Linux 2.6.34-rc3
[pohmelfs.git] / drivers / net / smc91x.c
blobfc1b5a1a3583d7d15983400ab384a81f6c1732b3
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@fluxnic.net>
39 * Russell King <rmk@arm.linux.org.uk>
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/interrupt.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
89 #include <asm/io.h>
91 #include "smc91x.h"
93 #ifndef SMC_NOWAIT
94 # define SMC_NOWAIT 0
95 #endif
96 static int nowait = SMC_NOWAIT;
97 module_param(nowait, int, 0400);
98 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
101 * Transmit timeout, default 5 seconds.
103 static int watchdog = 1000;
104 module_param(watchdog, int, 0400);
105 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
107 MODULE_LICENSE("GPL");
108 MODULE_ALIAS("platform:smc91x");
111 * The internal workings of the driver. If you are changing anything
112 * here with the SMC stuff, you should have the datasheet and know
113 * what you are doing.
115 #define CARDNAME "smc91x"
118 * Use power-down feature of the chip
120 #define POWER_DOWN 1
123 * Wait time for memory to be free. This probably shouldn't be
124 * tuned that much, as waiting for this means nothing else happens
125 * in the system
127 #define MEMORY_WAIT_TIME 16
130 * The maximum number of processing loops allowed for each call to the
131 * IRQ handler.
133 #define MAX_IRQ_LOOPS 8
136 * This selects whether TX packets are sent one by one to the SMC91x internal
137 * memory and throttled until transmission completes. This may prevent
138 * RX overruns a litle by keeping much of the memory free for RX packets
139 * but to the expense of reduced TX throughput and increased IRQ overhead.
140 * Note this is not a cure for a too slow data bus or too high IRQ latency.
142 #define THROTTLE_TX_PKTS 0
145 * The MII clock high/low times. 2x this number gives the MII clock period
146 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
148 #define MII_DELAY 1
150 #if SMC_DEBUG > 0
151 #define DBG(n, args...) \
152 do { \
153 if (SMC_DEBUG >= (n)) \
154 printk(args); \
155 } while (0)
157 #define PRINTK(args...) printk(args)
158 #else
159 #define DBG(n, args...) do { } while(0)
160 #define PRINTK(args...) printk(KERN_DEBUG args)
161 #endif
163 #if SMC_DEBUG > 3
164 static void PRINT_PKT(u_char *buf, int length)
166 int i;
167 int remainder;
168 int lines;
170 lines = length / 16;
171 remainder = length % 16;
173 for (i = 0; i < lines ; i ++) {
174 int cur;
175 for (cur = 0; cur < 8; cur++) {
176 u_char a, b;
177 a = *buf++;
178 b = *buf++;
179 printk("%02x%02x ", a, b);
181 printk("\n");
183 for (i = 0; i < remainder/2 ; i++) {
184 u_char a, b;
185 a = *buf++;
186 b = *buf++;
187 printk("%02x%02x ", a, b);
189 printk("\n");
191 #else
192 #define PRINT_PKT(x...) do { } while(0)
193 #endif
196 /* this enables an interrupt in the interrupt mask register */
197 #define SMC_ENABLE_INT(lp, x) do { \
198 unsigned char mask; \
199 unsigned long smc_enable_flags; \
200 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
201 mask = SMC_GET_INT_MASK(lp); \
202 mask |= (x); \
203 SMC_SET_INT_MASK(lp, mask); \
204 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
205 } while (0)
207 /* this disables an interrupt from the interrupt mask register */
208 #define SMC_DISABLE_INT(lp, x) do { \
209 unsigned char mask; \
210 unsigned long smc_disable_flags; \
211 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
212 mask = SMC_GET_INT_MASK(lp); \
213 mask &= ~(x); \
214 SMC_SET_INT_MASK(lp, mask); \
215 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
216 } while (0)
219 * Wait while MMU is busy. This is usually in the order of a few nanosecs
220 * if at all, but let's avoid deadlocking the system if the hardware
221 * decides to go south.
223 #define SMC_WAIT_MMU_BUSY(lp) do { \
224 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
225 unsigned long timeout = jiffies + 2; \
226 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
227 if (time_after(jiffies, timeout)) { \
228 printk("%s: timeout %s line %d\n", \
229 dev->name, __FILE__, __LINE__); \
230 break; \
232 cpu_relax(); \
235 } while (0)
239 * this does a soft reset on the device
241 static void smc_reset(struct net_device *dev)
243 struct smc_local *lp = netdev_priv(dev);
244 void __iomem *ioaddr = lp->base;
245 unsigned int ctl, cfg;
246 struct sk_buff *pending_skb;
248 DBG(2, "%s: %s\n", dev->name, __func__);
250 /* Disable all interrupts, block TX tasklet */
251 spin_lock_irq(&lp->lock);
252 SMC_SELECT_BANK(lp, 2);
253 SMC_SET_INT_MASK(lp, 0);
254 pending_skb = lp->pending_tx_skb;
255 lp->pending_tx_skb = NULL;
256 spin_unlock_irq(&lp->lock);
258 /* free any pending tx skb */
259 if (pending_skb) {
260 dev_kfree_skb(pending_skb);
261 dev->stats.tx_errors++;
262 dev->stats.tx_aborted_errors++;
266 * This resets the registers mostly to defaults, but doesn't
267 * affect EEPROM. That seems unnecessary
269 SMC_SELECT_BANK(lp, 0);
270 SMC_SET_RCR(lp, RCR_SOFTRST);
273 * Setup the Configuration Register
274 * This is necessary because the CONFIG_REG is not affected
275 * by a soft reset
277 SMC_SELECT_BANK(lp, 1);
279 cfg = CONFIG_DEFAULT;
282 * Setup for fast accesses if requested. If the card/system
283 * can't handle it then there will be no recovery except for
284 * a hard reset or power cycle
286 if (lp->cfg.flags & SMC91X_NOWAIT)
287 cfg |= CONFIG_NO_WAIT;
290 * Release from possible power-down state
291 * Configuration register is not affected by Soft Reset
293 cfg |= CONFIG_EPH_POWER_EN;
295 SMC_SET_CONFIG(lp, cfg);
297 /* this should pause enough for the chip to be happy */
299 * elaborate? What does the chip _need_? --jgarzik
301 * This seems to be undocumented, but something the original
302 * driver(s) have always done. Suspect undocumented timing
303 * info/determined empirically. --rmk
305 udelay(1);
307 /* Disable transmit and receive functionality */
308 SMC_SELECT_BANK(lp, 0);
309 SMC_SET_RCR(lp, RCR_CLEAR);
310 SMC_SET_TCR(lp, TCR_CLEAR);
312 SMC_SELECT_BANK(lp, 1);
313 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
316 * Set the control register to automatically release successfully
317 * transmitted packets, to make the best use out of our limited
318 * memory
320 if(!THROTTLE_TX_PKTS)
321 ctl |= CTL_AUTO_RELEASE;
322 else
323 ctl &= ~CTL_AUTO_RELEASE;
324 SMC_SET_CTL(lp, ctl);
326 /* Reset the MMU */
327 SMC_SELECT_BANK(lp, 2);
328 SMC_SET_MMU_CMD(lp, MC_RESET);
329 SMC_WAIT_MMU_BUSY(lp);
333 * Enable Interrupts, Receive, and Transmit
335 static void smc_enable(struct net_device *dev)
337 struct smc_local *lp = netdev_priv(dev);
338 void __iomem *ioaddr = lp->base;
339 int mask;
341 DBG(2, "%s: %s\n", dev->name, __func__);
343 /* see the header file for options in TCR/RCR DEFAULT */
344 SMC_SELECT_BANK(lp, 0);
345 SMC_SET_TCR(lp, lp->tcr_cur_mode);
346 SMC_SET_RCR(lp, lp->rcr_cur_mode);
348 SMC_SELECT_BANK(lp, 1);
349 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
351 /* now, enable interrupts */
352 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
353 if (lp->version >= (CHIP_91100 << 4))
354 mask |= IM_MDINT;
355 SMC_SELECT_BANK(lp, 2);
356 SMC_SET_INT_MASK(lp, mask);
359 * From this point the register bank must _NOT_ be switched away
360 * to something else than bank 2 without proper locking against
361 * races with any tasklet or interrupt handlers until smc_shutdown()
362 * or smc_reset() is called.
367 * this puts the device in an inactive state
369 static void smc_shutdown(struct net_device *dev)
371 struct smc_local *lp = netdev_priv(dev);
372 void __iomem *ioaddr = lp->base;
373 struct sk_buff *pending_skb;
375 DBG(2, "%s: %s\n", CARDNAME, __func__);
377 /* no more interrupts for me */
378 spin_lock_irq(&lp->lock);
379 SMC_SELECT_BANK(lp, 2);
380 SMC_SET_INT_MASK(lp, 0);
381 pending_skb = lp->pending_tx_skb;
382 lp->pending_tx_skb = NULL;
383 spin_unlock_irq(&lp->lock);
384 if (pending_skb)
385 dev_kfree_skb(pending_skb);
387 /* and tell the card to stay away from that nasty outside world */
388 SMC_SELECT_BANK(lp, 0);
389 SMC_SET_RCR(lp, RCR_CLEAR);
390 SMC_SET_TCR(lp, TCR_CLEAR);
392 #ifdef POWER_DOWN
393 /* finally, shut the chip down */
394 SMC_SELECT_BANK(lp, 1);
395 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
396 #endif
400 * This is the procedure to handle the receipt of a packet.
402 static inline void smc_rcv(struct net_device *dev)
404 struct smc_local *lp = netdev_priv(dev);
405 void __iomem *ioaddr = lp->base;
406 unsigned int packet_number, status, packet_len;
408 DBG(3, "%s: %s\n", dev->name, __func__);
410 packet_number = SMC_GET_RXFIFO(lp);
411 if (unlikely(packet_number & RXFIFO_REMPTY)) {
412 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
413 return;
416 /* read from start of packet */
417 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
419 /* First two words are status and packet length */
420 SMC_GET_PKT_HDR(lp, status, packet_len);
421 packet_len &= 0x07ff; /* mask off top bits */
422 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
423 dev->name, packet_number, status,
424 packet_len, packet_len);
426 back:
427 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
428 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
429 /* accept VLAN packets */
430 status &= ~RS_TOOLONG;
431 goto back;
433 if (packet_len < 6) {
434 /* bloody hardware */
435 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
436 dev->name, packet_len, status);
437 status |= RS_TOOSHORT;
439 SMC_WAIT_MMU_BUSY(lp);
440 SMC_SET_MMU_CMD(lp, MC_RELEASE);
441 dev->stats.rx_errors++;
442 if (status & RS_ALGNERR)
443 dev->stats.rx_frame_errors++;
444 if (status & (RS_TOOSHORT | RS_TOOLONG))
445 dev->stats.rx_length_errors++;
446 if (status & RS_BADCRC)
447 dev->stats.rx_crc_errors++;
448 } else {
449 struct sk_buff *skb;
450 unsigned char *data;
451 unsigned int data_len;
453 /* set multicast stats */
454 if (status & RS_MULTICAST)
455 dev->stats.multicast++;
458 * Actual payload is packet_len - 6 (or 5 if odd byte).
459 * We want skb_reserve(2) and the final ctrl word
460 * (2 bytes, possibly containing the payload odd byte).
461 * Furthermore, we add 2 bytes to allow rounding up to
462 * multiple of 4 bytes on 32 bit buses.
463 * Hence packet_len - 6 + 2 + 2 + 2.
465 skb = dev_alloc_skb(packet_len);
466 if (unlikely(skb == NULL)) {
467 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
468 dev->name);
469 SMC_WAIT_MMU_BUSY(lp);
470 SMC_SET_MMU_CMD(lp, MC_RELEASE);
471 dev->stats.rx_dropped++;
472 return;
475 /* Align IP header to 32 bits */
476 skb_reserve(skb, 2);
478 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
479 if (lp->version == 0x90)
480 status |= RS_ODDFRAME;
483 * If odd length: packet_len - 5,
484 * otherwise packet_len - 6.
485 * With the trailing ctrl byte it's packet_len - 4.
487 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
488 data = skb_put(skb, data_len);
489 SMC_PULL_DATA(lp, data, packet_len - 4);
491 SMC_WAIT_MMU_BUSY(lp);
492 SMC_SET_MMU_CMD(lp, MC_RELEASE);
494 PRINT_PKT(data, packet_len - 4);
496 skb->protocol = eth_type_trans(skb, dev);
497 netif_rx(skb);
498 dev->stats.rx_packets++;
499 dev->stats.rx_bytes += data_len;
503 #ifdef CONFIG_SMP
505 * On SMP we have the following problem:
507 * A = smc_hardware_send_pkt()
508 * B = smc_hard_start_xmit()
509 * C = smc_interrupt()
511 * A and B can never be executed simultaneously. However, at least on UP,
512 * it is possible (and even desirable) for C to interrupt execution of
513 * A or B in order to have better RX reliability and avoid overruns.
514 * C, just like A and B, must have exclusive access to the chip and
515 * each of them must lock against any other concurrent access.
516 * Unfortunately this is not possible to have C suspend execution of A or
517 * B taking place on another CPU. On UP this is no an issue since A and B
518 * are run from softirq context and C from hard IRQ context, and there is
519 * no other CPU where concurrent access can happen.
520 * If ever there is a way to force at least B and C to always be executed
521 * on the same CPU then we could use read/write locks to protect against
522 * any other concurrent access and C would always interrupt B. But life
523 * isn't that easy in a SMP world...
525 #define smc_special_trylock(lock, flags) \
526 ({ \
527 int __ret; \
528 local_irq_save(flags); \
529 __ret = spin_trylock(lock); \
530 if (!__ret) \
531 local_irq_restore(flags); \
532 __ret; \
534 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
535 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
536 #else
537 #define smc_special_trylock(lock, flags) (flags == flags)
538 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
539 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
540 #endif
543 * This is called to actually send a packet to the chip.
545 static void smc_hardware_send_pkt(unsigned long data)
547 struct net_device *dev = (struct net_device *)data;
548 struct smc_local *lp = netdev_priv(dev);
549 void __iomem *ioaddr = lp->base;
550 struct sk_buff *skb;
551 unsigned int packet_no, len;
552 unsigned char *buf;
553 unsigned long flags;
555 DBG(3, "%s: %s\n", dev->name, __func__);
557 if (!smc_special_trylock(&lp->lock, flags)) {
558 netif_stop_queue(dev);
559 tasklet_schedule(&lp->tx_task);
560 return;
563 skb = lp->pending_tx_skb;
564 if (unlikely(!skb)) {
565 smc_special_unlock(&lp->lock, flags);
566 return;
568 lp->pending_tx_skb = NULL;
570 packet_no = SMC_GET_AR(lp);
571 if (unlikely(packet_no & AR_FAILED)) {
572 printk("%s: Memory allocation failed.\n", dev->name);
573 dev->stats.tx_errors++;
574 dev->stats.tx_fifo_errors++;
575 smc_special_unlock(&lp->lock, flags);
576 goto done;
579 /* point to the beginning of the packet */
580 SMC_SET_PN(lp, packet_no);
581 SMC_SET_PTR(lp, PTR_AUTOINC);
583 buf = skb->data;
584 len = skb->len;
585 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
586 dev->name, packet_no, len, len, buf);
587 PRINT_PKT(buf, len);
590 * Send the packet length (+6 for status words, length, and ctl.
591 * The card will pad to 64 bytes with zeroes if packet is too small.
593 SMC_PUT_PKT_HDR(lp, 0, len + 6);
595 /* send the actual data */
596 SMC_PUSH_DATA(lp, buf, len & ~1);
598 /* Send final ctl word with the last byte if there is one */
599 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
602 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
603 * have the effect of having at most one packet queued for TX
604 * in the chip's memory at all time.
606 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
607 * when memory allocation (MC_ALLOC) does not succeed right away.
609 if (THROTTLE_TX_PKTS)
610 netif_stop_queue(dev);
612 /* queue the packet for TX */
613 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
614 smc_special_unlock(&lp->lock, flags);
616 dev->trans_start = jiffies;
617 dev->stats.tx_packets++;
618 dev->stats.tx_bytes += len;
620 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
622 done: if (!THROTTLE_TX_PKTS)
623 netif_wake_queue(dev);
625 dev_kfree_skb(skb);
629 * Since I am not sure if I will have enough room in the chip's ram
630 * to store the packet, I call this routine which either sends it
631 * now, or set the card to generates an interrupt when ready
632 * for the packet.
634 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
636 struct smc_local *lp = netdev_priv(dev);
637 void __iomem *ioaddr = lp->base;
638 unsigned int numPages, poll_count, status;
639 unsigned long flags;
641 DBG(3, "%s: %s\n", dev->name, __func__);
643 BUG_ON(lp->pending_tx_skb != NULL);
646 * The MMU wants the number of pages to be the number of 256 bytes
647 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
649 * The 91C111 ignores the size bits, but earlier models don't.
651 * Pkt size for allocating is data length +6 (for additional status
652 * words, length and ctl)
654 * If odd size then last byte is included in ctl word.
656 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
657 if (unlikely(numPages > 7)) {
658 printk("%s: Far too big packet error.\n", dev->name);
659 dev->stats.tx_errors++;
660 dev->stats.tx_dropped++;
661 dev_kfree_skb(skb);
662 return NETDEV_TX_OK;
665 smc_special_lock(&lp->lock, flags);
667 /* now, try to allocate the memory */
668 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
671 * Poll the chip for a short amount of time in case the
672 * allocation succeeds quickly.
674 poll_count = MEMORY_WAIT_TIME;
675 do {
676 status = SMC_GET_INT(lp);
677 if (status & IM_ALLOC_INT) {
678 SMC_ACK_INT(lp, IM_ALLOC_INT);
679 break;
681 } while (--poll_count);
683 smc_special_unlock(&lp->lock, flags);
685 lp->pending_tx_skb = skb;
686 if (!poll_count) {
687 /* oh well, wait until the chip finds memory later */
688 netif_stop_queue(dev);
689 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
690 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
691 } else {
693 * Allocation succeeded: push packet to the chip's own memory
694 * immediately.
696 smc_hardware_send_pkt((unsigned long)dev);
699 return NETDEV_TX_OK;
703 * This handles a TX interrupt, which is only called when:
704 * - a TX error occurred, or
705 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
707 static void smc_tx(struct net_device *dev)
709 struct smc_local *lp = netdev_priv(dev);
710 void __iomem *ioaddr = lp->base;
711 unsigned int saved_packet, packet_no, tx_status, pkt_len;
713 DBG(3, "%s: %s\n", dev->name, __func__);
715 /* If the TX FIFO is empty then nothing to do */
716 packet_no = SMC_GET_TXFIFO(lp);
717 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
718 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
719 return;
722 /* select packet to read from */
723 saved_packet = SMC_GET_PN(lp);
724 SMC_SET_PN(lp, packet_no);
726 /* read the first word (status word) from this packet */
727 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
728 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
729 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
730 dev->name, tx_status, packet_no);
732 if (!(tx_status & ES_TX_SUC))
733 dev->stats.tx_errors++;
735 if (tx_status & ES_LOSTCARR)
736 dev->stats.tx_carrier_errors++;
738 if (tx_status & (ES_LATCOL | ES_16COL)) {
739 PRINTK("%s: %s occurred on last xmit\n", dev->name,
740 (tx_status & ES_LATCOL) ?
741 "late collision" : "too many collisions");
742 dev->stats.tx_window_errors++;
743 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
744 printk(KERN_INFO "%s: unexpectedly large number of "
745 "bad collisions. Please check duplex "
746 "setting.\n", dev->name);
750 /* kill the packet */
751 SMC_WAIT_MMU_BUSY(lp);
752 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
754 /* Don't restore Packet Number Reg until busy bit is cleared */
755 SMC_WAIT_MMU_BUSY(lp);
756 SMC_SET_PN(lp, saved_packet);
758 /* re-enable transmit */
759 SMC_SELECT_BANK(lp, 0);
760 SMC_SET_TCR(lp, lp->tcr_cur_mode);
761 SMC_SELECT_BANK(lp, 2);
765 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
767 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
769 struct smc_local *lp = netdev_priv(dev);
770 void __iomem *ioaddr = lp->base;
771 unsigned int mii_reg, mask;
773 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
774 mii_reg |= MII_MDOE;
776 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
777 if (val & mask)
778 mii_reg |= MII_MDO;
779 else
780 mii_reg &= ~MII_MDO;
782 SMC_SET_MII(lp, mii_reg);
783 udelay(MII_DELAY);
784 SMC_SET_MII(lp, mii_reg | MII_MCLK);
785 udelay(MII_DELAY);
789 static unsigned int smc_mii_in(struct net_device *dev, int bits)
791 struct smc_local *lp = netdev_priv(dev);
792 void __iomem *ioaddr = lp->base;
793 unsigned int mii_reg, mask, val;
795 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
796 SMC_SET_MII(lp, mii_reg);
798 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
799 if (SMC_GET_MII(lp) & MII_MDI)
800 val |= mask;
802 SMC_SET_MII(lp, mii_reg);
803 udelay(MII_DELAY);
804 SMC_SET_MII(lp, mii_reg | MII_MCLK);
805 udelay(MII_DELAY);
808 return val;
812 * Reads a register from the MII Management serial interface
814 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
816 struct smc_local *lp = netdev_priv(dev);
817 void __iomem *ioaddr = lp->base;
818 unsigned int phydata;
820 SMC_SELECT_BANK(lp, 3);
822 /* Idle - 32 ones */
823 smc_mii_out(dev, 0xffffffff, 32);
825 /* Start code (01) + read (10) + phyaddr + phyreg */
826 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
828 /* Turnaround (2bits) + phydata */
829 phydata = smc_mii_in(dev, 18);
831 /* Return to idle state */
832 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
834 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
835 __func__, phyaddr, phyreg, phydata);
837 SMC_SELECT_BANK(lp, 2);
838 return phydata;
842 * Writes a register to the MII Management serial interface
844 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
845 int phydata)
847 struct smc_local *lp = netdev_priv(dev);
848 void __iomem *ioaddr = lp->base;
850 SMC_SELECT_BANK(lp, 3);
852 /* Idle - 32 ones */
853 smc_mii_out(dev, 0xffffffff, 32);
855 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
856 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
858 /* Return to idle state */
859 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
861 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
862 __func__, phyaddr, phyreg, phydata);
864 SMC_SELECT_BANK(lp, 2);
868 * Finds and reports the PHY address
870 static void smc_phy_detect(struct net_device *dev)
872 struct smc_local *lp = netdev_priv(dev);
873 int phyaddr;
875 DBG(2, "%s: %s\n", dev->name, __func__);
877 lp->phy_type = 0;
880 * Scan all 32 PHY addresses if necessary, starting at
881 * PHY#1 to PHY#31, and then PHY#0 last.
883 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
884 unsigned int id1, id2;
886 /* Read the PHY identifiers */
887 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
888 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
890 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
891 dev->name, id1, id2);
893 /* Make sure it is a valid identifier */
894 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
895 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
896 /* Save the PHY's address */
897 lp->mii.phy_id = phyaddr & 31;
898 lp->phy_type = id1 << 16 | id2;
899 break;
905 * Sets the PHY to a configuration as determined by the user
907 static int smc_phy_fixed(struct net_device *dev)
909 struct smc_local *lp = netdev_priv(dev);
910 void __iomem *ioaddr = lp->base;
911 int phyaddr = lp->mii.phy_id;
912 int bmcr, cfg1;
914 DBG(3, "%s: %s\n", dev->name, __func__);
916 /* Enter Link Disable state */
917 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
918 cfg1 |= PHY_CFG1_LNKDIS;
919 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
922 * Set our fixed capabilities
923 * Disable auto-negotiation
925 bmcr = 0;
927 if (lp->ctl_rfduplx)
928 bmcr |= BMCR_FULLDPLX;
930 if (lp->ctl_rspeed == 100)
931 bmcr |= BMCR_SPEED100;
933 /* Write our capabilities to the phy control register */
934 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
936 /* Re-Configure the Receive/Phy Control register */
937 SMC_SELECT_BANK(lp, 0);
938 SMC_SET_RPC(lp, lp->rpc_cur_mode);
939 SMC_SELECT_BANK(lp, 2);
941 return 1;
945 * smc_phy_reset - reset the phy
946 * @dev: net device
947 * @phy: phy address
949 * Issue a software reset for the specified PHY and
950 * wait up to 100ms for the reset to complete. We should
951 * not access the PHY for 50ms after issuing the reset.
953 * The time to wait appears to be dependent on the PHY.
955 * Must be called with lp->lock locked.
957 static int smc_phy_reset(struct net_device *dev, int phy)
959 struct smc_local *lp = netdev_priv(dev);
960 unsigned int bmcr;
961 int timeout;
963 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
965 for (timeout = 2; timeout; timeout--) {
966 spin_unlock_irq(&lp->lock);
967 msleep(50);
968 spin_lock_irq(&lp->lock);
970 bmcr = smc_phy_read(dev, phy, MII_BMCR);
971 if (!(bmcr & BMCR_RESET))
972 break;
975 return bmcr & BMCR_RESET;
979 * smc_phy_powerdown - powerdown phy
980 * @dev: net device
982 * Power down the specified PHY
984 static void smc_phy_powerdown(struct net_device *dev)
986 struct smc_local *lp = netdev_priv(dev);
987 unsigned int bmcr;
988 int phy = lp->mii.phy_id;
990 if (lp->phy_type == 0)
991 return;
993 /* We need to ensure that no calls to smc_phy_configure are
994 pending.
996 cancel_work_sync(&lp->phy_configure);
998 bmcr = smc_phy_read(dev, phy, MII_BMCR);
999 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1003 * smc_phy_check_media - check the media status and adjust TCR
1004 * @dev: net device
1005 * @init: set true for initialisation
1007 * Select duplex mode depending on negotiation state. This
1008 * also updates our carrier state.
1010 static void smc_phy_check_media(struct net_device *dev, int init)
1012 struct smc_local *lp = netdev_priv(dev);
1013 void __iomem *ioaddr = lp->base;
1015 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1016 /* duplex state has changed */
1017 if (lp->mii.full_duplex) {
1018 lp->tcr_cur_mode |= TCR_SWFDUP;
1019 } else {
1020 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1023 SMC_SELECT_BANK(lp, 0);
1024 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1029 * Configures the specified PHY through the MII management interface
1030 * using Autonegotiation.
1031 * Calls smc_phy_fixed() if the user has requested a certain config.
1032 * If RPC ANEG bit is set, the media selection is dependent purely on
1033 * the selection by the MII (either in the MII BMCR reg or the result
1034 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1035 * is controlled by the RPC SPEED and RPC DPLX bits.
1037 static void smc_phy_configure(struct work_struct *work)
1039 struct smc_local *lp =
1040 container_of(work, struct smc_local, phy_configure);
1041 struct net_device *dev = lp->dev;
1042 void __iomem *ioaddr = lp->base;
1043 int phyaddr = lp->mii.phy_id;
1044 int my_phy_caps; /* My PHY capabilities */
1045 int my_ad_caps; /* My Advertised capabilities */
1046 int status;
1048 DBG(3, "%s:smc_program_phy()\n", dev->name);
1050 spin_lock_irq(&lp->lock);
1053 * We should not be called if phy_type is zero.
1055 if (lp->phy_type == 0)
1056 goto smc_phy_configure_exit;
1058 if (smc_phy_reset(dev, phyaddr)) {
1059 printk("%s: PHY reset timed out\n", dev->name);
1060 goto smc_phy_configure_exit;
1064 * Enable PHY Interrupts (for register 18)
1065 * Interrupts listed here are disabled
1067 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1068 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1069 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1070 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1072 /* Configure the Receive/Phy Control register */
1073 SMC_SELECT_BANK(lp, 0);
1074 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1076 /* If the user requested no auto neg, then go set his request */
1077 if (lp->mii.force_media) {
1078 smc_phy_fixed(dev);
1079 goto smc_phy_configure_exit;
1082 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1083 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1085 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1086 printk(KERN_INFO "Auto negotiation NOT supported\n");
1087 smc_phy_fixed(dev);
1088 goto smc_phy_configure_exit;
1091 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1093 if (my_phy_caps & BMSR_100BASE4)
1094 my_ad_caps |= ADVERTISE_100BASE4;
1095 if (my_phy_caps & BMSR_100FULL)
1096 my_ad_caps |= ADVERTISE_100FULL;
1097 if (my_phy_caps & BMSR_100HALF)
1098 my_ad_caps |= ADVERTISE_100HALF;
1099 if (my_phy_caps & BMSR_10FULL)
1100 my_ad_caps |= ADVERTISE_10FULL;
1101 if (my_phy_caps & BMSR_10HALF)
1102 my_ad_caps |= ADVERTISE_10HALF;
1104 /* Disable capabilities not selected by our user */
1105 if (lp->ctl_rspeed != 100)
1106 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1108 if (!lp->ctl_rfduplx)
1109 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1111 /* Update our Auto-Neg Advertisement Register */
1112 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1113 lp->mii.advertising = my_ad_caps;
1116 * Read the register back. Without this, it appears that when
1117 * auto-negotiation is restarted, sometimes it isn't ready and
1118 * the link does not come up.
1120 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1122 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1123 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1125 /* Restart auto-negotiation process in order to advertise my caps */
1126 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1128 smc_phy_check_media(dev, 1);
1130 smc_phy_configure_exit:
1131 SMC_SELECT_BANK(lp, 2);
1132 spin_unlock_irq(&lp->lock);
1136 * smc_phy_interrupt
1138 * Purpose: Handle interrupts relating to PHY register 18. This is
1139 * called from the "hard" interrupt handler under our private spinlock.
1141 static void smc_phy_interrupt(struct net_device *dev)
1143 struct smc_local *lp = netdev_priv(dev);
1144 int phyaddr = lp->mii.phy_id;
1145 int phy18;
1147 DBG(2, "%s: %s\n", dev->name, __func__);
1149 if (lp->phy_type == 0)
1150 return;
1152 for(;;) {
1153 smc_phy_check_media(dev, 0);
1155 /* Read PHY Register 18, Status Output */
1156 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1157 if ((phy18 & PHY_INT_INT) == 0)
1158 break;
1162 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1164 static void smc_10bt_check_media(struct net_device *dev, int init)
1166 struct smc_local *lp = netdev_priv(dev);
1167 void __iomem *ioaddr = lp->base;
1168 unsigned int old_carrier, new_carrier;
1170 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1172 SMC_SELECT_BANK(lp, 0);
1173 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1174 SMC_SELECT_BANK(lp, 2);
1176 if (init || (old_carrier != new_carrier)) {
1177 if (!new_carrier) {
1178 netif_carrier_off(dev);
1179 } else {
1180 netif_carrier_on(dev);
1182 if (netif_msg_link(lp))
1183 printk(KERN_INFO "%s: link %s\n", dev->name,
1184 new_carrier ? "up" : "down");
1188 static void smc_eph_interrupt(struct net_device *dev)
1190 struct smc_local *lp = netdev_priv(dev);
1191 void __iomem *ioaddr = lp->base;
1192 unsigned int ctl;
1194 smc_10bt_check_media(dev, 0);
1196 SMC_SELECT_BANK(lp, 1);
1197 ctl = SMC_GET_CTL(lp);
1198 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1199 SMC_SET_CTL(lp, ctl);
1200 SMC_SELECT_BANK(lp, 2);
1204 * This is the main routine of the driver, to handle the device when
1205 * it needs some attention.
1207 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1209 struct net_device *dev = dev_id;
1210 struct smc_local *lp = netdev_priv(dev);
1211 void __iomem *ioaddr = lp->base;
1212 int status, mask, timeout, card_stats;
1213 int saved_pointer;
1215 DBG(3, "%s: %s\n", dev->name, __func__);
1217 spin_lock(&lp->lock);
1219 /* A preamble may be used when there is a potential race
1220 * between the interruptible transmit functions and this
1221 * ISR. */
1222 SMC_INTERRUPT_PREAMBLE;
1224 saved_pointer = SMC_GET_PTR(lp);
1225 mask = SMC_GET_INT_MASK(lp);
1226 SMC_SET_INT_MASK(lp, 0);
1228 /* set a timeout value, so I don't stay here forever */
1229 timeout = MAX_IRQ_LOOPS;
1231 do {
1232 status = SMC_GET_INT(lp);
1234 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1235 dev->name, status, mask,
1236 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1237 meminfo = SMC_GET_MIR(lp);
1238 SMC_SELECT_BANK(lp, 2); meminfo; }),
1239 SMC_GET_FIFO(lp));
1241 status &= mask;
1242 if (!status)
1243 break;
1245 if (status & IM_TX_INT) {
1246 /* do this before RX as it will free memory quickly */
1247 DBG(3, "%s: TX int\n", dev->name);
1248 smc_tx(dev);
1249 SMC_ACK_INT(lp, IM_TX_INT);
1250 if (THROTTLE_TX_PKTS)
1251 netif_wake_queue(dev);
1252 } else if (status & IM_RCV_INT) {
1253 DBG(3, "%s: RX irq\n", dev->name);
1254 smc_rcv(dev);
1255 } else if (status & IM_ALLOC_INT) {
1256 DBG(3, "%s: Allocation irq\n", dev->name);
1257 tasklet_hi_schedule(&lp->tx_task);
1258 mask &= ~IM_ALLOC_INT;
1259 } else if (status & IM_TX_EMPTY_INT) {
1260 DBG(3, "%s: TX empty\n", dev->name);
1261 mask &= ~IM_TX_EMPTY_INT;
1263 /* update stats */
1264 SMC_SELECT_BANK(lp, 0);
1265 card_stats = SMC_GET_COUNTER(lp);
1266 SMC_SELECT_BANK(lp, 2);
1268 /* single collisions */
1269 dev->stats.collisions += card_stats & 0xF;
1270 card_stats >>= 4;
1272 /* multiple collisions */
1273 dev->stats.collisions += card_stats & 0xF;
1274 } else if (status & IM_RX_OVRN_INT) {
1275 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1276 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1277 eph_st = SMC_GET_EPH_STATUS(lp);
1278 SMC_SELECT_BANK(lp, 2); eph_st; }));
1279 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1280 dev->stats.rx_errors++;
1281 dev->stats.rx_fifo_errors++;
1282 } else if (status & IM_EPH_INT) {
1283 smc_eph_interrupt(dev);
1284 } else if (status & IM_MDINT) {
1285 SMC_ACK_INT(lp, IM_MDINT);
1286 smc_phy_interrupt(dev);
1287 } else if (status & IM_ERCV_INT) {
1288 SMC_ACK_INT(lp, IM_ERCV_INT);
1289 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1291 } while (--timeout);
1293 /* restore register states */
1294 SMC_SET_PTR(lp, saved_pointer);
1295 SMC_SET_INT_MASK(lp, mask);
1296 spin_unlock(&lp->lock);
1298 #ifndef CONFIG_NET_POLL_CONTROLLER
1299 if (timeout == MAX_IRQ_LOOPS)
1300 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1301 dev->name, mask);
1302 #endif
1303 DBG(3, "%s: Interrupt done (%d loops)\n",
1304 dev->name, MAX_IRQ_LOOPS - timeout);
1307 * We return IRQ_HANDLED unconditionally here even if there was
1308 * nothing to do. There is a possibility that a packet might
1309 * get enqueued into the chip right after TX_EMPTY_INT is raised
1310 * but just before the CPU acknowledges the IRQ.
1311 * Better take an unneeded IRQ in some occasions than complexifying
1312 * the code for all cases.
1314 return IRQ_HANDLED;
1317 #ifdef CONFIG_NET_POLL_CONTROLLER
1319 * Polling receive - used by netconsole and other diagnostic tools
1320 * to allow network i/o with interrupts disabled.
1322 static void smc_poll_controller(struct net_device *dev)
1324 disable_irq(dev->irq);
1325 smc_interrupt(dev->irq, dev);
1326 enable_irq(dev->irq);
1328 #endif
1330 /* Our watchdog timed out. Called by the networking layer */
1331 static void smc_timeout(struct net_device *dev)
1333 struct smc_local *lp = netdev_priv(dev);
1334 void __iomem *ioaddr = lp->base;
1335 int status, mask, eph_st, meminfo, fifo;
1337 DBG(2, "%s: %s\n", dev->name, __func__);
1339 spin_lock_irq(&lp->lock);
1340 status = SMC_GET_INT(lp);
1341 mask = SMC_GET_INT_MASK(lp);
1342 fifo = SMC_GET_FIFO(lp);
1343 SMC_SELECT_BANK(lp, 0);
1344 eph_st = SMC_GET_EPH_STATUS(lp);
1345 meminfo = SMC_GET_MIR(lp);
1346 SMC_SELECT_BANK(lp, 2);
1347 spin_unlock_irq(&lp->lock);
1348 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1349 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1350 dev->name, status, mask, meminfo, fifo, eph_st );
1352 smc_reset(dev);
1353 smc_enable(dev);
1356 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1357 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1358 * which calls schedule(). Hence we use a work queue.
1360 if (lp->phy_type != 0)
1361 schedule_work(&lp->phy_configure);
1363 /* We can accept TX packets again */
1364 dev->trans_start = jiffies;
1365 netif_wake_queue(dev);
1369 * This routine will, depending on the values passed to it,
1370 * either make it accept multicast packets, go into
1371 * promiscuous mode (for TCPDUMP and cousins) or accept
1372 * a select set of multicast packets
1374 static void smc_set_multicast_list(struct net_device *dev)
1376 struct smc_local *lp = netdev_priv(dev);
1377 void __iomem *ioaddr = lp->base;
1378 unsigned char multicast_table[8];
1379 int update_multicast = 0;
1381 DBG(2, "%s: %s\n", dev->name, __func__);
1383 if (dev->flags & IFF_PROMISC) {
1384 DBG(2, "%s: RCR_PRMS\n", dev->name);
1385 lp->rcr_cur_mode |= RCR_PRMS;
1388 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1389 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1390 when promiscuous mode is turned on.
1394 * Here, I am setting this to accept all multicast packets.
1395 * I don't need to zero the multicast table, because the flag is
1396 * checked before the table is
1398 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1399 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1400 lp->rcr_cur_mode |= RCR_ALMUL;
1404 * This sets the internal hardware table to filter out unwanted
1405 * multicast packets before they take up memory.
1407 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1408 * address are the offset into the table. If that bit is 1, then the
1409 * multicast packet is accepted. Otherwise, it's dropped silently.
1411 * To use the 6 bits as an offset into the table, the high 3 bits are
1412 * the number of the 8 bit register, while the low 3 bits are the bit
1413 * within that register.
1415 else if (!netdev_mc_empty(dev)) {
1416 struct dev_mc_list *cur_addr;
1418 /* table for flipping the order of 3 bits */
1419 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421 /* start with a table of all zeros: reject all */
1422 memset(multicast_table, 0, sizeof(multicast_table));
1424 netdev_for_each_mc_addr(cur_addr, dev) {
1425 int position;
1427 /* make sure this is a multicast address -
1428 shouldn't this be a given if we have it here ? */
1429 if (!(*cur_addr->dmi_addr & 1))
1430 continue;
1432 /* only use the low order bits */
1433 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1435 /* do some messy swapping to put the bit in the right spot */
1436 multicast_table[invert3[position&7]] |=
1437 (1<<invert3[(position>>3)&7]);
1440 /* be sure I get rid of flags I might have set */
1441 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1443 /* now, the table can be loaded into the chipset */
1444 update_multicast = 1;
1445 } else {
1446 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1447 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1450 * since I'm disabling all multicast entirely, I need to
1451 * clear the multicast list
1453 memset(multicast_table, 0, sizeof(multicast_table));
1454 update_multicast = 1;
1457 spin_lock_irq(&lp->lock);
1458 SMC_SELECT_BANK(lp, 0);
1459 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1460 if (update_multicast) {
1461 SMC_SELECT_BANK(lp, 3);
1462 SMC_SET_MCAST(lp, multicast_table);
1464 SMC_SELECT_BANK(lp, 2);
1465 spin_unlock_irq(&lp->lock);
1470 * Open and Initialize the board
1472 * Set up everything, reset the card, etc..
1474 static int
1475 smc_open(struct net_device *dev)
1477 struct smc_local *lp = netdev_priv(dev);
1479 DBG(2, "%s: %s\n", dev->name, __func__);
1482 * Check that the address is valid. If its not, refuse
1483 * to bring the device up. The user must specify an
1484 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1486 if (!is_valid_ether_addr(dev->dev_addr)) {
1487 PRINTK("%s: no valid ethernet hw addr\n", __func__);
1488 return -EINVAL;
1491 /* Setup the default Register Modes */
1492 lp->tcr_cur_mode = TCR_DEFAULT;
1493 lp->rcr_cur_mode = RCR_DEFAULT;
1494 lp->rpc_cur_mode = RPC_DEFAULT |
1495 lp->cfg.leda << RPC_LSXA_SHFT |
1496 lp->cfg.ledb << RPC_LSXB_SHFT;
1499 * If we are not using a MII interface, we need to
1500 * monitor our own carrier signal to detect faults.
1502 if (lp->phy_type == 0)
1503 lp->tcr_cur_mode |= TCR_MON_CSN;
1505 /* reset the hardware */
1506 smc_reset(dev);
1507 smc_enable(dev);
1509 /* Configure the PHY, initialize the link state */
1510 if (lp->phy_type != 0)
1511 smc_phy_configure(&lp->phy_configure);
1512 else {
1513 spin_lock_irq(&lp->lock);
1514 smc_10bt_check_media(dev, 1);
1515 spin_unlock_irq(&lp->lock);
1518 netif_start_queue(dev);
1519 return 0;
1523 * smc_close
1525 * this makes the board clean up everything that it can
1526 * and not talk to the outside world. Caused by
1527 * an 'ifconfig ethX down'
1529 static int smc_close(struct net_device *dev)
1531 struct smc_local *lp = netdev_priv(dev);
1533 DBG(2, "%s: %s\n", dev->name, __func__);
1535 netif_stop_queue(dev);
1536 netif_carrier_off(dev);
1538 /* clear everything */
1539 smc_shutdown(dev);
1540 tasklet_kill(&lp->tx_task);
1541 smc_phy_powerdown(dev);
1542 return 0;
1546 * Ethtool support
1548 static int
1549 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1551 struct smc_local *lp = netdev_priv(dev);
1552 int ret;
1554 cmd->maxtxpkt = 1;
1555 cmd->maxrxpkt = 1;
1557 if (lp->phy_type != 0) {
1558 spin_lock_irq(&lp->lock);
1559 ret = mii_ethtool_gset(&lp->mii, cmd);
1560 spin_unlock_irq(&lp->lock);
1561 } else {
1562 cmd->supported = SUPPORTED_10baseT_Half |
1563 SUPPORTED_10baseT_Full |
1564 SUPPORTED_TP | SUPPORTED_AUI;
1566 if (lp->ctl_rspeed == 10)
1567 cmd->speed = SPEED_10;
1568 else if (lp->ctl_rspeed == 100)
1569 cmd->speed = SPEED_100;
1571 cmd->autoneg = AUTONEG_DISABLE;
1572 cmd->transceiver = XCVR_INTERNAL;
1573 cmd->port = 0;
1574 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1576 ret = 0;
1579 return ret;
1582 static int
1583 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1585 struct smc_local *lp = netdev_priv(dev);
1586 int ret;
1588 if (lp->phy_type != 0) {
1589 spin_lock_irq(&lp->lock);
1590 ret = mii_ethtool_sset(&lp->mii, cmd);
1591 spin_unlock_irq(&lp->lock);
1592 } else {
1593 if (cmd->autoneg != AUTONEG_DISABLE ||
1594 cmd->speed != SPEED_10 ||
1595 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1596 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1597 return -EINVAL;
1599 // lp->port = cmd->port;
1600 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1602 // if (netif_running(dev))
1603 // smc_set_port(dev);
1605 ret = 0;
1608 return ret;
1611 static void
1612 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1614 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1615 strncpy(info->version, version, sizeof(info->version));
1616 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1619 static int smc_ethtool_nwayreset(struct net_device *dev)
1621 struct smc_local *lp = netdev_priv(dev);
1622 int ret = -EINVAL;
1624 if (lp->phy_type != 0) {
1625 spin_lock_irq(&lp->lock);
1626 ret = mii_nway_restart(&lp->mii);
1627 spin_unlock_irq(&lp->lock);
1630 return ret;
1633 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1635 struct smc_local *lp = netdev_priv(dev);
1636 return lp->msg_enable;
1639 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1641 struct smc_local *lp = netdev_priv(dev);
1642 lp->msg_enable = level;
1645 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1647 u16 ctl;
1648 struct smc_local *lp = netdev_priv(dev);
1649 void __iomem *ioaddr = lp->base;
1651 spin_lock_irq(&lp->lock);
1652 /* load word into GP register */
1653 SMC_SELECT_BANK(lp, 1);
1654 SMC_SET_GP(lp, word);
1655 /* set the address to put the data in EEPROM */
1656 SMC_SELECT_BANK(lp, 2);
1657 SMC_SET_PTR(lp, addr);
1658 /* tell it to write */
1659 SMC_SELECT_BANK(lp, 1);
1660 ctl = SMC_GET_CTL(lp);
1661 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1662 /* wait for it to finish */
1663 do {
1664 udelay(1);
1665 } while (SMC_GET_CTL(lp) & CTL_STORE);
1666 /* clean up */
1667 SMC_SET_CTL(lp, ctl);
1668 SMC_SELECT_BANK(lp, 2);
1669 spin_unlock_irq(&lp->lock);
1670 return 0;
1673 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1675 u16 ctl;
1676 struct smc_local *lp = netdev_priv(dev);
1677 void __iomem *ioaddr = lp->base;
1679 spin_lock_irq(&lp->lock);
1680 /* set the EEPROM address to get the data from */
1681 SMC_SELECT_BANK(lp, 2);
1682 SMC_SET_PTR(lp, addr | PTR_READ);
1683 /* tell it to load */
1684 SMC_SELECT_BANK(lp, 1);
1685 SMC_SET_GP(lp, 0xffff); /* init to known */
1686 ctl = SMC_GET_CTL(lp);
1687 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1688 /* wait for it to finish */
1689 do {
1690 udelay(1);
1691 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1692 /* read word from GP register */
1693 *word = SMC_GET_GP(lp);
1694 /* clean up */
1695 SMC_SET_CTL(lp, ctl);
1696 SMC_SELECT_BANK(lp, 2);
1697 spin_unlock_irq(&lp->lock);
1698 return 0;
1701 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1703 return 0x23 * 2;
1706 static int smc_ethtool_geteeprom(struct net_device *dev,
1707 struct ethtool_eeprom *eeprom, u8 *data)
1709 int i;
1710 int imax;
1712 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1713 eeprom->len, eeprom->offset, eeprom->offset);
1714 imax = smc_ethtool_geteeprom_len(dev);
1715 for (i = 0; i < eeprom->len; i += 2) {
1716 int ret;
1717 u16 wbuf;
1718 int offset = i + eeprom->offset;
1719 if (offset > imax)
1720 break;
1721 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1722 if (ret != 0)
1723 return ret;
1724 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1725 data[i] = (wbuf >> 8) & 0xff;
1726 data[i+1] = wbuf & 0xff;
1728 return 0;
1731 static int smc_ethtool_seteeprom(struct net_device *dev,
1732 struct ethtool_eeprom *eeprom, u8 *data)
1734 int i;
1735 int imax;
1737 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1738 eeprom->len, eeprom->offset, eeprom->offset);
1739 imax = smc_ethtool_geteeprom_len(dev);
1740 for (i = 0; i < eeprom->len; i += 2) {
1741 int ret;
1742 u16 wbuf;
1743 int offset = i + eeprom->offset;
1744 if (offset > imax)
1745 break;
1746 wbuf = (data[i] << 8) | data[i + 1];
1747 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1748 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1749 if (ret != 0)
1750 return ret;
1752 return 0;
1756 static const struct ethtool_ops smc_ethtool_ops = {
1757 .get_settings = smc_ethtool_getsettings,
1758 .set_settings = smc_ethtool_setsettings,
1759 .get_drvinfo = smc_ethtool_getdrvinfo,
1761 .get_msglevel = smc_ethtool_getmsglevel,
1762 .set_msglevel = smc_ethtool_setmsglevel,
1763 .nway_reset = smc_ethtool_nwayreset,
1764 .get_link = ethtool_op_get_link,
1765 .get_eeprom_len = smc_ethtool_geteeprom_len,
1766 .get_eeprom = smc_ethtool_geteeprom,
1767 .set_eeprom = smc_ethtool_seteeprom,
1770 static const struct net_device_ops smc_netdev_ops = {
1771 .ndo_open = smc_open,
1772 .ndo_stop = smc_close,
1773 .ndo_start_xmit = smc_hard_start_xmit,
1774 .ndo_tx_timeout = smc_timeout,
1775 .ndo_set_multicast_list = smc_set_multicast_list,
1776 .ndo_change_mtu = eth_change_mtu,
1777 .ndo_validate_addr = eth_validate_addr,
1778 .ndo_set_mac_address = eth_mac_addr,
1779 #ifdef CONFIG_NET_POLL_CONTROLLER
1780 .ndo_poll_controller = smc_poll_controller,
1781 #endif
1785 * smc_findirq
1787 * This routine has a simple purpose -- make the SMC chip generate an
1788 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1791 * does this still work?
1793 * I just deleted auto_irq.c, since it was never built...
1794 * --jgarzik
1796 static int __devinit smc_findirq(struct smc_local *lp)
1798 void __iomem *ioaddr = lp->base;
1799 int timeout = 20;
1800 unsigned long cookie;
1802 DBG(2, "%s: %s\n", CARDNAME, __func__);
1804 cookie = probe_irq_on();
1807 * What I try to do here is trigger an ALLOC_INT. This is done
1808 * by allocating a small chunk of memory, which will give an interrupt
1809 * when done.
1811 /* enable ALLOCation interrupts ONLY */
1812 SMC_SELECT_BANK(lp, 2);
1813 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1816 * Allocate 512 bytes of memory. Note that the chip was just
1817 * reset so all the memory is available
1819 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1822 * Wait until positive that the interrupt has been generated
1824 do {
1825 int int_status;
1826 udelay(10);
1827 int_status = SMC_GET_INT(lp);
1828 if (int_status & IM_ALLOC_INT)
1829 break; /* got the interrupt */
1830 } while (--timeout);
1833 * there is really nothing that I can do here if timeout fails,
1834 * as autoirq_report will return a 0 anyway, which is what I
1835 * want in this case. Plus, the clean up is needed in both
1836 * cases.
1839 /* and disable all interrupts again */
1840 SMC_SET_INT_MASK(lp, 0);
1842 /* and return what I found */
1843 return probe_irq_off(cookie);
1847 * Function: smc_probe(unsigned long ioaddr)
1849 * Purpose:
1850 * Tests to see if a given ioaddr points to an SMC91x chip.
1851 * Returns a 0 on success
1853 * Algorithm:
1854 * (1) see if the high byte of BANK_SELECT is 0x33
1855 * (2) compare the ioaddr with the base register's address
1856 * (3) see if I recognize the chip ID in the appropriate register
1858 * Here I do typical initialization tasks.
1860 * o Initialize the structure if needed
1861 * o print out my vanity message if not done so already
1862 * o print out what type of hardware is detected
1863 * o print out the ethernet address
1864 * o find the IRQ
1865 * o set up my private data
1866 * o configure the dev structure with my subroutines
1867 * o actually GRAB the irq.
1868 * o GRAB the region
1870 static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1871 unsigned long irq_flags)
1873 struct smc_local *lp = netdev_priv(dev);
1874 static int version_printed = 0;
1875 int retval;
1876 unsigned int val, revision_register;
1877 const char *version_string;
1879 DBG(2, "%s: %s\n", CARDNAME, __func__);
1881 /* First, see if the high byte is 0x33 */
1882 val = SMC_CURRENT_BANK(lp);
1883 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1884 if ((val & 0xFF00) != 0x3300) {
1885 if ((val & 0xFF) == 0x33) {
1886 printk(KERN_WARNING
1887 "%s: Detected possible byte-swapped interface"
1888 " at IOADDR %p\n", CARDNAME, ioaddr);
1890 retval = -ENODEV;
1891 goto err_out;
1895 * The above MIGHT indicate a device, but I need to write to
1896 * further test this.
1898 SMC_SELECT_BANK(lp, 0);
1899 val = SMC_CURRENT_BANK(lp);
1900 if ((val & 0xFF00) != 0x3300) {
1901 retval = -ENODEV;
1902 goto err_out;
1906 * well, we've already written once, so hopefully another
1907 * time won't hurt. This time, I need to switch the bank
1908 * register to bank 1, so I can access the base address
1909 * register
1911 SMC_SELECT_BANK(lp, 1);
1912 val = SMC_GET_BASE(lp);
1913 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1914 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1915 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1916 CARDNAME, ioaddr, val);
1920 * check if the revision register is something that I
1921 * recognize. These might need to be added to later,
1922 * as future revisions could be added.
1924 SMC_SELECT_BANK(lp, 3);
1925 revision_register = SMC_GET_REV(lp);
1926 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1927 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1928 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1929 /* I don't recognize this chip, so... */
1930 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1931 ", Contact author.\n", CARDNAME,
1932 ioaddr, revision_register);
1934 retval = -ENODEV;
1935 goto err_out;
1938 /* At this point I'll assume that the chip is an SMC91x. */
1939 if (version_printed++ == 0)
1940 printk("%s", version);
1942 /* fill in some of the fields */
1943 dev->base_addr = (unsigned long)ioaddr;
1944 lp->base = ioaddr;
1945 lp->version = revision_register & 0xff;
1946 spin_lock_init(&lp->lock);
1948 /* Get the MAC address */
1949 SMC_SELECT_BANK(lp, 1);
1950 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1952 /* now, reset the chip, and put it into a known state */
1953 smc_reset(dev);
1956 * If dev->irq is 0, then the device has to be banged on to see
1957 * what the IRQ is.
1959 * This banging doesn't always detect the IRQ, for unknown reasons.
1960 * a workaround is to reset the chip and try again.
1962 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1963 * be what is requested on the command line. I don't do that, mostly
1964 * because the card that I have uses a non-standard method of accessing
1965 * the IRQs, and because this _should_ work in most configurations.
1967 * Specifying an IRQ is done with the assumption that the user knows
1968 * what (s)he is doing. No checking is done!!!!
1970 if (dev->irq < 1) {
1971 int trials;
1973 trials = 3;
1974 while (trials--) {
1975 dev->irq = smc_findirq(lp);
1976 if (dev->irq)
1977 break;
1978 /* kick the card and try again */
1979 smc_reset(dev);
1982 if (dev->irq == 0) {
1983 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1984 dev->name);
1985 retval = -ENODEV;
1986 goto err_out;
1988 dev->irq = irq_canonicalize(dev->irq);
1990 /* Fill in the fields of the device structure with ethernet values. */
1991 ether_setup(dev);
1993 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1994 dev->netdev_ops = &smc_netdev_ops;
1995 dev->ethtool_ops = &smc_ethtool_ops;
1997 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1998 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1999 lp->dev = dev;
2000 lp->mii.phy_id_mask = 0x1f;
2001 lp->mii.reg_num_mask = 0x1f;
2002 lp->mii.force_media = 0;
2003 lp->mii.full_duplex = 0;
2004 lp->mii.dev = dev;
2005 lp->mii.mdio_read = smc_phy_read;
2006 lp->mii.mdio_write = smc_phy_write;
2009 * Locate the phy, if any.
2011 if (lp->version >= (CHIP_91100 << 4))
2012 smc_phy_detect(dev);
2014 /* then shut everything down to save power */
2015 smc_shutdown(dev);
2016 smc_phy_powerdown(dev);
2018 /* Set default parameters */
2019 lp->msg_enable = NETIF_MSG_LINK;
2020 lp->ctl_rfduplx = 0;
2021 lp->ctl_rspeed = 10;
2023 if (lp->version >= (CHIP_91100 << 4)) {
2024 lp->ctl_rfduplx = 1;
2025 lp->ctl_rspeed = 100;
2028 /* Grab the IRQ */
2029 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2030 if (retval)
2031 goto err_out;
2033 #ifdef CONFIG_ARCH_PXA
2034 # ifdef SMC_USE_PXA_DMA
2035 lp->cfg.flags |= SMC91X_USE_DMA;
2036 # endif
2037 if (lp->cfg.flags & SMC91X_USE_DMA) {
2038 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2039 smc_pxa_dma_irq, NULL);
2040 if (dma >= 0)
2041 dev->dma = dma;
2043 #endif
2045 retval = register_netdev(dev);
2046 if (retval == 0) {
2047 /* now, print out the card info, in a short format.. */
2048 printk("%s: %s (rev %d) at %p IRQ %d",
2049 dev->name, version_string, revision_register & 0x0f,
2050 lp->base, dev->irq);
2052 if (dev->dma != (unsigned char)-1)
2053 printk(" DMA %d", dev->dma);
2055 printk("%s%s\n",
2056 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2057 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2059 if (!is_valid_ether_addr(dev->dev_addr)) {
2060 printk("%s: Invalid ethernet MAC address. Please "
2061 "set using ifconfig\n", dev->name);
2062 } else {
2063 /* Print the Ethernet address */
2064 printk("%s: Ethernet addr: %pM\n",
2065 dev->name, dev->dev_addr);
2068 if (lp->phy_type == 0) {
2069 PRINTK("%s: No PHY found\n", dev->name);
2070 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2071 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2072 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2073 PRINTK("%s: PHY LAN83C180\n", dev->name);
2077 err_out:
2078 #ifdef CONFIG_ARCH_PXA
2079 if (retval && dev->dma != (unsigned char)-1)
2080 pxa_free_dma(dev->dma);
2081 #endif
2082 return retval;
2085 static int smc_enable_device(struct platform_device *pdev)
2087 struct net_device *ndev = platform_get_drvdata(pdev);
2088 struct smc_local *lp = netdev_priv(ndev);
2089 unsigned long flags;
2090 unsigned char ecor, ecsr;
2091 void __iomem *addr;
2092 struct resource * res;
2094 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2095 if (!res)
2096 return 0;
2099 * Map the attribute space. This is overkill, but clean.
2101 addr = ioremap(res->start, ATTRIB_SIZE);
2102 if (!addr)
2103 return -ENOMEM;
2106 * Reset the device. We must disable IRQs around this
2107 * since a reset causes the IRQ line become active.
2109 local_irq_save(flags);
2110 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2111 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2112 readb(addr + (ECOR << SMC_IO_SHIFT));
2115 * Wait 100us for the chip to reset.
2117 udelay(100);
2120 * The device will ignore all writes to the enable bit while
2121 * reset is asserted, even if the reset bit is cleared in the
2122 * same write. Must clear reset first, then enable the device.
2124 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2125 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2128 * Set the appropriate byte/word mode.
2130 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2131 if (!SMC_16BIT(lp))
2132 ecsr |= ECSR_IOIS8;
2133 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2134 local_irq_restore(flags);
2136 iounmap(addr);
2139 * Wait for the chip to wake up. We could poll the control
2140 * register in the main register space, but that isn't mapped
2141 * yet. We know this is going to take 750us.
2143 msleep(1);
2145 return 0;
2148 static int smc_request_attrib(struct platform_device *pdev,
2149 struct net_device *ndev)
2151 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2152 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2154 if (!res)
2155 return 0;
2157 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2158 return -EBUSY;
2160 return 0;
2163 static void smc_release_attrib(struct platform_device *pdev,
2164 struct net_device *ndev)
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2167 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2169 if (res)
2170 release_mem_region(res->start, ATTRIB_SIZE);
2173 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2175 if (SMC_CAN_USE_DATACS) {
2176 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2177 struct smc_local *lp = netdev_priv(ndev);
2179 if (!res)
2180 return;
2182 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2183 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2184 return;
2187 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2191 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2193 if (SMC_CAN_USE_DATACS) {
2194 struct smc_local *lp = netdev_priv(ndev);
2195 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2197 if (lp->datacs)
2198 iounmap(lp->datacs);
2200 lp->datacs = NULL;
2202 if (res)
2203 release_mem_region(res->start, SMC_DATA_EXTENT);
2208 * smc_init(void)
2209 * Input parameters:
2210 * dev->base_addr == 0, try to find all possible locations
2211 * dev->base_addr > 0x1ff, this is the address to check
2212 * dev->base_addr == <anything else>, return failure code
2214 * Output:
2215 * 0 --> there is a device
2216 * anything else, error
2218 static int __devinit smc_drv_probe(struct platform_device *pdev)
2220 struct smc91x_platdata *pd = pdev->dev.platform_data;
2221 struct smc_local *lp;
2222 struct net_device *ndev;
2223 struct resource *res, *ires;
2224 unsigned int __iomem *addr;
2225 unsigned long irq_flags = SMC_IRQ_FLAGS;
2226 int ret;
2228 ndev = alloc_etherdev(sizeof(struct smc_local));
2229 if (!ndev) {
2230 printk("%s: could not allocate device.\n", CARDNAME);
2231 ret = -ENOMEM;
2232 goto out;
2234 SET_NETDEV_DEV(ndev, &pdev->dev);
2236 /* get configuration from platform data, only allow use of
2237 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2240 lp = netdev_priv(ndev);
2242 if (pd) {
2243 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2244 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2245 } else {
2246 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2247 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2248 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2249 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2252 if (!lp->cfg.leda && !lp->cfg.ledb) {
2253 lp->cfg.leda = RPC_LSA_DEFAULT;
2254 lp->cfg.ledb = RPC_LSB_DEFAULT;
2257 ndev->dma = (unsigned char)-1;
2259 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2260 if (!res)
2261 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2262 if (!res) {
2263 ret = -ENODEV;
2264 goto out_free_netdev;
2268 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2269 ret = -EBUSY;
2270 goto out_free_netdev;
2273 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2274 if (!ires) {
2275 ret = -ENODEV;
2276 goto out_release_io;
2279 ndev->irq = ires->start;
2281 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2282 irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2284 ret = smc_request_attrib(pdev, ndev);
2285 if (ret)
2286 goto out_release_io;
2287 #if defined(CONFIG_SA1100_ASSABET)
2288 NCR_0 |= NCR_ENET_OSC_EN;
2289 #endif
2290 platform_set_drvdata(pdev, ndev);
2291 ret = smc_enable_device(pdev);
2292 if (ret)
2293 goto out_release_attrib;
2295 addr = ioremap(res->start, SMC_IO_EXTENT);
2296 if (!addr) {
2297 ret = -ENOMEM;
2298 goto out_release_attrib;
2301 #ifdef CONFIG_ARCH_PXA
2303 struct smc_local *lp = netdev_priv(ndev);
2304 lp->device = &pdev->dev;
2305 lp->physaddr = res->start;
2307 #endif
2309 ret = smc_probe(ndev, addr, irq_flags);
2310 if (ret != 0)
2311 goto out_iounmap;
2313 smc_request_datacs(pdev, ndev);
2315 return 0;
2317 out_iounmap:
2318 platform_set_drvdata(pdev, NULL);
2319 iounmap(addr);
2320 out_release_attrib:
2321 smc_release_attrib(pdev, ndev);
2322 out_release_io:
2323 release_mem_region(res->start, SMC_IO_EXTENT);
2324 out_free_netdev:
2325 free_netdev(ndev);
2326 out:
2327 printk("%s: not found (%d).\n", CARDNAME, ret);
2329 return ret;
2332 static int __devexit smc_drv_remove(struct platform_device *pdev)
2334 struct net_device *ndev = platform_get_drvdata(pdev);
2335 struct smc_local *lp = netdev_priv(ndev);
2336 struct resource *res;
2338 platform_set_drvdata(pdev, NULL);
2340 unregister_netdev(ndev);
2342 free_irq(ndev->irq, ndev);
2344 #ifdef CONFIG_ARCH_PXA
2345 if (ndev->dma != (unsigned char)-1)
2346 pxa_free_dma(ndev->dma);
2347 #endif
2348 iounmap(lp->base);
2350 smc_release_datacs(pdev,ndev);
2351 smc_release_attrib(pdev,ndev);
2353 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2354 if (!res)
2355 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2356 release_mem_region(res->start, SMC_IO_EXTENT);
2358 free_netdev(ndev);
2360 return 0;
2363 static int smc_drv_suspend(struct device *dev)
2365 struct platform_device *pdev = to_platform_device(dev);
2366 struct net_device *ndev = platform_get_drvdata(pdev);
2368 if (ndev) {
2369 if (netif_running(ndev)) {
2370 netif_device_detach(ndev);
2371 smc_shutdown(ndev);
2372 smc_phy_powerdown(ndev);
2375 return 0;
2378 static int smc_drv_resume(struct device *dev)
2380 struct platform_device *pdev = to_platform_device(dev);
2381 struct net_device *ndev = platform_get_drvdata(pdev);
2383 if (ndev) {
2384 struct smc_local *lp = netdev_priv(ndev);
2385 smc_enable_device(pdev);
2386 if (netif_running(ndev)) {
2387 smc_reset(ndev);
2388 smc_enable(ndev);
2389 if (lp->phy_type != 0)
2390 smc_phy_configure(&lp->phy_configure);
2391 netif_device_attach(ndev);
2394 return 0;
2397 static struct dev_pm_ops smc_drv_pm_ops = {
2398 .suspend = smc_drv_suspend,
2399 .resume = smc_drv_resume,
2402 static struct platform_driver smc_driver = {
2403 .probe = smc_drv_probe,
2404 .remove = __devexit_p(smc_drv_remove),
2405 .driver = {
2406 .name = CARDNAME,
2407 .owner = THIS_MODULE,
2408 .pm = &smc_drv_pm_ops,
2412 static int __init smc_init(void)
2414 return platform_driver_register(&smc_driver);
2417 static void __exit smc_cleanup(void)
2419 platform_driver_unregister(&smc_driver);
2422 module_init(smc_init);
2423 module_exit(smc_cleanup);