2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@radix.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 #include <linux/kfifo.h>
26 #include <media/v4l2-device.h>
27 #include <media/v4l2-chip-ident.h>
31 static unsigned int ir_888_debug
;
32 module_param(ir_888_debug
, int, 0644);
33 MODULE_PARM_DESC(ir_888_debug
, "enable debug messages [CX23888 IR controller]");
35 #define CX23888_IR_REG_BASE 0x170000
37 * These CX23888 register offsets have a straightforward one to one mapping
38 * to the CX23885 register offsets of 0x200 through 0x218
40 #define CX23888_IR_CNTRL_REG 0x170000
41 #define CNTRL_WIN_3_3 0x00000000
42 #define CNTRL_WIN_4_3 0x00000001
43 #define CNTRL_WIN_3_4 0x00000002
44 #define CNTRL_WIN_4_4 0x00000003
45 #define CNTRL_WIN 0x00000003
46 #define CNTRL_EDG_NONE 0x00000000
47 #define CNTRL_EDG_FALL 0x00000004
48 #define CNTRL_EDG_RISE 0x00000008
49 #define CNTRL_EDG_BOTH 0x0000000C
50 #define CNTRL_EDG 0x0000000C
51 #define CNTRL_DMD 0x00000010
52 #define CNTRL_MOD 0x00000020
53 #define CNTRL_RFE 0x00000040
54 #define CNTRL_TFE 0x00000080
55 #define CNTRL_RXE 0x00000100
56 #define CNTRL_TXE 0x00000200
57 #define CNTRL_RIC 0x00000400
58 #define CNTRL_TIC 0x00000800
59 #define CNTRL_CPL 0x00001000
60 #define CNTRL_LBM 0x00002000
61 #define CNTRL_R 0x00004000
63 #define CX23888_IR_TXCLK_REG 0x170004
64 #define TXCLK_TCD 0x0000FFFF
66 #define CX23888_IR_RXCLK_REG 0x170008
67 #define RXCLK_RCD 0x0000FFFF
69 #define CX23888_IR_CDUTY_REG 0x17000C
70 #define CDUTY_CDC 0x0000000F
72 #define CX23888_IR_STATS_REG 0x170010
73 #define STATS_RTO 0x00000001
74 #define STATS_ROR 0x00000002
75 #define STATS_RBY 0x00000004
76 #define STATS_TBY 0x00000008
77 #define STATS_RSR 0x00000010
78 #define STATS_TSR 0x00000020
80 #define CX23888_IR_IRQEN_REG 0x170014
81 #define IRQEN_RTE 0x00000001
82 #define IRQEN_ROE 0x00000002
83 #define IRQEN_RSE 0x00000010
84 #define IRQEN_TSE 0x00000020
86 #define CX23888_IR_FILTR_REG 0x170018
87 #define FILTR_LPF 0x0000FFFF
89 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
90 #define CX23888_IR_FIFO_REG 0x170040
91 #define FIFO_RXTX 0x0000FFFF
92 #define FIFO_RXTX_LVL 0x00010000
93 #define FIFO_RXTX_RTO 0x0001FFFF
94 #define FIFO_RX_NDV 0x00020000
95 #define FIFO_RX_DEPTH 8
96 #define FIFO_TX_DEPTH 8
98 /* CX23888 unique registers */
99 #define CX23888_IR_SEEDP_REG 0x17001C
100 #define CX23888_IR_TIMOL_REG 0x170020
101 #define CX23888_IR_WAKE0_REG 0x170024
102 #define CX23888_IR_WAKE1_REG 0x170028
103 #define CX23888_IR_WAKE2_REG 0x17002C
104 #define CX23888_IR_MASK0_REG 0x170030
105 #define CX23888_IR_MASK1_REG 0x170034
106 #define CX23888_IR_MAKS2_REG 0x170038
107 #define CX23888_IR_DPIPG_REG 0x17003C
108 #define CX23888_IR_LEARN_REG 0x170044
110 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
111 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
113 #define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
114 #define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
116 struct cx23888_ir_state
{
117 struct v4l2_subdev sd
;
118 struct cx23885_dev
*dev
;
122 struct v4l2_subdev_ir_parameters rx_params
;
123 struct mutex rx_params_lock
;
124 atomic_t rxclk_divider
;
127 struct kfifo rx_kfifo
;
128 spinlock_t rx_kfifo_lock
;
130 struct v4l2_subdev_ir_parameters tx_params
;
131 struct mutex tx_params_lock
;
132 atomic_t txclk_divider
;
135 static inline struct cx23888_ir_state
*to_state(struct v4l2_subdev
*sd
)
137 return v4l2_get_subdevdata(sd
);
141 * IR register block read and write functions
144 inline int cx23888_ir_write4(struct cx23885_dev
*dev
, u32 addr
, u32 value
)
146 cx_write(addr
, value
);
150 static inline u32
cx23888_ir_read4(struct cx23885_dev
*dev
, u32 addr
)
152 return cx_read(addr
);
155 static inline int cx23888_ir_and_or4(struct cx23885_dev
*dev
, u32 addr
,
156 u32 and_mask
, u32 or_value
)
158 cx_andor(addr
, ~and_mask
, or_value
);
163 * Rx and Tx Clock Divider register computations
165 * Note the largest clock divider value of 0xffff corresponds to:
166 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
167 * which fits in 21 bits, so we'll use unsigned int for time arguments.
169 static inline u16
count_to_clock_divider(unsigned int d
)
171 if (d
> RXCLK_RCD
+ 1)
180 static inline u16
ns_to_clock_divider(unsigned int ns
)
182 return count_to_clock_divider(
183 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
186 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
188 /* Period of the Rx or Tx clock in ns */
189 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
190 CX23888_IR_REFCLK_FREQ
/ 1000000);
193 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
195 return count_to_clock_divider(
196 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* 16));
199 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
201 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
204 static inline u16
freq_to_clock_divider(unsigned int freq
,
205 unsigned int rollovers
)
207 return count_to_clock_divider(
208 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* rollovers
));
211 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
212 unsigned int rollovers
)
214 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
,
215 (divider
+ 1) * rollovers
);
219 * Low Pass Filter register calculations
221 * Note the largest count value of 0xffff corresponds to:
222 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
223 * which fits in 21 bits, so we'll use unsigned int for time arguments.
225 static inline u16
count_to_lpf_count(unsigned int d
)
234 static inline u16
ns_to_lpf_count(unsigned int ns
)
236 return count_to_lpf_count(
237 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
240 static inline unsigned int lpf_count_to_ns(unsigned int count
)
242 /* Duration of the Low Pass Filter rejection window in ns */
243 return DIV_ROUND_CLOSEST(count
* 1000,
244 CX23888_IR_REFCLK_FREQ
/ 1000000);
247 static inline unsigned int lpf_count_to_us(unsigned int count
)
249 /* Duration of the Low Pass Filter rejection window in us */
250 return DIV_ROUND_CLOSEST(count
, CX23888_IR_REFCLK_FREQ
/ 1000000);
254 * FIFO register pulse width count compuations
256 static u32
clock_divider_to_resolution(u16 divider
)
259 * Resolution is the duration of 1 tick of the readable portion of
260 * of the pulse width counter as read from the FIFO. The two lsb's are
261 * not readable, hence the << 2. This function returns ns.
263 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
264 CX23888_IR_REFCLK_FREQ
/ 1000000);
267 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
273 * The 2 lsb's of the pulse width timer count are not readable, hence
274 * the (count << 2) | 0x3
276 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
277 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
278 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
283 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
289 * The 2 lsb's of the pulse width timer count are not readable, hence
290 * the (count << 2) | 0x3
292 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
293 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
294 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
296 return (unsigned int) n
;
300 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
302 * The total pulse clock count is an 18 bit pulse width timer count as the most
303 * significant part and (up to) 16 bit clock divider count as a modulus.
304 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
305 * width timer count's least significant bit.
307 static u64
ns_to_pulse_clocks(u32 ns
)
311 clocks
= CX23888_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
312 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
318 static u16
pulse_clocks_to_clock_divider(u64 count
)
322 rem
= do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
324 /* net result needs to be rounded down and decremented by 1 */
325 if (count
> RXCLK_RCD
+ 1)
335 * IR Control Register helpers
337 enum tx_fifo_watermark
{
338 TX_FIFO_HALF_EMPTY
= 0,
339 TX_FIFO_EMPTY
= CNTRL_TIC
,
342 enum rx_fifo_watermark
{
343 RX_FIFO_HALF_FULL
= 0,
344 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
347 static inline void control_tx_irq_watermark(struct cx23885_dev
*dev
,
348 enum tx_fifo_watermark level
)
350 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
353 static inline void control_rx_irq_watermark(struct cx23885_dev
*dev
,
354 enum rx_fifo_watermark level
)
356 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
359 static inline void control_tx_enable(struct cx23885_dev
*dev
, bool enable
)
361 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
362 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
365 static inline void control_rx_enable(struct cx23885_dev
*dev
, bool enable
)
367 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
368 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
371 static inline void control_tx_modulation_enable(struct cx23885_dev
*dev
,
374 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_MOD
,
375 enable
? CNTRL_MOD
: 0);
378 static inline void control_rx_demodulation_enable(struct cx23885_dev
*dev
,
381 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_DMD
,
382 enable
? CNTRL_DMD
: 0);
385 static inline void control_rx_s_edge_detection(struct cx23885_dev
*dev
,
388 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
389 edge_types
& CNTRL_EDG_BOTH
);
392 static void control_rx_s_carrier_window(struct cx23885_dev
*dev
,
393 unsigned int carrier
,
394 unsigned int *carrier_range_low
,
395 unsigned int *carrier_range_high
)
398 unsigned int c16
= carrier
* 16;
400 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
402 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
405 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
408 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
410 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
413 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
415 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
418 static inline void control_tx_polarity_invert(struct cx23885_dev
*dev
,
421 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_CPL
,
422 invert
? CNTRL_CPL
: 0);
426 * IR Rx & Tx Clock Register helpers
428 static unsigned int txclk_tx_s_carrier(struct cx23885_dev
*dev
,
432 *divider
= carrier_freq_to_clock_divider(freq
);
433 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
434 return clock_divider_to_carrier_freq(*divider
);
437 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev
*dev
,
441 *divider
= carrier_freq_to_clock_divider(freq
);
442 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
443 return clock_divider_to_carrier_freq(*divider
);
446 static u32
txclk_tx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
451 if (ns
> V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
452 ns
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
;
453 pulse_clocks
= ns_to_pulse_clocks(ns
);
454 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
455 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
456 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
459 static u32
rxclk_rx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
464 if (ns
> V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
465 ns
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
;
466 pulse_clocks
= ns_to_pulse_clocks(ns
);
467 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
468 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
469 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
473 * IR Tx Carrier Duty Cycle register helpers
475 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev
*dev
,
476 unsigned int duty_cycle
)
479 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
484 cx23888_ir_write4(dev
, CX23888_IR_CDUTY_REG
, n
);
485 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
489 * IR Filter Register helpers
491 static u32
filter_rx_s_min_width(struct cx23885_dev
*dev
, u32 min_width_ns
)
493 u32 count
= ns_to_lpf_count(min_width_ns
);
494 cx23888_ir_write4(dev
, CX23888_IR_FILTR_REG
, count
);
495 return lpf_count_to_ns(count
);
499 * IR IRQ Enable Register helpers
501 static inline void irqenable_rx(struct cx23885_dev
*dev
, u32 mask
)
503 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
504 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
,
505 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
508 static inline void irqenable_tx(struct cx23885_dev
*dev
, u32 mask
)
511 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
515 * V4L2 Subdevice IR Ops
517 static int cx23888_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
,
520 struct cx23888_ir_state
*state
= to_state(sd
);
521 struct cx23885_dev
*dev
= state
->dev
;
524 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
525 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
526 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
528 u32 rx_data
[FIFO_RX_DEPTH
];
531 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
533 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
534 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
535 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
536 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
538 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
539 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
540 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
541 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
544 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Status: %s %s %s %s %s %s\n",
545 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
546 rto
? "rto" : " ", ror
? "ror" : " ",
547 stats
& STATS_TBY
? "tby" : " ",
548 stats
& STATS_RBY
? "rby" : " ");
550 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Enables: %s %s %s %s\n",
551 tse
? "tse" : " ", rse
? "rse" : " ",
552 rte
? "rte" : " ", roe
? "roe" : " ");
555 * Transmitter interrupt service
560 * Check the watermark threshold setting
561 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
562 * Push the data to the hardware FIFO.
563 * If there was nothing more to send in the tx_kfifo, disable
564 * the TSR IRQ and notify the v4l2_device.
565 * If there was something in the tx_kfifo, check the tx_kfifo
566 * level and notify the v4l2_device, if it is low.
568 /* For now, inhibit TSR interrupt until Tx is implemented */
569 irqenable_tx(dev
, 0);
570 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
571 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
576 * Receiver interrupt service
579 if ((rse
&& rsr
) || (rte
&& rto
)) {
581 * Receive data on RSR to clear the STATS_RSR.
582 * Receive data on RTO, since we may not have yet hit the RSR
583 * watermark when we receive the RTO.
585 for (i
= 0, v
= FIFO_RX_NDV
;
586 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
588 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
589 v
= cx23888_ir_read4(dev
, CX23888_IR_FIFO_REG
);
590 rx_data
[i
++] = v
& ~FIFO_RX_NDV
;
595 k
= kfifo_in_locked(&state
->rx_kfifo
,
596 (unsigned char *) rx_data
, j
,
597 &state
->rx_kfifo_lock
);
599 kror
++; /* rx_kfifo over run */
607 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
608 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
612 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
613 * the Rx FIFO Over Run status (STATS_ROR)
616 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
617 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
621 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
622 * the Rx Pulse Width Timer Time Out (STATS_RTO)
625 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
628 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
629 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
& ~v
);
630 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
);
634 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
635 if (kfifo_len(&state
->rx_kfifo
) >= CX23888_IR_RX_KFIFO_SIZE
/ 2)
636 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
637 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
640 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
645 static int cx23888_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
648 struct cx23888_ir_state
*state
= to_state(sd
);
649 bool invert
= (bool) atomic_read(&state
->rx_invert
);
650 u16 divider
= (u16
) atomic_read(&state
->rxclk_divider
);
656 n
= count
/ sizeof(u32
) * sizeof(u32
);
662 n
= kfifo_out_locked(&state
->rx_kfifo
, buf
, n
, &state
->rx_kfifo_lock
);
665 *num
= n
* sizeof(u32
);
667 for (p
= (u32
*) buf
, i
= 0; i
< n
; p
++, i
++) {
668 if ((*p
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
669 *p
= V4L2_SUBDEV_IR_PULSE_RX_SEQ_END
;
670 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: end of rx\n");
674 u
= (*p
& FIFO_RXTX_LVL
) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK
: 0;
676 u
= u
? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK
;
678 v
= (u32
) pulse_width_count_to_ns((u16
) (*p
& FIFO_RXTX
),
680 if (v
>= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
)
681 v
= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS
- 1;
685 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: %10u ns %s\n",
686 v
, u
? "mark" : "space");
691 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
692 struct v4l2_subdev_ir_parameters
*p
)
694 struct cx23888_ir_state
*state
= to_state(sd
);
695 mutex_lock(&state
->rx_params_lock
);
696 memcpy(p
, &state
->rx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
697 mutex_unlock(&state
->rx_params_lock
);
701 static int cx23888_ir_rx_shutdown(struct v4l2_subdev
*sd
)
703 struct cx23888_ir_state
*state
= to_state(sd
);
704 struct cx23885_dev
*dev
= state
->dev
;
706 mutex_lock(&state
->rx_params_lock
);
708 /* Disable or slow down all IR Rx circuits and counters */
709 irqenable_rx(dev
, 0);
710 control_rx_enable(dev
, false);
711 control_rx_demodulation_enable(dev
, false);
712 control_rx_s_edge_detection(dev
, CNTRL_EDG_NONE
);
713 filter_rx_s_min_width(dev
, 0);
714 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, RXCLK_RCD
);
716 state
->rx_params
.shutdown
= true;
718 mutex_unlock(&state
->rx_params_lock
);
722 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
723 struct v4l2_subdev_ir_parameters
*p
)
725 struct cx23888_ir_state
*state
= to_state(sd
);
726 struct cx23885_dev
*dev
= state
->dev
;
727 struct v4l2_subdev_ir_parameters
*o
= &state
->rx_params
;
731 return cx23888_ir_rx_shutdown(sd
);
733 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
736 mutex_lock(&state
->rx_params_lock
);
738 o
->shutdown
= p
->shutdown
;
740 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
742 o
->bytes_per_data_element
= p
->bytes_per_data_element
= sizeof(u32
);
744 /* Before we tweak the hardware, we have to disable the receiver */
745 irqenable_rx(dev
, 0);
746 control_rx_enable(dev
, false);
748 control_rx_demodulation_enable(dev
, p
->modulation
);
749 o
->modulation
= p
->modulation
;
752 p
->carrier_freq
= rxclk_rx_s_carrier(dev
, p
->carrier_freq
,
755 o
->carrier_freq
= p
->carrier_freq
;
757 o
->duty_cycle
= p
->duty_cycle
= 50;
759 control_rx_s_carrier_window(dev
, p
->carrier_freq
,
760 &p
->carrier_range_lower
,
761 &p
->carrier_range_upper
);
762 o
->carrier_range_lower
= p
->carrier_range_lower
;
763 o
->carrier_range_upper
= p
->carrier_range_upper
;
766 rxclk_rx_s_max_pulse_width(dev
, p
->max_pulse_width
,
768 o
->max_pulse_width
= p
->max_pulse_width
;
770 atomic_set(&state
->rxclk_divider
, rxclk_divider
);
772 p
->noise_filter_min_width
=
773 filter_rx_s_min_width(dev
, p
->noise_filter_min_width
);
774 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
776 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
777 o
->resolution
= p
->resolution
;
779 /* FIXME - make this dependent on resolution for better performance */
780 control_rx_irq_watermark(dev
, RX_FIFO_HALF_FULL
);
782 control_rx_s_edge_detection(dev
, CNTRL_EDG_BOTH
);
784 o
->invert
= p
->invert
;
785 atomic_set(&state
->rx_invert
, p
->invert
);
787 o
->interrupt_enable
= p
->interrupt_enable
;
788 o
->enable
= p
->enable
;
792 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
793 kfifo_reset(&state
->rx_kfifo
);
794 /* reset tx_fifo too if there is one... */
795 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
796 if (p
->interrupt_enable
)
797 irqenable_rx(dev
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
798 control_rx_enable(dev
, p
->enable
);
801 mutex_unlock(&state
->rx_params_lock
);
806 static int cx23888_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
809 struct cx23888_ir_state
*state
= to_state(sd
);
810 struct cx23885_dev
*dev
= state
->dev
;
811 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
812 irqenable_tx(dev
, IRQEN_TSE
);
817 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
818 struct v4l2_subdev_ir_parameters
*p
)
820 struct cx23888_ir_state
*state
= to_state(sd
);
821 mutex_lock(&state
->tx_params_lock
);
822 memcpy(p
, &state
->tx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
823 mutex_unlock(&state
->tx_params_lock
);
827 static int cx23888_ir_tx_shutdown(struct v4l2_subdev
*sd
)
829 struct cx23888_ir_state
*state
= to_state(sd
);
830 struct cx23885_dev
*dev
= state
->dev
;
832 mutex_lock(&state
->tx_params_lock
);
834 /* Disable or slow down all IR Tx circuits and counters */
835 irqenable_tx(dev
, 0);
836 control_tx_enable(dev
, false);
837 control_tx_modulation_enable(dev
, false);
838 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, TXCLK_TCD
);
840 state
->tx_params
.shutdown
= true;
842 mutex_unlock(&state
->tx_params_lock
);
846 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
847 struct v4l2_subdev_ir_parameters
*p
)
849 struct cx23888_ir_state
*state
= to_state(sd
);
850 struct cx23885_dev
*dev
= state
->dev
;
851 struct v4l2_subdev_ir_parameters
*o
= &state
->tx_params
;
855 return cx23888_ir_tx_shutdown(sd
);
857 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
860 mutex_lock(&state
->tx_params_lock
);
862 o
->shutdown
= p
->shutdown
;
864 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
866 o
->bytes_per_data_element
= p
->bytes_per_data_element
= sizeof(u32
);
868 /* Before we tweak the hardware, we have to disable the transmitter */
869 irqenable_tx(dev
, 0);
870 control_tx_enable(dev
, false);
872 control_tx_modulation_enable(dev
, p
->modulation
);
873 o
->modulation
= p
->modulation
;
876 p
->carrier_freq
= txclk_tx_s_carrier(dev
, p
->carrier_freq
,
878 o
->carrier_freq
= p
->carrier_freq
;
880 p
->duty_cycle
= cduty_tx_s_duty_cycle(dev
, p
->duty_cycle
);
881 o
->duty_cycle
= p
->duty_cycle
;
884 txclk_tx_s_max_pulse_width(dev
, p
->max_pulse_width
,
886 o
->max_pulse_width
= p
->max_pulse_width
;
888 atomic_set(&state
->txclk_divider
, txclk_divider
);
890 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
891 o
->resolution
= p
->resolution
;
893 /* FIXME - make this dependent on resolution for better performance */
894 control_tx_irq_watermark(dev
, TX_FIFO_HALF_EMPTY
);
896 control_tx_polarity_invert(dev
, p
->invert
);
897 o
->invert
= p
->invert
;
899 o
->interrupt_enable
= p
->interrupt_enable
;
900 o
->enable
= p
->enable
;
902 if (p
->interrupt_enable
)
903 irqenable_tx(dev
, IRQEN_TSE
);
904 control_tx_enable(dev
, p
->enable
);
907 mutex_unlock(&state
->tx_params_lock
);
913 * V4L2 Subdevice Core Ops
915 static int cx23888_ir_log_status(struct v4l2_subdev
*sd
)
917 struct cx23888_ir_state
*state
= to_state(sd
);
918 struct cx23885_dev
*dev
= state
->dev
;
922 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
923 u32 txclk
= cx23888_ir_read4(dev
, CX23888_IR_TXCLK_REG
) & TXCLK_TCD
;
924 u32 rxclk
= cx23888_ir_read4(dev
, CX23888_IR_RXCLK_REG
) & RXCLK_RCD
;
925 u32 cduty
= cx23888_ir_read4(dev
, CX23888_IR_CDUTY_REG
) & CDUTY_CDC
;
926 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
927 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
928 u32 filtr
= cx23888_ir_read4(dev
, CX23888_IR_FILTR_REG
) & FILTR_LPF
;
930 v4l2_info(sd
, "IR Receiver:\n");
931 v4l2_info(sd
, "\tEnabled: %s\n",
932 cntrl
& CNTRL_RXE
? "yes" : "no");
933 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
934 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
935 v4l2_info(sd
, "\tFIFO: %s\n",
936 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
937 switch (cntrl
& CNTRL_EDG
) {
948 s
= "rising & falling edges";
954 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
955 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
956 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
957 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
958 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
959 v4l2_info(sd
, "\tLoopback mode: %s\n",
960 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
961 if (cntrl
& CNTRL_DMD
) {
962 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
963 clock_divider_to_carrier_freq(rxclk
));
964 switch (cntrl
& CNTRL_WIN
) {
986 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks "
987 "-%1d/+%1d, %u to %u Hz\n", i
, j
,
988 clock_divider_to_freq(rxclk
, 16 + j
),
989 clock_divider_to_freq(rxclk
, 16 - i
));
991 v4l2_info(sd
, "\tMax measurable pulse width: %u us, "
993 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
994 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
996 v4l2_info(sd
, "\tLow pass filter: %s\n",
997 filtr
? "enabled" : "disabled");
999 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, "
1001 lpf_count_to_us(filtr
),
1002 lpf_count_to_ns(filtr
));
1003 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1004 stats
& STATS_RTO
? "yes" : "no");
1005 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1006 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1007 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1008 stats
& STATS_ROR
? "yes" : "no");
1009 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1010 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1011 v4l2_info(sd
, "\tBusy: %s\n",
1012 stats
& STATS_RBY
? "yes" : "no");
1013 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1014 stats
& STATS_RSR
? "yes" : "no");
1015 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1016 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1018 v4l2_info(sd
, "IR Transmitter:\n");
1019 v4l2_info(sd
, "\tEnabled: %s\n",
1020 cntrl
& CNTRL_TXE
? "yes" : "no");
1021 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1022 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1023 v4l2_info(sd
, "\tFIFO: %s\n",
1024 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1025 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1026 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1027 v4l2_info(sd
, "\tSignal polarity: %s\n",
1028 cntrl
& CNTRL_CPL
? "0:mark 1:space" : "0:space 1:mark");
1029 if (cntrl
& CNTRL_MOD
) {
1030 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1031 clock_divider_to_carrier_freq(txclk
));
1032 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1035 v4l2_info(sd
, "\tMax pulse width: %u us, "
1037 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1038 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1040 v4l2_info(sd
, "\tBusy: %s\n",
1041 stats
& STATS_TBY
? "yes" : "no");
1042 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1043 stats
& STATS_TSR
? "yes" : "no");
1044 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1045 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1050 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match
*match
)
1052 return match
->type
== V4L2_CHIP_MATCH_HOST
&& match
->addr
== 2;
1055 static int cx23888_ir_g_chip_ident(struct v4l2_subdev
*sd
,
1056 struct v4l2_dbg_chip_ident
*chip
)
1058 struct cx23888_ir_state
*state
= to_state(sd
);
1060 if (cx23888_ir_dbg_match(&chip
->match
)) {
1061 chip
->ident
= state
->id
;
1062 chip
->revision
= state
->rev
;
1067 #ifdef CONFIG_VIDEO_ADV_DEBUG
1068 static int cx23888_ir_g_register(struct v4l2_subdev
*sd
,
1069 struct v4l2_dbg_register
*reg
)
1071 struct cx23888_ir_state
*state
= to_state(sd
);
1072 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1074 if (!cx23888_ir_dbg_match(®
->match
))
1076 if ((addr
& 0x3) != 0)
1078 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1080 if (!capable(CAP_SYS_ADMIN
))
1083 reg
->val
= cx23888_ir_read4(state
->dev
, addr
);
1087 static int cx23888_ir_s_register(struct v4l2_subdev
*sd
,
1088 struct v4l2_dbg_register
*reg
)
1090 struct cx23888_ir_state
*state
= to_state(sd
);
1091 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1093 if (!cx23888_ir_dbg_match(®
->match
))
1095 if ((addr
& 0x3) != 0)
1097 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1099 if (!capable(CAP_SYS_ADMIN
))
1101 cx23888_ir_write4(state
->dev
, addr
, reg
->val
);
1106 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops
= {
1107 .g_chip_ident
= cx23888_ir_g_chip_ident
,
1108 .log_status
= cx23888_ir_log_status
,
1109 #ifdef CONFIG_VIDEO_ADV_DEBUG
1110 .g_register
= cx23888_ir_g_register
,
1111 .s_register
= cx23888_ir_s_register
,
1115 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops
= {
1116 .interrupt_service_routine
= cx23888_ir_irq_handler
,
1118 .rx_read
= cx23888_ir_rx_read
,
1119 .rx_g_parameters
= cx23888_ir_rx_g_parameters
,
1120 .rx_s_parameters
= cx23888_ir_rx_s_parameters
,
1122 .tx_write
= cx23888_ir_tx_write
,
1123 .tx_g_parameters
= cx23888_ir_tx_g_parameters
,
1124 .tx_s_parameters
= cx23888_ir_tx_s_parameters
,
1127 static const struct v4l2_subdev_ops cx23888_ir_controller_ops
= {
1128 .core
= &cx23888_ir_core_ops
,
1129 .ir
= &cx23888_ir_ir_ops
,
1132 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1133 .bytes_per_data_element
= sizeof(u32
),
1134 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1137 .interrupt_enable
= false,
1141 .carrier_freq
= 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1143 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1144 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1145 .noise_filter_min_width
= 333333, /* ns */
1146 .carrier_range_lower
= 35000,
1147 .carrier_range_upper
= 37000,
1151 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1152 .bytes_per_data_element
= sizeof(u32
),
1153 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1156 .interrupt_enable
= false,
1160 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1161 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1165 int cx23888_ir_probe(struct cx23885_dev
*dev
)
1167 struct cx23888_ir_state
*state
;
1168 struct v4l2_subdev
*sd
;
1169 struct v4l2_subdev_ir_parameters default_params
;
1172 state
= kzalloc(sizeof(struct cx23888_ir_state
), GFP_KERNEL
);
1176 spin_lock_init(&state
->rx_kfifo_lock
);
1177 if (kfifo_alloc(&state
->rx_kfifo
, CX23888_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1181 state
->id
= V4L2_IDENT_CX23888_IR
;
1185 v4l2_subdev_init(sd
, &cx23888_ir_controller_ops
);
1186 v4l2_set_subdevdata(sd
, state
);
1187 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1188 snprintf(sd
->name
, sizeof(sd
->name
), "%s/888-ir", dev
->name
);
1189 sd
->grp_id
= CX23885_HW_888_IR
;
1191 ret
= v4l2_device_register_subdev(&dev
->v4l2_dev
, sd
);
1194 * Ensure no interrupts arrive from '888 specific conditions,
1195 * since we ignore them in this driver to have commonality with
1196 * similar IR controller cores.
1198 cx23888_ir_write4(dev
, CX23888_IR_IRQEN_REG
, 0);
1200 mutex_init(&state
->rx_params_lock
);
1201 memcpy(&default_params
, &default_rx_params
,
1202 sizeof(struct v4l2_subdev_ir_parameters
));
1203 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1205 mutex_init(&state
->tx_params_lock
);
1206 memcpy(&default_params
, &default_tx_params
,
1207 sizeof(struct v4l2_subdev_ir_parameters
));
1208 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1210 kfifo_free(&state
->rx_kfifo
);
1215 int cx23888_ir_remove(struct cx23885_dev
*dev
)
1217 struct v4l2_subdev
*sd
;
1218 struct cx23888_ir_state
*state
;
1220 sd
= cx23885_find_hw(dev
, CX23885_HW_888_IR
);
1224 cx23888_ir_rx_shutdown(sd
);
1225 cx23888_ir_tx_shutdown(sd
);
1227 state
= to_state(sd
);
1228 v4l2_device_unregister_subdev(sd
);
1229 kfifo_free(&state
->rx_kfifo
);
1231 /* Nothing more to free() as state held the actual v4l2_subdev object */