 << frame))
1853 cafe_frame_complete(cam, frame);
1855 * If a frame starts, note that we have DMA active. This
1856 * code assumes that we won't get multiple frame interrupts
1857 * at once; may want to rethink that.
1859 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1860 set_bit(CF_DMA_ACTIVE, &cam->flags);
1865 static irqreturn_t cafe_irq(int irq, void *data)
1867 struct cafe_camera *cam = data;
1868 unsigned int irqs;
1870 spin_lock(&cam->dev_lock);
1871 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1872 if ((irqs & ALLIRQS) == 0) {
1873 spin_unlock(&cam->dev_lock);
1874 return IRQ_NONE;
1876 if (irqs & FRAMEIRQS)
1877 cafe_frame_irq(cam, irqs);
1878 if (irqs & TWSIIRQS) {
1879 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1880 wake_up(&cam->smbus_wait);
1882 spin_unlock(&cam->dev_lock);
1883 return IRQ_HANDLED;
1887 /* -------------------------------------------------------------------------- */
1889 * PCI interface stuff.
1892 static int cafe_pci_probe(struct pci_dev *pdev,
1893 const struct pci_device_id *id)
1895 int ret;
1896 struct cafe_camera *cam;
1899 * Start putting together one of our big camera structures.
1901 ret = -ENOMEM;
1902 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
1903 if (cam == NULL)
1904 goto out;
1905 ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev);
1906 if (ret)
1907 goto out_free;
1909 mutex_init(&cam->s_mutex);
1910 spin_lock_init(&cam->dev_lock);
1911 cam->state = S_NOTREADY;
1912 cafe_set_config_needed(cam, 1);
1913 init_waitqueue_head(&cam->smbus_wait);
1914 init_waitqueue_head(&cam->iowait);
1915 cam->pdev = pdev;
1916 cam->pix_format = cafe_def_pix_format;
1917 INIT_LIST_HEAD(&cam->dev_list);
1918 INIT_LIST_HEAD(&cam->sb_avail);
1919 INIT_LIST_HEAD(&cam->sb_full);
1920 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
1922 * Get set up on the PCI bus.
1924 ret = pci_enable_device(pdev);
1925 if (ret)
1926 goto out_unreg;
1927 pci_set_master(pdev);
1929 ret = -EIO;
1930 cam->regs = pci_iomap(pdev, 0, 0);
1931 if (! cam->regs) {
1932 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
1933 goto out_unreg;
1935 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
1936 if (ret)
1937 goto out_iounmap;
1939 * Initialize the controller and leave it powered up. It will
1940 * stay that way until the sensor driver shows up.
1942 cafe_ctlr_init(cam);
1943 cafe_ctlr_power_up(cam);
1945 * Set up I2C/SMBUS communications. We have to drop the mutex here
1946 * because the sensor could attach in this call chain, leading to
1947 * unsightly deadlocks.
1949 ret = cafe_smbus_setup(cam);
1950 if (ret)
1951 goto out_freeirq;
1953 cam->sensor_addr = 0x42;
1954 cam->sensor = v4l2_i2c_new_subdev(&cam->v4l2_dev, &cam->i2c_adapter,
1955 "ov7670", "ov7670", cam->sensor_addr, NULL);
1956 if (cam->sensor == NULL) {
1957 ret = -ENODEV;
1958 goto out_smbus;
1960 ret = cafe_cam_init(cam);
1961 if (ret)
1962 goto out_smbus;
1965 * Get the v4l2 setup done.
1967 mutex_lock(&cam->s_mutex);
1968 cam->vdev = cafe_v4l_template;
1969 cam->vdev.debug = 0;
1970 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
1971 cam->vdev.v4l2_dev = &cam->v4l2_dev;
1972 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
1973 if (ret)
1974 goto out_unlock;
1975 video_set_drvdata(&cam->vdev, cam);
1978 * If so requested, try to get our DMA buffers now.
1980 if (!alloc_bufs_at_read) {
1981 if (cafe_alloc_dma_bufs(cam, 1))
1982 cam_warn(cam, "Unable to alloc DMA buffers at load"
1983 " will try again later.");
1986 mutex_unlock(&cam->s_mutex);
1987 return 0;
1989 out_unlock:
1990 mutex_unlock(&cam->s_mutex);
1991 out_smbus:
1992 cafe_smbus_shutdown(cam);
1993 out_freeirq:
1994 cafe_ctlr_power_down(cam);
1995 free_irq(pdev->irq, cam);
1996 out_iounmap:
1997 pci_iounmap(pdev, cam->regs);
1998 out_free:
1999 v4l2_device_unregister(&cam->v4l2_dev);
2000 out_unreg:
2001 kfree(cam);
2002 out:
2003 return ret;
2008 * Shut down an initialized device
2010 static void cafe_shutdown(struct cafe_camera *cam)
2012 /* FIXME: Make sure we take care of everything here */
2013 if (cam->n_sbufs > 0)
2014 /* What if they are still mapped? Shouldn't be, but... */
2015 cafe_free_sio_buffers(cam);
2016 cafe_ctlr_stop_dma(cam);
2017 cafe_ctlr_power_down(cam);
2018 cafe_smbus_shutdown(cam);
2019 cafe_free_dma_bufs(cam);
2020 free_irq(cam->pdev->irq, cam);
2021 pci_iounmap(cam->pdev, cam->regs);
2022 video_unregister_device(&cam->vdev);
2026 static void cafe_pci_remove(struct pci_dev *pdev)
2028 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2029 struct cafe_camera *cam = to_cam(v4l2_dev);
2031 if (cam == NULL) {
2032 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2033 return;
2035 mutex_lock(&cam->s_mutex);
2036 if (cam->users > 0)
2037 cam_warn(cam, "Removing a device with users!\n");
2038 cafe_shutdown(cam);
2039 v4l2_device_unregister(&cam->v4l2_dev);
2040 kfree(cam);
2041 /* No unlock - it no longer exists */
2045 #ifdef CONFIG_PM
2047 * Basic power management.
2049 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2051 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2052 struct cafe_camera *cam = to_cam(v4l2_dev);
2053 int ret;
2054 enum cafe_state cstate;
2056 ret = pci_save_state(pdev);
2057 if (ret)
2058 return ret;
2059 cstate = cam->state; /* HACK - stop_dma sets to idle */
2060 cafe_ctlr_stop_dma(cam);
2061 cafe_ctlr_power_down(cam);
2062 pci_disable_device(pdev);
2063 cam->state = cstate;
2064 return 0;
2068 static int cafe_pci_resume(struct pci_dev *pdev)
2070 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2071 struct cafe_camera *cam = to_cam(v4l2_dev);
2072 int ret = 0;
2074 ret = pci_restore_state(pdev);
2075 if (ret)
2076 return ret;
2077 ret = pci_enable_device(pdev);
2079 if (ret) {
2080 cam_warn(cam, "Unable to re-enable device on resume!\n");
2081 return ret;
2083 cafe_ctlr_init(cam);
2084 cafe_ctlr_power_down(cam);
2086 mutex_lock(&cam->s_mutex);
2087 if (cam->users > 0) {
2088 cafe_ctlr_power_up(cam);
2089 __cafe_cam_reset(cam);
2091 mutex_unlock(&cam->s_mutex);
2093 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2094 if (cam->state == S_SPECREAD)
2095 cam->state = S_IDLE; /* Don't bother restarting */
2096 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2097 ret = cafe_read_setup(cam, cam->state);
2098 return ret;
2101 #endif /* CONFIG_PM */
2104 static struct pci_device_id cafe_ids[] = {
2105 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2106 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2107 { 0, }
2110 MODULE_DEVICE_TABLE(pci, cafe_ids);
2112 static struct pci_driver cafe_pci_driver = {
2113 .name = "cafe1000-ccic",
2114 .id_table = cafe_ids,
2115 .probe = cafe_pci_probe,
2116 .remove = cafe_pci_remove,
2117 #ifdef CONFIG_PM
2118 .suspend = cafe_pci_suspend,
2119 .resume = cafe_pci_resume,
2120 #endif
2126 static int __init cafe_init(void)
2128 int ret;
2130 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2131 CAFE_VERSION);
2132 ret = pci_register_driver(&cafe_pci_driver);
2133 if (ret) {
2134 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2135 goto out;
2137 ret = 0;
2139 out:
2140 return ret;
2144 static void __exit cafe_exit(void)
2146 pci_unregister_driver(&cafe_pci_driver);
2149 module_init(cafe_init);
2150 module_exit(cafe_exit);