Linux 2.6.34-rc3
[pohmelfs.git] / drivers / mtd / nand / davinci_nand.c
blobfe3eba87de40687225658d2aea50f1760b15de1f
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
36 #include <mach/nand.h>
38 #include <asm/mach-types.h>
42 * This is a device driver for the NAND flash controller found on the
43 * various DaVinci family chips. It handles up to four SoC chipselects,
44 * and some flavors of secondary chipselect (e.g. based on A12) as used
45 * with multichip packages.
47 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
48 * available on chips like the DM355 and OMAP-L137 and needed with the
49 * more error-prone MLC NAND chips.
51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 struct davinci_nand_info {
55 struct mtd_info mtd;
56 struct nand_chip chip;
57 struct nand_ecclayout ecclayout;
59 struct device *dev;
60 struct clk *clk;
61 bool partitioned;
63 bool is_readmode;
65 void __iomem *base;
66 void __iomem *vaddr;
68 uint32_t ioaddr;
69 uint32_t current_cs;
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
75 uint32_t core_chipsel;
78 static DEFINE_SPINLOCK(davinci_nand_lock);
79 static bool ecc4_busy;
81 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
85 int offset)
87 return __raw_readl(info->base + offset);
90 static inline void davinci_nand_writel(struct davinci_nand_info *info,
91 int offset, unsigned long value)
93 __raw_writel(value, info->base + offset);
96 /*----------------------------------------------------------------------*/
99 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103 unsigned int ctrl)
105 struct davinci_nand_info *info = to_davinci_nand(mtd);
106 uint32_t addr = info->current_cs;
107 struct nand_chip *nand = mtd->priv;
109 /* Did the control lines change? */
110 if (ctrl & NAND_CTRL_CHANGE) {
111 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112 addr |= info->mask_cle;
113 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114 addr |= info->mask_ale;
116 nand->IO_ADDR_W = (void __iomem __force *)addr;
119 if (cmd != NAND_CMD_NONE)
120 iowrite8(cmd, nand->IO_ADDR_W);
123 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125 struct davinci_nand_info *info = to_davinci_nand(mtd);
126 uint32_t addr = info->ioaddr;
128 /* maybe kick in a second chipselect */
129 if (chip > 0)
130 addr |= info->mask_chipsel;
131 info->current_cs = addr;
133 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 /*----------------------------------------------------------------------*/
140 * 1-bit hardware ECC ... context maintained for each core chipselect
143 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145 struct davinci_nand_info *info = to_davinci_nand(mtd);
147 return davinci_nand_readl(info, NANDF1ECC_OFFSET
148 + 4 * info->core_chipsel);
151 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153 struct davinci_nand_info *info;
154 uint32_t nandcfr;
155 unsigned long flags;
157 info = to_davinci_nand(mtd);
159 /* Reset ECC hardware */
160 nand_davinci_readecc_1bit(mtd);
162 spin_lock_irqsave(&davinci_nand_lock, flags);
164 /* Restart ECC hardware */
165 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166 nandcfr |= BIT(8 + info->core_chipsel);
167 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169 spin_unlock_irqrestore(&davinci_nand_lock, flags);
173 * Read hardware ECC value and pack into three bytes
175 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176 const u_char *dat, u_char *ecc_code)
178 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181 /* invert so that erased block ecc is correct */
182 ecc24 = ~ecc24;
183 ecc_code[0] = (u_char)(ecc24);
184 ecc_code[1] = (u_char)(ecc24 >> 8);
185 ecc_code[2] = (u_char)(ecc24 >> 16);
187 return 0;
190 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191 u_char *read_ecc, u_char *calc_ecc)
193 struct nand_chip *chip = mtd->priv;
194 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195 (read_ecc[2] << 16);
196 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197 (calc_ecc[2] << 16);
198 uint32_t diff = eccCalc ^ eccNand;
200 if (diff) {
201 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202 /* Correctable error */
203 if ((diff >> (12 + 3)) < chip->ecc.size) {
204 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205 return 1;
206 } else {
207 return -1;
209 } else if (!(diff & (diff - 1))) {
210 /* Single bit ECC error in the ECC itself,
211 * nothing to fix */
212 return 1;
213 } else {
214 /* Uncorrectable error */
215 return -1;
219 return 0;
222 /*----------------------------------------------------------------------*/
225 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
236 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238 struct davinci_nand_info *info = to_davinci_nand(mtd);
239 unsigned long flags;
240 u32 val;
242 spin_lock_irqsave(&davinci_nand_lock, flags);
244 /* Start 4-bit ECC calculation for read/write */
245 val = davinci_nand_readl(info, NANDFCR_OFFSET);
246 val &= ~(0x03 << 4);
247 val |= (info->core_chipsel << 4) | BIT(12);
248 davinci_nand_writel(info, NANDFCR_OFFSET, val);
250 info->is_readmode = (mode == NAND_ECC_READ);
252 spin_unlock_irqrestore(&davinci_nand_lock, flags);
255 /* Read raw ECC code after writing to NAND. */
256 static void
257 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259 const u32 mask = 0x03ff03ff;
261 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269 const u_char *dat, u_char *ecc_code)
271 struct davinci_nand_info *info = to_davinci_nand(mtd);
272 u32 raw_ecc[4], *p;
273 unsigned i;
275 /* After a read, terminate ECC calculation by a dummy read
276 * of some 4-bit ECC register. ECC covers everything that
277 * was read; correct() just uses the hardware state, so
278 * ecc_code is not needed.
280 if (info->is_readmode) {
281 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282 return 0;
285 /* Pack eight raw 10-bit ecc values into ten bytes, making
286 * two passes which each convert four values (in upper and
287 * lower halves of two 32-bit words) into five bytes. The
288 * ROM boot loader uses this same packing scheme.
290 nand_davinci_readecc_4bit(info, raw_ecc);
291 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292 *ecc_code++ = p[0] & 0xff;
293 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
294 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
295 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296 *ecc_code++ = (p[1] >> 18) & 0xff;
299 return 0;
302 /* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
305 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306 u_char *data, u_char *ecc_code, u_char *null)
308 int i;
309 struct davinci_nand_info *info = to_davinci_nand(mtd);
310 unsigned short ecc10[8];
311 unsigned short *ecc16;
312 u32 syndrome[4];
313 unsigned num_errors, corrected;
315 /* All bytes 0xff? It's an erased page; ignore its ECC. */
316 for (i = 0; i < 10; i++) {
317 if (ecc_code[i] != 0xff)
318 goto compare;
320 return 0;
322 compare:
323 /* Unpack ten bytes into eight 10 bit values. We know we're
324 * little-endian, and use type punning for less shifting/masking.
326 if (WARN_ON(0x01 & (unsigned) ecc_code))
327 return -EINVAL;
328 ecc16 = (unsigned short *)ecc_code;
330 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
331 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
332 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
333 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
334 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
335 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
336 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
337 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
339 /* Tell ECC controller about the expected ECC codes. */
340 for (i = 7; i >= 0; i--)
341 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
343 /* Allow time for syndrome calculation ... then read it.
344 * A syndrome of all zeroes 0 means no detected errors.
346 davinci_nand_readl(info, NANDFSR_OFFSET);
347 nand_davinci_readecc_4bit(info, syndrome);
348 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
349 return 0;
352 * Clear any previous address calculation by doing a dummy read of an
353 * error address register.
355 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
357 /* Start address calculation, and wait for it to complete.
358 * We _could_ start reading more data while this is working,
359 * to speed up the overall page read.
361 davinci_nand_writel(info, NANDFCR_OFFSET,
362 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
363 for (;;) {
364 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
366 switch ((fsr >> 8) & 0x0f) {
367 case 0: /* no error, should not happen */
368 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
369 return 0;
370 case 1: /* five or more errors detected */
371 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
372 return -EIO;
373 case 2: /* error addresses computed */
374 case 3:
375 num_errors = 1 + ((fsr >> 16) & 0x03);
376 goto correct;
377 default: /* still working on it */
378 cpu_relax();
379 continue;
383 correct:
384 /* correct each error */
385 for (i = 0, corrected = 0; i < num_errors; i++) {
386 int error_address, error_value;
388 if (i > 1) {
389 error_address = davinci_nand_readl(info,
390 NAND_ERR_ADD2_OFFSET);
391 error_value = davinci_nand_readl(info,
392 NAND_ERR_ERRVAL2_OFFSET);
393 } else {
394 error_address = davinci_nand_readl(info,
395 NAND_ERR_ADD1_OFFSET);
396 error_value = davinci_nand_readl(info,
397 NAND_ERR_ERRVAL1_OFFSET);
400 if (i & 1) {
401 error_address >>= 16;
402 error_value >>= 16;
404 error_address &= 0x3ff;
405 error_address = (512 + 7) - error_address;
407 if (error_address < 512) {
408 data[error_address] ^= error_value;
409 corrected++;
413 return corrected;
416 /*----------------------------------------------------------------------*/
419 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
420 * how these chips are normally wired. This translates to both 8 and 16
421 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
423 * For now we assume that configuration, or any other one which ignores
424 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
425 * and have that transparently morphed into multiple NAND operations.
427 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
429 struct nand_chip *chip = mtd->priv;
431 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
432 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
433 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
434 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
435 else
436 ioread8_rep(chip->IO_ADDR_R, buf, len);
439 static void nand_davinci_write_buf(struct mtd_info *mtd,
440 const uint8_t *buf, int len)
442 struct nand_chip *chip = mtd->priv;
444 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
445 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
446 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
447 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
448 else
449 iowrite8_rep(chip->IO_ADDR_R, buf, len);
453 * Check hardware register for wait status. Returns 1 if device is ready,
454 * 0 if it is still busy.
456 static int nand_davinci_dev_ready(struct mtd_info *mtd)
458 struct davinci_nand_info *info = to_davinci_nand(mtd);
460 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
463 static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
465 uint32_t regval, a1cr;
468 * NAND FLASH timings @ PLL1 == 459 MHz
469 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
470 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
472 regval = 0
473 | (0 << 31) /* selectStrobe */
474 | (0 << 30) /* extWait (never with NAND) */
475 | (1 << 26) /* writeSetup 10 ns */
476 | (3 << 20) /* writeStrobe 40 ns */
477 | (1 << 17) /* writeHold 10 ns */
478 | (0 << 13) /* readSetup 10 ns */
479 | (3 << 7) /* readStrobe 60 ns */
480 | (0 << 4) /* readHold 10 ns */
481 | (3 << 2) /* turnAround ?? ns */
482 | (0 << 0) /* asyncSize 8-bit bus */
484 a1cr = davinci_nand_readl(info, A1CR_OFFSET);
485 if (a1cr != regval) {
486 dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
487 "reg to 0x%08x, was 0x%08x, should be done by " \
488 "bootloader.\n", regval, a1cr);
489 davinci_nand_writel(info, A1CR_OFFSET, regval);
493 /*----------------------------------------------------------------------*/
495 /* An ECC layout for using 4-bit ECC with small-page flash, storing
496 * ten ECC bytes plus the manufacturer's bad block marker byte, and
497 * and not overlapping the default BBT markers.
499 static struct nand_ecclayout hwecc4_small __initconst = {
500 .eccbytes = 10,
501 .eccpos = { 0, 1, 2, 3, 4,
502 /* offset 5 holds the badblock marker */
503 6, 7,
504 13, 14, 15, },
505 .oobfree = {
506 {.offset = 8, .length = 5, },
507 {.offset = 16, },
511 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
512 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
513 * and not overlapping the default BBT markers.
515 static struct nand_ecclayout hwecc4_2048 __initconst = {
516 .eccbytes = 40,
517 .eccpos = {
518 /* at the end of spare sector */
519 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
520 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
521 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
522 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
524 .oobfree = {
525 /* 2 bytes at offset 0 hold manufacturer badblock markers */
526 {.offset = 2, .length = 22, },
527 /* 5 bytes at offset 8 hold BBT markers */
528 /* 8 bytes at offset 16 hold JFFS2 clean markers */
532 static int __init nand_davinci_probe(struct platform_device *pdev)
534 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
535 struct davinci_nand_info *info;
536 struct resource *res1;
537 struct resource *res2;
538 void __iomem *vaddr;
539 void __iomem *base;
540 int ret;
541 uint32_t val;
542 nand_ecc_modes_t ecc_mode;
544 /* insist on board-specific configuration */
545 if (!pdata)
546 return -ENODEV;
548 /* which external chipselect will we be managing? */
549 if (pdev->id < 0 || pdev->id > 3)
550 return -ENODEV;
552 info = kzalloc(sizeof(*info), GFP_KERNEL);
553 if (!info) {
554 dev_err(&pdev->dev, "unable to allocate memory\n");
555 ret = -ENOMEM;
556 goto err_nomem;
559 platform_set_drvdata(pdev, info);
561 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
562 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
563 if (!res1 || !res2) {
564 dev_err(&pdev->dev, "resource missing\n");
565 ret = -EINVAL;
566 goto err_nomem;
569 vaddr = ioremap(res1->start, res1->end - res1->start);
570 base = ioremap(res2->start, res2->end - res2->start);
571 if (!vaddr || !base) {
572 dev_err(&pdev->dev, "ioremap failed\n");
573 ret = -EINVAL;
574 goto err_ioremap;
577 info->dev = &pdev->dev;
578 info->base = base;
579 info->vaddr = vaddr;
581 info->mtd.priv = &info->chip;
582 info->mtd.name = dev_name(&pdev->dev);
583 info->mtd.owner = THIS_MODULE;
585 info->mtd.dev.parent = &pdev->dev;
587 info->chip.IO_ADDR_R = vaddr;
588 info->chip.IO_ADDR_W = vaddr;
589 info->chip.chip_delay = 0;
590 info->chip.select_chip = nand_davinci_select_chip;
592 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
593 info->chip.options = pdata->options;
594 info->chip.bbt_td = pdata->bbt_td;
595 info->chip.bbt_md = pdata->bbt_md;
597 info->ioaddr = (uint32_t __force) vaddr;
599 info->current_cs = info->ioaddr;
600 info->core_chipsel = pdev->id;
601 info->mask_chipsel = pdata->mask_chipsel;
603 /* use nandboot-capable ALE/CLE masks by default */
604 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
605 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
607 /* Set address of hardware control function */
608 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
609 info->chip.dev_ready = nand_davinci_dev_ready;
611 /* Speed up buffer I/O */
612 info->chip.read_buf = nand_davinci_read_buf;
613 info->chip.write_buf = nand_davinci_write_buf;
615 /* Use board-specific ECC config */
616 ecc_mode = pdata->ecc_mode;
618 ret = -EINVAL;
619 switch (ecc_mode) {
620 case NAND_ECC_NONE:
621 case NAND_ECC_SOFT:
622 pdata->ecc_bits = 0;
623 break;
624 case NAND_ECC_HW:
625 if (pdata->ecc_bits == 4) {
626 /* No sanity checks: CPUs must support this,
627 * and the chips may not use NAND_BUSWIDTH_16.
630 /* No sharing 4-bit hardware between chipselects yet */
631 spin_lock_irq(&davinci_nand_lock);
632 if (ecc4_busy)
633 ret = -EBUSY;
634 else
635 ecc4_busy = true;
636 spin_unlock_irq(&davinci_nand_lock);
638 if (ret == -EBUSY)
639 goto err_ecc;
641 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
642 info->chip.ecc.correct = nand_davinci_correct_4bit;
643 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
644 info->chip.ecc.bytes = 10;
645 } else {
646 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
647 info->chip.ecc.correct = nand_davinci_correct_1bit;
648 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
649 info->chip.ecc.bytes = 3;
651 info->chip.ecc.size = 512;
652 break;
653 default:
654 ret = -EINVAL;
655 goto err_ecc;
657 info->chip.ecc.mode = ecc_mode;
659 info->clk = clk_get(&pdev->dev, "aemif");
660 if (IS_ERR(info->clk)) {
661 ret = PTR_ERR(info->clk);
662 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
663 goto err_clk;
666 ret = clk_enable(info->clk);
667 if (ret < 0) {
668 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
669 ret);
670 goto err_clk_enable;
673 /* EMIF timings should normally be set by the boot loader,
674 * especially after boot-from-NAND. The *only* reason to
675 * have this special casing for the DM6446 EVM is to work
676 * with boot-from-NOR ... with CS0 manually re-jumpered
677 * (after startup) so it addresses the NAND flash, not NOR.
678 * Even for dev boards, that's unusually rude...
680 if (machine_is_davinci_evm())
681 nand_dm6446evm_flash_init(info);
683 spin_lock_irq(&davinci_nand_lock);
685 /* put CSxNAND into NAND mode */
686 val = davinci_nand_readl(info, NANDFCR_OFFSET);
687 val |= BIT(info->core_chipsel);
688 davinci_nand_writel(info, NANDFCR_OFFSET, val);
690 spin_unlock_irq(&davinci_nand_lock);
692 /* Scan to find existence of the device(s) */
693 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1);
694 if (ret < 0) {
695 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
696 goto err_scan;
699 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
700 * is OK, but it allocates 6 bytes when only 3 are needed (for
701 * each 512 bytes). For the 4-bit HW ECC, that default is not
702 * usable: 10 bytes are needed, not 6.
704 if (pdata->ecc_bits == 4) {
705 int chunks = info->mtd.writesize / 512;
707 if (!chunks || info->mtd.oobsize < 16) {
708 dev_dbg(&pdev->dev, "too small\n");
709 ret = -EINVAL;
710 goto err_scan;
713 /* For small page chips, preserve the manufacturer's
714 * badblock marking data ... and make sure a flash BBT
715 * table marker fits in the free bytes.
717 if (chunks == 1) {
718 info->ecclayout = hwecc4_small;
719 info->ecclayout.oobfree[1].length =
720 info->mtd.oobsize - 16;
721 goto syndrome_done;
723 if (chunks == 4) {
724 info->ecclayout = hwecc4_2048;
725 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
726 goto syndrome_done;
729 /* 4KiB page chips are not yet supported. The eccpos from
730 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
731 * breaks userspace ioctl interface with mtd-utils. Once we
732 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
733 * for the 4KiB page chips.
735 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
736 "for 4KiB-page NAND\n");
737 ret = -EIO;
738 goto err_scan;
740 syndrome_done:
741 info->chip.ecc.layout = &info->ecclayout;
744 ret = nand_scan_tail(&info->mtd);
745 if (ret < 0)
746 goto err_scan;
748 if (mtd_has_partitions()) {
749 struct mtd_partition *mtd_parts = NULL;
750 int mtd_parts_nb = 0;
752 if (mtd_has_cmdlinepart()) {
753 static const char *probes[] __initconst =
754 { "cmdlinepart", NULL };
756 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
757 &mtd_parts, 0);
760 if (mtd_parts_nb <= 0) {
761 mtd_parts = pdata->parts;
762 mtd_parts_nb = pdata->nr_parts;
765 /* Register any partitions */
766 if (mtd_parts_nb > 0) {
767 ret = add_mtd_partitions(&info->mtd,
768 mtd_parts, mtd_parts_nb);
769 if (ret == 0)
770 info->partitioned = true;
773 } else if (pdata->nr_parts) {
774 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
775 pdata->nr_parts, info->mtd.name);
778 /* If there's no partition info, just package the whole chip
779 * as a single MTD device.
781 if (!info->partitioned)
782 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
784 if (ret < 0)
785 goto err_scan;
787 val = davinci_nand_readl(info, NRCSR_OFFSET);
788 dev_info(&pdev->dev, "controller rev. %d.%d\n",
789 (val >> 8) & 0xff, val & 0xff);
791 return 0;
793 err_scan:
794 clk_disable(info->clk);
796 err_clk_enable:
797 clk_put(info->clk);
799 spin_lock_irq(&davinci_nand_lock);
800 if (ecc_mode == NAND_ECC_HW_SYNDROME)
801 ecc4_busy = false;
802 spin_unlock_irq(&davinci_nand_lock);
804 err_ecc:
805 err_clk:
806 err_ioremap:
807 if (base)
808 iounmap(base);
809 if (vaddr)
810 iounmap(vaddr);
812 err_nomem:
813 kfree(info);
814 return ret;
817 static int __exit nand_davinci_remove(struct platform_device *pdev)
819 struct davinci_nand_info *info = platform_get_drvdata(pdev);
820 int status;
822 if (mtd_has_partitions() && info->partitioned)
823 status = del_mtd_partitions(&info->mtd);
824 else
825 status = del_mtd_device(&info->mtd);
827 spin_lock_irq(&davinci_nand_lock);
828 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
829 ecc4_busy = false;
830 spin_unlock_irq(&davinci_nand_lock);
832 iounmap(info->base);
833 iounmap(info->vaddr);
835 nand_release(&info->mtd);
837 clk_disable(info->clk);
838 clk_put(info->clk);
840 kfree(info);
842 return 0;
845 static struct platform_driver nand_davinci_driver = {
846 .remove = __exit_p(nand_davinci_remove),
847 .driver = {
848 .name = "davinci_nand",
851 MODULE_ALIAS("platform:davinci_nand");
853 static int __init nand_davinci_init(void)
855 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
857 module_init(nand_davinci_init);
859 static void __exit nand_davinci_exit(void)
861 platform_driver_unregister(&nand_davinci_driver);
863 module_exit(nand_davinci_exit);
865 MODULE_LICENSE("GPL");
866 MODULE_AUTHOR("Texas Instruments");
867 MODULE_DESCRIPTION("Davinci NAND flash driver");