Linux 2.6.34-rc3
[pohmelfs.git] / drivers / misc / eeprom / at24.c
blobdb7d0f21b65d34f450db3d731abd1da807c6afbf
1 /*
2 * at24.c - handle most I2C EEPROMs
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c/at24.h>
27 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
28 * Differences between different vendor product lines (like Atmel AT24C or
29 * MicroChip 24LC, etc) won't much matter for typical read/write access.
30 * There are also I2C RAM chips, likewise interchangeable. One example
31 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
33 * However, misconfiguration can lose data. "Set 16-bit memory address"
34 * to a part with 8-bit addressing will overwrite data. Writing with too
35 * big a page size also loses data. And it's not safe to assume that the
36 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
37 * uses 0x51, for just one example.
39 * Accordingly, explicit board-specific configuration data should be used
40 * in almost all cases. (One partial exception is an SMBus used to access
41 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
43 * So this driver uses "new style" I2C driver binding, expecting to be
44 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
45 * similar kernel-resident tables; or, configuration data coming from
46 * a bootloader.
48 * Other than binding model, current differences from "eeprom" driver are
49 * that this one handles write access and isn't restricted to 24c02 devices.
50 * It also handles larger devices (32 kbit and up) with two-byte addresses,
51 * which won't work on pure SMBus systems.
54 struct at24_data {
55 struct at24_platform_data chip;
56 struct memory_accessor macc;
57 bool use_smbus;
60 * Lock protects against activities from other Linux tasks,
61 * but not from changes by other I2C masters.
63 struct mutex lock;
64 struct bin_attribute bin;
66 u8 *writebuf;
67 unsigned write_max;
68 unsigned num_addresses;
71 * Some chips tie up multiple I2C addresses; dummy devices reserve
72 * them for us, and we'll use them with SMBus calls.
74 struct i2c_client *client[];
78 * This parameter is to help this driver avoid blocking other drivers out
79 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
80 * clock, one 256 byte read takes about 1/43 second which is excessive;
81 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
82 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
84 * This value is forced to be a power of two so that writes align on pages.
86 static unsigned io_limit = 128;
87 module_param(io_limit, uint, 0);
88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
91 * Specs often allow 5 msec for a page write, sometimes 20 msec;
92 * it's important to recover from write timeouts.
94 static unsigned write_timeout = 25;
95 module_param(write_timeout, uint, 0);
96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
98 #define AT24_SIZE_BYTELEN 5
99 #define AT24_SIZE_FLAGS 8
101 #define AT24_BITMASK(x) (BIT(x) - 1)
103 /* create non-zero magic value for given eeprom parameters */
104 #define AT24_DEVICE_MAGIC(_len, _flags) \
105 ((1 << AT24_SIZE_FLAGS | (_flags)) \
106 << AT24_SIZE_BYTELEN | ilog2(_len))
108 static const struct i2c_device_id at24_ids[] = {
109 /* needs 8 addresses as A0-A2 are ignored */
110 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
111 /* old variants can't be handled with this generic entry! */
112 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
113 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
114 /* spd is a 24c02 in memory DIMMs */
115 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
116 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
117 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
118 /* 24rf08 quirk is handled at i2c-core */
119 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
120 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
121 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
122 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
123 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
124 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
125 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
126 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
127 { "at24", 0 },
128 { /* END OF LIST */ }
130 MODULE_DEVICE_TABLE(i2c, at24_ids);
132 /*-------------------------------------------------------------------------*/
135 * This routine supports chips which consume multiple I2C addresses. It
136 * computes the addressing information to be used for a given r/w request.
137 * Assumes that sanity checks for offset happened at sysfs-layer.
139 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
140 unsigned *offset)
142 unsigned i;
144 if (at24->chip.flags & AT24_FLAG_ADDR16) {
145 i = *offset >> 16;
146 *offset &= 0xffff;
147 } else {
148 i = *offset >> 8;
149 *offset &= 0xff;
152 return at24->client[i];
155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
156 unsigned offset, size_t count)
158 struct i2c_msg msg[2];
159 u8 msgbuf[2];
160 struct i2c_client *client;
161 unsigned long timeout, read_time;
162 int status, i;
164 memset(msg, 0, sizeof(msg));
167 * REVISIT some multi-address chips don't rollover page reads to
168 * the next slave address, so we may need to truncate the count.
169 * Those chips might need another quirk flag.
171 * If the real hardware used four adjacent 24c02 chips and that
172 * were misconfigured as one 24c08, that would be a similar effect:
173 * one "eeprom" file not four, but larger reads would fail when
174 * they crossed certain pages.
178 * Slave address and byte offset derive from the offset. Always
179 * set the byte address; on a multi-master board, another master
180 * may have changed the chip's "current" address pointer.
182 client = at24_translate_offset(at24, &offset);
184 if (count > io_limit)
185 count = io_limit;
187 if (at24->use_smbus) {
188 /* Smaller eeproms can work given some SMBus extension calls */
189 if (count > I2C_SMBUS_BLOCK_MAX)
190 count = I2C_SMBUS_BLOCK_MAX;
191 } else {
193 * When we have a better choice than SMBus calls, use a
194 * combined I2C message. Write address; then read up to
195 * io_limit data bytes. Note that read page rollover helps us
196 * here (unlike writes). msgbuf is u8 and will cast to our
197 * needs.
199 i = 0;
200 if (at24->chip.flags & AT24_FLAG_ADDR16)
201 msgbuf[i++] = offset >> 8;
202 msgbuf[i++] = offset;
204 msg[0].addr = client->addr;
205 msg[0].buf = msgbuf;
206 msg[0].len = i;
208 msg[1].addr = client->addr;
209 msg[1].flags = I2C_M_RD;
210 msg[1].buf = buf;
211 msg[1].len = count;
215 * Reads fail if the previous write didn't complete yet. We may
216 * loop a few times until this one succeeds, waiting at least
217 * long enough for one entire page write to work.
219 timeout = jiffies + msecs_to_jiffies(write_timeout);
220 do {
221 read_time = jiffies;
222 if (at24->use_smbus) {
223 status = i2c_smbus_read_i2c_block_data(client, offset,
224 count, buf);
225 } else {
226 status = i2c_transfer(client->adapter, msg, 2);
227 if (status == 2)
228 status = count;
230 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
231 count, offset, status, jiffies);
233 if (status == count)
234 return count;
236 /* REVISIT: at HZ=100, this is sloooow */
237 msleep(1);
238 } while (time_before(read_time, timeout));
240 return -ETIMEDOUT;
243 static ssize_t at24_read(struct at24_data *at24,
244 char *buf, loff_t off, size_t count)
246 ssize_t retval = 0;
248 if (unlikely(!count))
249 return count;
252 * Read data from chip, protecting against concurrent updates
253 * from this host, but not from other I2C masters.
255 mutex_lock(&at24->lock);
257 while (count) {
258 ssize_t status;
260 status = at24_eeprom_read(at24, buf, off, count);
261 if (status <= 0) {
262 if (retval == 0)
263 retval = status;
264 break;
266 buf += status;
267 off += status;
268 count -= status;
269 retval += status;
272 mutex_unlock(&at24->lock);
274 return retval;
277 static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr,
278 char *buf, loff_t off, size_t count)
280 struct at24_data *at24;
282 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
283 return at24_read(at24, buf, off, count);
288 * Note that if the hardware write-protect pin is pulled high, the whole
289 * chip is normally write protected. But there are plenty of product
290 * variants here, including OTP fuses and partial chip protect.
292 * We only use page mode writes; the alternative is sloooow. This routine
293 * writes at most one page.
295 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
296 unsigned offset, size_t count)
298 struct i2c_client *client;
299 struct i2c_msg msg;
300 ssize_t status;
301 unsigned long timeout, write_time;
302 unsigned next_page;
304 /* Get corresponding I2C address and adjust offset */
305 client = at24_translate_offset(at24, &offset);
307 /* write_max is at most a page */
308 if (count > at24->write_max)
309 count = at24->write_max;
311 /* Never roll over backwards, to the start of this page */
312 next_page = roundup(offset + 1, at24->chip.page_size);
313 if (offset + count > next_page)
314 count = next_page - offset;
316 /* If we'll use I2C calls for I/O, set up the message */
317 if (!at24->use_smbus) {
318 int i = 0;
320 msg.addr = client->addr;
321 msg.flags = 0;
323 /* msg.buf is u8 and casts will mask the values */
324 msg.buf = at24->writebuf;
325 if (at24->chip.flags & AT24_FLAG_ADDR16)
326 msg.buf[i++] = offset >> 8;
328 msg.buf[i++] = offset;
329 memcpy(&msg.buf[i], buf, count);
330 msg.len = i + count;
334 * Writes fail if the previous one didn't complete yet. We may
335 * loop a few times until this one succeeds, waiting at least
336 * long enough for one entire page write to work.
338 timeout = jiffies + msecs_to_jiffies(write_timeout);
339 do {
340 write_time = jiffies;
341 if (at24->use_smbus) {
342 status = i2c_smbus_write_i2c_block_data(client,
343 offset, count, buf);
344 if (status == 0)
345 status = count;
346 } else {
347 status = i2c_transfer(client->adapter, &msg, 1);
348 if (status == 1)
349 status = count;
351 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
352 count, offset, status, jiffies);
354 if (status == count)
355 return count;
357 /* REVISIT: at HZ=100, this is sloooow */
358 msleep(1);
359 } while (time_before(write_time, timeout));
361 return -ETIMEDOUT;
364 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
365 size_t count)
367 ssize_t retval = 0;
369 if (unlikely(!count))
370 return count;
373 * Write data to chip, protecting against concurrent updates
374 * from this host, but not from other I2C masters.
376 mutex_lock(&at24->lock);
378 while (count) {
379 ssize_t status;
381 status = at24_eeprom_write(at24, buf, off, count);
382 if (status <= 0) {
383 if (retval == 0)
384 retval = status;
385 break;
387 buf += status;
388 off += status;
389 count -= status;
390 retval += status;
393 mutex_unlock(&at24->lock);
395 return retval;
398 static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr,
399 char *buf, loff_t off, size_t count)
401 struct at24_data *at24;
403 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
404 return at24_write(at24, buf, off, count);
407 /*-------------------------------------------------------------------------*/
410 * This lets other kernel code access the eeprom data. For example, it
411 * might hold a board's Ethernet address, or board-specific calibration
412 * data generated on the manufacturing floor.
415 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
416 off_t offset, size_t count)
418 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
420 return at24_read(at24, buf, offset, count);
423 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
424 off_t offset, size_t count)
426 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
428 return at24_write(at24, buf, offset, count);
431 /*-------------------------------------------------------------------------*/
433 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
435 struct at24_platform_data chip;
436 bool writable;
437 bool use_smbus = false;
438 struct at24_data *at24;
439 int err;
440 unsigned i, num_addresses;
441 kernel_ulong_t magic;
443 if (client->dev.platform_data) {
444 chip = *(struct at24_platform_data *)client->dev.platform_data;
445 } else {
446 if (!id->driver_data) {
447 err = -ENODEV;
448 goto err_out;
450 magic = id->driver_data;
451 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
452 magic >>= AT24_SIZE_BYTELEN;
453 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
455 * This is slow, but we can't know all eeproms, so we better
456 * play safe. Specifying custom eeprom-types via platform_data
457 * is recommended anyhow.
459 chip.page_size = 1;
461 chip.setup = NULL;
462 chip.context = NULL;
465 if (!is_power_of_2(chip.byte_len))
466 dev_warn(&client->dev,
467 "byte_len looks suspicious (no power of 2)!\n");
468 if (!is_power_of_2(chip.page_size))
469 dev_warn(&client->dev,
470 "page_size looks suspicious (no power of 2)!\n");
472 /* Use I2C operations unless we're stuck with SMBus extensions. */
473 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
474 if (chip.flags & AT24_FLAG_ADDR16) {
475 err = -EPFNOSUPPORT;
476 goto err_out;
478 if (!i2c_check_functionality(client->adapter,
479 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
480 err = -EPFNOSUPPORT;
481 goto err_out;
483 use_smbus = true;
486 if (chip.flags & AT24_FLAG_TAKE8ADDR)
487 num_addresses = 8;
488 else
489 num_addresses = DIV_ROUND_UP(chip.byte_len,
490 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
492 at24 = kzalloc(sizeof(struct at24_data) +
493 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
494 if (!at24) {
495 err = -ENOMEM;
496 goto err_out;
499 mutex_init(&at24->lock);
500 at24->use_smbus = use_smbus;
501 at24->chip = chip;
502 at24->num_addresses = num_addresses;
505 * Export the EEPROM bytes through sysfs, since that's convenient.
506 * By default, only root should see the data (maybe passwords etc)
508 sysfs_bin_attr_init(&at24->bin);
509 at24->bin.attr.name = "eeprom";
510 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
511 at24->bin.read = at24_bin_read;
512 at24->bin.size = chip.byte_len;
514 at24->macc.read = at24_macc_read;
516 writable = !(chip.flags & AT24_FLAG_READONLY);
517 if (writable) {
518 if (!use_smbus || i2c_check_functionality(client->adapter,
519 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
521 unsigned write_max = chip.page_size;
523 at24->macc.write = at24_macc_write;
525 at24->bin.write = at24_bin_write;
526 at24->bin.attr.mode |= S_IWUSR;
528 if (write_max > io_limit)
529 write_max = io_limit;
530 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
531 write_max = I2C_SMBUS_BLOCK_MAX;
532 at24->write_max = write_max;
534 /* buffer (data + address at the beginning) */
535 at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
536 if (!at24->writebuf) {
537 err = -ENOMEM;
538 goto err_struct;
540 } else {
541 dev_warn(&client->dev,
542 "cannot write due to controller restrictions.");
546 at24->client[0] = client;
548 /* use dummy devices for multiple-address chips */
549 for (i = 1; i < num_addresses; i++) {
550 at24->client[i] = i2c_new_dummy(client->adapter,
551 client->addr + i);
552 if (!at24->client[i]) {
553 dev_err(&client->dev, "address 0x%02x unavailable\n",
554 client->addr + i);
555 err = -EADDRINUSE;
556 goto err_clients;
560 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
561 if (err)
562 goto err_clients;
564 i2c_set_clientdata(client, at24);
566 dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
567 at24->bin.size, client->name,
568 writable ? "(writable)" : "(read-only)");
569 dev_dbg(&client->dev,
570 "page_size %d, num_addresses %d, write_max %d%s\n",
571 chip.page_size, num_addresses,
572 at24->write_max,
573 use_smbus ? ", use_smbus" : "");
575 /* export data to kernel code */
576 if (chip.setup)
577 chip.setup(&at24->macc, chip.context);
579 return 0;
581 err_clients:
582 for (i = 1; i < num_addresses; i++)
583 if (at24->client[i])
584 i2c_unregister_device(at24->client[i]);
586 kfree(at24->writebuf);
587 err_struct:
588 kfree(at24);
589 err_out:
590 dev_dbg(&client->dev, "probe error %d\n", err);
591 return err;
594 static int __devexit at24_remove(struct i2c_client *client)
596 struct at24_data *at24;
597 int i;
599 at24 = i2c_get_clientdata(client);
600 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
602 for (i = 1; i < at24->num_addresses; i++)
603 i2c_unregister_device(at24->client[i]);
605 kfree(at24->writebuf);
606 kfree(at24);
607 i2c_set_clientdata(client, NULL);
608 return 0;
611 /*-------------------------------------------------------------------------*/
613 static struct i2c_driver at24_driver = {
614 .driver = {
615 .name = "at24",
616 .owner = THIS_MODULE,
618 .probe = at24_probe,
619 .remove = __devexit_p(at24_remove),
620 .id_table = at24_ids,
623 static int __init at24_init(void)
625 io_limit = rounddown_pow_of_two(io_limit);
626 return i2c_add_driver(&at24_driver);
628 module_init(at24_init);
630 static void __exit at24_exit(void)
632 i2c_del_driver(&at24_driver);
634 module_exit(at24_exit);
636 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
637 MODULE_AUTHOR("David Brownell and Wolfram Sang");
638 MODULE_LICENSE("GPL");