Linux 2.6.34-rc3
[pohmelfs.git] / drivers / net / sis900.c
blobcc0c731c4f09588bc924c87dc007e5a41084b2a1
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
79 #include "sis900.h"
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
84 static const char version[] __devinitconst =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
101 enum {
102 SIS_900 = 0,
103 SIS_7016
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
161 struct sis900_private {
162 struct pci_dev * pci_dev;
164 spinlock_t lock;
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
171 struct timer_list timer; /* Link status detection timer. */
172 u8 autong_complete; /* 1: auto-negotiate complete */
174 u32 msg_enable;
176 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 unsigned int cur_tx, dirty_tx;
179 /* The saved address of a sent/receive-in-place packet buffer */
180 struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 BufferDesc *tx_ring;
183 BufferDesc *rx_ring;
185 dma_addr_t tx_ring_dma;
186 dma_addr_t rx_ring_dma;
188 unsigned int tx_full; /* The Tx queue is full. */
189 u8 host_bridge_rev;
190 u8 chipset_rev;
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
238 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 * @pci_dev: the sis900 pci device
240 * @net_dev: the net device to get address for
242 * Older SiS900 and friends, use EEPROM to store MAC address.
243 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
246 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
248 long ioaddr = pci_resource_start(pci_dev, 0);
249 u16 signature;
250 int i;
252 /* check to see if we have sane EEPROM */
253 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
254 if (signature == 0xffff || signature == 0x0000) {
255 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
256 pci_name(pci_dev), signature);
257 return 0;
260 /* get MAC address from EEPROM */
261 for (i = 0; i < 3; i++)
262 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
264 return 1;
268 * sis630e_get_mac_addr - Get MAC address for SiS630E model
269 * @pci_dev: the sis900 pci device
270 * @net_dev: the net device to get address for
272 * SiS630E model, use APC CMOS RAM to store MAC address.
273 * APC CMOS RAM is accessed through ISA bridge.
274 * MAC address is read into @net_dev->dev_addr.
277 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
278 struct net_device *net_dev)
280 struct pci_dev *isa_bridge = NULL;
281 u8 reg;
282 int i;
284 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
285 if (!isa_bridge)
286 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
287 if (!isa_bridge) {
288 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
289 pci_name(pci_dev));
290 return 0;
292 pci_read_config_byte(isa_bridge, 0x48, &reg);
293 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
295 for (i = 0; i < 6; i++) {
296 outb(0x09 + i, 0x70);
297 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
299 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
300 pci_dev_put(isa_bridge);
302 return 1;
307 * sis635_get_mac_addr - Get MAC address for SIS635 model
308 * @pci_dev: the sis900 pci device
309 * @net_dev: the net device to get address for
311 * SiS635 model, set MAC Reload Bit to load Mac address from APC
312 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
313 * @net_dev->dev_addr.
316 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
317 struct net_device *net_dev)
319 long ioaddr = net_dev->base_addr;
320 u32 rfcrSave;
321 u32 i;
323 rfcrSave = inl(rfcr + ioaddr);
325 outl(rfcrSave | RELOAD, ioaddr + cr);
326 outl(0, ioaddr + cr);
328 /* disable packet filtering before setting filter */
329 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
331 /* load MAC addr to filter data register */
332 for (i = 0 ; i < 3 ; i++) {
333 outl((i << RFADDR_shift), ioaddr + rfcr);
334 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
337 /* enable packet filtering */
338 outl(rfcrSave | RFEN, rfcr + ioaddr);
340 return 1;
344 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
345 * @pci_dev: the sis900 pci device
346 * @net_dev: the net device to get address for
348 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
349 * is shared by
350 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
351 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
352 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
353 * EEDONE signal to refuse EEPROM access by LAN.
354 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
355 * The signature field in SiS962 or SiS963 spec is meaningless.
356 * MAC address is read into @net_dev->dev_addr.
359 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
360 struct net_device *net_dev)
362 long ioaddr = net_dev->base_addr;
363 long ee_addr = ioaddr + mear;
364 u32 waittime = 0;
365 int i;
367 outl(EEREQ, ee_addr);
368 while(waittime < 2000) {
369 if(inl(ee_addr) & EEGNT) {
371 /* get MAC address from EEPROM */
372 for (i = 0; i < 3; i++)
373 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
375 outl(EEDONE, ee_addr);
376 return 1;
377 } else {
378 udelay(1);
379 waittime ++;
382 outl(EEDONE, ee_addr);
383 return 0;
386 static const struct net_device_ops sis900_netdev_ops = {
387 .ndo_open = sis900_open,
388 .ndo_stop = sis900_close,
389 .ndo_start_xmit = sis900_start_xmit,
390 .ndo_set_config = sis900_set_config,
391 .ndo_set_multicast_list = set_rx_mode,
392 .ndo_change_mtu = eth_change_mtu,
393 .ndo_validate_addr = eth_validate_addr,
394 .ndo_set_mac_address = eth_mac_addr,
395 .ndo_do_ioctl = mii_ioctl,
396 .ndo_tx_timeout = sis900_tx_timeout,
397 #ifdef CONFIG_NET_POLL_CONTROLLER
398 .ndo_poll_controller = sis900_poll,
399 #endif
403 * sis900_probe - Probe for sis900 device
404 * @pci_dev: the sis900 pci device
405 * @pci_id: the pci device ID
407 * Check and probe sis900 net device for @pci_dev.
408 * Get mac address according to the chip revision,
409 * and assign SiS900-specific entries in the device structure.
410 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
413 static int __devinit sis900_probe(struct pci_dev *pci_dev,
414 const struct pci_device_id *pci_id)
416 struct sis900_private *sis_priv;
417 struct net_device *net_dev;
418 struct pci_dev *dev;
419 dma_addr_t ring_dma;
420 void *ring_space;
421 long ioaddr;
422 int i, ret;
423 const char *card_name = card_names[pci_id->driver_data];
424 const char *dev_name = pci_name(pci_dev);
426 /* when built into the kernel, we only print version if device is found */
427 #ifndef MODULE
428 static int printed_version;
429 if (!printed_version++)
430 printk(version);
431 #endif
433 /* setup various bits in PCI command register */
434 ret = pci_enable_device(pci_dev);
435 if(ret) return ret;
437 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
438 if(i){
439 printk(KERN_ERR "sis900.c: architecture does not support "
440 "32bit PCI busmaster DMA\n");
441 return i;
444 pci_set_master(pci_dev);
446 net_dev = alloc_etherdev(sizeof(struct sis900_private));
447 if (!net_dev)
448 return -ENOMEM;
449 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
451 /* We do a request_region() to register /proc/ioports info. */
452 ioaddr = pci_resource_start(pci_dev, 0);
453 ret = pci_request_regions(pci_dev, "sis900");
454 if (ret)
455 goto err_out;
457 sis_priv = netdev_priv(net_dev);
458 net_dev->base_addr = ioaddr;
459 net_dev->irq = pci_dev->irq;
460 sis_priv->pci_dev = pci_dev;
461 spin_lock_init(&sis_priv->lock);
463 pci_set_drvdata(pci_dev, net_dev);
465 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
466 if (!ring_space) {
467 ret = -ENOMEM;
468 goto err_out_cleardev;
470 sis_priv->tx_ring = (BufferDesc *)ring_space;
471 sis_priv->tx_ring_dma = ring_dma;
473 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
474 if (!ring_space) {
475 ret = -ENOMEM;
476 goto err_unmap_tx;
478 sis_priv->rx_ring = (BufferDesc *)ring_space;
479 sis_priv->rx_ring_dma = ring_dma;
481 /* The SiS900-specific entries in the device structure. */
482 net_dev->netdev_ops = &sis900_netdev_ops;
483 net_dev->watchdog_timeo = TX_TIMEOUT;
484 net_dev->ethtool_ops = &sis900_ethtool_ops;
486 if (sis900_debug > 0)
487 sis_priv->msg_enable = sis900_debug;
488 else
489 sis_priv->msg_enable = SIS900_DEF_MSG;
491 sis_priv->mii_info.dev = net_dev;
492 sis_priv->mii_info.mdio_read = mdio_read;
493 sis_priv->mii_info.mdio_write = mdio_write;
494 sis_priv->mii_info.phy_id_mask = 0x1f;
495 sis_priv->mii_info.reg_num_mask = 0x1f;
497 /* Get Mac address according to the chip revision */
498 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
499 if(netif_msg_probe(sis_priv))
500 printk(KERN_DEBUG "%s: detected revision %2.2x, "
501 "trying to get MAC address...\n",
502 dev_name, sis_priv->chipset_rev);
504 ret = 0;
505 if (sis_priv->chipset_rev == SIS630E_900_REV)
506 ret = sis630e_get_mac_addr(pci_dev, net_dev);
507 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
508 ret = sis635_get_mac_addr(pci_dev, net_dev);
509 else if (sis_priv->chipset_rev == SIS96x_900_REV)
510 ret = sis96x_get_mac_addr(pci_dev, net_dev);
511 else
512 ret = sis900_get_mac_addr(pci_dev, net_dev);
514 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
515 random_ether_addr(net_dev->dev_addr);
516 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
517 "using random generated one\n", dev_name);
520 /* 630ET : set the mii access mode as software-mode */
521 if (sis_priv->chipset_rev == SIS630ET_900_REV)
522 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
524 /* probe for mii transceiver */
525 if (sis900_mii_probe(net_dev) == 0) {
526 printk(KERN_WARNING "%s: Error probing MII device.\n",
527 dev_name);
528 ret = -ENODEV;
529 goto err_unmap_rx;
532 /* save our host bridge revision */
533 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
534 if (dev) {
535 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
536 pci_dev_put(dev);
539 ret = register_netdev(net_dev);
540 if (ret)
541 goto err_unmap_rx;
543 /* print some information about our NIC */
544 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
545 net_dev->name, card_name, ioaddr, net_dev->irq,
546 net_dev->dev_addr);
548 /* Detect Wake on Lan support */
549 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
550 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
551 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
553 return 0;
555 err_unmap_rx:
556 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
557 sis_priv->rx_ring_dma);
558 err_unmap_tx:
559 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
560 sis_priv->tx_ring_dma);
561 err_out_cleardev:
562 pci_set_drvdata(pci_dev, NULL);
563 pci_release_regions(pci_dev);
564 err_out:
565 free_netdev(net_dev);
566 return ret;
570 * sis900_mii_probe - Probe MII PHY for sis900
571 * @net_dev: the net device to probe for
573 * Search for total of 32 possible mii phy addresses.
574 * Identify and set current phy if found one,
575 * return error if it failed to found.
578 static int __devinit sis900_mii_probe(struct net_device * net_dev)
580 struct sis900_private *sis_priv = netdev_priv(net_dev);
581 const char *dev_name = pci_name(sis_priv->pci_dev);
582 u16 poll_bit = MII_STAT_LINK, status = 0;
583 unsigned long timeout = jiffies + 5 * HZ;
584 int phy_addr;
586 sis_priv->mii = NULL;
588 /* search for total of 32 possible mii phy addresses */
589 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
590 struct mii_phy * mii_phy = NULL;
591 u16 mii_status;
592 int i;
594 mii_phy = NULL;
595 for(i = 0; i < 2; i++)
596 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
598 if (mii_status == 0xffff || mii_status == 0x0000) {
599 if (netif_msg_probe(sis_priv))
600 printk(KERN_DEBUG "%s: MII at address %d"
601 " not accessible\n",
602 dev_name, phy_addr);
603 continue;
606 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
607 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
608 mii_phy = sis_priv->first_mii;
609 while (mii_phy) {
610 struct mii_phy *phy;
611 phy = mii_phy;
612 mii_phy = mii_phy->next;
613 kfree(phy);
615 return 0;
618 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
619 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
620 mii_phy->phy_addr = phy_addr;
621 mii_phy->status = mii_status;
622 mii_phy->next = sis_priv->mii;
623 sis_priv->mii = mii_phy;
624 sis_priv->first_mii = mii_phy;
626 for (i = 0; mii_chip_table[i].phy_id1; i++)
627 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
628 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
629 mii_phy->phy_types = mii_chip_table[i].phy_types;
630 if (mii_chip_table[i].phy_types == MIX)
631 mii_phy->phy_types =
632 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
633 printk(KERN_INFO "%s: %s transceiver found "
634 "at address %d.\n",
635 dev_name,
636 mii_chip_table[i].name,
637 phy_addr);
638 break;
641 if( !mii_chip_table[i].phy_id1 ) {
642 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
643 dev_name, phy_addr);
644 mii_phy->phy_types = UNKNOWN;
648 if (sis_priv->mii == NULL) {
649 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
650 return 0;
653 /* select default PHY for mac */
654 sis_priv->mii = NULL;
655 sis900_default_phy( net_dev );
657 /* Reset phy if default phy is internal sis900 */
658 if ((sis_priv->mii->phy_id0 == 0x001D) &&
659 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
660 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
662 /* workaround for ICS1893 PHY */
663 if ((sis_priv->mii->phy_id0 == 0x0015) &&
664 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
665 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
667 if(status & MII_STAT_LINK){
668 while (poll_bit) {
669 yield();
671 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
672 if (time_after_eq(jiffies, timeout)) {
673 printk(KERN_WARNING "%s: reset phy and link down now\n",
674 dev_name);
675 return -ETIME;
680 if (sis_priv->chipset_rev == SIS630E_900_REV) {
681 /* SiS 630E has some bugs on default value of PHY registers */
682 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
683 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
684 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
685 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
686 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
689 if (sis_priv->mii->status & MII_STAT_LINK)
690 netif_carrier_on(net_dev);
691 else
692 netif_carrier_off(net_dev);
694 return 1;
698 * sis900_default_phy - Select default PHY for sis900 mac.
699 * @net_dev: the net device to probe for
701 * Select first detected PHY with link as default.
702 * If no one is link on, select PHY whose types is HOME as default.
703 * If HOME doesn't exist, select LAN.
706 static u16 sis900_default_phy(struct net_device * net_dev)
708 struct sis900_private *sis_priv = netdev_priv(net_dev);
709 struct mii_phy *phy = NULL, *phy_home = NULL,
710 *default_phy = NULL, *phy_lan = NULL;
711 u16 status;
713 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
714 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
715 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
717 /* Link ON & Not select default PHY & not ghost PHY */
718 if ((status & MII_STAT_LINK) && !default_phy &&
719 (phy->phy_types != UNKNOWN))
720 default_phy = phy;
721 else {
722 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
723 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
724 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
725 if (phy->phy_types == HOME)
726 phy_home = phy;
727 else if(phy->phy_types == LAN)
728 phy_lan = phy;
732 if (!default_phy && phy_home)
733 default_phy = phy_home;
734 else if (!default_phy && phy_lan)
735 default_phy = phy_lan;
736 else if (!default_phy)
737 default_phy = sis_priv->first_mii;
739 if (sis_priv->mii != default_phy) {
740 sis_priv->mii = default_phy;
741 sis_priv->cur_phy = default_phy->phy_addr;
742 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
743 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
746 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
748 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
749 status &= (~MII_CNTL_ISOLATE);
751 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
752 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
753 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
755 return status;
760 * sis900_set_capability - set the media capability of network adapter.
761 * @net_dev : the net device to probe for
762 * @phy : default PHY
764 * Set the media capability of network adapter according to
765 * mii status register. It's necessary before auto-negotiate.
768 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
770 u16 cap;
771 u16 status;
773 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
774 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
776 cap = MII_NWAY_CSMA_CD |
777 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
778 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
779 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
780 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
782 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
786 /* Delay between EEPROM clock transitions. */
787 #define eeprom_delay() inl(ee_addr)
790 * read_eeprom - Read Serial EEPROM
791 * @ioaddr: base i/o address
792 * @location: the EEPROM location to read
794 * Read Serial EEPROM through EEPROM Access Register.
795 * Note that location is in word (16 bits) unit
798 static u16 __devinit read_eeprom(long ioaddr, int location)
800 int i;
801 u16 retval = 0;
802 long ee_addr = ioaddr + mear;
803 u32 read_cmd = location | EEread;
805 outl(0, ee_addr);
806 eeprom_delay();
807 outl(EECS, ee_addr);
808 eeprom_delay();
810 /* Shift the read command (9) bits out. */
811 for (i = 8; i >= 0; i--) {
812 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
813 outl(dataval, ee_addr);
814 eeprom_delay();
815 outl(dataval | EECLK, ee_addr);
816 eeprom_delay();
818 outl(EECS, ee_addr);
819 eeprom_delay();
821 /* read the 16-bits data in */
822 for (i = 16; i > 0; i--) {
823 outl(EECS, ee_addr);
824 eeprom_delay();
825 outl(EECS | EECLK, ee_addr);
826 eeprom_delay();
827 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
828 eeprom_delay();
831 /* Terminate the EEPROM access. */
832 outl(0, ee_addr);
833 eeprom_delay();
835 return (retval);
838 /* Read and write the MII management registers using software-generated
839 serial MDIO protocol. Note that the command bits and data bits are
840 send out separately */
841 #define mdio_delay() inl(mdio_addr)
843 static void mdio_idle(long mdio_addr)
845 outl(MDIO | MDDIR, mdio_addr);
846 mdio_delay();
847 outl(MDIO | MDDIR | MDC, mdio_addr);
850 /* Syncronize the MII management interface by shifting 32 one bits out. */
851 static void mdio_reset(long mdio_addr)
853 int i;
855 for (i = 31; i >= 0; i--) {
856 outl(MDDIR | MDIO, mdio_addr);
857 mdio_delay();
858 outl(MDDIR | MDIO | MDC, mdio_addr);
859 mdio_delay();
861 return;
865 * mdio_read - read MII PHY register
866 * @net_dev: the net device to read
867 * @phy_id: the phy address to read
868 * @location: the phy regiester id to read
870 * Read MII registers through MDIO and MDC
871 * using MDIO management frame structure and protocol(defined by ISO/IEC).
872 * Please see SiS7014 or ICS spec
875 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
877 long mdio_addr = net_dev->base_addr + mear;
878 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
879 u16 retval = 0;
880 int i;
882 mdio_reset(mdio_addr);
883 mdio_idle(mdio_addr);
885 for (i = 15; i >= 0; i--) {
886 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
887 outl(dataval, mdio_addr);
888 mdio_delay();
889 outl(dataval | MDC, mdio_addr);
890 mdio_delay();
893 /* Read the 16 data bits. */
894 for (i = 16; i > 0; i--) {
895 outl(0, mdio_addr);
896 mdio_delay();
897 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
898 outl(MDC, mdio_addr);
899 mdio_delay();
901 outl(0x00, mdio_addr);
903 return retval;
907 * mdio_write - write MII PHY register
908 * @net_dev: the net device to write
909 * @phy_id: the phy address to write
910 * @location: the phy regiester id to write
911 * @value: the register value to write with
913 * Write MII registers with @value through MDIO and MDC
914 * using MDIO management frame structure and protocol(defined by ISO/IEC)
915 * please see SiS7014 or ICS spec
918 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
919 int value)
921 long mdio_addr = net_dev->base_addr + mear;
922 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
923 int i;
925 mdio_reset(mdio_addr);
926 mdio_idle(mdio_addr);
928 /* Shift the command bits out. */
929 for (i = 15; i >= 0; i--) {
930 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
931 outb(dataval, mdio_addr);
932 mdio_delay();
933 outb(dataval | MDC, mdio_addr);
934 mdio_delay();
936 mdio_delay();
938 /* Shift the value bits out. */
939 for (i = 15; i >= 0; i--) {
940 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
941 outl(dataval, mdio_addr);
942 mdio_delay();
943 outl(dataval | MDC, mdio_addr);
944 mdio_delay();
946 mdio_delay();
948 /* Clear out extra bits. */
949 for (i = 2; i > 0; i--) {
950 outb(0, mdio_addr);
951 mdio_delay();
952 outb(MDC, mdio_addr);
953 mdio_delay();
955 outl(0x00, mdio_addr);
957 return;
962 * sis900_reset_phy - reset sis900 mii phy.
963 * @net_dev: the net device to write
964 * @phy_addr: default phy address
966 * Some specific phy can't work properly without reset.
967 * This function will be called during initialization and
968 * link status change from ON to DOWN.
971 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
973 int i;
974 u16 status;
976 for (i = 0; i < 2; i++)
977 status = mdio_read(net_dev, phy_addr, MII_STATUS);
979 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
981 return status;
984 #ifdef CONFIG_NET_POLL_CONTROLLER
986 * Polling 'interrupt' - used by things like netconsole to send skbs
987 * without having to re-enable interrupts. It's not called while
988 * the interrupt routine is executing.
990 static void sis900_poll(struct net_device *dev)
992 disable_irq(dev->irq);
993 sis900_interrupt(dev->irq, dev);
994 enable_irq(dev->irq);
996 #endif
999 * sis900_open - open sis900 device
1000 * @net_dev: the net device to open
1002 * Do some initialization and start net interface.
1003 * enable interrupts and set sis900 timer.
1006 static int
1007 sis900_open(struct net_device *net_dev)
1009 struct sis900_private *sis_priv = netdev_priv(net_dev);
1010 long ioaddr = net_dev->base_addr;
1011 int ret;
1013 /* Soft reset the chip. */
1014 sis900_reset(net_dev);
1016 /* Equalizer workaround Rule */
1017 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1019 ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1020 net_dev->name, net_dev);
1021 if (ret)
1022 return ret;
1024 sis900_init_rxfilter(net_dev);
1026 sis900_init_tx_ring(net_dev);
1027 sis900_init_rx_ring(net_dev);
1029 set_rx_mode(net_dev);
1031 netif_start_queue(net_dev);
1033 /* Workaround for EDB */
1034 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1036 /* Enable all known interrupts by setting the interrupt mask. */
1037 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1038 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1039 outl(IE, ioaddr + ier);
1041 sis900_check_mode(net_dev, sis_priv->mii);
1043 /* Set the timer to switch to check for link beat and perhaps switch
1044 to an alternate media type. */
1045 init_timer(&sis_priv->timer);
1046 sis_priv->timer.expires = jiffies + HZ;
1047 sis_priv->timer.data = (unsigned long)net_dev;
1048 sis_priv->timer.function = &sis900_timer;
1049 add_timer(&sis_priv->timer);
1051 return 0;
1055 * sis900_init_rxfilter - Initialize the Rx filter
1056 * @net_dev: the net device to initialize for
1058 * Set receive filter address to our MAC address
1059 * and enable packet filtering.
1062 static void
1063 sis900_init_rxfilter (struct net_device * net_dev)
1065 struct sis900_private *sis_priv = netdev_priv(net_dev);
1066 long ioaddr = net_dev->base_addr;
1067 u32 rfcrSave;
1068 u32 i;
1070 rfcrSave = inl(rfcr + ioaddr);
1072 /* disable packet filtering before setting filter */
1073 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1075 /* load MAC addr to filter data register */
1076 for (i = 0 ; i < 3 ; i++) {
1077 u32 w;
1079 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1080 outl((i << RFADDR_shift), ioaddr + rfcr);
1081 outl(w, ioaddr + rfdr);
1083 if (netif_msg_hw(sis_priv)) {
1084 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1085 net_dev->name, i, inl(ioaddr + rfdr));
1089 /* enable packet filtering */
1090 outl(rfcrSave | RFEN, rfcr + ioaddr);
1094 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1095 * @net_dev: the net device to initialize for
1097 * Initialize the Tx descriptor ring,
1100 static void
1101 sis900_init_tx_ring(struct net_device *net_dev)
1103 struct sis900_private *sis_priv = netdev_priv(net_dev);
1104 long ioaddr = net_dev->base_addr;
1105 int i;
1107 sis_priv->tx_full = 0;
1108 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1110 for (i = 0; i < NUM_TX_DESC; i++) {
1111 sis_priv->tx_skbuff[i] = NULL;
1113 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1114 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1115 sis_priv->tx_ring[i].cmdsts = 0;
1116 sis_priv->tx_ring[i].bufptr = 0;
1119 /* load Transmit Descriptor Register */
1120 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1121 if (netif_msg_hw(sis_priv))
1122 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1123 net_dev->name, inl(ioaddr + txdp));
1127 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1128 * @net_dev: the net device to initialize for
1130 * Initialize the Rx descriptor ring,
1131 * and pre-allocate recevie buffers (socket buffer)
1134 static void
1135 sis900_init_rx_ring(struct net_device *net_dev)
1137 struct sis900_private *sis_priv = netdev_priv(net_dev);
1138 long ioaddr = net_dev->base_addr;
1139 int i;
1141 sis_priv->cur_rx = 0;
1142 sis_priv->dirty_rx = 0;
1144 /* init RX descriptor */
1145 for (i = 0; i < NUM_RX_DESC; i++) {
1146 sis_priv->rx_skbuff[i] = NULL;
1148 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1149 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1150 sis_priv->rx_ring[i].cmdsts = 0;
1151 sis_priv->rx_ring[i].bufptr = 0;
1154 /* allocate sock buffers */
1155 for (i = 0; i < NUM_RX_DESC; i++) {
1156 struct sk_buff *skb;
1158 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1159 /* not enough memory for skbuff, this makes a "hole"
1160 on the buffer ring, it is not clear how the
1161 hardware will react to this kind of degenerated
1162 buffer */
1163 break;
1165 sis_priv->rx_skbuff[i] = skb;
1166 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1167 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1168 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1170 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1172 /* load Receive Descriptor Register */
1173 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1174 if (netif_msg_hw(sis_priv))
1175 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1176 net_dev->name, inl(ioaddr + rxdp));
1180 * sis630_set_eq - set phy equalizer value for 630 LAN
1181 * @net_dev: the net device to set equalizer value
1182 * @revision: 630 LAN revision number
1184 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1185 * PHY register 14h(Test)
1186 * Bit 14: 0 -- Automatically dectect (default)
1187 * 1 -- Manually set Equalizer filter
1188 * Bit 13: 0 -- (Default)
1189 * 1 -- Speed up convergence of equalizer setting
1190 * Bit 9 : 0 -- (Default)
1191 * 1 -- Disable Baseline Wander
1192 * Bit 3~7 -- Equalizer filter setting
1193 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1194 * Then calculate equalizer value
1195 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1196 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1197 * Calculate Equalizer value:
1198 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1199 * When the equalizer is stable, this value is not a fixed value. It will be within
1200 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1201 * 0 <= max <= 4 --> set equalizer to max
1202 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1203 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1206 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1208 struct sis900_private *sis_priv = netdev_priv(net_dev);
1209 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1210 int i, maxcount=10;
1212 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1213 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1214 return;
1216 if (netif_carrier_ok(net_dev)) {
1217 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1218 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1219 (0x2200 | reg14h) & 0xBFFF);
1220 for (i=0; i < maxcount; i++) {
1221 eq_value = (0x00F8 & mdio_read(net_dev,
1222 sis_priv->cur_phy, MII_RESV)) >> 3;
1223 if (i == 0)
1224 max_value=min_value=eq_value;
1225 max_value = (eq_value > max_value) ?
1226 eq_value : max_value;
1227 min_value = (eq_value < min_value) ?
1228 eq_value : min_value;
1230 /* 630E rule to determine the equalizer value */
1231 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1232 revision == SIS630ET_900_REV) {
1233 if (max_value < 5)
1234 eq_value = max_value;
1235 else if (max_value >= 5 && max_value < 15)
1236 eq_value = (max_value == min_value) ?
1237 max_value+2 : max_value+1;
1238 else if (max_value >= 15)
1239 eq_value=(max_value == min_value) ?
1240 max_value+6 : max_value+5;
1242 /* 630B0&B1 rule to determine the equalizer value */
1243 if (revision == SIS630A_900_REV &&
1244 (sis_priv->host_bridge_rev == SIS630B0 ||
1245 sis_priv->host_bridge_rev == SIS630B1)) {
1246 if (max_value == 0)
1247 eq_value = 3;
1248 else
1249 eq_value = (max_value + min_value + 1)/2;
1251 /* write equalizer value and setting */
1252 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1253 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1254 reg14h = (reg14h | 0x6000) & 0xFDFF;
1255 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1256 } else {
1257 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1258 if (revision == SIS630A_900_REV &&
1259 (sis_priv->host_bridge_rev == SIS630B0 ||
1260 sis_priv->host_bridge_rev == SIS630B1))
1261 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1262 (reg14h | 0x2200) & 0xBFFF);
1263 else
1264 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1265 (reg14h | 0x2000) & 0xBFFF);
1267 return;
1271 * sis900_timer - sis900 timer routine
1272 * @data: pointer to sis900 net device
1274 * On each timer ticks we check two things,
1275 * link status (ON/OFF) and link mode (10/100/Full/Half)
1278 static void sis900_timer(unsigned long data)
1280 struct net_device *net_dev = (struct net_device *)data;
1281 struct sis900_private *sis_priv = netdev_priv(net_dev);
1282 struct mii_phy *mii_phy = sis_priv->mii;
1283 static const int next_tick = 5*HZ;
1284 u16 status;
1286 if (!sis_priv->autong_complete){
1287 int uninitialized_var(speed), duplex = 0;
1289 sis900_read_mode(net_dev, &speed, &duplex);
1290 if (duplex){
1291 sis900_set_mode(net_dev->base_addr, speed, duplex);
1292 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1293 netif_start_queue(net_dev);
1296 sis_priv->timer.expires = jiffies + HZ;
1297 add_timer(&sis_priv->timer);
1298 return;
1301 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1302 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1304 /* Link OFF -> ON */
1305 if (!netif_carrier_ok(net_dev)) {
1306 LookForLink:
1307 /* Search for new PHY */
1308 status = sis900_default_phy(net_dev);
1309 mii_phy = sis_priv->mii;
1311 if (status & MII_STAT_LINK){
1312 sis900_check_mode(net_dev, mii_phy);
1313 netif_carrier_on(net_dev);
1315 } else {
1316 /* Link ON -> OFF */
1317 if (!(status & MII_STAT_LINK)){
1318 netif_carrier_off(net_dev);
1319 if(netif_msg_link(sis_priv))
1320 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1322 /* Change mode issue */
1323 if ((mii_phy->phy_id0 == 0x001D) &&
1324 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1325 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1327 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1329 goto LookForLink;
1333 sis_priv->timer.expires = jiffies + next_tick;
1334 add_timer(&sis_priv->timer);
1338 * sis900_check_mode - check the media mode for sis900
1339 * @net_dev: the net device to be checked
1340 * @mii_phy: the mii phy
1342 * Older driver gets the media mode from mii status output
1343 * register. Now we set our media capability and auto-negotiate
1344 * to get the upper bound of speed and duplex between two ends.
1345 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1346 * and autong_complete should be set to 1.
1349 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1351 struct sis900_private *sis_priv = netdev_priv(net_dev);
1352 long ioaddr = net_dev->base_addr;
1353 int speed, duplex;
1355 if (mii_phy->phy_types == LAN) {
1356 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1357 sis900_set_capability(net_dev , mii_phy);
1358 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1359 } else {
1360 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1361 speed = HW_SPEED_HOME;
1362 duplex = FDX_CAPABLE_HALF_SELECTED;
1363 sis900_set_mode(ioaddr, speed, duplex);
1364 sis_priv->autong_complete = 1;
1369 * sis900_set_mode - Set the media mode of mac register.
1370 * @ioaddr: the address of the device
1371 * @speed : the transmit speed to be determined
1372 * @duplex: the duplex mode to be determined
1374 * Set the media mode of mac register txcfg/rxcfg according to
1375 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1376 * bus is used instead of PCI bus. When this bit is set 1, the
1377 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1378 * double words.
1381 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1383 u32 tx_flags = 0, rx_flags = 0;
1385 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1386 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1387 (TX_FILL_THRESH << TxFILLT_shift);
1388 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1389 } else {
1390 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1391 (TX_FILL_THRESH << TxFILLT_shift);
1392 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1395 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1396 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1397 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1398 } else {
1399 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1400 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1403 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1404 tx_flags |= (TxCSI | TxHBI);
1405 rx_flags |= RxATX;
1408 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1409 /* Can accept Jumbo packet */
1410 rx_flags |= RxAJAB;
1411 #endif
1413 outl (tx_flags, ioaddr + txcfg);
1414 outl (rx_flags, ioaddr + rxcfg);
1418 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1419 * @net_dev: the net device to read mode for
1420 * @phy_addr: mii phy address
1422 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1423 * autong_complete should be set to 0 when starting auto-negotiation.
1424 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1425 * sis900_timer will wait for link on again if autong_complete = 0.
1428 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1430 struct sis900_private *sis_priv = netdev_priv(net_dev);
1431 int i = 0;
1432 u32 status;
1434 for (i = 0; i < 2; i++)
1435 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1437 if (!(status & MII_STAT_LINK)){
1438 if(netif_msg_link(sis_priv))
1439 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1440 sis_priv->autong_complete = 1;
1441 netif_carrier_off(net_dev);
1442 return;
1445 /* (Re)start AutoNegotiate */
1446 mdio_write(net_dev, phy_addr, MII_CONTROL,
1447 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1448 sis_priv->autong_complete = 0;
1453 * sis900_read_mode - read media mode for sis900 internal phy
1454 * @net_dev: the net device to read mode for
1455 * @speed : the transmit speed to be determined
1456 * @duplex : the duplex mode to be determined
1458 * The capability of remote end will be put in mii register autorec
1459 * after auto-negotiation. Use AND operation to get the upper bound
1460 * of speed and duplex between two ends.
1463 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1465 struct sis900_private *sis_priv = netdev_priv(net_dev);
1466 struct mii_phy *phy = sis_priv->mii;
1467 int phy_addr = sis_priv->cur_phy;
1468 u32 status;
1469 u16 autoadv, autorec;
1470 int i;
1472 for (i = 0; i < 2; i++)
1473 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1475 if (!(status & MII_STAT_LINK))
1476 return;
1478 /* AutoNegotiate completed */
1479 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1480 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1481 status = autoadv & autorec;
1483 *speed = HW_SPEED_10_MBPS;
1484 *duplex = FDX_CAPABLE_HALF_SELECTED;
1486 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1487 *speed = HW_SPEED_100_MBPS;
1488 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1489 *duplex = FDX_CAPABLE_FULL_SELECTED;
1491 sis_priv->autong_complete = 1;
1493 /* Workaround for Realtek RTL8201 PHY issue */
1494 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1495 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1496 *duplex = FDX_CAPABLE_FULL_SELECTED;
1497 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1498 *speed = HW_SPEED_100_MBPS;
1501 if(netif_msg_link(sis_priv))
1502 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1503 net_dev->name,
1504 *speed == HW_SPEED_100_MBPS ?
1505 "100mbps" : "10mbps",
1506 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1507 "full" : "half");
1511 * sis900_tx_timeout - sis900 transmit timeout routine
1512 * @net_dev: the net device to transmit
1514 * print transmit timeout status
1515 * disable interrupts and do some tasks
1518 static void sis900_tx_timeout(struct net_device *net_dev)
1520 struct sis900_private *sis_priv = netdev_priv(net_dev);
1521 long ioaddr = net_dev->base_addr;
1522 unsigned long flags;
1523 int i;
1525 if(netif_msg_tx_err(sis_priv))
1526 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1527 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1529 /* Disable interrupts by clearing the interrupt mask. */
1530 outl(0x0000, ioaddr + imr);
1532 /* use spinlock to prevent interrupt handler accessing buffer ring */
1533 spin_lock_irqsave(&sis_priv->lock, flags);
1535 /* discard unsent packets */
1536 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1537 for (i = 0; i < NUM_TX_DESC; i++) {
1538 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1540 if (skb) {
1541 pci_unmap_single(sis_priv->pci_dev,
1542 sis_priv->tx_ring[i].bufptr, skb->len,
1543 PCI_DMA_TODEVICE);
1544 dev_kfree_skb_irq(skb);
1545 sis_priv->tx_skbuff[i] = NULL;
1546 sis_priv->tx_ring[i].cmdsts = 0;
1547 sis_priv->tx_ring[i].bufptr = 0;
1548 net_dev->stats.tx_dropped++;
1551 sis_priv->tx_full = 0;
1552 netif_wake_queue(net_dev);
1554 spin_unlock_irqrestore(&sis_priv->lock, flags);
1556 net_dev->trans_start = jiffies;
1558 /* load Transmit Descriptor Register */
1559 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1561 /* Enable all known interrupts by setting the interrupt mask. */
1562 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1563 return;
1567 * sis900_start_xmit - sis900 start transmit routine
1568 * @skb: socket buffer pointer to put the data being transmitted
1569 * @net_dev: the net device to transmit with
1571 * Set the transmit buffer descriptor,
1572 * and write TxENA to enable transmit state machine.
1573 * tell upper layer if the buffer is full
1576 static netdev_tx_t
1577 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1579 struct sis900_private *sis_priv = netdev_priv(net_dev);
1580 long ioaddr = net_dev->base_addr;
1581 unsigned int entry;
1582 unsigned long flags;
1583 unsigned int index_cur_tx, index_dirty_tx;
1584 unsigned int count_dirty_tx;
1586 /* Don't transmit data before the complete of auto-negotiation */
1587 if(!sis_priv->autong_complete){
1588 netif_stop_queue(net_dev);
1589 return NETDEV_TX_BUSY;
1592 spin_lock_irqsave(&sis_priv->lock, flags);
1594 /* Calculate the next Tx descriptor entry. */
1595 entry = sis_priv->cur_tx % NUM_TX_DESC;
1596 sis_priv->tx_skbuff[entry] = skb;
1598 /* set the transmit buffer descriptor and enable Transmit State Machine */
1599 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1600 skb->data, skb->len, PCI_DMA_TODEVICE);
1601 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1602 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1604 sis_priv->cur_tx ++;
1605 index_cur_tx = sis_priv->cur_tx;
1606 index_dirty_tx = sis_priv->dirty_tx;
1608 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1609 count_dirty_tx ++;
1611 if (index_cur_tx == index_dirty_tx) {
1612 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1613 sis_priv->tx_full = 1;
1614 netif_stop_queue(net_dev);
1615 } else if (count_dirty_tx < NUM_TX_DESC) {
1616 /* Typical path, tell upper layer that more transmission is possible */
1617 netif_start_queue(net_dev);
1618 } else {
1619 /* buffer full, tell upper layer no more transmission */
1620 sis_priv->tx_full = 1;
1621 netif_stop_queue(net_dev);
1624 spin_unlock_irqrestore(&sis_priv->lock, flags);
1626 net_dev->trans_start = jiffies;
1628 if (netif_msg_tx_queued(sis_priv))
1629 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1630 "to slot %d.\n",
1631 net_dev->name, skb->data, (int)skb->len, entry);
1633 return NETDEV_TX_OK;
1637 * sis900_interrupt - sis900 interrupt handler
1638 * @irq: the irq number
1639 * @dev_instance: the client data object
1641 * The interrupt handler does all of the Rx thread work,
1642 * and cleans up after the Tx thread
1645 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1647 struct net_device *net_dev = dev_instance;
1648 struct sis900_private *sis_priv = netdev_priv(net_dev);
1649 int boguscnt = max_interrupt_work;
1650 long ioaddr = net_dev->base_addr;
1651 u32 status;
1652 unsigned int handled = 0;
1654 spin_lock (&sis_priv->lock);
1656 do {
1657 status = inl(ioaddr + isr);
1659 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1660 /* nothing intresting happened */
1661 break;
1662 handled = 1;
1664 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1665 if (status & (RxORN | RxERR | RxOK))
1666 /* Rx interrupt */
1667 sis900_rx(net_dev);
1669 if (status & (TxURN | TxERR | TxIDLE))
1670 /* Tx interrupt */
1671 sis900_finish_xmit(net_dev);
1673 /* something strange happened !!! */
1674 if (status & HIBERR) {
1675 if(netif_msg_intr(sis_priv))
1676 printk(KERN_INFO "%s: Abnormal interrupt, "
1677 "status %#8.8x.\n", net_dev->name, status);
1678 break;
1680 if (--boguscnt < 0) {
1681 if(netif_msg_intr(sis_priv))
1682 printk(KERN_INFO "%s: Too much work at interrupt, "
1683 "interrupt status = %#8.8x.\n",
1684 net_dev->name, status);
1685 break;
1687 } while (1);
1689 if(netif_msg_intr(sis_priv))
1690 printk(KERN_DEBUG "%s: exiting interrupt, "
1691 "interrupt status = 0x%#8.8x.\n",
1692 net_dev->name, inl(ioaddr + isr));
1694 spin_unlock (&sis_priv->lock);
1695 return IRQ_RETVAL(handled);
1699 * sis900_rx - sis900 receive routine
1700 * @net_dev: the net device which receives data
1702 * Process receive interrupt events,
1703 * put buffer to higher layer and refill buffer pool
1704 * Note: This function is called by interrupt handler,
1705 * don't do "too much" work here
1708 static int sis900_rx(struct net_device *net_dev)
1710 struct sis900_private *sis_priv = netdev_priv(net_dev);
1711 long ioaddr = net_dev->base_addr;
1712 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1713 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1714 int rx_work_limit;
1716 if (netif_msg_rx_status(sis_priv))
1717 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1718 "status:0x%8.8x\n",
1719 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1720 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1722 while (rx_status & OWN) {
1723 unsigned int rx_size;
1724 unsigned int data_size;
1726 if (--rx_work_limit < 0)
1727 break;
1729 data_size = rx_status & DSIZE;
1730 rx_size = data_size - CRC_SIZE;
1732 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1733 /* ``TOOLONG'' flag means jumbo packet recived. */
1734 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1735 rx_status &= (~ ((unsigned int)TOOLONG));
1736 #endif
1738 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1739 /* corrupted packet received */
1740 if (netif_msg_rx_err(sis_priv))
1741 printk(KERN_DEBUG "%s: Corrupted packet "
1742 "received, buffer status = 0x%8.8x/%d.\n",
1743 net_dev->name, rx_status, data_size);
1744 net_dev->stats.rx_errors++;
1745 if (rx_status & OVERRUN)
1746 net_dev->stats.rx_over_errors++;
1747 if (rx_status & (TOOLONG|RUNT))
1748 net_dev->stats.rx_length_errors++;
1749 if (rx_status & (RXISERR | FAERR))
1750 net_dev->stats.rx_frame_errors++;
1751 if (rx_status & CRCERR)
1752 net_dev->stats.rx_crc_errors++;
1753 /* reset buffer descriptor state */
1754 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1755 } else {
1756 struct sk_buff * skb;
1757 struct sk_buff * rx_skb;
1759 pci_unmap_single(sis_priv->pci_dev,
1760 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1761 PCI_DMA_FROMDEVICE);
1763 /* refill the Rx buffer, what if there is not enough
1764 * memory for new socket buffer ?? */
1765 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1767 * Not enough memory to refill the buffer
1768 * so we need to recycle the old one so
1769 * as to avoid creating a memory hole
1770 * in the rx ring
1772 skb = sis_priv->rx_skbuff[entry];
1773 net_dev->stats.rx_dropped++;
1774 goto refill_rx_ring;
1777 /* This situation should never happen, but due to
1778 some unknown bugs, it is possible that
1779 we are working on NULL sk_buff :-( */
1780 if (sis_priv->rx_skbuff[entry] == NULL) {
1781 if (netif_msg_rx_err(sis_priv))
1782 printk(KERN_WARNING "%s: NULL pointer "
1783 "encountered in Rx ring\n"
1784 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1785 net_dev->name, sis_priv->cur_rx,
1786 sis_priv->dirty_rx);
1787 break;
1790 /* give the socket buffer to upper layers */
1791 rx_skb = sis_priv->rx_skbuff[entry];
1792 skb_put(rx_skb, rx_size);
1793 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1794 netif_rx(rx_skb);
1796 /* some network statistics */
1797 if ((rx_status & BCAST) == MCAST)
1798 net_dev->stats.multicast++;
1799 net_dev->stats.rx_bytes += rx_size;
1800 net_dev->stats.rx_packets++;
1801 sis_priv->dirty_rx++;
1802 refill_rx_ring:
1803 sis_priv->rx_skbuff[entry] = skb;
1804 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1805 sis_priv->rx_ring[entry].bufptr =
1806 pci_map_single(sis_priv->pci_dev, skb->data,
1807 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1809 sis_priv->cur_rx++;
1810 entry = sis_priv->cur_rx % NUM_RX_DESC;
1811 rx_status = sis_priv->rx_ring[entry].cmdsts;
1812 } // while
1814 /* refill the Rx buffer, what if the rate of refilling is slower
1815 * than consuming ?? */
1816 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1817 struct sk_buff *skb;
1819 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1821 if (sis_priv->rx_skbuff[entry] == NULL) {
1822 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1823 /* not enough memory for skbuff, this makes a
1824 * "hole" on the buffer ring, it is not clear
1825 * how the hardware will react to this kind
1826 * of degenerated buffer */
1827 if (netif_msg_rx_err(sis_priv))
1828 printk(KERN_INFO "%s: Memory squeeze, "
1829 "deferring packet.\n",
1830 net_dev->name);
1831 net_dev->stats.rx_dropped++;
1832 break;
1834 sis_priv->rx_skbuff[entry] = skb;
1835 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1836 sis_priv->rx_ring[entry].bufptr =
1837 pci_map_single(sis_priv->pci_dev, skb->data,
1838 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1841 /* re-enable the potentially idle receive state matchine */
1842 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1844 return 0;
1848 * sis900_finish_xmit - finish up transmission of packets
1849 * @net_dev: the net device to be transmitted on
1851 * Check for error condition and free socket buffer etc
1852 * schedule for more transmission as needed
1853 * Note: This function is called by interrupt handler,
1854 * don't do "too much" work here
1857 static void sis900_finish_xmit (struct net_device *net_dev)
1859 struct sis900_private *sis_priv = netdev_priv(net_dev);
1861 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1862 struct sk_buff *skb;
1863 unsigned int entry;
1864 u32 tx_status;
1866 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1867 tx_status = sis_priv->tx_ring[entry].cmdsts;
1869 if (tx_status & OWN) {
1870 /* The packet is not transmitted yet (owned by hardware) !
1871 * Note: the interrupt is generated only when Tx Machine
1872 * is idle, so this is an almost impossible case */
1873 break;
1876 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1877 /* packet unsuccessfully transmitted */
1878 if (netif_msg_tx_err(sis_priv))
1879 printk(KERN_DEBUG "%s: Transmit "
1880 "error, Tx status %8.8x.\n",
1881 net_dev->name, tx_status);
1882 net_dev->stats.tx_errors++;
1883 if (tx_status & UNDERRUN)
1884 net_dev->stats.tx_fifo_errors++;
1885 if (tx_status & ABORT)
1886 net_dev->stats.tx_aborted_errors++;
1887 if (tx_status & NOCARRIER)
1888 net_dev->stats.tx_carrier_errors++;
1889 if (tx_status & OWCOLL)
1890 net_dev->stats.tx_window_errors++;
1891 } else {
1892 /* packet successfully transmitted */
1893 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1894 net_dev->stats.tx_bytes += tx_status & DSIZE;
1895 net_dev->stats.tx_packets++;
1897 /* Free the original skb. */
1898 skb = sis_priv->tx_skbuff[entry];
1899 pci_unmap_single(sis_priv->pci_dev,
1900 sis_priv->tx_ring[entry].bufptr, skb->len,
1901 PCI_DMA_TODEVICE);
1902 dev_kfree_skb_irq(skb);
1903 sis_priv->tx_skbuff[entry] = NULL;
1904 sis_priv->tx_ring[entry].bufptr = 0;
1905 sis_priv->tx_ring[entry].cmdsts = 0;
1908 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1909 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1910 /* The ring is no longer full, clear tx_full and schedule
1911 * more transmission by netif_wake_queue(net_dev) */
1912 sis_priv->tx_full = 0;
1913 netif_wake_queue (net_dev);
1918 * sis900_close - close sis900 device
1919 * @net_dev: the net device to be closed
1921 * Disable interrupts, stop the Tx and Rx Status Machine
1922 * free Tx and RX socket buffer
1925 static int sis900_close(struct net_device *net_dev)
1927 long ioaddr = net_dev->base_addr;
1928 struct sis900_private *sis_priv = netdev_priv(net_dev);
1929 struct sk_buff *skb;
1930 int i;
1932 netif_stop_queue(net_dev);
1934 /* Disable interrupts by clearing the interrupt mask. */
1935 outl(0x0000, ioaddr + imr);
1936 outl(0x0000, ioaddr + ier);
1938 /* Stop the chip's Tx and Rx Status Machine */
1939 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1941 del_timer(&sis_priv->timer);
1943 free_irq(net_dev->irq, net_dev);
1945 /* Free Tx and RX skbuff */
1946 for (i = 0; i < NUM_RX_DESC; i++) {
1947 skb = sis_priv->rx_skbuff[i];
1948 if (skb) {
1949 pci_unmap_single(sis_priv->pci_dev,
1950 sis_priv->rx_ring[i].bufptr,
1951 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1952 dev_kfree_skb(skb);
1953 sis_priv->rx_skbuff[i] = NULL;
1956 for (i = 0; i < NUM_TX_DESC; i++) {
1957 skb = sis_priv->tx_skbuff[i];
1958 if (skb) {
1959 pci_unmap_single(sis_priv->pci_dev,
1960 sis_priv->tx_ring[i].bufptr, skb->len,
1961 PCI_DMA_TODEVICE);
1962 dev_kfree_skb(skb);
1963 sis_priv->tx_skbuff[i] = NULL;
1967 /* Green! Put the chip in low-power mode. */
1969 return 0;
1973 * sis900_get_drvinfo - Return information about driver
1974 * @net_dev: the net device to probe
1975 * @info: container for info returned
1977 * Process ethtool command such as "ehtool -i" to show information
1980 static void sis900_get_drvinfo(struct net_device *net_dev,
1981 struct ethtool_drvinfo *info)
1983 struct sis900_private *sis_priv = netdev_priv(net_dev);
1985 strcpy (info->driver, SIS900_MODULE_NAME);
1986 strcpy (info->version, SIS900_DRV_VERSION);
1987 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1990 static u32 sis900_get_msglevel(struct net_device *net_dev)
1992 struct sis900_private *sis_priv = netdev_priv(net_dev);
1993 return sis_priv->msg_enable;
1996 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1998 struct sis900_private *sis_priv = netdev_priv(net_dev);
1999 sis_priv->msg_enable = value;
2002 static u32 sis900_get_link(struct net_device *net_dev)
2004 struct sis900_private *sis_priv = netdev_priv(net_dev);
2005 return mii_link_ok(&sis_priv->mii_info);
2008 static int sis900_get_settings(struct net_device *net_dev,
2009 struct ethtool_cmd *cmd)
2011 struct sis900_private *sis_priv = netdev_priv(net_dev);
2012 spin_lock_irq(&sis_priv->lock);
2013 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2014 spin_unlock_irq(&sis_priv->lock);
2015 return 0;
2018 static int sis900_set_settings(struct net_device *net_dev,
2019 struct ethtool_cmd *cmd)
2021 struct sis900_private *sis_priv = netdev_priv(net_dev);
2022 int rt;
2023 spin_lock_irq(&sis_priv->lock);
2024 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2025 spin_unlock_irq(&sis_priv->lock);
2026 return rt;
2029 static int sis900_nway_reset(struct net_device *net_dev)
2031 struct sis900_private *sis_priv = netdev_priv(net_dev);
2032 return mii_nway_restart(&sis_priv->mii_info);
2036 * sis900_set_wol - Set up Wake on Lan registers
2037 * @net_dev: the net device to probe
2038 * @wol: container for info passed to the driver
2040 * Process ethtool command "wol" to setup wake on lan features.
2041 * SiS900 supports sending WoL events if a correct packet is received,
2042 * but there is no simple way to filter them to only a subset (broadcast,
2043 * multicast, unicast or arp).
2046 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2048 struct sis900_private *sis_priv = netdev_priv(net_dev);
2049 long pmctrl_addr = net_dev->base_addr + pmctrl;
2050 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2052 if (wol->wolopts == 0) {
2053 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2054 cfgpmcsr &= ~PME_EN;
2055 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2056 outl(pmctrl_bits, pmctrl_addr);
2057 if (netif_msg_wol(sis_priv))
2058 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2059 return 0;
2062 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2063 | WAKE_BCAST | WAKE_ARP))
2064 return -EINVAL;
2066 if (wol->wolopts & WAKE_MAGIC)
2067 pmctrl_bits |= MAGICPKT;
2068 if (wol->wolopts & WAKE_PHY)
2069 pmctrl_bits |= LINKON;
2071 outl(pmctrl_bits, pmctrl_addr);
2073 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2074 cfgpmcsr |= PME_EN;
2075 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2076 if (netif_msg_wol(sis_priv))
2077 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2079 return 0;
2082 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2084 long pmctrl_addr = net_dev->base_addr + pmctrl;
2085 u32 pmctrl_bits;
2087 pmctrl_bits = inl(pmctrl_addr);
2088 if (pmctrl_bits & MAGICPKT)
2089 wol->wolopts |= WAKE_MAGIC;
2090 if (pmctrl_bits & LINKON)
2091 wol->wolopts |= WAKE_PHY;
2093 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2096 static const struct ethtool_ops sis900_ethtool_ops = {
2097 .get_drvinfo = sis900_get_drvinfo,
2098 .get_msglevel = sis900_get_msglevel,
2099 .set_msglevel = sis900_set_msglevel,
2100 .get_link = sis900_get_link,
2101 .get_settings = sis900_get_settings,
2102 .set_settings = sis900_set_settings,
2103 .nway_reset = sis900_nway_reset,
2104 .get_wol = sis900_get_wol,
2105 .set_wol = sis900_set_wol
2109 * mii_ioctl - process MII i/o control command
2110 * @net_dev: the net device to command for
2111 * @rq: parameter for command
2112 * @cmd: the i/o command
2114 * Process MII command like read/write MII register
2117 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2119 struct sis900_private *sis_priv = netdev_priv(net_dev);
2120 struct mii_ioctl_data *data = if_mii(rq);
2122 switch(cmd) {
2123 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2124 data->phy_id = sis_priv->mii->phy_addr;
2125 /* Fall Through */
2127 case SIOCGMIIREG: /* Read MII PHY register. */
2128 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2129 return 0;
2131 case SIOCSMIIREG: /* Write MII PHY register. */
2132 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2133 return 0;
2134 default:
2135 return -EOPNOTSUPP;
2140 * sis900_set_config - Set media type by net_device.set_config
2141 * @dev: the net device for media type change
2142 * @map: ifmap passed by ifconfig
2144 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2145 * we support only port changes. All other runtime configuration
2146 * changes will be ignored
2149 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2151 struct sis900_private *sis_priv = netdev_priv(dev);
2152 struct mii_phy *mii_phy = sis_priv->mii;
2154 u16 status;
2156 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2157 /* we switch on the ifmap->port field. I couldn't find anything
2158 * like a definition or standard for the values of that field.
2159 * I think the meaning of those values is device specific. But
2160 * since I would like to change the media type via the ifconfig
2161 * command I use the definition from linux/netdevice.h
2162 * (which seems to be different from the ifport(pcmcia) definition) */
2163 switch(map->port){
2164 case IF_PORT_UNKNOWN: /* use auto here */
2165 dev->if_port = map->port;
2166 /* we are going to change the media type, so the Link
2167 * will be temporary down and we need to reflect that
2168 * here. When the Link comes up again, it will be
2169 * sensed by the sis_timer procedure, which also does
2170 * all the rest for us */
2171 netif_carrier_off(dev);
2173 /* read current state */
2174 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2176 /* enable auto negotiation and reset the negotioation
2177 * (I don't really know what the auto negatiotiation
2178 * reset really means, but it sounds for me right to
2179 * do one here) */
2180 mdio_write(dev, mii_phy->phy_addr,
2181 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2183 break;
2185 case IF_PORT_10BASET: /* 10BaseT */
2186 dev->if_port = map->port;
2188 /* we are going to change the media type, so the Link
2189 * will be temporary down and we need to reflect that
2190 * here. When the Link comes up again, it will be
2191 * sensed by the sis_timer procedure, which also does
2192 * all the rest for us */
2193 netif_carrier_off(dev);
2195 /* set Speed to 10Mbps */
2196 /* read current state */
2197 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2199 /* disable auto negotiation and force 10MBit mode*/
2200 mdio_write(dev, mii_phy->phy_addr,
2201 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2202 MII_CNTL_AUTO));
2203 break;
2205 case IF_PORT_100BASET: /* 100BaseT */
2206 case IF_PORT_100BASETX: /* 100BaseTx */
2207 dev->if_port = map->port;
2209 /* we are going to change the media type, so the Link
2210 * will be temporary down and we need to reflect that
2211 * here. When the Link comes up again, it will be
2212 * sensed by the sis_timer procedure, which also does
2213 * all the rest for us */
2214 netif_carrier_off(dev);
2216 /* set Speed to 100Mbps */
2217 /* disable auto negotiation and enable 100MBit Mode */
2218 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2219 mdio_write(dev, mii_phy->phy_addr,
2220 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2221 MII_CNTL_SPEED);
2223 break;
2225 case IF_PORT_10BASE2: /* 10Base2 */
2226 case IF_PORT_AUI: /* AUI */
2227 case IF_PORT_100BASEFX: /* 100BaseFx */
2228 /* These Modes are not supported (are they?)*/
2229 return -EOPNOTSUPP;
2230 break;
2232 default:
2233 return -EINVAL;
2236 return 0;
2240 * sis900_mcast_bitnr - compute hashtable index
2241 * @addr: multicast address
2242 * @revision: revision id of chip
2244 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2245 * hash table, which makes this function a little bit different from other drivers
2246 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2247 * multicast hash table.
2250 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2253 u32 crc = ether_crc(6, addr);
2255 /* leave 8 or 7 most siginifant bits */
2256 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2257 return ((int)(crc >> 24));
2258 else
2259 return ((int)(crc >> 25));
2263 * set_rx_mode - Set SiS900 receive mode
2264 * @net_dev: the net device to be set
2266 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2267 * And set the appropriate multicast filter.
2268 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2271 static void set_rx_mode(struct net_device *net_dev)
2273 long ioaddr = net_dev->base_addr;
2274 struct sis900_private *sis_priv = netdev_priv(net_dev);
2275 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2276 int i, table_entries;
2277 u32 rx_mode;
2279 /* 635 Hash Table entries = 256(2^16) */
2280 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2281 (sis_priv->chipset_rev == SIS900B_900_REV))
2282 table_entries = 16;
2283 else
2284 table_entries = 8;
2286 if (net_dev->flags & IFF_PROMISC) {
2287 /* Accept any kinds of packets */
2288 rx_mode = RFPromiscuous;
2289 for (i = 0; i < table_entries; i++)
2290 mc_filter[i] = 0xffff;
2291 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2292 (net_dev->flags & IFF_ALLMULTI)) {
2293 /* too many multicast addresses or accept all multicast packet */
2294 rx_mode = RFAAB | RFAAM;
2295 for (i = 0; i < table_entries; i++)
2296 mc_filter[i] = 0xffff;
2297 } else {
2298 /* Accept Broadcast packet, destination address matchs our
2299 * MAC address, use Receive Filter to reject unwanted MCAST
2300 * packets */
2301 struct dev_mc_list *mclist;
2302 rx_mode = RFAAB;
2304 netdev_for_each_mc_addr(mclist, net_dev) {
2305 unsigned int bit_nr =
2306 sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2307 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2311 /* update Multicast Hash Table in Receive Filter */
2312 for (i = 0; i < table_entries; i++) {
2313 /* why plus 0x04 ??, That makes the correct value for hash table. */
2314 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2315 outl(mc_filter[i], ioaddr + rfdr);
2318 outl(RFEN | rx_mode, ioaddr + rfcr);
2320 /* sis900 is capable of looping back packets at MAC level for
2321 * debugging purpose */
2322 if (net_dev->flags & IFF_LOOPBACK) {
2323 u32 cr_saved;
2324 /* We must disable Tx/Rx before setting loopback mode */
2325 cr_saved = inl(ioaddr + cr);
2326 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2327 /* enable loopback */
2328 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2329 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2330 /* restore cr */
2331 outl(cr_saved, ioaddr + cr);
2334 return;
2338 * sis900_reset - Reset sis900 MAC
2339 * @net_dev: the net device to reset
2341 * reset sis900 MAC and wait until finished
2342 * reset through command register
2343 * change backoff algorithm for 900B0 & 635 M/B
2346 static void sis900_reset(struct net_device *net_dev)
2348 struct sis900_private *sis_priv = netdev_priv(net_dev);
2349 long ioaddr = net_dev->base_addr;
2350 int i = 0;
2351 u32 status = TxRCMP | RxRCMP;
2353 outl(0, ioaddr + ier);
2354 outl(0, ioaddr + imr);
2355 outl(0, ioaddr + rfcr);
2357 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2359 /* Check that the chip has finished the reset. */
2360 while (status && (i++ < 1000)) {
2361 status ^= (inl(isr + ioaddr) & status);
2364 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2365 (sis_priv->chipset_rev == SIS900B_900_REV) )
2366 outl(PESEL | RND_CNT, ioaddr + cfg);
2367 else
2368 outl(PESEL, ioaddr + cfg);
2372 * sis900_remove - Remove sis900 device
2373 * @pci_dev: the pci device to be removed
2375 * remove and release SiS900 net device
2378 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2380 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2381 struct sis900_private *sis_priv = netdev_priv(net_dev);
2382 struct mii_phy *phy = NULL;
2384 while (sis_priv->first_mii) {
2385 phy = sis_priv->first_mii;
2386 sis_priv->first_mii = phy->next;
2387 kfree(phy);
2390 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2391 sis_priv->rx_ring_dma);
2392 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2393 sis_priv->tx_ring_dma);
2394 unregister_netdev(net_dev);
2395 free_netdev(net_dev);
2396 pci_release_regions(pci_dev);
2397 pci_set_drvdata(pci_dev, NULL);
2400 #ifdef CONFIG_PM
2402 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2404 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2405 long ioaddr = net_dev->base_addr;
2407 if(!netif_running(net_dev))
2408 return 0;
2410 netif_stop_queue(net_dev);
2411 netif_device_detach(net_dev);
2413 /* Stop the chip's Tx and Rx Status Machine */
2414 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2416 pci_set_power_state(pci_dev, PCI_D3hot);
2417 pci_save_state(pci_dev);
2419 return 0;
2422 static int sis900_resume(struct pci_dev *pci_dev)
2424 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2425 struct sis900_private *sis_priv = netdev_priv(net_dev);
2426 long ioaddr = net_dev->base_addr;
2428 if(!netif_running(net_dev))
2429 return 0;
2430 pci_restore_state(pci_dev);
2431 pci_set_power_state(pci_dev, PCI_D0);
2433 sis900_init_rxfilter(net_dev);
2435 sis900_init_tx_ring(net_dev);
2436 sis900_init_rx_ring(net_dev);
2438 set_rx_mode(net_dev);
2440 netif_device_attach(net_dev);
2441 netif_start_queue(net_dev);
2443 /* Workaround for EDB */
2444 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2446 /* Enable all known interrupts by setting the interrupt mask. */
2447 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2448 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2449 outl(IE, ioaddr + ier);
2451 sis900_check_mode(net_dev, sis_priv->mii);
2453 return 0;
2455 #endif /* CONFIG_PM */
2457 static struct pci_driver sis900_pci_driver = {
2458 .name = SIS900_MODULE_NAME,
2459 .id_table = sis900_pci_tbl,
2460 .probe = sis900_probe,
2461 .remove = __devexit_p(sis900_remove),
2462 #ifdef CONFIG_PM
2463 .suspend = sis900_suspend,
2464 .resume = sis900_resume,
2465 #endif /* CONFIG_PM */
2468 static int __init sis900_init_module(void)
2470 /* when a module, this is printed whether or not devices are found in probe */
2471 #ifdef MODULE
2472 printk(version);
2473 #endif
2475 return pci_register_driver(&sis900_pci_driver);
2478 static void __exit sis900_cleanup_module(void)
2480 pci_unregister_driver(&sis900_pci_driver);
2483 module_init(sis900_init_module);
2484 module_exit(sis900_cleanup_module);