Linux 2.6.34-rc3
[pohmelfs.git] / drivers / media / video / cx23885 / cx23888-ir.c
blob2bf57a4527d3484167e42ddde0c4bfb7b41d61de
1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@radix.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
24 #include <linux/kfifo.h>
26 #include <media/v4l2-device.h>
27 #include <media/v4l2-chip-ident.h>
29 #include "cx23885.h"
31 static unsigned int ir_888_debug;
32 module_param(ir_888_debug, int, 0644);
33 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
35 #define CX23888_IR_REG_BASE 0x170000
37 * These CX23888 register offsets have a straightforward one to one mapping
38 * to the CX23885 register offsets of 0x200 through 0x218
40 #define CX23888_IR_CNTRL_REG 0x170000
41 #define CNTRL_WIN_3_3 0x00000000
42 #define CNTRL_WIN_4_3 0x00000001
43 #define CNTRL_WIN_3_4 0x00000002
44 #define CNTRL_WIN_4_4 0x00000003
45 #define CNTRL_WIN 0x00000003
46 #define CNTRL_EDG_NONE 0x00000000
47 #define CNTRL_EDG_FALL 0x00000004
48 #define CNTRL_EDG_RISE 0x00000008
49 #define CNTRL_EDG_BOTH 0x0000000C
50 #define CNTRL_EDG 0x0000000C
51 #define CNTRL_DMD 0x00000010
52 #define CNTRL_MOD 0x00000020
53 #define CNTRL_RFE 0x00000040
54 #define CNTRL_TFE 0x00000080
55 #define CNTRL_RXE 0x00000100
56 #define CNTRL_TXE 0x00000200
57 #define CNTRL_RIC 0x00000400
58 #define CNTRL_TIC 0x00000800
59 #define CNTRL_CPL 0x00001000
60 #define CNTRL_LBM 0x00002000
61 #define CNTRL_R 0x00004000
63 #define CX23888_IR_TXCLK_REG 0x170004
64 #define TXCLK_TCD 0x0000FFFF
66 #define CX23888_IR_RXCLK_REG 0x170008
67 #define RXCLK_RCD 0x0000FFFF
69 #define CX23888_IR_CDUTY_REG 0x17000C
70 #define CDUTY_CDC 0x0000000F
72 #define CX23888_IR_STATS_REG 0x170010
73 #define STATS_RTO 0x00000001
74 #define STATS_ROR 0x00000002
75 #define STATS_RBY 0x00000004
76 #define STATS_TBY 0x00000008
77 #define STATS_RSR 0x00000010
78 #define STATS_TSR 0x00000020
80 #define CX23888_IR_IRQEN_REG 0x170014
81 #define IRQEN_RTE 0x00000001
82 #define IRQEN_ROE 0x00000002
83 #define IRQEN_RSE 0x00000010
84 #define IRQEN_TSE 0x00000020
86 #define CX23888_IR_FILTR_REG 0x170018
87 #define FILTR_LPF 0x0000FFFF
89 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
90 #define CX23888_IR_FIFO_REG 0x170040
91 #define FIFO_RXTX 0x0000FFFF
92 #define FIFO_RXTX_LVL 0x00010000
93 #define FIFO_RXTX_RTO 0x0001FFFF
94 #define FIFO_RX_NDV 0x00020000
95 #define FIFO_RX_DEPTH 8
96 #define FIFO_TX_DEPTH 8
98 /* CX23888 unique registers */
99 #define CX23888_IR_SEEDP_REG 0x17001C
100 #define CX23888_IR_TIMOL_REG 0x170020
101 #define CX23888_IR_WAKE0_REG 0x170024
102 #define CX23888_IR_WAKE1_REG 0x170028
103 #define CX23888_IR_WAKE2_REG 0x17002C
104 #define CX23888_IR_MASK0_REG 0x170030
105 #define CX23888_IR_MASK1_REG 0x170034
106 #define CX23888_IR_MAKS2_REG 0x170038
107 #define CX23888_IR_DPIPG_REG 0x17003C
108 #define CX23888_IR_LEARN_REG 0x170044
110 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
111 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
113 #define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
114 #define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
116 struct cx23888_ir_state {
117 struct v4l2_subdev sd;
118 struct cx23885_dev *dev;
119 u32 id;
120 u32 rev;
122 struct v4l2_subdev_ir_parameters rx_params;
123 struct mutex rx_params_lock;
124 atomic_t rxclk_divider;
125 atomic_t rx_invert;
127 struct kfifo rx_kfifo;
128 spinlock_t rx_kfifo_lock;
130 struct v4l2_subdev_ir_parameters tx_params;
131 struct mutex tx_params_lock;
132 atomic_t txclk_divider;
135 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
137 return v4l2_get_subdevdata(sd);
141 * IR register block read and write functions
143 static
144 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
146 cx_write(addr, value);
147 return 0;
150 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
152 return cx_read(addr);
155 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
156 u32 and_mask, u32 or_value)
158 cx_andor(addr, ~and_mask, or_value);
159 return 0;
163 * Rx and Tx Clock Divider register computations
165 * Note the largest clock divider value of 0xffff corresponds to:
166 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
167 * which fits in 21 bits, so we'll use unsigned int for time arguments.
169 static inline u16 count_to_clock_divider(unsigned int d)
171 if (d > RXCLK_RCD + 1)
172 d = RXCLK_RCD;
173 else if (d < 2)
174 d = 1;
175 else
176 d--;
177 return (u16) d;
180 static inline u16 ns_to_clock_divider(unsigned int ns)
182 return count_to_clock_divider(
183 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
186 static inline unsigned int clock_divider_to_ns(unsigned int divider)
188 /* Period of the Rx or Tx clock in ns */
189 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
190 CX23888_IR_REFCLK_FREQ / 1000000);
193 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
195 return count_to_clock_divider(
196 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
199 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
201 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
204 static inline u16 freq_to_clock_divider(unsigned int freq,
205 unsigned int rollovers)
207 return count_to_clock_divider(
208 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
211 static inline unsigned int clock_divider_to_freq(unsigned int divider,
212 unsigned int rollovers)
214 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
215 (divider + 1) * rollovers);
219 * Low Pass Filter register calculations
221 * Note the largest count value of 0xffff corresponds to:
222 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
223 * which fits in 21 bits, so we'll use unsigned int for time arguments.
225 static inline u16 count_to_lpf_count(unsigned int d)
227 if (d > FILTR_LPF)
228 d = FILTR_LPF;
229 else if (d < 4)
230 d = 0;
231 return (u16) d;
234 static inline u16 ns_to_lpf_count(unsigned int ns)
236 return count_to_lpf_count(
237 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
240 static inline unsigned int lpf_count_to_ns(unsigned int count)
242 /* Duration of the Low Pass Filter rejection window in ns */
243 return DIV_ROUND_CLOSEST(count * 1000,
244 CX23888_IR_REFCLK_FREQ / 1000000);
247 static inline unsigned int lpf_count_to_us(unsigned int count)
249 /* Duration of the Low Pass Filter rejection window in us */
250 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
254 * FIFO register pulse width count compuations
256 static u32 clock_divider_to_resolution(u16 divider)
259 * Resolution is the duration of 1 tick of the readable portion of
260 * of the pulse width counter as read from the FIFO. The two lsb's are
261 * not readable, hence the << 2. This function returns ns.
263 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
264 CX23888_IR_REFCLK_FREQ / 1000000);
267 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
269 u64 n;
270 u32 rem;
273 * The 2 lsb's of the pulse width timer count are not readable, hence
274 * the (count << 2) | 0x3
276 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
277 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
278 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
279 n++;
280 return n;
283 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
285 u64 n;
286 u32 rem;
289 * The 2 lsb's of the pulse width timer count are not readable, hence
290 * the (count << 2) | 0x3
292 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
293 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
294 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
295 n++;
296 return (unsigned int) n;
300 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
302 * The total pulse clock count is an 18 bit pulse width timer count as the most
303 * significant part and (up to) 16 bit clock divider count as a modulus.
304 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
305 * width timer count's least significant bit.
307 static u64 ns_to_pulse_clocks(u32 ns)
309 u64 clocks;
310 u32 rem;
311 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
312 rem = do_div(clocks, 1000); /* /1000 = cycles */
313 if (rem >= 1000 / 2)
314 clocks++;
315 return clocks;
318 static u16 pulse_clocks_to_clock_divider(u64 count)
320 u32 rem;
322 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
324 /* net result needs to be rounded down and decremented by 1 */
325 if (count > RXCLK_RCD + 1)
326 count = RXCLK_RCD;
327 else if (count < 2)
328 count = 1;
329 else
330 count--;
331 return (u16) count;
335 * IR Control Register helpers
337 enum tx_fifo_watermark {
338 TX_FIFO_HALF_EMPTY = 0,
339 TX_FIFO_EMPTY = CNTRL_TIC,
342 enum rx_fifo_watermark {
343 RX_FIFO_HALF_FULL = 0,
344 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
347 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
348 enum tx_fifo_watermark level)
350 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
353 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
354 enum rx_fifo_watermark level)
356 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
359 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
361 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
362 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
365 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
367 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
368 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
371 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
372 bool enable)
374 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
375 enable ? CNTRL_MOD : 0);
378 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
379 bool enable)
381 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
382 enable ? CNTRL_DMD : 0);
385 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
386 u32 edge_types)
388 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
389 edge_types & CNTRL_EDG_BOTH);
392 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
393 unsigned int carrier,
394 unsigned int *carrier_range_low,
395 unsigned int *carrier_range_high)
397 u32 v;
398 unsigned int c16 = carrier * 16;
400 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
401 v = CNTRL_WIN_3_4;
402 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
403 } else {
404 v = CNTRL_WIN_3_3;
405 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
408 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
409 v |= CNTRL_WIN_4_3;
410 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
411 } else {
412 v |= CNTRL_WIN_3_3;
413 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
415 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
418 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
419 bool invert)
421 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
422 invert ? CNTRL_CPL : 0);
426 * IR Rx & Tx Clock Register helpers
428 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
429 unsigned int freq,
430 u16 *divider)
432 *divider = carrier_freq_to_clock_divider(freq);
433 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
434 return clock_divider_to_carrier_freq(*divider);
437 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
438 unsigned int freq,
439 u16 *divider)
441 *divider = carrier_freq_to_clock_divider(freq);
442 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
443 return clock_divider_to_carrier_freq(*divider);
446 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
447 u16 *divider)
449 u64 pulse_clocks;
451 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
452 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
453 pulse_clocks = ns_to_pulse_clocks(ns);
454 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
455 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
456 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
459 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
460 u16 *divider)
462 u64 pulse_clocks;
464 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
465 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
466 pulse_clocks = ns_to_pulse_clocks(ns);
467 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
468 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
469 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
473 * IR Tx Carrier Duty Cycle register helpers
475 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
476 unsigned int duty_cycle)
478 u32 n;
479 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
480 if (n != 0)
481 n--;
482 if (n > 15)
483 n = 15;
484 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
485 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
489 * IR Filter Register helpers
491 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
493 u32 count = ns_to_lpf_count(min_width_ns);
494 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
495 return lpf_count_to_ns(count);
499 * IR IRQ Enable Register helpers
501 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
503 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
504 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
505 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
508 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
510 mask &= IRQEN_TSE;
511 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
515 * V4L2 Subdevice IR Ops
517 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
518 bool *handled)
520 struct cx23888_ir_state *state = to_state(sd);
521 struct cx23885_dev *dev = state->dev;
522 unsigned long flags;
524 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
525 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
526 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
528 u32 rx_data[FIFO_RX_DEPTH];
529 int i, j, k;
530 u32 events, v;
531 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
533 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
534 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
535 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
536 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
538 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
539 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
540 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
541 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
543 *handled = false;
544 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
545 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
546 rto ? "rto" : " ", ror ? "ror" : " ",
547 stats & STATS_TBY ? "tby" : " ",
548 stats & STATS_RBY ? "rby" : " ");
550 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
551 tse ? "tse" : " ", rse ? "rse" : " ",
552 rte ? "rte" : " ", roe ? "roe" : " ");
555 * Transmitter interrupt service
557 if (tse && tsr) {
559 * TODO:
560 * Check the watermark threshold setting
561 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
562 * Push the data to the hardware FIFO.
563 * If there was nothing more to send in the tx_kfifo, disable
564 * the TSR IRQ and notify the v4l2_device.
565 * If there was something in the tx_kfifo, check the tx_kfifo
566 * level and notify the v4l2_device, if it is low.
568 /* For now, inhibit TSR interrupt until Tx is implemented */
569 irqenable_tx(dev, 0);
570 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
571 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
572 *handled = true;
576 * Receiver interrupt service
578 kror = 0;
579 if ((rse && rsr) || (rte && rto)) {
581 * Receive data on RSR to clear the STATS_RSR.
582 * Receive data on RTO, since we may not have yet hit the RSR
583 * watermark when we receive the RTO.
585 for (i = 0, v = FIFO_RX_NDV;
586 (v & FIFO_RX_NDV) && !kror; i = 0) {
587 for (j = 0;
588 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
589 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
590 rx_data[i++] = v & ~FIFO_RX_NDV;
592 if (i == 0)
593 break;
594 j = i * sizeof(u32);
595 k = kfifo_in_locked(&state->rx_kfifo,
596 (unsigned char *) rx_data, j,
597 &state->rx_kfifo_lock);
598 if (k != j)
599 kror++; /* rx_kfifo over run */
601 *handled = true;
604 events = 0;
605 v = 0;
606 if (kror) {
607 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
608 v4l2_err(sd, "IR receiver software FIFO overrun\n");
610 if (roe && ror) {
612 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
613 * the Rx FIFO Over Run status (STATS_ROR)
615 v |= CNTRL_RFE;
616 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
617 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
619 if (rte && rto) {
621 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
622 * the Rx Pulse Width Timer Time Out (STATS_RTO)
624 v |= CNTRL_RXE;
625 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
627 if (v) {
628 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
629 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
630 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
631 *handled = true;
634 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
635 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
636 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
637 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
639 if (events)
640 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
641 return 0;
644 /* Receiver */
645 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
646 ssize_t *num)
648 struct cx23888_ir_state *state = to_state(sd);
649 bool invert = (bool) atomic_read(&state->rx_invert);
650 u16 divider = (u16) atomic_read(&state->rxclk_divider);
652 unsigned int i, n;
653 u32 *p;
654 u32 u, v;
656 n = count / sizeof(u32) * sizeof(u32);
657 if (n == 0) {
658 *num = 0;
659 return 0;
662 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
664 n /= sizeof(u32);
665 *num = n * sizeof(u32);
667 for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
668 if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
669 *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
670 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
671 continue;
674 u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
675 if (invert)
676 u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
678 v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
679 divider);
680 if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
681 v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
683 *p = u | v;
685 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
686 v, u ? "mark" : "space");
688 return 0;
691 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
692 struct v4l2_subdev_ir_parameters *p)
694 struct cx23888_ir_state *state = to_state(sd);
695 mutex_lock(&state->rx_params_lock);
696 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
697 mutex_unlock(&state->rx_params_lock);
698 return 0;
701 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
703 struct cx23888_ir_state *state = to_state(sd);
704 struct cx23885_dev *dev = state->dev;
706 mutex_lock(&state->rx_params_lock);
708 /* Disable or slow down all IR Rx circuits and counters */
709 irqenable_rx(dev, 0);
710 control_rx_enable(dev, false);
711 control_rx_demodulation_enable(dev, false);
712 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
713 filter_rx_s_min_width(dev, 0);
714 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
716 state->rx_params.shutdown = true;
718 mutex_unlock(&state->rx_params_lock);
719 return 0;
722 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
723 struct v4l2_subdev_ir_parameters *p)
725 struct cx23888_ir_state *state = to_state(sd);
726 struct cx23885_dev *dev = state->dev;
727 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
728 u16 rxclk_divider;
730 if (p->shutdown)
731 return cx23888_ir_rx_shutdown(sd);
733 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
734 return -ENOSYS;
736 mutex_lock(&state->rx_params_lock);
738 o->shutdown = p->shutdown;
740 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
742 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
744 /* Before we tweak the hardware, we have to disable the receiver */
745 irqenable_rx(dev, 0);
746 control_rx_enable(dev, false);
748 control_rx_demodulation_enable(dev, p->modulation);
749 o->modulation = p->modulation;
751 if (p->modulation) {
752 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
753 &rxclk_divider);
755 o->carrier_freq = p->carrier_freq;
757 o->duty_cycle = p->duty_cycle = 50;
759 control_rx_s_carrier_window(dev, p->carrier_freq,
760 &p->carrier_range_lower,
761 &p->carrier_range_upper);
762 o->carrier_range_lower = p->carrier_range_lower;
763 o->carrier_range_upper = p->carrier_range_upper;
764 } else {
765 p->max_pulse_width =
766 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
767 &rxclk_divider);
768 o->max_pulse_width = p->max_pulse_width;
770 atomic_set(&state->rxclk_divider, rxclk_divider);
772 p->noise_filter_min_width =
773 filter_rx_s_min_width(dev, p->noise_filter_min_width);
774 o->noise_filter_min_width = p->noise_filter_min_width;
776 p->resolution = clock_divider_to_resolution(rxclk_divider);
777 o->resolution = p->resolution;
779 /* FIXME - make this dependent on resolution for better performance */
780 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
782 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
784 o->invert = p->invert;
785 atomic_set(&state->rx_invert, p->invert);
787 o->interrupt_enable = p->interrupt_enable;
788 o->enable = p->enable;
789 if (p->enable) {
790 unsigned long flags;
792 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
793 kfifo_reset(&state->rx_kfifo);
794 /* reset tx_fifo too if there is one... */
795 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
796 if (p->interrupt_enable)
797 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
798 control_rx_enable(dev, p->enable);
801 mutex_unlock(&state->rx_params_lock);
802 return 0;
805 /* Transmitter */
806 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
807 ssize_t *num)
809 struct cx23888_ir_state *state = to_state(sd);
810 struct cx23885_dev *dev = state->dev;
811 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
812 irqenable_tx(dev, IRQEN_TSE);
813 *num = count;
814 return 0;
817 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
818 struct v4l2_subdev_ir_parameters *p)
820 struct cx23888_ir_state *state = to_state(sd);
821 mutex_lock(&state->tx_params_lock);
822 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
823 mutex_unlock(&state->tx_params_lock);
824 return 0;
827 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
829 struct cx23888_ir_state *state = to_state(sd);
830 struct cx23885_dev *dev = state->dev;
832 mutex_lock(&state->tx_params_lock);
834 /* Disable or slow down all IR Tx circuits and counters */
835 irqenable_tx(dev, 0);
836 control_tx_enable(dev, false);
837 control_tx_modulation_enable(dev, false);
838 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
840 state->tx_params.shutdown = true;
842 mutex_unlock(&state->tx_params_lock);
843 return 0;
846 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
847 struct v4l2_subdev_ir_parameters *p)
849 struct cx23888_ir_state *state = to_state(sd);
850 struct cx23885_dev *dev = state->dev;
851 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
852 u16 txclk_divider;
854 if (p->shutdown)
855 return cx23888_ir_tx_shutdown(sd);
857 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
858 return -ENOSYS;
860 mutex_lock(&state->tx_params_lock);
862 o->shutdown = p->shutdown;
864 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
866 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
868 /* Before we tweak the hardware, we have to disable the transmitter */
869 irqenable_tx(dev, 0);
870 control_tx_enable(dev, false);
872 control_tx_modulation_enable(dev, p->modulation);
873 o->modulation = p->modulation;
875 if (p->modulation) {
876 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
877 &txclk_divider);
878 o->carrier_freq = p->carrier_freq;
880 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
881 o->duty_cycle = p->duty_cycle;
882 } else {
883 p->max_pulse_width =
884 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
885 &txclk_divider);
886 o->max_pulse_width = p->max_pulse_width;
888 atomic_set(&state->txclk_divider, txclk_divider);
890 p->resolution = clock_divider_to_resolution(txclk_divider);
891 o->resolution = p->resolution;
893 /* FIXME - make this dependent on resolution for better performance */
894 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
896 control_tx_polarity_invert(dev, p->invert);
897 o->invert = p->invert;
899 o->interrupt_enable = p->interrupt_enable;
900 o->enable = p->enable;
901 if (p->enable) {
902 if (p->interrupt_enable)
903 irqenable_tx(dev, IRQEN_TSE);
904 control_tx_enable(dev, p->enable);
907 mutex_unlock(&state->tx_params_lock);
908 return 0;
913 * V4L2 Subdevice Core Ops
915 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
917 struct cx23888_ir_state *state = to_state(sd);
918 struct cx23885_dev *dev = state->dev;
919 char *s;
920 int i, j;
922 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
923 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
924 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
925 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
926 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
927 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
928 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
930 v4l2_info(sd, "IR Receiver:\n");
931 v4l2_info(sd, "\tEnabled: %s\n",
932 cntrl & CNTRL_RXE ? "yes" : "no");
933 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
934 cntrl & CNTRL_DMD ? "enabled" : "disabled");
935 v4l2_info(sd, "\tFIFO: %s\n",
936 cntrl & CNTRL_RFE ? "enabled" : "disabled");
937 switch (cntrl & CNTRL_EDG) {
938 case CNTRL_EDG_NONE:
939 s = "disabled";
940 break;
941 case CNTRL_EDG_FALL:
942 s = "falling edge";
943 break;
944 case CNTRL_EDG_RISE:
945 s = "rising edge";
946 break;
947 case CNTRL_EDG_BOTH:
948 s = "rising & falling edges";
949 break;
950 default:
951 s = "??? edge";
952 break;
954 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
955 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
956 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
957 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
958 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
959 v4l2_info(sd, "\tLoopback mode: %s\n",
960 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
961 if (cntrl & CNTRL_DMD) {
962 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
963 clock_divider_to_carrier_freq(rxclk));
964 switch (cntrl & CNTRL_WIN) {
965 case CNTRL_WIN_3_3:
966 i = 3;
967 j = 3;
968 break;
969 case CNTRL_WIN_4_3:
970 i = 4;
971 j = 3;
972 break;
973 case CNTRL_WIN_3_4:
974 i = 3;
975 j = 4;
976 break;
977 case CNTRL_WIN_4_4:
978 i = 4;
979 j = 4;
980 break;
981 default:
982 i = 0;
983 j = 0;
984 break;
986 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
987 "-%1d/+%1d, %u to %u Hz\n", i, j,
988 clock_divider_to_freq(rxclk, 16 + j),
989 clock_divider_to_freq(rxclk, 16 - i));
990 } else {
991 v4l2_info(sd, "\tMax measurable pulse width: %u us, "
992 "%llu ns\n",
993 pulse_width_count_to_us(FIFO_RXTX, rxclk),
994 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
996 v4l2_info(sd, "\tLow pass filter: %s\n",
997 filtr ? "enabled" : "disabled");
998 if (filtr)
999 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1000 "%u ns\n",
1001 lpf_count_to_us(filtr),
1002 lpf_count_to_ns(filtr));
1003 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1004 stats & STATS_RTO ? "yes" : "no");
1005 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1006 irqen & IRQEN_RTE ? "enabled" : "disabled");
1007 v4l2_info(sd, "\tFIFO overrun: %s\n",
1008 stats & STATS_ROR ? "yes" : "no");
1009 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1010 irqen & IRQEN_ROE ? "enabled" : "disabled");
1011 v4l2_info(sd, "\tBusy: %s\n",
1012 stats & STATS_RBY ? "yes" : "no");
1013 v4l2_info(sd, "\tFIFO service requested: %s\n",
1014 stats & STATS_RSR ? "yes" : "no");
1015 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1016 irqen & IRQEN_RSE ? "enabled" : "disabled");
1018 v4l2_info(sd, "IR Transmitter:\n");
1019 v4l2_info(sd, "\tEnabled: %s\n",
1020 cntrl & CNTRL_TXE ? "yes" : "no");
1021 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1022 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1023 v4l2_info(sd, "\tFIFO: %s\n",
1024 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1025 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1026 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1027 v4l2_info(sd, "\tSignal polarity: %s\n",
1028 cntrl & CNTRL_CPL ? "0:mark 1:space" : "0:space 1:mark");
1029 if (cntrl & CNTRL_MOD) {
1030 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1031 clock_divider_to_carrier_freq(txclk));
1032 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1033 cduty + 1);
1034 } else {
1035 v4l2_info(sd, "\tMax pulse width: %u us, "
1036 "%llu ns\n",
1037 pulse_width_count_to_us(FIFO_RXTX, txclk),
1038 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1040 v4l2_info(sd, "\tBusy: %s\n",
1041 stats & STATS_TBY ? "yes" : "no");
1042 v4l2_info(sd, "\tFIFO service requested: %s\n",
1043 stats & STATS_TSR ? "yes" : "no");
1044 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1045 irqen & IRQEN_TSE ? "enabled" : "disabled");
1047 return 0;
1050 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1052 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1055 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1056 struct v4l2_dbg_chip_ident *chip)
1058 struct cx23888_ir_state *state = to_state(sd);
1060 if (cx23888_ir_dbg_match(&chip->match)) {
1061 chip->ident = state->id;
1062 chip->revision = state->rev;
1064 return 0;
1067 #ifdef CONFIG_VIDEO_ADV_DEBUG
1068 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1069 struct v4l2_dbg_register *reg)
1071 struct cx23888_ir_state *state = to_state(sd);
1072 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1074 if (!cx23888_ir_dbg_match(&reg->match))
1075 return -EINVAL;
1076 if ((addr & 0x3) != 0)
1077 return -EINVAL;
1078 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1079 return -EINVAL;
1080 if (!capable(CAP_SYS_ADMIN))
1081 return -EPERM;
1082 reg->size = 4;
1083 reg->val = cx23888_ir_read4(state->dev, addr);
1084 return 0;
1087 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1088 struct v4l2_dbg_register *reg)
1090 struct cx23888_ir_state *state = to_state(sd);
1091 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1093 if (!cx23888_ir_dbg_match(&reg->match))
1094 return -EINVAL;
1095 if ((addr & 0x3) != 0)
1096 return -EINVAL;
1097 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1098 return -EINVAL;
1099 if (!capable(CAP_SYS_ADMIN))
1100 return -EPERM;
1101 cx23888_ir_write4(state->dev, addr, reg->val);
1102 return 0;
1104 #endif
1106 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1107 .g_chip_ident = cx23888_ir_g_chip_ident,
1108 .log_status = cx23888_ir_log_status,
1109 #ifdef CONFIG_VIDEO_ADV_DEBUG
1110 .g_register = cx23888_ir_g_register,
1111 .s_register = cx23888_ir_s_register,
1112 #endif
1115 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1116 .interrupt_service_routine = cx23888_ir_irq_handler,
1118 .rx_read = cx23888_ir_rx_read,
1119 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1120 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1122 .tx_write = cx23888_ir_tx_write,
1123 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1124 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1127 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1128 .core = &cx23888_ir_core_ops,
1129 .ir = &cx23888_ir_ir_ops,
1132 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1133 .bytes_per_data_element = sizeof(u32),
1134 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1136 .enable = false,
1137 .interrupt_enable = false,
1138 .shutdown = true,
1140 .modulation = true,
1141 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1143 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1144 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1145 .noise_filter_min_width = 333333, /* ns */
1146 .carrier_range_lower = 35000,
1147 .carrier_range_upper = 37000,
1148 .invert = false,
1151 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1152 .bytes_per_data_element = sizeof(u32),
1153 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1155 .enable = false,
1156 .interrupt_enable = false,
1157 .shutdown = true,
1159 .modulation = true,
1160 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1161 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1162 .invert = false,
1165 int cx23888_ir_probe(struct cx23885_dev *dev)
1167 struct cx23888_ir_state *state;
1168 struct v4l2_subdev *sd;
1169 struct v4l2_subdev_ir_parameters default_params;
1170 int ret;
1172 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1173 if (state == NULL)
1174 return -ENOMEM;
1176 spin_lock_init(&state->rx_kfifo_lock);
1177 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1178 return -ENOMEM;
1180 state->dev = dev;
1181 state->id = V4L2_IDENT_CX23888_IR;
1182 state->rev = 0;
1183 sd = &state->sd;
1185 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1186 v4l2_set_subdevdata(sd, state);
1187 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1188 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1189 sd->grp_id = CX23885_HW_888_IR;
1191 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1192 if (ret == 0) {
1194 * Ensure no interrupts arrive from '888 specific conditions,
1195 * since we ignore them in this driver to have commonality with
1196 * similar IR controller cores.
1198 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1200 mutex_init(&state->rx_params_lock);
1201 memcpy(&default_params, &default_rx_params,
1202 sizeof(struct v4l2_subdev_ir_parameters));
1203 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1205 mutex_init(&state->tx_params_lock);
1206 memcpy(&default_params, &default_tx_params,
1207 sizeof(struct v4l2_subdev_ir_parameters));
1208 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1209 } else {
1210 kfifo_free(&state->rx_kfifo);
1212 return ret;
1215 int cx23888_ir_remove(struct cx23885_dev *dev)
1217 struct v4l2_subdev *sd;
1218 struct cx23888_ir_state *state;
1220 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1221 if (sd == NULL)
1222 return -ENODEV;
1224 cx23888_ir_rx_shutdown(sd);
1225 cx23888_ir_tx_shutdown(sd);
1227 state = to_state(sd);
1228 v4l2_device_unregister_subdev(sd);
1229 kfifo_free(&state->rx_kfifo);
1230 kfree(state);
1231 /* Nothing more to free() as state held the actual v4l2_subdev object */
1232 return 0;