1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
59 #define ICH_FLASH_GFPREG 0x0000
60 #define ICH_FLASH_HSFSTS 0x0004
61 #define ICH_FLASH_HSFCTL 0x0006
62 #define ICH_FLASH_FADDR 0x0008
63 #define ICH_FLASH_FDATA0 0x0010
64 #define ICH_FLASH_PR0 0x0074
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
72 #define ICH_CYCLE_READ 0
73 #define ICH_CYCLE_WRITE 2
74 #define ICH_CYCLE_ERASE 3
76 #define FLASH_GFPREG_BASE_MASK 0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT 12
79 #define ICH_FLASH_SEG_SIZE_256 256
80 #define ICH_FLASH_SEG_SIZE_4K 4096
81 #define ICH_FLASH_SEG_SIZE_8K 8192
82 #define ICH_FLASH_SEG_SIZE_64K 65536
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87 #define E1000_ICH_MNG_IAMT_MODE 0x2
89 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
90 (ID_LED_DEF1_OFF2 << 8) | \
91 (ID_LED_DEF1_ON2 << 4) | \
94 #define E1000_ICH_NVM_SIG_WORD 0x13
95 #define E1000_ICH_NVM_SIG_MASK 0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
97 #define E1000_ICH_NVM_SIG_VALUE 0x80
99 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
101 #define E1000_FEXTNVM_SW_CONFIG 1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
104 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
106 #define E1000_ICH_RAR_ENTRIES 7
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110 ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
118 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
120 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN 0x0200
125 #define HV_SMB_ADDR_VALID 0x0080
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP 0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
141 /* KMRN Mode Control */
142 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
143 #define HV_KMRN_MDIO_SLOW 0x0400
145 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
146 /* Offset 04h HSFSTS */
147 union ich8_hws_flash_status
{
149 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
150 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
151 u16 dael
:1; /* bit 2 Direct Access error Log */
152 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
153 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
154 u16 reserved1
:2; /* bit 13:6 Reserved */
155 u16 reserved2
:6; /* bit 13:6 Reserved */
156 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
157 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
162 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
163 /* Offset 06h FLCTL */
164 union ich8_hws_flash_ctrl
{
165 struct ich8_hsflctl
{
166 u16 flcgo
:1; /* 0 Flash Cycle Go */
167 u16 flcycle
:2; /* 2:1 Flash Cycle */
168 u16 reserved
:5; /* 7:3 Reserved */
169 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
170 u16 flockdn
:6; /* 15:10 Reserved */
175 /* ICH Flash Region Access Permissions */
176 union ich8_hws_flash_regacc
{
178 u32 grra
:8; /* 0:7 GbE region Read Access */
179 u32 grwa
:8; /* 8:15 GbE region Write Access */
180 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
181 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
186 /* ICH Flash Protected Region */
187 union ich8_flash_protected_range
{
189 u32 base
:13; /* 0:12 Protected Range Base */
190 u32 reserved1
:2; /* 13:14 Reserved */
191 u32 rpe
:1; /* 15 Read Protection Enable */
192 u32 limit
:13; /* 16:28 Protected Range Limit */
193 u32 reserved2
:2; /* 29:30 Reserved */
194 u32 wpe
:1; /* 31 Write Protection Enable */
199 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
200 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
201 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
202 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
203 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
204 u32 offset
, u8 byte
);
205 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
207 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
209 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
211 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
212 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
213 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
214 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
215 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
216 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
217 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
218 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
219 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
220 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
221 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
222 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
223 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
224 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
225 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
226 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
228 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
230 return readw(hw
->flash_address
+ reg
);
233 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
235 return readl(hw
->flash_address
+ reg
);
238 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
240 writew(val
, hw
->flash_address
+ reg
);
243 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
245 writel(val
, hw
->flash_address
+ reg
);
248 #define er16flash(reg) __er16flash(hw, (reg))
249 #define er32flash(reg) __er32flash(hw, (reg))
250 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
251 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
254 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
255 * @hw: pointer to the HW structure
257 * Initialize family-specific PHY parameters and function pointers.
259 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
261 struct e1000_phy_info
*phy
= &hw
->phy
;
265 phy
->reset_delay_us
= 100;
267 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
268 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
269 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
270 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
271 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
272 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
273 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
274 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
275 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
277 phy
->id
= e1000_phy_unknown
;
278 ret_val
= e1000e_get_phy_id(hw
);
281 if ((phy
->id
== 0) || (phy
->id
== PHY_REVISION_MASK
)) {
283 * In case the PHY needs to be in mdio slow mode (eg. 82577),
284 * set slow mode and try to get the PHY id again.
286 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
289 ret_val
= e1000e_get_phy_id(hw
);
293 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
296 case e1000_phy_82577
:
297 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
298 phy
->ops
.force_speed_duplex
=
299 e1000_phy_force_speed_duplex_82577
;
300 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
301 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
302 phy
->ops
.commit
= e1000e_phy_sw_reset
;
303 case e1000_phy_82578
:
304 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
305 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
306 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
307 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
310 ret_val
= -E1000_ERR_PHY
;
319 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
320 * @hw: pointer to the HW structure
322 * Initialize family-specific PHY parameters and function pointers.
324 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
326 struct e1000_phy_info
*phy
= &hw
->phy
;
331 phy
->reset_delay_us
= 100;
333 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
334 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
337 * We may need to do this twice - once for IGP and if that fails,
338 * we'll set BM func pointers and try again
340 ret_val
= e1000e_determine_phy_address(hw
);
342 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
343 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
344 ret_val
= e1000e_determine_phy_address(hw
);
346 e_dbg("Cannot determine PHY addr. Erroring out\n");
352 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
355 ret_val
= e1000e_get_phy_id(hw
);
362 case IGP03E1000_E_PHY_ID
:
363 phy
->type
= e1000_phy_igp_3
;
364 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
365 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
366 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
367 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
368 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
369 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
372 case IFE_PLUS_E_PHY_ID
:
374 phy
->type
= e1000_phy_ife
;
375 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
376 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
377 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
378 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
380 case BME1000_E_PHY_ID
:
381 phy
->type
= e1000_phy_bm
;
382 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
383 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
384 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
385 phy
->ops
.commit
= e1000e_phy_sw_reset
;
386 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
387 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
388 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
391 return -E1000_ERR_PHY
;
399 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
400 * @hw: pointer to the HW structure
402 * Initialize family-specific NVM parameters and function
405 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
407 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
408 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
409 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
412 /* Can't read flash registers if the register set isn't mapped. */
413 if (!hw
->flash_address
) {
414 e_dbg("ERROR: Flash registers not mapped\n");
415 return -E1000_ERR_CONFIG
;
418 nvm
->type
= e1000_nvm_flash_sw
;
420 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
423 * sector_X_addr is a "sector"-aligned address (4096 bytes)
424 * Add 1 to sector_end_addr since this sector is included in
427 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
428 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
430 /* flash_base_addr is byte-aligned */
431 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
434 * find total size of the NVM, then cut in half since the total
435 * size represents two separate NVM banks.
437 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
438 << FLASH_SECTOR_ADDR_SHIFT
;
439 nvm
->flash_bank_size
/= 2;
440 /* Adjust to word count */
441 nvm
->flash_bank_size
/= sizeof(u16
);
443 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
445 /* Clear shadow ram */
446 for (i
= 0; i
< nvm
->word_size
; i
++) {
447 dev_spec
->shadow_ram
[i
].modified
= false;
448 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
455 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
456 * @hw: pointer to the HW structure
458 * Initialize family-specific MAC parameters and function
461 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
463 struct e1000_hw
*hw
= &adapter
->hw
;
464 struct e1000_mac_info
*mac
= &hw
->mac
;
466 /* Set media type function pointer */
467 hw
->phy
.media_type
= e1000_media_type_copper
;
469 /* Set mta register count */
470 mac
->mta_reg_count
= 32;
471 /* Set rar entry count */
472 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
473 if (mac
->type
== e1000_ich8lan
)
474 mac
->rar_entry_count
--;
475 /* Set if manageability features are enabled. */
476 mac
->arc_subsystem_valid
= true;
477 /* Adaptive IFS supported */
478 mac
->adaptive_ifs
= true;
486 mac
->ops
.id_led_init
= e1000e_id_led_init
;
488 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
490 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
491 /* turn on/off LED */
492 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
493 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
497 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
499 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
501 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
502 /* turn on/off LED */
503 mac
->ops
.led_on
= e1000_led_on_pchlan
;
504 mac
->ops
.led_off
= e1000_led_off_pchlan
;
510 /* Enable PCS Lock-loss workaround for ICH8 */
511 if (mac
->type
== e1000_ich8lan
)
512 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
518 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
519 * @hw: pointer to the HW structure
521 * Checks to see of the link status of the hardware has changed. If a
522 * change in link status has been detected, then we read the PHY registers
523 * to get the current speed/duplex if link exists.
525 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
527 struct e1000_mac_info
*mac
= &hw
->mac
;
532 * We only want to go out to the PHY registers to see if Auto-Neg
533 * has completed and/or if our link status has changed. The
534 * get_link_status flag is set upon receiving a Link Status
535 * Change or Rx Sequence Error interrupt.
537 if (!mac
->get_link_status
) {
543 * First we want to see if the MII Status Register reports
544 * link. If so, then we want to get the current speed/duplex
547 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
551 if (hw
->mac
.type
== e1000_pchlan
) {
552 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
558 goto out
; /* No link detected */
560 mac
->get_link_status
= false;
562 if (hw
->phy
.type
== e1000_phy_82578
) {
563 ret_val
= e1000_link_stall_workaround_hv(hw
);
569 * Check if there was DownShift, must be checked
570 * immediately after link-up
572 e1000e_check_downshift(hw
);
575 * If we are forcing speed/duplex, then we simply return since
576 * we have already determined whether we have link or not.
579 ret_val
= -E1000_ERR_CONFIG
;
584 * Auto-Neg is enabled. Auto Speed Detection takes care
585 * of MAC speed/duplex configuration. So we only need to
586 * configure Collision Distance in the MAC.
588 e1000e_config_collision_dist(hw
);
591 * Configure Flow Control now that Auto-Neg has completed.
592 * First, we need to restore the desired flow control
593 * settings because we may have had to re-autoneg with a
594 * different link partner.
596 ret_val
= e1000e_config_fc_after_link_up(hw
);
598 e_dbg("Error configuring flow control\n");
604 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
606 struct e1000_hw
*hw
= &adapter
->hw
;
609 rc
= e1000_init_mac_params_ich8lan(adapter
);
613 rc
= e1000_init_nvm_params_ich8lan(hw
);
617 if (hw
->mac
.type
== e1000_pchlan
)
618 rc
= e1000_init_phy_params_pchlan(hw
);
620 rc
= e1000_init_phy_params_ich8lan(hw
);
624 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
625 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
626 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
629 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
630 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
631 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
636 static DEFINE_MUTEX(nvm_mutex
);
639 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
640 * @hw: pointer to the HW structure
642 * Acquires the mutex for performing NVM operations.
644 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
646 mutex_lock(&nvm_mutex
);
652 * e1000_release_nvm_ich8lan - Release NVM mutex
653 * @hw: pointer to the HW structure
655 * Releases the mutex used while performing NVM operations.
657 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
659 mutex_unlock(&nvm_mutex
);
664 static DEFINE_MUTEX(swflag_mutex
);
667 * e1000_acquire_swflag_ich8lan - Acquire software control flag
668 * @hw: pointer to the HW structure
670 * Acquires the software control flag for performing PHY and select
673 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
675 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
678 mutex_lock(&swflag_mutex
);
681 extcnf_ctrl
= er32(EXTCNF_CTRL
);
682 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
690 e_dbg("SW/FW/HW has locked the resource for too long.\n");
691 ret_val
= -E1000_ERR_CONFIG
;
695 timeout
= SW_FLAG_TIMEOUT
;
697 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
698 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
701 extcnf_ctrl
= er32(EXTCNF_CTRL
);
702 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
710 e_dbg("Failed to acquire the semaphore.\n");
711 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
712 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
713 ret_val
= -E1000_ERR_CONFIG
;
719 mutex_unlock(&swflag_mutex
);
725 * e1000_release_swflag_ich8lan - Release software control flag
726 * @hw: pointer to the HW structure
728 * Releases the software control flag for performing PHY and select
731 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
735 extcnf_ctrl
= er32(EXTCNF_CTRL
);
736 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
737 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
739 mutex_unlock(&swflag_mutex
);
745 * e1000_check_mng_mode_ich8lan - Checks management mode
746 * @hw: pointer to the HW structure
748 * This checks if the adapter has manageability enabled.
749 * This is a function pointer entry point only called by read/write
750 * routines for the PHY and NVM parts.
752 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
758 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
759 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
763 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
764 * @hw: pointer to the HW structure
766 * Checks if firmware is blocking the reset of the PHY.
767 * This is a function pointer entry point only called by
770 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
776 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
780 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
781 * @hw: pointer to the HW structure
783 * SW should configure the LCD from the NVM extended configuration region
784 * as a workaround for certain parts.
786 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
788 struct e1000_phy_info
*phy
= &hw
->phy
;
789 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
791 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
793 ret_val
= hw
->phy
.ops
.acquire(hw
);
798 * Initialize the PHY from the NVM on ICH platforms. This
799 * is needed due to an issue where the NVM configuration is
800 * not properly autoloaded after power transitions.
801 * Therefore, after each PHY reset, we will load the
802 * configuration data out of the NVM manually.
804 if ((hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) ||
805 (hw
->mac
.type
== e1000_pchlan
)) {
806 struct e1000_adapter
*adapter
= hw
->adapter
;
808 /* Check if SW needs to configure the PHY */
809 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
810 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
) ||
811 (hw
->mac
.type
== e1000_pchlan
))
812 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
814 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
816 data
= er32(FEXTNVM
);
817 if (!(data
& sw_cfg_mask
))
820 /* Wait for basic configuration completes before proceeding */
821 e1000_lan_init_done_ich8lan(hw
);
824 * Make sure HW does not configure LCD from PHY
825 * extended configuration before SW configuration
827 data
= er32(EXTCNF_CTRL
);
828 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
831 cnf_size
= er32(EXTCNF_SIZE
);
832 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
833 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
837 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
838 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
840 if (!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
841 (hw
->mac
.type
== e1000_pchlan
)) {
843 * HW configures the SMBus address and LEDs when the
844 * OEM and LCD Write Enable bits are set in the NVM.
845 * When both NVM bits are cleared, SW will configure
849 data
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
850 reg_data
= data
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
;
851 reg_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
852 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
,
858 ret_val
= e1000_write_phy_reg_hv_locked(hw
,
864 /* Configure LCD from extended configuration region. */
866 /* cnf_base_addr is in DWORD */
867 word_addr
= (u16
)(cnf_base_addr
<< 1);
869 for (i
= 0; i
< cnf_size
; i
++) {
870 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
875 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
880 /* Save off the PHY page for future writes. */
881 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
886 reg_addr
&= PHY_REG_MASK
;
887 reg_addr
|= phy_page
;
889 ret_val
= phy
->ops
.write_reg_locked(hw
,
898 hw
->phy
.ops
.release(hw
);
903 * e1000_k1_gig_workaround_hv - K1 Si workaround
904 * @hw: pointer to the HW structure
905 * @link: link up bool flag
907 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
908 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
909 * If link is down, the function will restore the default K1 setting located
912 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
916 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
918 if (hw
->mac
.type
!= e1000_pchlan
)
921 /* Wrap the whole flow with the sw flag */
922 ret_val
= hw
->phy
.ops
.acquire(hw
);
926 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
928 if (hw
->phy
.type
== e1000_phy_82578
) {
929 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
934 status_reg
&= BM_CS_STATUS_LINK_UP
|
935 BM_CS_STATUS_RESOLVED
|
936 BM_CS_STATUS_SPEED_MASK
;
938 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
939 BM_CS_STATUS_RESOLVED
|
940 BM_CS_STATUS_SPEED_1000
))
944 if (hw
->phy
.type
== e1000_phy_82577
) {
945 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
950 status_reg
&= HV_M_STATUS_LINK_UP
|
951 HV_M_STATUS_AUTONEG_COMPLETE
|
952 HV_M_STATUS_SPEED_MASK
;
954 if (status_reg
== (HV_M_STATUS_LINK_UP
|
955 HV_M_STATUS_AUTONEG_COMPLETE
|
956 HV_M_STATUS_SPEED_1000
))
960 /* Link stall fix for link up */
961 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
967 /* Link stall fix for link down */
968 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
974 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
977 hw
->phy
.ops
.release(hw
);
983 * e1000_configure_k1_ich8lan - Configure K1 power state
984 * @hw: pointer to the HW structure
985 * @enable: K1 state to configure
987 * Configure the K1 power state based on the provided parameter.
988 * Assumes semaphore already acquired.
990 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
992 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1000 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1001 E1000_KMRNCTRLSTA_K1_CONFIG
,
1007 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1009 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1011 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1012 E1000_KMRNCTRLSTA_K1_CONFIG
,
1018 ctrl_ext
= er32(CTRL_EXT
);
1019 ctrl_reg
= er32(CTRL
);
1021 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1022 reg
|= E1000_CTRL_FRCSPD
;
1025 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1027 ew32(CTRL
, ctrl_reg
);
1028 ew32(CTRL_EXT
, ctrl_ext
);
1036 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1037 * @hw: pointer to the HW structure
1038 * @d0_state: boolean if entering d0 or d3 device state
1040 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1041 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1042 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1044 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1050 if (hw
->mac
.type
!= e1000_pchlan
)
1053 ret_val
= hw
->phy
.ops
.acquire(hw
);
1057 mac_reg
= er32(EXTCNF_CTRL
);
1058 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1061 mac_reg
= er32(FEXTNVM
);
1062 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1065 mac_reg
= er32(PHY_CTRL
);
1067 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1071 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1074 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1075 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1077 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1078 oem_reg
|= HV_OEM_BITS_LPLU
;
1080 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1081 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1083 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1084 oem_reg
|= HV_OEM_BITS_LPLU
;
1086 /* Restart auto-neg to activate the bits */
1087 if (!e1000_check_reset_block(hw
))
1088 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1089 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1092 hw
->phy
.ops
.release(hw
);
1099 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1100 * @hw: pointer to the HW structure
1102 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1107 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1111 data
|= HV_KMRN_MDIO_SLOW
;
1113 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1119 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1120 * done after every PHY reset.
1122 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1127 if (hw
->mac
.type
!= e1000_pchlan
)
1130 /* Set MDIO slow mode before any other MDIO access */
1131 if (hw
->phy
.type
== e1000_phy_82577
) {
1132 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1137 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1138 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1139 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1140 /* Disable generation of early preamble */
1141 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1145 /* Preamble tuning for SSC */
1146 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1151 if (hw
->phy
.type
== e1000_phy_82578
) {
1153 * Return registers to default by doing a soft reset then
1154 * writing 0x3140 to the control register.
1156 if (hw
->phy
.revision
< 2) {
1157 e1000e_phy_sw_reset(hw
);
1158 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1163 ret_val
= hw
->phy
.ops
.acquire(hw
);
1168 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1169 hw
->phy
.ops
.release(hw
);
1174 * Configure the K1 Si workaround during phy reset assuming there is
1175 * link so that it disables K1 if link is in 1Gbps.
1177 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1181 /* Workaround for link disconnects on a busy hub in half duplex */
1182 ret_val
= hw
->phy
.ops
.acquire(hw
);
1185 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
,
1186 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1190 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
,
1191 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1194 hw
->phy
.ops
.release(hw
);
1200 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1201 * @hw: pointer to the HW structure
1203 * Check the appropriate indication the MAC has finished configuring the
1204 * PHY after a software reset.
1206 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1208 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1210 /* Wait for basic configuration completes before proceeding */
1212 data
= er32(STATUS
);
1213 data
&= E1000_STATUS_LAN_INIT_DONE
;
1215 } while ((!data
) && --loop
);
1218 * If basic configuration is incomplete before the above loop
1219 * count reaches 0, loading the configuration from NVM will
1220 * leave the PHY in a bad state possibly resulting in no link.
1223 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1225 /* Clear the Init Done bit for the next init event */
1226 data
= er32(STATUS
);
1227 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1232 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1233 * @hw: pointer to the HW structure
1236 * This is a function pointer entry point called by drivers
1237 * or other shared routines.
1239 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1244 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1248 /* Allow time for h/w to get to a quiescent state after reset */
1251 /* Perform any necessary post-reset workarounds */
1252 if (hw
->mac
.type
== e1000_pchlan
) {
1253 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1258 /* Dummy read to clear the phy wakeup bit after lcd reset */
1259 if (hw
->mac
.type
== e1000_pchlan
)
1260 e1e_rphy(hw
, BM_WUC
, ®
);
1262 /* Configure the LCD with the extended configuration region in NVM */
1263 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1267 /* Configure the LCD with the OEM bits in NVM */
1268 if (hw
->mac
.type
== e1000_pchlan
)
1269 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1276 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1277 * @hw: pointer to the HW structure
1278 * @active: true to enable LPLU, false to disable
1280 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1281 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1282 * the phy speed. This function will manually set the LPLU bit and restart
1283 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1284 * since it configures the same bit.
1286 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1291 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1296 oem_reg
|= HV_OEM_BITS_LPLU
;
1298 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1300 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1301 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1308 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1309 * @hw: pointer to the HW structure
1310 * @active: true to enable LPLU, false to disable
1312 * Sets the LPLU D0 state according to the active flag. When
1313 * activating LPLU this function also disables smart speed
1314 * and vice versa. LPLU will not be activated unless the
1315 * device autonegotiation advertisement meets standards of
1316 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1317 * This is a function pointer entry point only called by
1318 * PHY setup routines.
1320 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1322 struct e1000_phy_info
*phy
= &hw
->phy
;
1327 if (phy
->type
== e1000_phy_ife
)
1330 phy_ctrl
= er32(PHY_CTRL
);
1333 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1334 ew32(PHY_CTRL
, phy_ctrl
);
1336 if (phy
->type
!= e1000_phy_igp_3
)
1340 * Call gig speed drop workaround on LPLU before accessing
1343 if (hw
->mac
.type
== e1000_ich8lan
)
1344 e1000e_gig_downshift_workaround_ich8lan(hw
);
1346 /* When LPLU is enabled, we should disable SmartSpeed */
1347 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1348 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1349 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1353 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1354 ew32(PHY_CTRL
, phy_ctrl
);
1356 if (phy
->type
!= e1000_phy_igp_3
)
1360 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1361 * during Dx states where the power conservation is most
1362 * important. During driver activity we should enable
1363 * SmartSpeed, so performance is maintained.
1365 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1366 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1371 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1372 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1376 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1377 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1382 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1383 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1394 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1395 * @hw: pointer to the HW structure
1396 * @active: true to enable LPLU, false to disable
1398 * Sets the LPLU D3 state according to the active flag. When
1399 * activating LPLU this function also disables smart speed
1400 * and vice versa. LPLU will not be activated unless the
1401 * device autonegotiation advertisement meets standards of
1402 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1403 * This is a function pointer entry point only called by
1404 * PHY setup routines.
1406 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1408 struct e1000_phy_info
*phy
= &hw
->phy
;
1413 phy_ctrl
= er32(PHY_CTRL
);
1416 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1417 ew32(PHY_CTRL
, phy_ctrl
);
1419 if (phy
->type
!= e1000_phy_igp_3
)
1423 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1424 * during Dx states where the power conservation is most
1425 * important. During driver activity we should enable
1426 * SmartSpeed, so performance is maintained.
1428 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1429 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1434 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1435 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1439 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1440 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1445 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1446 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1451 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1452 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1453 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1454 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1455 ew32(PHY_CTRL
, phy_ctrl
);
1457 if (phy
->type
!= e1000_phy_igp_3
)
1461 * Call gig speed drop workaround on LPLU before accessing
1464 if (hw
->mac
.type
== e1000_ich8lan
)
1465 e1000e_gig_downshift_workaround_ich8lan(hw
);
1467 /* When LPLU is enabled, we should disable SmartSpeed */
1468 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1472 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1473 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1480 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1481 * @hw: pointer to the HW structure
1482 * @bank: pointer to the variable that returns the active bank
1484 * Reads signature byte from the NVM using the flash access registers.
1485 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1487 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1490 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1491 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1492 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1496 switch (hw
->mac
.type
) {
1500 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1501 E1000_EECD_SEC1VAL_VALID_MASK
) {
1502 if (eecd
& E1000_EECD_SEC1VAL
)
1509 e_dbg("Unable to determine valid NVM bank via EEC - "
1510 "reading flash signature\n");
1513 /* set bank to 0 in case flash read fails */
1517 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
1521 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1522 E1000_ICH_NVM_SIG_VALUE
) {
1528 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
1533 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1534 E1000_ICH_NVM_SIG_VALUE
) {
1539 e_dbg("ERROR: No valid NVM bank present\n");
1540 return -E1000_ERR_NVM
;
1547 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1548 * @hw: pointer to the HW structure
1549 * @offset: The offset (in bytes) of the word(s) to read.
1550 * @words: Size of data to read in words
1551 * @data: Pointer to the word(s) to read at offset.
1553 * Reads a word(s) from the NVM using the flash access registers.
1555 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1558 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1559 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1565 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1567 e_dbg("nvm parameter(s) out of bounds\n");
1568 ret_val
= -E1000_ERR_NVM
;
1572 nvm
->ops
.acquire(hw
);
1574 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1576 e_dbg("Could not detect valid bank, assuming bank 0\n");
1580 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1581 act_offset
+= offset
;
1584 for (i
= 0; i
< words
; i
++) {
1585 if ((dev_spec
->shadow_ram
) &&
1586 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1587 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
1589 ret_val
= e1000_read_flash_word_ich8lan(hw
,
1598 nvm
->ops
.release(hw
);
1602 e_dbg("NVM read error: %d\n", ret_val
);
1608 * e1000_flash_cycle_init_ich8lan - Initialize flash
1609 * @hw: pointer to the HW structure
1611 * This function does initial flash setup so that a new read/write/erase cycle
1614 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
1616 union ich8_hws_flash_status hsfsts
;
1617 s32 ret_val
= -E1000_ERR_NVM
;
1620 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1622 /* Check if the flash descriptor is valid */
1623 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1624 e_dbg("Flash descriptor invalid. "
1625 "SW Sequencing must be used.");
1626 return -E1000_ERR_NVM
;
1629 /* Clear FCERR and DAEL in hw status by writing 1 */
1630 hsfsts
.hsf_status
.flcerr
= 1;
1631 hsfsts
.hsf_status
.dael
= 1;
1633 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1636 * Either we should have a hardware SPI cycle in progress
1637 * bit to check against, in order to start a new cycle or
1638 * FDONE bit should be changed in the hardware so that it
1639 * is 1 after hardware reset, which can then be used as an
1640 * indication whether a cycle is in progress or has been
1644 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1646 * There is no cycle running at present,
1647 * so we can start a cycle.
1648 * Begin by setting Flash Cycle Done.
1650 hsfsts
.hsf_status
.flcdone
= 1;
1651 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1655 * Otherwise poll for sometime so the current
1656 * cycle has a chance to end before giving up.
1658 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1659 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1660 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1668 * Successful in waiting for previous cycle to timeout,
1669 * now set the Flash Cycle Done.
1671 hsfsts
.hsf_status
.flcdone
= 1;
1672 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1674 e_dbg("Flash controller busy, cannot get access");
1682 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1683 * @hw: pointer to the HW structure
1684 * @timeout: maximum time to wait for completion
1686 * This function starts a flash cycle and waits for its completion.
1688 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1690 union ich8_hws_flash_ctrl hsflctl
;
1691 union ich8_hws_flash_status hsfsts
;
1692 s32 ret_val
= -E1000_ERR_NVM
;
1695 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1696 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1697 hsflctl
.hsf_ctrl
.flcgo
= 1;
1698 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1700 /* wait till FDONE bit is set to 1 */
1702 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1703 if (hsfsts
.hsf_status
.flcdone
== 1)
1706 } while (i
++ < timeout
);
1708 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1715 * e1000_read_flash_word_ich8lan - Read word from flash
1716 * @hw: pointer to the HW structure
1717 * @offset: offset to data location
1718 * @data: pointer to the location for storing the data
1720 * Reads the flash word at offset into data. Offset is converted
1721 * to bytes before read.
1723 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1726 /* Must convert offset into bytes. */
1729 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1733 * e1000_read_flash_byte_ich8lan - Read byte from flash
1734 * @hw: pointer to the HW structure
1735 * @offset: The offset of the byte to read.
1736 * @data: Pointer to a byte to store the value read.
1738 * Reads a single byte from the NVM using the flash access registers.
1740 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1746 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
1756 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1757 * @hw: pointer to the HW structure
1758 * @offset: The offset (in bytes) of the byte or word to read.
1759 * @size: Size of data to read, 1=byte 2=word
1760 * @data: Pointer to the word to store the value read.
1762 * Reads a byte or word from the NVM using the flash access registers.
1764 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1767 union ich8_hws_flash_status hsfsts
;
1768 union ich8_hws_flash_ctrl hsflctl
;
1769 u32 flash_linear_addr
;
1771 s32 ret_val
= -E1000_ERR_NVM
;
1774 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1775 return -E1000_ERR_NVM
;
1777 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1778 hw
->nvm
.flash_base_addr
;
1783 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1787 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1788 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1789 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1790 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1791 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1793 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1795 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1796 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1799 * Check if FCERR is set to 1, if set to 1, clear it
1800 * and try the whole sequence a few more times, else
1801 * read in (shift in) the Flash Data0, the order is
1802 * least significant byte first msb to lsb
1805 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1807 *data
= (u8
)(flash_data
& 0x000000FF);
1808 } else if (size
== 2) {
1809 *data
= (u16
)(flash_data
& 0x0000FFFF);
1814 * If we've gotten here, then things are probably
1815 * completely hosed, but if the error condition is
1816 * detected, it won't hurt to give it another try...
1817 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1819 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1820 if (hsfsts
.hsf_status
.flcerr
== 1) {
1821 /* Repeat for some time before giving up. */
1823 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1824 e_dbg("Timeout error - flash cycle "
1825 "did not complete.");
1829 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1835 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1836 * @hw: pointer to the HW structure
1837 * @offset: The offset (in bytes) of the word(s) to write.
1838 * @words: Size of data to write in words
1839 * @data: Pointer to the word(s) to write at offset.
1841 * Writes a byte or word to the NVM using the flash access registers.
1843 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1846 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1847 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1850 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1852 e_dbg("nvm parameter(s) out of bounds\n");
1853 return -E1000_ERR_NVM
;
1856 nvm
->ops
.acquire(hw
);
1858 for (i
= 0; i
< words
; i
++) {
1859 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
1860 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1863 nvm
->ops
.release(hw
);
1869 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1870 * @hw: pointer to the HW structure
1872 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1873 * which writes the checksum to the shadow ram. The changes in the shadow
1874 * ram are then committed to the EEPROM by processing each bank at a time
1875 * checking for the modified bit and writing only the pending changes.
1876 * After a successful commit, the shadow ram is cleared and is ready for
1879 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1881 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1882 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1883 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
1887 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1891 if (nvm
->type
!= e1000_nvm_flash_sw
)
1894 nvm
->ops
.acquire(hw
);
1897 * We're writing to the opposite bank so if we're on bank 1,
1898 * write to bank 0 etc. We also need to erase the segment that
1899 * is going to be written
1901 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1903 e_dbg("Could not detect valid bank, assuming bank 0\n");
1908 new_bank_offset
= nvm
->flash_bank_size
;
1909 old_bank_offset
= 0;
1910 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
1912 nvm
->ops
.release(hw
);
1916 old_bank_offset
= nvm
->flash_bank_size
;
1917 new_bank_offset
= 0;
1918 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
1920 nvm
->ops
.release(hw
);
1925 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1927 * Determine whether to write the value stored
1928 * in the other NVM bank or a modified value stored
1931 if (dev_spec
->shadow_ram
[i
].modified
) {
1932 data
= dev_spec
->shadow_ram
[i
].value
;
1934 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
1942 * If the word is 0x13, then make sure the signature bits
1943 * (15:14) are 11b until the commit has completed.
1944 * This will allow us to write 10b which indicates the
1945 * signature is valid. We want to do this after the write
1946 * has completed so that we don't mark the segment valid
1947 * while the write is still in progress
1949 if (i
== E1000_ICH_NVM_SIG_WORD
)
1950 data
|= E1000_ICH_NVM_SIG_MASK
;
1952 /* Convert offset to bytes. */
1953 act_offset
= (i
+ new_bank_offset
) << 1;
1956 /* Write the bytes to the new bank. */
1957 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1964 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1972 * Don't bother writing the segment valid bits if sector
1973 * programming failed.
1976 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1977 e_dbg("Flash commit failed.\n");
1978 nvm
->ops
.release(hw
);
1983 * Finally validate the new segment by setting bit 15:14
1984 * to 10b in word 0x13 , this can be done without an
1985 * erase as well since these bits are 11 to start with
1986 * and we need to change bit 14 to 0b
1988 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1989 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1991 nvm
->ops
.release(hw
);
1995 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1999 nvm
->ops
.release(hw
);
2004 * And invalidate the previously valid segment by setting
2005 * its signature word (0x13) high_byte to 0b. This can be
2006 * done without an erase because flash erase sets all bits
2007 * to 1's. We can write 1's to 0's without an erase
2009 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2010 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2012 nvm
->ops
.release(hw
);
2016 /* Great! Everything worked, we can now clear the cached entries. */
2017 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2018 dev_spec
->shadow_ram
[i
].modified
= false;
2019 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2022 nvm
->ops
.release(hw
);
2025 * Reload the EEPROM, or else modifications will not appear
2026 * until after the next adapter reset.
2028 e1000e_reload_nvm(hw
);
2033 e_dbg("NVM update error: %d\n", ret_val
);
2039 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2040 * @hw: pointer to the HW structure
2042 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2043 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2044 * calculated, in which case we need to calculate the checksum and set bit 6.
2046 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2052 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2053 * needs to be fixed. This bit is an indication that the NVM
2054 * was prepared by OEM software and did not calculate the
2055 * checksum...a likely scenario.
2057 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2061 if ((data
& 0x40) == 0) {
2063 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2066 ret_val
= e1000e_update_nvm_checksum(hw
);
2071 return e1000e_validate_nvm_checksum_generic(hw
);
2075 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2076 * @hw: pointer to the HW structure
2078 * To prevent malicious write/erase of the NVM, set it to be read-only
2079 * so that the hardware ignores all write/erase cycles of the NVM via
2080 * the flash control registers. The shadow-ram copy of the NVM will
2081 * still be updated, however any updates to this copy will not stick
2082 * across driver reloads.
2084 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2086 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2087 union ich8_flash_protected_range pr0
;
2088 union ich8_hws_flash_status hsfsts
;
2091 nvm
->ops
.acquire(hw
);
2093 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2095 /* Write-protect GbE Sector of NVM */
2096 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2097 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2098 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2099 pr0
.range
.wpe
= true;
2100 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2103 * Lock down a subset of GbE Flash Control Registers, e.g.
2104 * PR0 to prevent the write-protection from being lifted.
2105 * Once FLOCKDN is set, the registers protected by it cannot
2106 * be written until FLOCKDN is cleared by a hardware reset.
2108 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2109 hsfsts
.hsf_status
.flockdn
= true;
2110 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2112 nvm
->ops
.release(hw
);
2116 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2117 * @hw: pointer to the HW structure
2118 * @offset: The offset (in bytes) of the byte/word to read.
2119 * @size: Size of data to read, 1=byte 2=word
2120 * @data: The byte(s) to write to the NVM.
2122 * Writes one/two bytes to the NVM using the flash access registers.
2124 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2127 union ich8_hws_flash_status hsfsts
;
2128 union ich8_hws_flash_ctrl hsflctl
;
2129 u32 flash_linear_addr
;
2134 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2135 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2136 return -E1000_ERR_NVM
;
2138 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2139 hw
->nvm
.flash_base_addr
;
2144 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2148 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2149 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2150 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2151 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2152 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2154 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2157 flash_data
= (u32
)data
& 0x00FF;
2159 flash_data
= (u32
)data
;
2161 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2164 * check if FCERR is set to 1 , if set to 1, clear it
2165 * and try the whole sequence a few more times else done
2167 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2168 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2173 * If we're here, then things are most likely
2174 * completely hosed, but if the error condition
2175 * is detected, it won't hurt to give it another
2176 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2178 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2179 if (hsfsts
.hsf_status
.flcerr
== 1)
2180 /* Repeat for some time before giving up. */
2182 if (hsfsts
.hsf_status
.flcdone
== 0) {
2183 e_dbg("Timeout error - flash cycle "
2184 "did not complete.");
2187 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2193 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2194 * @hw: pointer to the HW structure
2195 * @offset: The index of the byte to read.
2196 * @data: The byte to write to the NVM.
2198 * Writes a single byte to the NVM using the flash access registers.
2200 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2203 u16 word
= (u16
)data
;
2205 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2209 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2210 * @hw: pointer to the HW structure
2211 * @offset: The offset of the byte to write.
2212 * @byte: The byte to write to the NVM.
2214 * Writes a single byte to the NVM using the flash access registers.
2215 * Goes through a retry algorithm before giving up.
2217 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2218 u32 offset
, u8 byte
)
2221 u16 program_retries
;
2223 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2227 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2228 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2230 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2234 if (program_retries
== 100)
2235 return -E1000_ERR_NVM
;
2241 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2242 * @hw: pointer to the HW structure
2243 * @bank: 0 for first bank, 1 for second bank, etc.
2245 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2246 * bank N is 4096 * N + flash_reg_addr.
2248 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2250 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2251 union ich8_hws_flash_status hsfsts
;
2252 union ich8_hws_flash_ctrl hsflctl
;
2253 u32 flash_linear_addr
;
2254 /* bank size is in 16bit words - adjust to bytes */
2255 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2258 s32 j
, iteration
, sector_size
;
2260 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2263 * Determine HW Sector size: Read BERASE bits of hw flash status
2265 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2266 * consecutive sectors. The start index for the nth Hw sector
2267 * can be calculated as = bank * 4096 + n * 256
2268 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2269 * The start index for the nth Hw sector can be calculated
2271 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2272 * (ich9 only, otherwise error condition)
2273 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2275 switch (hsfsts
.hsf_status
.berasesz
) {
2277 /* Hw sector size 256 */
2278 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2279 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2282 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2286 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2290 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2294 return -E1000_ERR_NVM
;
2297 /* Start with the base address, then add the sector offset. */
2298 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2299 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2301 for (j
= 0; j
< iteration
; j
++) {
2304 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2309 * Write a value 11 (block Erase) in Flash
2310 * Cycle field in hw flash control
2312 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2313 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2314 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2317 * Write the last 24 bits of an index within the
2318 * block into Flash Linear address field in Flash
2321 flash_linear_addr
+= (j
* sector_size
);
2322 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2324 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2325 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2330 * Check if FCERR is set to 1. If 1,
2331 * clear it and try the whole sequence
2332 * a few more times else Done
2334 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2335 if (hsfsts
.hsf_status
.flcerr
== 1)
2336 /* repeat for some time before giving up */
2338 else if (hsfsts
.hsf_status
.flcdone
== 0)
2340 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2347 * e1000_valid_led_default_ich8lan - Set the default LED settings
2348 * @hw: pointer to the HW structure
2349 * @data: Pointer to the LED settings
2351 * Reads the LED default settings from the NVM to data. If the NVM LED
2352 * settings is all 0's or F's, set the LED default to a valid LED default
2355 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2359 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2361 e_dbg("NVM Read Error\n");
2365 if (*data
== ID_LED_RESERVED_0000
||
2366 *data
== ID_LED_RESERVED_FFFF
)
2367 *data
= ID_LED_DEFAULT_ICH8LAN
;
2373 * e1000_id_led_init_pchlan - store LED configurations
2374 * @hw: pointer to the HW structure
2376 * PCH does not control LEDs via the LEDCTL register, rather it uses
2377 * the PHY LED configuration register.
2379 * PCH also does not have an "always on" or "always off" mode which
2380 * complicates the ID feature. Instead of using the "on" mode to indicate
2381 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2382 * use "link_up" mode. The LEDs will still ID on request if there is no
2383 * link based on logic in e1000_led_[on|off]_pchlan().
2385 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2387 struct e1000_mac_info
*mac
= &hw
->mac
;
2389 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2390 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2391 u16 data
, i
, temp
, shift
;
2393 /* Get default ID LED modes */
2394 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2398 mac
->ledctl_default
= er32(LEDCTL
);
2399 mac
->ledctl_mode1
= mac
->ledctl_default
;
2400 mac
->ledctl_mode2
= mac
->ledctl_default
;
2402 for (i
= 0; i
< 4; i
++) {
2403 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2406 case ID_LED_ON1_DEF2
:
2407 case ID_LED_ON1_ON2
:
2408 case ID_LED_ON1_OFF2
:
2409 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2410 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2412 case ID_LED_OFF1_DEF2
:
2413 case ID_LED_OFF1_ON2
:
2414 case ID_LED_OFF1_OFF2
:
2415 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2416 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2423 case ID_LED_DEF1_ON2
:
2424 case ID_LED_ON1_ON2
:
2425 case ID_LED_OFF1_ON2
:
2426 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2427 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2429 case ID_LED_DEF1_OFF2
:
2430 case ID_LED_ON1_OFF2
:
2431 case ID_LED_OFF1_OFF2
:
2432 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2433 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2446 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2447 * @hw: pointer to the HW structure
2449 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2450 * register, so the the bus width is hard coded.
2452 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2454 struct e1000_bus_info
*bus
= &hw
->bus
;
2457 ret_val
= e1000e_get_bus_info_pcie(hw
);
2460 * ICH devices are "PCI Express"-ish. They have
2461 * a configuration space, but do not contain
2462 * PCI Express Capability registers, so bus width
2463 * must be hardcoded.
2465 if (bus
->width
== e1000_bus_width_unknown
)
2466 bus
->width
= e1000_bus_width_pcie_x1
;
2472 * e1000_reset_hw_ich8lan - Reset the hardware
2473 * @hw: pointer to the HW structure
2475 * Does a full reset of the hardware which includes a reset of the PHY and
2478 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2480 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2486 * Prevent the PCI-E bus from sticking if there is no TLP connection
2487 * on the last TLP read/write transaction when MAC is reset.
2489 ret_val
= e1000e_disable_pcie_master(hw
);
2491 e_dbg("PCI-E Master disable polling has failed.\n");
2494 e_dbg("Masking off all interrupts\n");
2495 ew32(IMC
, 0xffffffff);
2498 * Disable the Transmit and Receive units. Then delay to allow
2499 * any pending transactions to complete before we hit the MAC
2500 * with the global reset.
2503 ew32(TCTL
, E1000_TCTL_PSP
);
2508 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2509 if (hw
->mac
.type
== e1000_ich8lan
) {
2510 /* Set Tx and Rx buffer allocation to 8k apiece. */
2511 ew32(PBA
, E1000_PBA_8K
);
2512 /* Set Packet Buffer Size to 16k. */
2513 ew32(PBS
, E1000_PBS_16K
);
2516 if (hw
->mac
.type
== e1000_pchlan
) {
2517 /* Save the NVM K1 bit setting*/
2518 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
2522 if (reg
& E1000_NVM_K1_ENABLE
)
2523 dev_spec
->nvm_k1_enabled
= true;
2525 dev_spec
->nvm_k1_enabled
= false;
2530 if (!e1000_check_reset_block(hw
)) {
2531 /* Clear PHY Reset Asserted bit */
2532 if (hw
->mac
.type
>= e1000_pchlan
) {
2533 u32 status
= er32(STATUS
);
2534 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
2538 * PHY HW reset requires MAC CORE reset at the same
2539 * time to make sure the interface between MAC and the
2540 * external PHY is reset.
2542 ctrl
|= E1000_CTRL_PHY_RST
;
2544 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2545 e_dbg("Issuing a global reset to ich8lan\n");
2546 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
2550 e1000_release_swflag_ich8lan(hw
);
2552 /* Perform any necessary post-reset workarounds */
2553 if (hw
->mac
.type
== e1000_pchlan
)
2554 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2556 if (ctrl
& E1000_CTRL_PHY_RST
)
2557 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
2559 if (hw
->mac
.type
>= e1000_ich10lan
) {
2560 e1000_lan_init_done_ich8lan(hw
);
2562 ret_val
= e1000e_get_auto_rd_done(hw
);
2565 * When auto config read does not complete, do not
2566 * return with an error. This can happen in situations
2567 * where there is no eeprom and prevents getting link.
2569 e_dbg("Auto Read Done did not complete\n");
2572 /* Dummy read to clear the phy wakeup bit after lcd reset */
2573 if (hw
->mac
.type
== e1000_pchlan
)
2574 e1e_rphy(hw
, BM_WUC
, ®
);
2576 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
2580 if (hw
->mac
.type
== e1000_pchlan
) {
2581 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
2586 * For PCH, this write will make sure that any noise
2587 * will be detected as a CRC error and be dropped rather than show up
2588 * as a bad packet to the DMA engine.
2590 if (hw
->mac
.type
== e1000_pchlan
)
2591 ew32(CRC_OFFSET
, 0x65656565);
2593 ew32(IMC
, 0xffffffff);
2596 kab
= er32(KABGTXD
);
2597 kab
|= E1000_KABGTXD_BGSQLBIAS
;
2605 * e1000_init_hw_ich8lan - Initialize the hardware
2606 * @hw: pointer to the HW structure
2608 * Prepares the hardware for transmit and receive by doing the following:
2609 * - initialize hardware bits
2610 * - initialize LED identification
2611 * - setup receive address registers
2612 * - setup flow control
2613 * - setup transmit descriptors
2614 * - clear statistics
2616 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
2618 struct e1000_mac_info
*mac
= &hw
->mac
;
2619 u32 ctrl_ext
, txdctl
, snoop
;
2623 e1000_initialize_hw_bits_ich8lan(hw
);
2625 /* Initialize identification LED */
2626 ret_val
= mac
->ops
.id_led_init(hw
);
2628 e_dbg("Error initializing identification LED\n");
2629 /* This is not fatal and we should not stop init due to this */
2631 /* Setup the receive address. */
2632 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
2634 /* Zero out the Multicast HASH table */
2635 e_dbg("Zeroing the MTA\n");
2636 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
2637 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
2640 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2641 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2642 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2644 if (hw
->phy
.type
== e1000_phy_82578
) {
2645 hw
->phy
.ops
.read_reg(hw
, BM_WUC
, &i
);
2646 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
2651 /* Setup link and flow control */
2652 ret_val
= e1000_setup_link_ich8lan(hw
);
2654 /* Set the transmit descriptor write-back policy for both queues */
2655 txdctl
= er32(TXDCTL(0));
2656 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2657 E1000_TXDCTL_FULL_TX_DESC_WB
;
2658 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2659 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2660 ew32(TXDCTL(0), txdctl
);
2661 txdctl
= er32(TXDCTL(1));
2662 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2663 E1000_TXDCTL_FULL_TX_DESC_WB
;
2664 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2665 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2666 ew32(TXDCTL(1), txdctl
);
2669 * ICH8 has opposite polarity of no_snoop bits.
2670 * By default, we should use snoop behavior.
2672 if (mac
->type
== e1000_ich8lan
)
2673 snoop
= PCIE_ICH8_SNOOP_ALL
;
2675 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
2676 e1000e_set_pcie_no_snoop(hw
, snoop
);
2678 ctrl_ext
= er32(CTRL_EXT
);
2679 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
2680 ew32(CTRL_EXT
, ctrl_ext
);
2683 * Clear all of the statistics registers (clear on read). It is
2684 * important that we do this after we have tried to establish link
2685 * because the symbol error count will increment wildly if there
2688 e1000_clear_hw_cntrs_ich8lan(hw
);
2693 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2694 * @hw: pointer to the HW structure
2696 * Sets/Clears required hardware bits necessary for correctly setting up the
2697 * hardware for transmit and receive.
2699 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
2703 /* Extended Device Control */
2704 reg
= er32(CTRL_EXT
);
2706 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2707 if (hw
->mac
.type
>= e1000_pchlan
)
2708 reg
|= E1000_CTRL_EXT_PHYPDEN
;
2709 ew32(CTRL_EXT
, reg
);
2711 /* Transmit Descriptor Control 0 */
2712 reg
= er32(TXDCTL(0));
2714 ew32(TXDCTL(0), reg
);
2716 /* Transmit Descriptor Control 1 */
2717 reg
= er32(TXDCTL(1));
2719 ew32(TXDCTL(1), reg
);
2721 /* Transmit Arbitration Control 0 */
2722 reg
= er32(TARC(0));
2723 if (hw
->mac
.type
== e1000_ich8lan
)
2724 reg
|= (1 << 28) | (1 << 29);
2725 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2728 /* Transmit Arbitration Control 1 */
2729 reg
= er32(TARC(1));
2730 if (er32(TCTL
) & E1000_TCTL_MULR
)
2734 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
2738 if (hw
->mac
.type
== e1000_ich8lan
) {
2745 * work-around descriptor data corruption issue during nfs v2 udp
2746 * traffic, just disable the nfs filtering capability
2749 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
2756 * e1000_setup_link_ich8lan - Setup flow control and link settings
2757 * @hw: pointer to the HW structure
2759 * Determines which flow control settings to use, then configures flow
2760 * control. Calls the appropriate media-specific link configuration
2761 * function. Assuming the adapter has a valid link partner, a valid link
2762 * should be established. Assumes the hardware has previously been reset
2763 * and the transmitter and receiver are not enabled.
2765 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
2769 if (e1000_check_reset_block(hw
))
2773 * ICH parts do not have a word in the NVM to determine
2774 * the default flow control setting, so we explicitly
2777 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
2778 /* Workaround h/w hang when Tx flow control enabled */
2779 if (hw
->mac
.type
== e1000_pchlan
)
2780 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
2782 hw
->fc
.requested_mode
= e1000_fc_full
;
2786 * Save off the requested flow control mode for use later. Depending
2787 * on the link partner's capabilities, we may or may not use this mode.
2789 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2791 e_dbg("After fix-ups FlowControl is now = %x\n",
2792 hw
->fc
.current_mode
);
2794 /* Continue to configure the copper link. */
2795 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
2799 ew32(FCTTV
, hw
->fc
.pause_time
);
2800 if ((hw
->phy
.type
== e1000_phy_82578
) ||
2801 (hw
->phy
.type
== e1000_phy_82577
)) {
2802 ret_val
= hw
->phy
.ops
.write_reg(hw
,
2803 PHY_REG(BM_PORT_CTRL_PAGE
, 27),
2809 return e1000e_set_fc_watermarks(hw
);
2813 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2814 * @hw: pointer to the HW structure
2816 * Configures the kumeran interface to the PHY to wait the appropriate time
2817 * when polling the PHY, then call the generic setup_copper_link to finish
2818 * configuring the copper link.
2820 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2827 ctrl
|= E1000_CTRL_SLU
;
2828 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2832 * Set the mac to wait the maximum time between each iteration
2833 * and increase the max iterations when polling the phy;
2834 * this fixes erroneous timeouts at 10Mbps.
2836 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
2839 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
2844 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
2849 switch (hw
->phy
.type
) {
2850 case e1000_phy_igp_3
:
2851 ret_val
= e1000e_copper_link_setup_igp(hw
);
2856 case e1000_phy_82578
:
2857 ret_val
= e1000e_copper_link_setup_m88(hw
);
2861 case e1000_phy_82577
:
2862 ret_val
= e1000_copper_link_setup_82577(hw
);
2867 ret_val
= hw
->phy
.ops
.read_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2872 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2874 switch (hw
->phy
.mdix
) {
2876 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2879 reg_data
|= IFE_PMC_FORCE_MDIX
;
2883 reg_data
|= IFE_PMC_AUTO_MDIX
;
2886 ret_val
= hw
->phy
.ops
.write_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2894 return e1000e_setup_copper_link(hw
);
2898 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2899 * @hw: pointer to the HW structure
2900 * @speed: pointer to store current link speed
2901 * @duplex: pointer to store the current link duplex
2903 * Calls the generic get_speed_and_duplex to retrieve the current link
2904 * information and then calls the Kumeran lock loss workaround for links at
2907 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
2912 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
2916 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2917 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2918 (*speed
== SPEED_1000
)) {
2919 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2926 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2927 * @hw: pointer to the HW structure
2929 * Work-around for 82566 Kumeran PCS lock loss:
2930 * On link status change (i.e. PCI reset, speed change) and link is up and
2932 * 0) if workaround is optionally disabled do nothing
2933 * 1) wait 1ms for Kumeran link to come up
2934 * 2) check Kumeran Diagnostic register PCS lock loss bit
2935 * 3) if not set the link is locked (all is good), otherwise...
2937 * 5) repeat up to 10 times
2938 * Note: this is only called for IGP3 copper when speed is 1gb.
2940 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2942 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2948 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2952 * Make sure link is up before proceeding. If not just return.
2953 * Attempting this while link is negotiating fouled up link
2956 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2960 for (i
= 0; i
< 10; i
++) {
2961 /* read once to clear */
2962 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2965 /* and again to get new status */
2966 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2970 /* check for PCS lock */
2971 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2974 /* Issue PHY reset */
2975 e1000_phy_hw_reset(hw
);
2978 /* Disable GigE link negotiation */
2979 phy_ctrl
= er32(PHY_CTRL
);
2980 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2981 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2982 ew32(PHY_CTRL
, phy_ctrl
);
2985 * Call gig speed drop workaround on Gig disable before accessing
2988 e1000e_gig_downshift_workaround_ich8lan(hw
);
2990 /* unable to acquire PCS lock */
2991 return -E1000_ERR_PHY
;
2995 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2996 * @hw: pointer to the HW structure
2997 * @state: boolean value used to set the current Kumeran workaround state
2999 * If ICH8, set the current Kumeran workaround state (enabled - true
3000 * /disabled - false).
3002 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3005 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3007 if (hw
->mac
.type
!= e1000_ich8lan
) {
3008 e_dbg("Workaround applies to ICH8 only.\n");
3012 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3016 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3017 * @hw: pointer to the HW structure
3019 * Workaround for 82566 power-down on D3 entry:
3020 * 1) disable gigabit link
3021 * 2) write VR power-down enable
3023 * Continue if successful, else issue LCD reset and repeat
3025 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3031 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3034 /* Try the workaround twice (if needed) */
3037 reg
= er32(PHY_CTRL
);
3038 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3039 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3040 ew32(PHY_CTRL
, reg
);
3043 * Call gig speed drop workaround on Gig disable before
3044 * accessing any PHY registers
3046 if (hw
->mac
.type
== e1000_ich8lan
)
3047 e1000e_gig_downshift_workaround_ich8lan(hw
);
3049 /* Write VR power-down enable */
3050 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3051 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3052 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3054 /* Read it back and test */
3055 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3056 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3057 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3060 /* Issue PHY reset and repeat at most one more time */
3062 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3068 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3069 * @hw: pointer to the HW structure
3071 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3072 * LPLU, Gig disable, MDIC PHY reset):
3073 * 1) Set Kumeran Near-end loopback
3074 * 2) Clear Kumeran Near-end loopback
3075 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3077 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3082 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3083 (hw
->phy
.type
!= e1000_phy_igp_3
))
3086 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3090 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3091 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3095 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3096 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3101 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3102 * @hw: pointer to the HW structure
3104 * During S0 to Sx transition, it is possible the link remains at gig
3105 * instead of negotiating to a lower speed. Before going to Sx, set
3106 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3109 * Should only be called for applicable parts.
3111 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
3115 switch (hw
->mac
.type
) {
3118 case e1000_ich10lan
:
3120 phy_ctrl
= er32(PHY_CTRL
);
3121 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
3122 E1000_PHY_CTRL_GBE_DISABLE
;
3123 ew32(PHY_CTRL
, phy_ctrl
);
3125 if (hw
->mac
.type
== e1000_pchlan
)
3126 e1000_phy_hw_reset_ich8lan(hw
);
3135 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3136 * @hw: pointer to the HW structure
3138 * Return the LED back to the default configuration.
3140 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3142 if (hw
->phy
.type
== e1000_phy_ife
)
3143 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3145 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3150 * e1000_led_on_ich8lan - Turn LEDs on
3151 * @hw: pointer to the HW structure
3155 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3157 if (hw
->phy
.type
== e1000_phy_ife
)
3158 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3159 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3161 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3166 * e1000_led_off_ich8lan - Turn LEDs off
3167 * @hw: pointer to the HW structure
3169 * Turn off the LEDs.
3171 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3173 if (hw
->phy
.type
== e1000_phy_ife
)
3174 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3175 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
3177 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3182 * e1000_setup_led_pchlan - Configures SW controllable LED
3183 * @hw: pointer to the HW structure
3185 * This prepares the SW controllable LED for use.
3187 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3189 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3190 (u16
)hw
->mac
.ledctl_mode1
);
3194 * e1000_cleanup_led_pchlan - Restore the default LED operation
3195 * @hw: pointer to the HW structure
3197 * Return the LED back to the default configuration.
3199 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3201 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3202 (u16
)hw
->mac
.ledctl_default
);
3206 * e1000_led_on_pchlan - Turn LEDs on
3207 * @hw: pointer to the HW structure
3211 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3213 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3217 * If no link, then turn LED on by setting the invert bit
3218 * for each LED that's mode is "link_up" in ledctl_mode2.
3220 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3221 for (i
= 0; i
< 3; i
++) {
3222 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3223 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3224 E1000_LEDCTL_MODE_LINK_UP
)
3226 if (led
& E1000_PHY_LED0_IVRT
)
3227 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3229 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3233 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3237 * e1000_led_off_pchlan - Turn LEDs off
3238 * @hw: pointer to the HW structure
3240 * Turn off the LEDs.
3242 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3244 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3248 * If no link, then turn LED off by clearing the invert bit
3249 * for each LED that's mode is "link_up" in ledctl_mode1.
3251 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3252 for (i
= 0; i
< 3; i
++) {
3253 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3254 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3255 E1000_LEDCTL_MODE_LINK_UP
)
3257 if (led
& E1000_PHY_LED0_IVRT
)
3258 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3260 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3264 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3268 * e1000_get_cfg_done_ich8lan - Read config done bit
3269 * @hw: pointer to the HW structure
3271 * Read the management control register for the config done bit for
3272 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3273 * to read the config done bit, so an error is *ONLY* logged and returns
3274 * 0. If we were to return with error, EEPROM-less silicon
3275 * would not be able to be reset or change link.
3277 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3281 if (hw
->mac
.type
>= e1000_pchlan
) {
3282 u32 status
= er32(STATUS
);
3284 if (status
& E1000_STATUS_PHYRA
)
3285 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3287 e_dbg("PHY Reset Asserted not set - needs delay\n");
3290 e1000e_get_cfg_done(hw
);
3292 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3293 if ((hw
->mac
.type
!= e1000_ich10lan
) &&
3294 (hw
->mac
.type
!= e1000_pchlan
)) {
3295 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3296 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3297 e1000e_phy_init_script_igp3(hw
);
3300 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3301 /* Maybe we should do a basic PHY config */
3302 e_dbg("EEPROM not present\n");
3303 return -E1000_ERR_CONFIG
;
3311 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3312 * @hw: pointer to the HW structure
3314 * In the case of a PHY power down to save power, or to turn off link during a
3315 * driver unload, or wake on lan is not enabled, remove the link.
3317 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3319 /* If the management interface is not enabled, then power down */
3320 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3321 hw
->phy
.ops
.check_reset_block(hw
)))
3322 e1000_power_down_phy_copper(hw
);
3328 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3329 * @hw: pointer to the HW structure
3331 * Clears hardware counters specific to the silicon family and calls
3332 * clear_hw_cntrs_generic to clear all general purpose counters.
3334 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3338 e1000e_clear_hw_cntrs_base(hw
);
3354 /* Clear PHY statistics registers */
3355 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3356 (hw
->phy
.type
== e1000_phy_82577
)) {
3357 hw
->phy
.ops
.read_reg(hw
, HV_SCC_UPPER
, &phy_data
);
3358 hw
->phy
.ops
.read_reg(hw
, HV_SCC_LOWER
, &phy_data
);
3359 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_UPPER
, &phy_data
);
3360 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_LOWER
, &phy_data
);
3361 hw
->phy
.ops
.read_reg(hw
, HV_MCC_UPPER
, &phy_data
);
3362 hw
->phy
.ops
.read_reg(hw
, HV_MCC_LOWER
, &phy_data
);
3363 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_UPPER
, &phy_data
);
3364 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_LOWER
, &phy_data
);
3365 hw
->phy
.ops
.read_reg(hw
, HV_COLC_UPPER
, &phy_data
);
3366 hw
->phy
.ops
.read_reg(hw
, HV_COLC_LOWER
, &phy_data
);
3367 hw
->phy
.ops
.read_reg(hw
, HV_DC_UPPER
, &phy_data
);
3368 hw
->phy
.ops
.read_reg(hw
, HV_DC_LOWER
, &phy_data
);
3369 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_UPPER
, &phy_data
);
3370 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_LOWER
, &phy_data
);
3374 static struct e1000_mac_operations ich8_mac_ops
= {
3375 .id_led_init
= e1000e_id_led_init
,
3376 .check_mng_mode
= e1000_check_mng_mode_ich8lan
,
3377 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3378 /* cleanup_led dependent on mac type */
3379 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3380 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3381 .set_lan_id
= e1000_set_lan_id_single_port
,
3382 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3383 /* led_on dependent on mac type */
3384 /* led_off dependent on mac type */
3385 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3386 .reset_hw
= e1000_reset_hw_ich8lan
,
3387 .init_hw
= e1000_init_hw_ich8lan
,
3388 .setup_link
= e1000_setup_link_ich8lan
,
3389 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3390 /* id_led_init dependent on mac type */
3393 static struct e1000_phy_operations ich8_phy_ops
= {
3394 .acquire
= e1000_acquire_swflag_ich8lan
,
3395 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3397 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3398 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3399 .read_reg
= e1000e_read_phy_reg_igp
,
3400 .release
= e1000_release_swflag_ich8lan
,
3401 .reset
= e1000_phy_hw_reset_ich8lan
,
3402 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3403 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3404 .write_reg
= e1000e_write_phy_reg_igp
,
3407 static struct e1000_nvm_operations ich8_nvm_ops
= {
3408 .acquire
= e1000_acquire_nvm_ich8lan
,
3409 .read
= e1000_read_nvm_ich8lan
,
3410 .release
= e1000_release_nvm_ich8lan
,
3411 .update
= e1000_update_nvm_checksum_ich8lan
,
3412 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3413 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3414 .write
= e1000_write_nvm_ich8lan
,
3417 struct e1000_info e1000_ich8_info
= {
3418 .mac
= e1000_ich8lan
,
3419 .flags
= FLAG_HAS_WOL
3421 | FLAG_RX_CSUM_ENABLED
3422 | FLAG_HAS_CTRLEXT_ON_LOAD
3427 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3428 .get_variants
= e1000_get_variants_ich8lan
,
3429 .mac_ops
= &ich8_mac_ops
,
3430 .phy_ops
= &ich8_phy_ops
,
3431 .nvm_ops
= &ich8_nvm_ops
,
3434 struct e1000_info e1000_ich9_info
= {
3435 .mac
= e1000_ich9lan
,
3436 .flags
= FLAG_HAS_JUMBO_FRAMES
3439 | FLAG_RX_CSUM_ENABLED
3440 | FLAG_HAS_CTRLEXT_ON_LOAD
3446 .max_hw_frame_size
= DEFAULT_JUMBO
,
3447 .get_variants
= e1000_get_variants_ich8lan
,
3448 .mac_ops
= &ich8_mac_ops
,
3449 .phy_ops
= &ich8_phy_ops
,
3450 .nvm_ops
= &ich8_nvm_ops
,
3453 struct e1000_info e1000_ich10_info
= {
3454 .mac
= e1000_ich10lan
,
3455 .flags
= FLAG_HAS_JUMBO_FRAMES
3458 | FLAG_RX_CSUM_ENABLED
3459 | FLAG_HAS_CTRLEXT_ON_LOAD
3465 .max_hw_frame_size
= DEFAULT_JUMBO
,
3466 .get_variants
= e1000_get_variants_ich8lan
,
3467 .mac_ops
= &ich8_mac_ops
,
3468 .phy_ops
= &ich8_phy_ops
,
3469 .nvm_ops
= &ich8_nvm_ops
,
3472 struct e1000_info e1000_pch_info
= {
3473 .mac
= e1000_pchlan
,
3474 .flags
= FLAG_IS_ICH
3476 | FLAG_RX_CSUM_ENABLED
3477 | FLAG_HAS_CTRLEXT_ON_LOAD
3480 | FLAG_HAS_JUMBO_FRAMES
3481 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
3484 .max_hw_frame_size
= 4096,
3485 .get_variants
= e1000_get_variants_ich8lan
,
3486 .mac_ops
= &ich8_mac_ops
,
3487 .phy_ops
= &ich8_phy_ops
,
3488 .nvm_ops
= &ich8_nvm_ops
,