1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
17 #include <linux/if_ether.h>
18 #include <linux/highmem.h>
19 #include "net_driver.h"
22 #include "workarounds.h"
25 * TX descriptor ring full threshold
27 * The tx_queue descriptor ring fill-level must fall below this value
28 * before we restart the netif queue
30 #define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
32 /* We want to be able to nest calls to netif_stop_queue(), since each
33 * channel can have an individual stop on the queue.
35 void efx_stop_queue(struct efx_nic
*efx
)
37 spin_lock_bh(&efx
->netif_stop_lock
);
38 EFX_TRACE(efx
, "stop TX queue\n");
40 atomic_inc(&efx
->netif_stop_count
);
41 netif_stop_queue(efx
->net_dev
);
43 spin_unlock_bh(&efx
->netif_stop_lock
);
46 /* Wake netif's TX queue
47 * We want to be able to nest calls to netif_stop_queue(), since each
48 * channel can have an individual stop on the queue.
50 void efx_wake_queue(struct efx_nic
*efx
)
53 if (atomic_dec_and_lock(&efx
->netif_stop_count
,
54 &efx
->netif_stop_lock
)) {
55 EFX_TRACE(efx
, "waking TX queue\n");
56 netif_wake_queue(efx
->net_dev
);
57 spin_unlock(&efx
->netif_stop_lock
);
62 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
63 struct efx_tx_buffer
*buffer
)
65 if (buffer
->unmap_len
) {
66 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
67 dma_addr_t unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
69 if (buffer
->unmap_single
)
70 pci_unmap_single(pci_dev
, unmap_addr
, buffer
->unmap_len
,
73 pci_unmap_page(pci_dev
, unmap_addr
, buffer
->unmap_len
,
75 buffer
->unmap_len
= 0;
76 buffer
->unmap_single
= false;
80 dev_kfree_skb_any((struct sk_buff
*) buffer
->skb
);
82 EFX_TRACE(tx_queue
->efx
, "TX queue %d transmission id %x "
83 "complete\n", tx_queue
->queue
, read_ptr
);
88 * struct efx_tso_header - a DMA mapped buffer for packet headers
89 * @next: Linked list of free ones.
90 * The list is protected by the TX queue lock.
91 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
92 * @dma_addr: The DMA address of the header below.
94 * This controls the memory used for a TSO header. Use TSOH_DATA()
95 * to find the packet header data. Use TSOH_SIZE() to calculate the
96 * total size required for a given packet header length. TSO headers
97 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
99 struct efx_tso_header
{
101 struct efx_tso_header
*next
;
107 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
108 struct sk_buff
*skb
);
109 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
);
110 static void efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
,
111 struct efx_tso_header
*tsoh
);
113 static void efx_tsoh_free(struct efx_tx_queue
*tx_queue
,
114 struct efx_tx_buffer
*buffer
)
117 if (likely(!buffer
->tsoh
->unmap_len
)) {
118 buffer
->tsoh
->next
= tx_queue
->tso_headers_free
;
119 tx_queue
->tso_headers_free
= buffer
->tsoh
;
121 efx_tsoh_heap_free(tx_queue
, buffer
->tsoh
);
128 static inline unsigned
129 efx_max_tx_len(struct efx_nic
*efx
, dma_addr_t dma_addr
)
131 /* Depending on the NIC revision, we can use descriptor
132 * lengths up to 8K or 8K-1. However, since PCI Express
133 * devices must split read requests at 4K boundaries, there is
134 * little benefit from using descriptors that cross those
135 * boundaries and we keep things simple by not doing so.
137 unsigned len
= (~dma_addr
& 0xfff) + 1;
139 /* Work around hardware bug for unaligned buffers. */
140 if (EFX_WORKAROUND_5391(efx
) && (dma_addr
& 0xf))
141 len
= min_t(unsigned, len
, 512 - (dma_addr
& 0xf));
147 * Add a socket buffer to a TX queue
149 * This maps all fragments of a socket buffer for DMA and adds them to
150 * the TX queue. The queue's insert pointer will be incremented by
151 * the number of fragments in the socket buffer.
153 * If any DMA mapping fails, any mapped fragments will be unmapped,
154 * the queue's insert pointer will be restored to its original value.
156 * This function is split out from efx_hard_start_xmit to allow the
157 * loopback test to direct packets via specific TX queues.
159 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
160 * You must hold netif_tx_lock() to call this function.
162 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
164 struct efx_nic
*efx
= tx_queue
->efx
;
165 struct pci_dev
*pci_dev
= efx
->pci_dev
;
166 struct efx_tx_buffer
*buffer
;
167 skb_frag_t
*fragment
;
170 unsigned int len
, unmap_len
= 0, fill_level
, insert_ptr
;
171 dma_addr_t dma_addr
, unmap_addr
= 0;
172 unsigned int dma_len
;
175 netdev_tx_t rc
= NETDEV_TX_OK
;
177 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
179 if (skb_shinfo(skb
)->gso_size
)
180 return efx_enqueue_skb_tso(tx_queue
, skb
);
182 /* Get size of the initial fragment */
183 len
= skb_headlen(skb
);
185 /* Pad if necessary */
186 if (EFX_WORKAROUND_15592(efx
) && skb
->len
<= 32) {
187 EFX_BUG_ON_PARANOID(skb
->data_len
);
189 if (skb_pad(skb
, len
- skb
->len
))
193 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
194 q_space
= EFX_TXQ_MASK
- 1 - fill_level
;
196 /* Map for DMA. Use pci_map_single rather than pci_map_page
197 * since this is more efficient on machines with sparse
201 dma_addr
= pci_map_single(pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
203 /* Process all fragments */
205 if (unlikely(pci_dma_mapping_error(pci_dev
, dma_addr
)))
208 /* Store fields for marking in the per-fragment final
211 unmap_addr
= dma_addr
;
213 /* Add to TX queue, splitting across DMA boundaries */
215 if (unlikely(q_space
-- <= 0)) {
216 /* It might be that completions have
217 * happened since the xmit path last
218 * checked. Update the xmit path's
219 * copy of read_count.
222 /* This memory barrier protects the
223 * change of stopped from the access
226 tx_queue
->old_read_count
=
227 *(volatile unsigned *)
228 &tx_queue
->read_count
;
229 fill_level
= (tx_queue
->insert_count
230 - tx_queue
->old_read_count
);
231 q_space
= EFX_TXQ_MASK
- 1 - fill_level
;
232 if (unlikely(q_space
-- <= 0))
238 insert_ptr
= tx_queue
->insert_count
& EFX_TXQ_MASK
;
239 buffer
= &tx_queue
->buffer
[insert_ptr
];
240 efx_tsoh_free(tx_queue
, buffer
);
241 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
242 EFX_BUG_ON_PARANOID(buffer
->skb
);
243 EFX_BUG_ON_PARANOID(buffer
->len
);
244 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
245 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
247 dma_len
= efx_max_tx_len(efx
, dma_addr
);
248 if (likely(dma_len
>= len
))
251 /* Fill out per descriptor fields */
252 buffer
->len
= dma_len
;
253 buffer
->dma_addr
= dma_addr
;
256 ++tx_queue
->insert_count
;
259 /* Transfer ownership of the unmapping to the final buffer */
260 buffer
->unmap_single
= unmap_single
;
261 buffer
->unmap_len
= unmap_len
;
264 /* Get address and size of next fragment */
265 if (i
>= skb_shinfo(skb
)->nr_frags
)
267 fragment
= &skb_shinfo(skb
)->frags
[i
];
268 len
= fragment
->size
;
269 page
= fragment
->page
;
270 page_offset
= fragment
->page_offset
;
273 unmap_single
= false;
274 dma_addr
= pci_map_page(pci_dev
, page
, page_offset
, len
,
278 /* Transfer ownership of the skb to the final buffer */
280 buffer
->continuation
= false;
282 /* Pass off to hardware */
283 efx_nic_push_buffers(tx_queue
);
288 EFX_ERR_RL(efx
, " TX queue %d could not map skb with %d bytes %d "
289 "fragments for DMA\n", tx_queue
->queue
, skb
->len
,
290 skb_shinfo(skb
)->nr_frags
+ 1);
292 /* Mark the packet as transmitted, and free the SKB ourselves */
293 dev_kfree_skb_any(skb
);
299 if (tx_queue
->stopped
== 1)
303 /* Work backwards until we hit the original insert pointer value */
304 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
305 --tx_queue
->insert_count
;
306 insert_ptr
= tx_queue
->insert_count
& EFX_TXQ_MASK
;
307 buffer
= &tx_queue
->buffer
[insert_ptr
];
308 efx_dequeue_buffer(tx_queue
, buffer
);
312 /* Free the fragment we were mid-way through pushing */
315 pci_unmap_single(pci_dev
, unmap_addr
, unmap_len
,
318 pci_unmap_page(pci_dev
, unmap_addr
, unmap_len
,
325 /* Remove packets from the TX queue
327 * This removes packets from the TX queue, up to and including the
330 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
333 struct efx_nic
*efx
= tx_queue
->efx
;
334 unsigned int stop_index
, read_ptr
;
336 stop_index
= (index
+ 1) & EFX_TXQ_MASK
;
337 read_ptr
= tx_queue
->read_count
& EFX_TXQ_MASK
;
339 while (read_ptr
!= stop_index
) {
340 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
341 if (unlikely(buffer
->len
== 0)) {
342 EFX_ERR(tx_queue
->efx
, "TX queue %d spurious TX "
343 "completion id %x\n", tx_queue
->queue
,
345 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
349 efx_dequeue_buffer(tx_queue
, buffer
);
350 buffer
->continuation
= true;
353 ++tx_queue
->read_count
;
354 read_ptr
= tx_queue
->read_count
& EFX_TXQ_MASK
;
358 /* Initiate a packet transmission. We use one channel per CPU
359 * (sharing when we have more CPUs than channels). On Falcon, the TX
360 * completion events will be directed back to the CPU that transmitted
361 * the packet, which should be cache-efficient.
363 * Context: non-blocking.
364 * Note that returning anything other than NETDEV_TX_OK will cause the
365 * OS to free the skb.
367 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
368 struct net_device
*net_dev
)
370 struct efx_nic
*efx
= netdev_priv(net_dev
);
371 struct efx_tx_queue
*tx_queue
;
373 if (unlikely(efx
->port_inhibited
))
374 return NETDEV_TX_BUSY
;
376 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
))
377 tx_queue
= &efx
->tx_queue
[EFX_TX_QUEUE_OFFLOAD_CSUM
];
379 tx_queue
= &efx
->tx_queue
[EFX_TX_QUEUE_NO_CSUM
];
381 return efx_enqueue_skb(tx_queue
, skb
);
384 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
387 struct efx_nic
*efx
= tx_queue
->efx
;
389 EFX_BUG_ON_PARANOID(index
> EFX_TXQ_MASK
);
391 efx_dequeue_buffers(tx_queue
, index
);
393 /* See if we need to restart the netif queue. This barrier
394 * separates the update of read_count from the test of
397 if (unlikely(tx_queue
->stopped
) && likely(efx
->port_enabled
)) {
398 fill_level
= tx_queue
->insert_count
- tx_queue
->read_count
;
399 if (fill_level
< EFX_TXQ_THRESHOLD
) {
400 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx
));
402 /* Do this under netif_tx_lock(), to avoid racing
403 * with efx_xmit(). */
404 netif_tx_lock(efx
->net_dev
);
405 if (tx_queue
->stopped
) {
406 tx_queue
->stopped
= 0;
409 netif_tx_unlock(efx
->net_dev
);
414 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
416 struct efx_nic
*efx
= tx_queue
->efx
;
417 unsigned int txq_size
;
420 EFX_LOG(efx
, "creating TX queue %d\n", tx_queue
->queue
);
422 /* Allocate software ring */
423 txq_size
= EFX_TXQ_SIZE
* sizeof(*tx_queue
->buffer
);
424 tx_queue
->buffer
= kzalloc(txq_size
, GFP_KERNEL
);
425 if (!tx_queue
->buffer
)
427 for (i
= 0; i
<= EFX_TXQ_MASK
; ++i
)
428 tx_queue
->buffer
[i
].continuation
= true;
430 /* Allocate hardware ring */
431 rc
= efx_nic_probe_tx(tx_queue
);
438 kfree(tx_queue
->buffer
);
439 tx_queue
->buffer
= NULL
;
443 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
445 EFX_LOG(tx_queue
->efx
, "initialising TX queue %d\n", tx_queue
->queue
);
447 tx_queue
->insert_count
= 0;
448 tx_queue
->write_count
= 0;
449 tx_queue
->read_count
= 0;
450 tx_queue
->old_read_count
= 0;
451 BUG_ON(tx_queue
->stopped
);
453 /* Set up TX descriptor ring */
454 efx_nic_init_tx(tx_queue
);
457 void efx_release_tx_buffers(struct efx_tx_queue
*tx_queue
)
459 struct efx_tx_buffer
*buffer
;
461 if (!tx_queue
->buffer
)
464 /* Free any buffers left in the ring */
465 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
466 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& EFX_TXQ_MASK
];
467 efx_dequeue_buffer(tx_queue
, buffer
);
468 buffer
->continuation
= true;
471 ++tx_queue
->read_count
;
475 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
477 EFX_LOG(tx_queue
->efx
, "shutting down TX queue %d\n", tx_queue
->queue
);
479 /* Flush TX queue, remove descriptor ring */
480 efx_nic_fini_tx(tx_queue
);
482 efx_release_tx_buffers(tx_queue
);
484 /* Free up TSO header cache */
485 efx_fini_tso(tx_queue
);
487 /* Release queue's stop on port, if any */
488 if (tx_queue
->stopped
) {
489 tx_queue
->stopped
= 0;
490 efx_wake_queue(tx_queue
->efx
);
494 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
496 EFX_LOG(tx_queue
->efx
, "destroying TX queue %d\n", tx_queue
->queue
);
497 efx_nic_remove_tx(tx_queue
);
499 kfree(tx_queue
->buffer
);
500 tx_queue
->buffer
= NULL
;
504 /* Efx TCP segmentation acceleration.
506 * Why? Because by doing it here in the driver we can go significantly
507 * faster than the GSO.
509 * Requires TX checksum offload support.
512 /* Number of bytes inserted at the start of a TSO header buffer,
513 * similar to NET_IP_ALIGN.
515 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
516 #define TSOH_OFFSET 0
518 #define TSOH_OFFSET NET_IP_ALIGN
521 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
523 /* Total size of struct efx_tso_header, buffer and padding */
524 #define TSOH_SIZE(hdr_len) \
525 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
527 /* Size of blocks on free list. Larger blocks must be allocated from
530 #define TSOH_STD_SIZE 128
532 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
533 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
534 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
535 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
536 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
539 * struct tso_state - TSO state for an SKB
540 * @out_len: Remaining length in current segment
541 * @seqnum: Current sequence number
542 * @ipv4_id: Current IPv4 ID, host endian
543 * @packet_space: Remaining space in current packet
544 * @dma_addr: DMA address of current position
545 * @in_len: Remaining length in current SKB fragment
546 * @unmap_len: Length of SKB fragment
547 * @unmap_addr: DMA address of SKB fragment
548 * @unmap_single: DMA single vs page mapping flag
549 * @protocol: Network protocol (after any VLAN header)
550 * @header_len: Number of bytes of header
551 * @full_packet_size: Number of bytes to put in each outgoing segment
553 * The state used during segmentation. It is put into this data structure
554 * just to make it easy to pass into inline functions.
557 /* Output position */
561 unsigned packet_space
;
567 dma_addr_t unmap_addr
;
572 int full_packet_size
;
577 * Verify that our various assumptions about sk_buffs and the conditions
578 * under which TSO will be attempted hold true. Return the protocol number.
580 static __be16
efx_tso_check_protocol(struct sk_buff
*skb
)
582 __be16 protocol
= skb
->protocol
;
584 EFX_BUG_ON_PARANOID(((struct ethhdr
*)skb
->data
)->h_proto
!=
586 if (protocol
== htons(ETH_P_8021Q
)) {
587 /* Find the encapsulated protocol; reset network header
588 * and transport header based on that. */
589 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)skb
->data
;
590 protocol
= veh
->h_vlan_encapsulated_proto
;
591 skb_set_network_header(skb
, sizeof(*veh
));
592 if (protocol
== htons(ETH_P_IP
))
593 skb_set_transport_header(skb
, sizeof(*veh
) +
594 4 * ip_hdr(skb
)->ihl
);
595 else if (protocol
== htons(ETH_P_IPV6
))
596 skb_set_transport_header(skb
, sizeof(*veh
) +
597 sizeof(struct ipv6hdr
));
600 if (protocol
== htons(ETH_P_IP
)) {
601 EFX_BUG_ON_PARANOID(ip_hdr(skb
)->protocol
!= IPPROTO_TCP
);
603 EFX_BUG_ON_PARANOID(protocol
!= htons(ETH_P_IPV6
));
604 EFX_BUG_ON_PARANOID(ipv6_hdr(skb
)->nexthdr
!= NEXTHDR_TCP
);
606 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb
), skb
->data
)
607 + (tcp_hdr(skb
)->doff
<< 2u)) >
615 * Allocate a page worth of efx_tso_header structures, and string them
616 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
618 static int efx_tsoh_block_alloc(struct efx_tx_queue
*tx_queue
)
621 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
622 struct efx_tso_header
*tsoh
;
626 base_kva
= pci_alloc_consistent(pci_dev
, PAGE_SIZE
, &dma_addr
);
627 if (base_kva
== NULL
) {
628 EFX_ERR(tx_queue
->efx
, "Unable to allocate page for TSO"
633 /* pci_alloc_consistent() allocates pages. */
634 EFX_BUG_ON_PARANOID(dma_addr
& (PAGE_SIZE
- 1u));
636 for (kva
= base_kva
; kva
< base_kva
+ PAGE_SIZE
; kva
+= TSOH_STD_SIZE
) {
637 tsoh
= (struct efx_tso_header
*)kva
;
638 tsoh
->dma_addr
= dma_addr
+ (TSOH_BUFFER(tsoh
) - base_kva
);
639 tsoh
->next
= tx_queue
->tso_headers_free
;
640 tx_queue
->tso_headers_free
= tsoh
;
647 /* Free up a TSO header, and all others in the same page. */
648 static void efx_tsoh_block_free(struct efx_tx_queue
*tx_queue
,
649 struct efx_tso_header
*tsoh
,
650 struct pci_dev
*pci_dev
)
652 struct efx_tso_header
**p
;
653 unsigned long base_kva
;
656 base_kva
= (unsigned long)tsoh
& PAGE_MASK
;
657 base_dma
= tsoh
->dma_addr
& PAGE_MASK
;
659 p
= &tx_queue
->tso_headers_free
;
661 if (((unsigned long)*p
& PAGE_MASK
) == base_kva
)
667 pci_free_consistent(pci_dev
, PAGE_SIZE
, (void *)base_kva
, base_dma
);
670 static struct efx_tso_header
*
671 efx_tsoh_heap_alloc(struct efx_tx_queue
*tx_queue
, size_t header_len
)
673 struct efx_tso_header
*tsoh
;
675 tsoh
= kmalloc(TSOH_SIZE(header_len
), GFP_ATOMIC
| GFP_DMA
);
679 tsoh
->dma_addr
= pci_map_single(tx_queue
->efx
->pci_dev
,
680 TSOH_BUFFER(tsoh
), header_len
,
682 if (unlikely(pci_dma_mapping_error(tx_queue
->efx
->pci_dev
,
688 tsoh
->unmap_len
= header_len
;
693 efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
, struct efx_tso_header
*tsoh
)
695 pci_unmap_single(tx_queue
->efx
->pci_dev
,
696 tsoh
->dma_addr
, tsoh
->unmap_len
,
702 * efx_tx_queue_insert - push descriptors onto the TX queue
703 * @tx_queue: Efx TX queue
704 * @dma_addr: DMA address of fragment
705 * @len: Length of fragment
706 * @final_buffer: The final buffer inserted into the queue
708 * Push descriptors onto the TX queue. Return 0 on success or 1 if
711 static int efx_tx_queue_insert(struct efx_tx_queue
*tx_queue
,
712 dma_addr_t dma_addr
, unsigned len
,
713 struct efx_tx_buffer
**final_buffer
)
715 struct efx_tx_buffer
*buffer
;
716 struct efx_nic
*efx
= tx_queue
->efx
;
717 unsigned dma_len
, fill_level
, insert_ptr
;
720 EFX_BUG_ON_PARANOID(len
<= 0);
722 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
723 /* -1 as there is no way to represent all descriptors used */
724 q_space
= EFX_TXQ_MASK
- 1 - fill_level
;
727 if (unlikely(q_space
-- <= 0)) {
728 /* It might be that completions have happened
729 * since the xmit path last checked. Update
730 * the xmit path's copy of read_count.
733 /* This memory barrier protects the change of
734 * stopped from the access of read_count. */
736 tx_queue
->old_read_count
=
737 *(volatile unsigned *)&tx_queue
->read_count
;
738 fill_level
= (tx_queue
->insert_count
739 - tx_queue
->old_read_count
);
740 q_space
= EFX_TXQ_MASK
- 1 - fill_level
;
741 if (unlikely(q_space
-- <= 0)) {
742 *final_buffer
= NULL
;
749 insert_ptr
= tx_queue
->insert_count
& EFX_TXQ_MASK
;
750 buffer
= &tx_queue
->buffer
[insert_ptr
];
751 ++tx_queue
->insert_count
;
753 EFX_BUG_ON_PARANOID(tx_queue
->insert_count
-
754 tx_queue
->read_count
>
757 efx_tsoh_free(tx_queue
, buffer
);
758 EFX_BUG_ON_PARANOID(buffer
->len
);
759 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
760 EFX_BUG_ON_PARANOID(buffer
->skb
);
761 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
762 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
764 buffer
->dma_addr
= dma_addr
;
766 dma_len
= efx_max_tx_len(efx
, dma_addr
);
768 /* If there is enough space to send then do so */
772 buffer
->len
= dma_len
; /* Don't set the other members */
777 EFX_BUG_ON_PARANOID(!len
);
779 *final_buffer
= buffer
;
785 * Put a TSO header into the TX queue.
787 * This is special-cased because we know that it is small enough to fit in
788 * a single fragment, and we know it doesn't cross a page boundary. It
789 * also allows us to not worry about end-of-packet etc.
791 static void efx_tso_put_header(struct efx_tx_queue
*tx_queue
,
792 struct efx_tso_header
*tsoh
, unsigned len
)
794 struct efx_tx_buffer
*buffer
;
796 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
& EFX_TXQ_MASK
];
797 efx_tsoh_free(tx_queue
, buffer
);
798 EFX_BUG_ON_PARANOID(buffer
->len
);
799 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
800 EFX_BUG_ON_PARANOID(buffer
->skb
);
801 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
802 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
804 buffer
->dma_addr
= tsoh
->dma_addr
;
807 ++tx_queue
->insert_count
;
811 /* Remove descriptors put into a tx_queue. */
812 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
814 struct efx_tx_buffer
*buffer
;
815 dma_addr_t unmap_addr
;
817 /* Work backwards until we hit the original insert pointer value */
818 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
819 --tx_queue
->insert_count
;
820 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
&
822 efx_tsoh_free(tx_queue
, buffer
);
823 EFX_BUG_ON_PARANOID(buffer
->skb
);
824 if (buffer
->unmap_len
) {
825 unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
827 if (buffer
->unmap_single
)
828 pci_unmap_single(tx_queue
->efx
->pci_dev
,
829 unmap_addr
, buffer
->unmap_len
,
832 pci_unmap_page(tx_queue
->efx
->pci_dev
,
833 unmap_addr
, buffer
->unmap_len
,
835 buffer
->unmap_len
= 0;
838 buffer
->continuation
= true;
843 /* Parse the SKB header and initialise state. */
844 static void tso_start(struct tso_state
*st
, const struct sk_buff
*skb
)
846 /* All ethernet/IP/TCP headers combined size is TCP header size
847 * plus offset of TCP header relative to start of packet.
849 st
->header_len
= ((tcp_hdr(skb
)->doff
<< 2u)
850 + PTR_DIFF(tcp_hdr(skb
), skb
->data
));
851 st
->full_packet_size
= st
->header_len
+ skb_shinfo(skb
)->gso_size
;
853 if (st
->protocol
== htons(ETH_P_IP
))
854 st
->ipv4_id
= ntohs(ip_hdr(skb
)->id
);
857 st
->seqnum
= ntohl(tcp_hdr(skb
)->seq
);
859 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->urg
);
860 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->syn
);
861 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->rst
);
863 st
->packet_space
= st
->full_packet_size
;
864 st
->out_len
= skb
->len
- st
->header_len
;
866 st
->unmap_single
= false;
869 static int tso_get_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
872 st
->unmap_addr
= pci_map_page(efx
->pci_dev
, frag
->page
,
873 frag
->page_offset
, frag
->size
,
875 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
876 st
->unmap_single
= false;
877 st
->unmap_len
= frag
->size
;
878 st
->in_len
= frag
->size
;
879 st
->dma_addr
= st
->unmap_addr
;
885 static int tso_get_head_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
886 const struct sk_buff
*skb
)
888 int hl
= st
->header_len
;
889 int len
= skb_headlen(skb
) - hl
;
891 st
->unmap_addr
= pci_map_single(efx
->pci_dev
, skb
->data
+ hl
,
892 len
, PCI_DMA_TODEVICE
);
893 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
894 st
->unmap_single
= true;
897 st
->dma_addr
= st
->unmap_addr
;
905 * tso_fill_packet_with_fragment - form descriptors for the current fragment
906 * @tx_queue: Efx TX queue
907 * @skb: Socket buffer
910 * Form descriptors for the current fragment, until we reach the end
911 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
912 * space in @tx_queue.
914 static int tso_fill_packet_with_fragment(struct efx_tx_queue
*tx_queue
,
915 const struct sk_buff
*skb
,
916 struct tso_state
*st
)
918 struct efx_tx_buffer
*buffer
;
919 int n
, end_of_packet
, rc
;
923 if (st
->packet_space
== 0)
926 EFX_BUG_ON_PARANOID(st
->in_len
<= 0);
927 EFX_BUG_ON_PARANOID(st
->packet_space
<= 0);
929 n
= min(st
->in_len
, st
->packet_space
);
931 st
->packet_space
-= n
;
935 rc
= efx_tx_queue_insert(tx_queue
, st
->dma_addr
, n
, &buffer
);
936 if (likely(rc
== 0)) {
937 if (st
->out_len
== 0)
938 /* Transfer ownership of the skb */
941 end_of_packet
= st
->out_len
== 0 || st
->packet_space
== 0;
942 buffer
->continuation
= !end_of_packet
;
944 if (st
->in_len
== 0) {
945 /* Transfer ownership of the pci mapping */
946 buffer
->unmap_len
= st
->unmap_len
;
947 buffer
->unmap_single
= st
->unmap_single
;
958 * tso_start_new_packet - generate a new header and prepare for the new packet
959 * @tx_queue: Efx TX queue
960 * @skb: Socket buffer
963 * Generate a new header and prepare for the new packet. Return 0 on
964 * success, or -1 if failed to alloc header.
966 static int tso_start_new_packet(struct efx_tx_queue
*tx_queue
,
967 const struct sk_buff
*skb
,
968 struct tso_state
*st
)
970 struct efx_tso_header
*tsoh
;
971 struct tcphdr
*tsoh_th
;
975 /* Allocate a DMA-mapped header buffer. */
976 if (likely(TSOH_SIZE(st
->header_len
) <= TSOH_STD_SIZE
)) {
977 if (tx_queue
->tso_headers_free
== NULL
) {
978 if (efx_tsoh_block_alloc(tx_queue
))
981 EFX_BUG_ON_PARANOID(!tx_queue
->tso_headers_free
);
982 tsoh
= tx_queue
->tso_headers_free
;
983 tx_queue
->tso_headers_free
= tsoh
->next
;
986 tx_queue
->tso_long_headers
++;
987 tsoh
= efx_tsoh_heap_alloc(tx_queue
, st
->header_len
);
992 header
= TSOH_BUFFER(tsoh
);
993 tsoh_th
= (struct tcphdr
*)(header
+ SKB_TCP_OFF(skb
));
995 /* Copy and update the headers. */
996 memcpy(header
, skb
->data
, st
->header_len
);
998 tsoh_th
->seq
= htonl(st
->seqnum
);
999 st
->seqnum
+= skb_shinfo(skb
)->gso_size
;
1000 if (st
->out_len
> skb_shinfo(skb
)->gso_size
) {
1001 /* This packet will not finish the TSO burst. */
1002 ip_length
= st
->full_packet_size
- ETH_HDR_LEN(skb
);
1006 /* This packet will be the last in the TSO burst. */
1007 ip_length
= st
->header_len
- ETH_HDR_LEN(skb
) + st
->out_len
;
1008 tsoh_th
->fin
= tcp_hdr(skb
)->fin
;
1009 tsoh_th
->psh
= tcp_hdr(skb
)->psh
;
1012 if (st
->protocol
== htons(ETH_P_IP
)) {
1013 struct iphdr
*tsoh_iph
=
1014 (struct iphdr
*)(header
+ SKB_IPV4_OFF(skb
));
1016 tsoh_iph
->tot_len
= htons(ip_length
);
1018 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1019 tsoh_iph
->id
= htons(st
->ipv4_id
);
1022 struct ipv6hdr
*tsoh_iph
=
1023 (struct ipv6hdr
*)(header
+ SKB_IPV6_OFF(skb
));
1025 tsoh_iph
->payload_len
= htons(ip_length
- sizeof(*tsoh_iph
));
1028 st
->packet_space
= skb_shinfo(skb
)->gso_size
;
1029 ++tx_queue
->tso_packets
;
1031 /* Form a descriptor for this header. */
1032 efx_tso_put_header(tx_queue
, tsoh
, st
->header_len
);
1039 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1040 * @tx_queue: Efx TX queue
1041 * @skb: Socket buffer
1043 * Context: You must hold netif_tx_lock() to call this function.
1045 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1046 * @skb was not enqueued. In all cases @skb is consumed. Return
1047 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1049 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
1050 struct sk_buff
*skb
)
1052 struct efx_nic
*efx
= tx_queue
->efx
;
1053 int frag_i
, rc
, rc2
= NETDEV_TX_OK
;
1054 struct tso_state state
;
1056 /* Find the packet protocol and sanity-check it */
1057 state
.protocol
= efx_tso_check_protocol(skb
);
1059 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
1061 tso_start(&state
, skb
);
1063 /* Assume that skb header area contains exactly the headers, and
1064 * all payload is in the frag list.
1066 if (skb_headlen(skb
) == state
.header_len
) {
1067 /* Grab the first payload fragment. */
1068 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
< 1);
1070 rc
= tso_get_fragment(&state
, efx
,
1071 skb_shinfo(skb
)->frags
+ frag_i
);
1075 rc
= tso_get_head_fragment(&state
, efx
, skb
);
1081 if (tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1085 rc
= tso_fill_packet_with_fragment(tx_queue
, skb
, &state
);
1089 /* Move onto the next fragment? */
1090 if (state
.in_len
== 0) {
1091 if (++frag_i
>= skb_shinfo(skb
)->nr_frags
)
1092 /* End of payload reached. */
1094 rc
= tso_get_fragment(&state
, efx
,
1095 skb_shinfo(skb
)->frags
+ frag_i
);
1100 /* Start at new packet? */
1101 if (state
.packet_space
== 0 &&
1102 tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1106 /* Pass off to hardware */
1107 efx_nic_push_buffers(tx_queue
);
1109 tx_queue
->tso_bursts
++;
1110 return NETDEV_TX_OK
;
1113 EFX_ERR(efx
, "Out of memory for TSO headers, or PCI mapping error\n");
1114 dev_kfree_skb_any(skb
);
1118 rc2
= NETDEV_TX_BUSY
;
1120 /* Stop the queue if it wasn't stopped before. */
1121 if (tx_queue
->stopped
== 1)
1122 efx_stop_queue(efx
);
1125 /* Free the DMA mapping we were in the process of writing out */
1126 if (state
.unmap_len
) {
1127 if (state
.unmap_single
)
1128 pci_unmap_single(efx
->pci_dev
, state
.unmap_addr
,
1129 state
.unmap_len
, PCI_DMA_TODEVICE
);
1131 pci_unmap_page(efx
->pci_dev
, state
.unmap_addr
,
1132 state
.unmap_len
, PCI_DMA_TODEVICE
);
1135 efx_enqueue_unwind(tx_queue
);
1141 * Free up all TSO datastructures associated with tx_queue. This
1142 * routine should be called only once the tx_queue is both empty and
1143 * will no longer be used.
1145 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
)
1149 if (tx_queue
->buffer
) {
1150 for (i
= 0; i
<= EFX_TXQ_MASK
; ++i
)
1151 efx_tsoh_free(tx_queue
, &tx_queue
->buffer
[i
]);
1154 while (tx_queue
->tso_headers_free
!= NULL
)
1155 efx_tsoh_block_free(tx_queue
, tx_queue
->tso_headers_free
,
1156 tx_queue
->efx
->pci_dev
);