2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/jiffies.h>
15 #include <linux/sched.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
22 #include <plat/gpmc.h>
23 #include <plat/nand.h>
25 #define GPMC_IRQ_STATUS 0x18
26 #define GPMC_ECC_CONFIG 0x1F4
27 #define GPMC_ECC_CONTROL 0x1F8
28 #define GPMC_ECC_SIZE_CONFIG 0x1FC
29 #define GPMC_ECC1_RESULT 0x200
31 #define DRIVER_NAME "omap2-nand"
34 #define NAND_WP_BIT 0x00000010
36 #define GPMC_BUF_FULL 0x00000001
37 #define GPMC_BUF_EMPTY 0x00000000
39 #define NAND_Ecc_P1e (1 << 0)
40 #define NAND_Ecc_P2e (1 << 1)
41 #define NAND_Ecc_P4e (1 << 2)
42 #define NAND_Ecc_P8e (1 << 3)
43 #define NAND_Ecc_P16e (1 << 4)
44 #define NAND_Ecc_P32e (1 << 5)
45 #define NAND_Ecc_P64e (1 << 6)
46 #define NAND_Ecc_P128e (1 << 7)
47 #define NAND_Ecc_P256e (1 << 8)
48 #define NAND_Ecc_P512e (1 << 9)
49 #define NAND_Ecc_P1024e (1 << 10)
50 #define NAND_Ecc_P2048e (1 << 11)
52 #define NAND_Ecc_P1o (1 << 16)
53 #define NAND_Ecc_P2o (1 << 17)
54 #define NAND_Ecc_P4o (1 << 18)
55 #define NAND_Ecc_P8o (1 << 19)
56 #define NAND_Ecc_P16o (1 << 20)
57 #define NAND_Ecc_P32o (1 << 21)
58 #define NAND_Ecc_P64o (1 << 22)
59 #define NAND_Ecc_P128o (1 << 23)
60 #define NAND_Ecc_P256o (1 << 24)
61 #define NAND_Ecc_P512o (1 << 25)
62 #define NAND_Ecc_P1024o (1 << 26)
63 #define NAND_Ecc_P2048o (1 << 27)
65 #define TF(value) (value ? 1 : 0)
67 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
68 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
69 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
70 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
71 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
72 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
73 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
74 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
76 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
77 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
78 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
79 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
80 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
81 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
82 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
83 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
85 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
86 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
87 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
88 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
89 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
90 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
91 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
92 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
94 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
95 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
96 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
97 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
98 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
99 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
100 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
101 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
103 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
104 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
106 #ifdef CONFIG_MTD_PARTITIONS
107 static const char *part_probes
[] = { "cmdlinepart", NULL
};
110 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
111 static int use_prefetch
= 1;
113 /* "modprobe ... use_prefetch=0" etc */
114 module_param(use_prefetch
, bool, 0);
115 MODULE_PARM_DESC(use_prefetch
, "enable/disable use of PREFETCH");
117 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
118 static int use_dma
= 1;
120 /* "modprobe ... use_dma=0" etc */
121 module_param(use_dma
, bool, 0);
122 MODULE_PARM_DESC(use_dma
, "enable/disable use of DMA");
127 const int use_prefetch
;
131 struct omap_nand_info
{
132 struct nand_hw_control controller
;
133 struct omap_nand_platform_data
*pdata
;
135 struct mtd_partition
*parts
;
136 struct nand_chip nand
;
137 struct platform_device
*pdev
;
140 unsigned long phys_base
;
141 void __iomem
*gpmc_cs_baseaddr
;
142 void __iomem
*gpmc_baseaddr
;
143 void __iomem
*nand_pref_fifo_add
;
144 struct completion comp
;
149 * omap_nand_wp - This function enable or disable the Write Protect feature
150 * @mtd: MTD device structure
153 static void omap_nand_wp(struct mtd_info
*mtd
, int mode
)
155 struct omap_nand_info
*info
= container_of(mtd
,
156 struct omap_nand_info
, mtd
);
158 unsigned long config
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_CONFIG
);
161 config
&= ~(NAND_WP_BIT
); /* WP is ON */
163 config
|= (NAND_WP_BIT
); /* WP is OFF */
165 __raw_writel(config
, (info
->gpmc_baseaddr
+ GPMC_CONFIG
));
169 * omap_hwcontrol - hardware specific access to control-lines
170 * @mtd: MTD device structure
171 * @cmd: command to device
173 * NAND_NCE: bit 0 -> don't care
174 * NAND_CLE: bit 1 -> Command Latch
175 * NAND_ALE: bit 2 -> Address Latch
177 * NOTE: boards may use different bits for these!!
179 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
181 struct omap_nand_info
*info
= container_of(mtd
,
182 struct omap_nand_info
, mtd
);
184 case NAND_CTRL_CHANGE
| NAND_CTRL_CLE
:
185 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
186 GPMC_CS_NAND_COMMAND
;
187 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
191 case NAND_CTRL_CHANGE
| NAND_CTRL_ALE
:
192 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
193 GPMC_CS_NAND_ADDRESS
;
194 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
198 case NAND_CTRL_CHANGE
| NAND_NCE
:
199 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
201 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
206 if (cmd
!= NAND_CMD_NONE
)
207 __raw_writeb(cmd
, info
->nand
.IO_ADDR_W
);
211 * omap_read_buf8 - read data from NAND controller into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
218 struct nand_chip
*nand
= mtd
->priv
;
220 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
224 * omap_write_buf8 - write buffer to NAND controller
225 * @mtd: MTD device structure
227 * @len: number of bytes to write
229 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
231 struct omap_nand_info
*info
= container_of(mtd
,
232 struct omap_nand_info
, mtd
);
233 u_char
*p
= (u_char
*)buf
;
236 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
237 while (GPMC_BUF_EMPTY
== (readl(info
->gpmc_baseaddr
+
238 GPMC_STATUS
) & GPMC_BUF_FULL
));
243 * omap_read_buf16 - read data from NAND controller into buffer
244 * @mtd: MTD device structure
245 * @buf: buffer to store date
246 * @len: number of bytes to read
248 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
250 struct nand_chip
*nand
= mtd
->priv
;
252 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
256 * omap_write_buf16 - write buffer to NAND controller
257 * @mtd: MTD device structure
259 * @len: number of bytes to write
261 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
263 struct omap_nand_info
*info
= container_of(mtd
,
264 struct omap_nand_info
, mtd
);
265 u16
*p
= (u16
*) buf
;
267 /* FIXME try bursts of writesw() or DMA ... */
271 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
273 while (GPMC_BUF_EMPTY
== (readl(info
->gpmc_baseaddr
+
274 GPMC_STATUS
) & GPMC_BUF_FULL
))
280 * omap_read_buf_pref - read data from NAND controller into buffer
281 * @mtd: MTD device structure
282 * @buf: buffer to store date
283 * @len: number of bytes to read
285 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
287 struct omap_nand_info
*info
= container_of(mtd
,
288 struct omap_nand_info
, mtd
);
289 uint32_t pfpw_status
= 0, r_count
= 0;
293 /* take care of subpage reads */
294 for (; len
% 4 != 0; ) {
295 *buf
++ = __raw_readb(info
->nand
.IO_ADDR_R
);
300 /* configure and start prefetch transfer */
301 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x0, len
, 0x0);
303 /* PFPW engine is busy, use cpu copy method */
304 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
305 omap_read_buf16(mtd
, buf
, len
);
307 omap_read_buf8(mtd
, buf
, len
);
310 pfpw_status
= gpmc_prefetch_status();
311 r_count
= ((pfpw_status
>> 24) & 0x7F) >> 2;
312 ioread32_rep(info
->nand_pref_fifo_add
, p
, r_count
);
317 /* disable and stop the PFPW engine */
318 gpmc_prefetch_reset();
323 * omap_write_buf_pref - write buffer to NAND controller
324 * @mtd: MTD device structure
326 * @len: number of bytes to write
328 static void omap_write_buf_pref(struct mtd_info
*mtd
,
329 const u_char
*buf
, int len
)
331 struct omap_nand_info
*info
= container_of(mtd
,
332 struct omap_nand_info
, mtd
);
333 uint32_t pfpw_status
= 0, w_count
= 0;
335 u16
*p
= (u16
*) buf
;
337 /* take care of subpage writes */
339 writeb(*buf
, info
->nand
.IO_ADDR_R
);
340 p
= (u16
*)(buf
+ 1);
344 /* configure and start prefetch transfer */
345 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x0, len
, 0x1);
347 /* PFPW engine is busy, use cpu copy method */
348 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
349 omap_write_buf16(mtd
, buf
, len
);
351 omap_write_buf8(mtd
, buf
, len
);
353 pfpw_status
= gpmc_prefetch_status();
354 while (pfpw_status
& 0x3FFF) {
355 w_count
= ((pfpw_status
>> 24) & 0x7F) >> 1;
356 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
357 iowrite16(*p
++, info
->nand_pref_fifo_add
);
358 pfpw_status
= gpmc_prefetch_status();
361 /* disable and stop the PFPW engine */
362 gpmc_prefetch_reset();
366 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
368 * omap_nand_dma_cb: callback on the completion of dma transfer
369 * @lch: logical channel
370 * @ch_satuts: channel status
371 * @data: pointer to completion data structure
373 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
)
375 complete((struct completion
*) data
);
379 * omap_nand_dma_transfer: configer and start dma transfer
380 * @mtd: MTD device structure
381 * @addr: virtual address in RAM of source/destination
382 * @len: number of data bytes to be transferred
383 * @is_write: flag for read/write operation
385 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
386 unsigned int len
, int is_write
)
388 struct omap_nand_info
*info
= container_of(mtd
,
389 struct omap_nand_info
, mtd
);
390 uint32_t prefetch_status
= 0;
391 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
396 /* The fifo depth is 64 bytes. We have a sync at each frame and frame
397 * length is 64 bytes.
399 int buf_len
= len
>> 6;
401 if (addr
>= high_memory
) {
404 if (((size_t)addr
& PAGE_MASK
) !=
405 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
407 p1
= vmalloc_to_page(addr
);
410 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
413 dma_addr
= dma_map_single(&info
->pdev
->dev
, addr
, len
, dir
);
414 if (dma_mapping_error(&info
->pdev
->dev
, dma_addr
)) {
415 dev_err(&info
->pdev
->dev
,
416 "Couldn't DMA map a %d byte buffer\n", len
);
421 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
422 info
->phys_base
, 0, 0);
423 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
425 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
426 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
427 OMAP24XX_DMA_GPMC
, OMAP_DMA_DST_SYNC
);
429 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
430 info
->phys_base
, 0, 0);
431 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
433 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
434 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
435 OMAP24XX_DMA_GPMC
, OMAP_DMA_SRC_SYNC
);
437 /* configure and start prefetch transfer */
438 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x1, len
, is_write
);
440 /* PFPW engine is busy, use cpu copy methode */
443 init_completion(&info
->comp
);
445 omap_start_dma(info
->dma_ch
);
447 /* setup and start DMA using dma_addr */
448 wait_for_completion(&info
->comp
);
450 while (0x3fff & (prefetch_status
= gpmc_prefetch_status()))
452 /* disable and stop the PFPW engine */
453 gpmc_prefetch_reset();
455 dma_unmap_single(&info
->pdev
->dev
, dma_addr
, len
, dir
);
459 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
460 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
461 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
463 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
464 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
468 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
) {}
469 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
470 unsigned int len
, int is_write
)
477 * omap_read_buf_dma_pref - read data from NAND controller into buffer
478 * @mtd: MTD device structure
479 * @buf: buffer to store date
480 * @len: number of bytes to read
482 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
484 if (len
<= mtd
->oobsize
)
485 omap_read_buf_pref(mtd
, buf
, len
);
487 /* start transfer in DMA mode */
488 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
492 * omap_write_buf_dma_pref - write buffer to NAND controller
493 * @mtd: MTD device structure
495 * @len: number of bytes to write
497 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
498 const u_char
*buf
, int len
)
500 if (len
<= mtd
->oobsize
)
501 omap_write_buf_pref(mtd
, buf
, len
);
503 /* start transfer in DMA mode */
504 omap_nand_dma_transfer(mtd
, buf
, len
, 0x1);
508 * omap_verify_buf - Verify chip data against buffer
509 * @mtd: MTD device structure
510 * @buf: buffer containing the data to compare
511 * @len: number of bytes to compare
513 static int omap_verify_buf(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
515 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
517 u16
*p
= (u16
*) buf
;
521 if (*p
++ != cpu_to_le16(readw(info
->nand
.IO_ADDR_R
)))
528 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
530 * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
531 * @mtd: MTD device structure
533 static void omap_hwecc_init(struct mtd_info
*mtd
)
535 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
537 struct nand_chip
*chip
= mtd
->priv
;
538 unsigned long val
= 0x0;
540 /* Read from ECC Control Register */
541 val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
542 /* Clear all ECC | Enable Reg1 */
543 val
= ((0x00000001<<8) | 0x00000001);
544 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
546 /* Read from ECC Size Config Register */
547 val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_SIZE_CONFIG
);
548 /* ECCSIZE1=512 | Select eccResultsize[0-3] */
549 val
= ((((chip
->ecc
.size
>> 1) - 1) << 22) | (0x0000000F));
550 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_SIZE_CONFIG
);
554 * gen_true_ecc - This function will generate true ECC value
555 * @ecc_buf: buffer to store ecc code
557 * This generated true ECC value can be used when correcting
558 * data read from NAND flash memory core
560 static void gen_true_ecc(u8
*ecc_buf
)
562 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
563 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
565 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
566 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
567 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
568 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
569 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
570 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
574 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
575 * @ecc_data1: ecc code from nand spare area
576 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
577 * @page_data: page data
579 * This function compares two ECC's and indicates if there is an error.
580 * If the error can be corrected it will be corrected to the buffer.
582 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
583 u8
*ecc_data2
, /* read from register */
587 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
588 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
595 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
597 gen_true_ecc(ecc_data1
);
598 gen_true_ecc(ecc_data2
);
600 for (i
= 0; i
<= 2; i
++) {
601 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
602 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
605 for (i
= 0; i
< 8; i
++) {
606 tmp0_bit
[i
] = *ecc_data1
% 2;
607 *ecc_data1
= *ecc_data1
/ 2;
610 for (i
= 0; i
< 8; i
++) {
611 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
612 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
615 for (i
= 0; i
< 8; i
++) {
616 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
617 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
620 for (i
= 0; i
< 8; i
++) {
621 comp0_bit
[i
] = *ecc_data2
% 2;
622 *ecc_data2
= *ecc_data2
/ 2;
625 for (i
= 0; i
< 8; i
++) {
626 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
627 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
630 for (i
= 0; i
< 8; i
++) {
631 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
632 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
635 for (i
= 0; i
< 6; i
++)
636 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
638 for (i
= 0; i
< 8; i
++)
639 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
641 for (i
= 0; i
< 8; i
++)
642 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
644 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
645 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
647 for (i
= 0; i
< 24; i
++)
648 ecc_sum
+= ecc_bit
[i
];
652 /* Not reached because this function is not called if
653 * ECC values are equal
658 /* Uncorrectable error */
659 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR 1\n");
663 /* UN-Correctable error */
664 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR B\n");
668 /* Correctable error */
669 find_byte
= (ecc_bit
[23] << 8) +
679 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
681 DEBUG(MTD_DEBUG_LEVEL0
, "Correcting single bit ECC error at "
682 "offset: %d, bit: %d\n", find_byte
, find_bit
);
684 page_data
[find_byte
] ^= (1 << find_bit
);
689 if (ecc_data2
[0] == 0 &&
694 DEBUG(MTD_DEBUG_LEVEL0
, "UNCORRECTED_ERROR default\n");
700 * omap_correct_data - Compares the ECC read with HW generated ECC
701 * @mtd: MTD device structure
703 * @read_ecc: ecc read from nand flash
704 * @calc_ecc: ecc read from HW ECC registers
706 * Compares the ecc read from nand spare area with ECC registers values
707 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
710 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
711 u_char
*read_ecc
, u_char
*calc_ecc
)
713 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
715 int blockCnt
= 0, i
= 0, ret
= 0;
717 /* Ex NAND_ECC_HW12_2048 */
718 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
719 (info
->nand
.ecc
.size
== 2048))
724 for (i
= 0; i
< blockCnt
; i
++) {
725 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
726 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
738 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
739 * @mtd: MTD device structure
740 * @dat: The pointer to data on which ecc is computed
741 * @ecc_code: The ecc_code buffer
743 * Using noninverted ECC can be considered ugly since writing a blank
744 * page ie. padding will clear the ECC bytes. This is no problem as long
745 * nobody is trying to write data on the seemingly unused page. Reading
746 * an erased page will produce an ECC mismatch between generated and read
747 * ECC bytes that has to be dealt with separately.
749 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
752 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
754 unsigned long val
= 0x0;
757 /* Start Reading from HW ECC1_Result = 0x200 */
758 reg
= (unsigned long)(info
->gpmc_baseaddr
+ GPMC_ECC1_RESULT
);
759 val
= __raw_readl(reg
);
760 *ecc_code
++ = val
; /* P128e, ..., P1e */
761 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
762 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
763 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
770 * omap_enable_hwecc - This function enables the hardware ecc functionality
771 * @mtd: MTD device structure
772 * @mode: Read/Write mode
774 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
776 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
778 struct nand_chip
*chip
= mtd
->priv
;
779 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
780 unsigned long val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_CONFIG
);
784 __raw_writel(0x101, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
785 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
786 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
788 case NAND_ECC_READSYN
:
789 __raw_writel(0x100, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
790 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
791 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
794 __raw_writel(0x101, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
795 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
796 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
799 DEBUG(MTD_DEBUG_LEVEL0
, "Error: Unrecognized Mode[%d]!\n",
804 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_CONFIG
);
809 * omap_wait - wait until the command is done
810 * @mtd: MTD device structure
811 * @chip: NAND Chip structure
813 * Wait function is called during Program and erase operations and
814 * the way it is called from MTD layer, we should wait till the NAND
815 * chip is ready after the programming/erase operation has completed.
817 * Erase can take up to 400ms and program up to 20ms according to
818 * general NAND and SmartMedia specs
820 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
822 struct nand_chip
*this = mtd
->priv
;
823 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
825 unsigned long timeo
= jiffies
;
826 int status
= NAND_STATUS_FAIL
, state
= this->state
;
828 if (state
== FL_ERASING
)
829 timeo
+= (HZ
* 400) / 1000;
831 timeo
+= (HZ
* 20) / 1000;
833 this->IO_ADDR_W
= (void *) info
->gpmc_cs_baseaddr
+
834 GPMC_CS_NAND_COMMAND
;
835 this->IO_ADDR_R
= (void *) info
->gpmc_cs_baseaddr
+ GPMC_CS_NAND_DATA
;
837 __raw_writeb(NAND_CMD_STATUS
& 0xFF, this->IO_ADDR_W
);
839 while (time_before(jiffies
, timeo
)) {
840 status
= __raw_readb(this->IO_ADDR_R
);
841 if (status
& NAND_STATUS_READY
)
849 * omap_dev_ready - calls the platform specific dev_ready function
850 * @mtd: MTD device structure
852 static int omap_dev_ready(struct mtd_info
*mtd
)
854 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
856 unsigned int val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_IRQ_STATUS
);
858 if ((val
& 0x100) == 0x100) {
859 /* Clear IRQ Interrupt */
862 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_IRQ_STATUS
);
864 unsigned int cnt
= 0;
865 while (cnt
++ < 0x1FF) {
866 if ((val
& 0x100) == 0x100)
868 val
= __raw_readl(info
->gpmc_baseaddr
+
876 static int __devinit
omap_nand_probe(struct platform_device
*pdev
)
878 struct omap_nand_info
*info
;
879 struct omap_nand_platform_data
*pdata
;
882 pdata
= pdev
->dev
.platform_data
;
884 dev_err(&pdev
->dev
, "platform data missing\n");
888 info
= kzalloc(sizeof(struct omap_nand_info
), GFP_KERNEL
);
892 platform_set_drvdata(pdev
, info
);
894 spin_lock_init(&info
->controller
.lock
);
895 init_waitqueue_head(&info
->controller
.wq
);
899 info
->gpmc_cs
= pdata
->cs
;
900 info
->gpmc_baseaddr
= pdata
->gpmc_baseaddr
;
901 info
->gpmc_cs_baseaddr
= pdata
->gpmc_cs_baseaddr
;
902 info
->phys_base
= pdata
->phys_base
;
904 info
->mtd
.priv
= &info
->nand
;
905 info
->mtd
.name
= dev_name(&pdev
->dev
);
906 info
->mtd
.owner
= THIS_MODULE
;
908 info
->nand
.options
|= pdata
->devsize
? NAND_BUSWIDTH_16
: 0;
909 info
->nand
.options
|= NAND_SKIP_BBTSCAN
;
911 /* NAND write protect off */
912 omap_nand_wp(&info
->mtd
, NAND_WP_OFF
);
914 if (!request_mem_region(info
->phys_base
, NAND_IO_SIZE
,
915 pdev
->dev
.driver
->name
)) {
920 info
->nand
.IO_ADDR_R
= ioremap(info
->phys_base
, NAND_IO_SIZE
);
921 if (!info
->nand
.IO_ADDR_R
) {
923 goto out_release_mem_region
;
926 info
->nand
.controller
= &info
->controller
;
928 info
->nand
.IO_ADDR_W
= info
->nand
.IO_ADDR_R
;
929 info
->nand
.cmd_ctrl
= omap_hwcontrol
;
932 * If RDY/BSY line is connected to OMAP then use the omap ready
933 * funcrtion and the generic nand_wait function which reads the status
934 * register after monitoring the RDY/BSY line.Otherwise use a standard
935 * chip delay which is slightly more than tR (AC Timing) of the NAND
936 * device and read status register until you get a failure or success
938 if (pdata
->dev_ready
) {
939 info
->nand
.dev_ready
= omap_dev_ready
;
940 info
->nand
.chip_delay
= 0;
942 info
->nand
.waitfunc
= omap_wait
;
943 info
->nand
.chip_delay
= 50;
947 /* copy the virtual address of nand base for fifo access */
948 info
->nand_pref_fifo_add
= info
->nand
.IO_ADDR_R
;
950 info
->nand
.read_buf
= omap_read_buf_pref
;
951 info
->nand
.write_buf
= omap_write_buf_pref
;
953 err
= omap_request_dma(OMAP24XX_DMA_GPMC
, "NAND",
954 omap_nand_dma_cb
, &info
->comp
, &info
->dma_ch
);
957 printk(KERN_WARNING
"DMA request failed."
958 " Non-dma data transfer mode\n");
960 omap_set_dma_dest_burst_mode(info
->dma_ch
,
961 OMAP_DMA_DATA_BURST_16
);
962 omap_set_dma_src_burst_mode(info
->dma_ch
,
963 OMAP_DMA_DATA_BURST_16
);
965 info
->nand
.read_buf
= omap_read_buf_dma_pref
;
966 info
->nand
.write_buf
= omap_write_buf_dma_pref
;
970 if (info
->nand
.options
& NAND_BUSWIDTH_16
) {
971 info
->nand
.read_buf
= omap_read_buf16
;
972 info
->nand
.write_buf
= omap_write_buf16
;
974 info
->nand
.read_buf
= omap_read_buf8
;
975 info
->nand
.write_buf
= omap_write_buf8
;
978 info
->nand
.verify_buf
= omap_verify_buf
;
980 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
981 info
->nand
.ecc
.bytes
= 3;
982 info
->nand
.ecc
.size
= 512;
983 info
->nand
.ecc
.calculate
= omap_calculate_ecc
;
984 info
->nand
.ecc
.hwctl
= omap_enable_hwecc
;
985 info
->nand
.ecc
.correct
= omap_correct_data
;
986 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
989 omap_hwecc_init(&info
->mtd
);
991 info
->nand
.ecc
.mode
= NAND_ECC_SOFT
;
994 /* DIP switches on some boards change between 8 and 16 bit
995 * bus widths for flash. Try the other width if the first try fails.
997 if (nand_scan(&info
->mtd
, 1)) {
998 info
->nand
.options
^= NAND_BUSWIDTH_16
;
999 if (nand_scan(&info
->mtd
, 1)) {
1001 goto out_release_mem_region
;
1005 #ifdef CONFIG_MTD_PARTITIONS
1006 err
= parse_mtd_partitions(&info
->mtd
, part_probes
, &info
->parts
, 0);
1008 add_mtd_partitions(&info
->mtd
, info
->parts
, err
);
1009 else if (pdata
->parts
)
1010 add_mtd_partitions(&info
->mtd
, pdata
->parts
, pdata
->nr_parts
);
1013 add_mtd_device(&info
->mtd
);
1015 platform_set_drvdata(pdev
, &info
->mtd
);
1019 out_release_mem_region
:
1020 release_mem_region(info
->phys_base
, NAND_IO_SIZE
);
1027 static int omap_nand_remove(struct platform_device
*pdev
)
1029 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
1030 struct omap_nand_info
*info
= mtd
->priv
;
1032 platform_set_drvdata(pdev
, NULL
);
1034 omap_free_dma(info
->dma_ch
);
1036 /* Release NAND device, its internal structures and partitions */
1037 nand_release(&info
->mtd
);
1038 iounmap(info
->nand_pref_fifo_add
);
1043 static struct platform_driver omap_nand_driver
= {
1044 .probe
= omap_nand_probe
,
1045 .remove
= omap_nand_remove
,
1047 .name
= DRIVER_NAME
,
1048 .owner
= THIS_MODULE
,
1052 static int __init
omap_nand_init(void)
1054 printk(KERN_INFO
"%s driver initializing\n", DRIVER_NAME
);
1056 /* This check is required if driver is being
1057 * loaded run time as a module
1059 if ((1 == use_dma
) && (0 == use_prefetch
)) {
1060 printk(KERN_INFO
"Wrong parameters: 'use_dma' can not be 1 "
1061 "without use_prefetch'. Prefetch will not be"
1062 " used in either mode (mpu or dma)\n");
1064 return platform_driver_register(&omap_nand_driver
);
1067 static void __exit
omap_nand_exit(void)
1069 platform_driver_unregister(&omap_nand_driver
);
1072 module_init(omap_nand_init
);
1073 module_exit(omap_nand_exit
);
1075 MODULE_ALIAS(DRIVER_NAME
);
1076 MODULE_LICENSE("GPL");
1077 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");