Linux 2.6.34-rc3
[pohmelfs.git] / drivers / scsi / aacraid / aachba.c
blob7e26ebc266614ad18030622a4db2c7cc16c9f450
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <asm/uaccess.h>
35 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 #include <scsi/scsi_host.h>
42 #include "aacraid.h"
44 /* values for inqd_pdt: Peripheral device type in plain English */
45 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
46 #define INQD_PDT_PROC 0x03 /* Processor device */
47 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
48 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
49 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
50 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
52 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
53 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56 * Sense codes
59 #define SENCODE_NO_SENSE 0x00
60 #define SENCODE_END_OF_DATA 0x00
61 #define SENCODE_BECOMING_READY 0x04
62 #define SENCODE_INIT_CMD_REQUIRED 0x04
63 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
64 #define SENCODE_INVALID_COMMAND 0x20
65 #define SENCODE_LBA_OUT_OF_RANGE 0x21
66 #define SENCODE_INVALID_CDB_FIELD 0x24
67 #define SENCODE_LUN_NOT_SUPPORTED 0x25
68 #define SENCODE_INVALID_PARAM_FIELD 0x26
69 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
70 #define SENCODE_PARAM_VALUE_INVALID 0x26
71 #define SENCODE_RESET_OCCURRED 0x29
72 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
73 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
74 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
75 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
76 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
77 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
78 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
79 #define SENCODE_OVERLAPPED_COMMAND 0x4E
82 * Additional sense codes
85 #define ASENCODE_NO_SENSE 0x00
86 #define ASENCODE_END_OF_DATA 0x05
87 #define ASENCODE_BECOMING_READY 0x01
88 #define ASENCODE_INIT_CMD_REQUIRED 0x02
89 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
90 #define ASENCODE_INVALID_COMMAND 0x00
91 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
92 #define ASENCODE_INVALID_CDB_FIELD 0x00
93 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
94 #define ASENCODE_INVALID_PARAM_FIELD 0x00
95 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
96 #define ASENCODE_PARAM_VALUE_INVALID 0x02
97 #define ASENCODE_RESET_OCCURRED 0x00
98 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
99 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
100 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
101 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
102 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
103 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
104 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
105 #define ASENCODE_OVERLAPPED_COMMAND 0x00
107 #define BYTE0(x) (unsigned char)(x)
108 #define BYTE1(x) (unsigned char)((x) >> 8)
109 #define BYTE2(x) (unsigned char)((x) >> 16)
110 #define BYTE3(x) (unsigned char)((x) >> 24)
112 /*------------------------------------------------------------------------------
113 * S T R U C T S / T Y P E D E F S
114 *----------------------------------------------------------------------------*/
115 /* SCSI inquiry data */
116 struct inquiry_data {
117 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
118 u8 inqd_dtq; /* RMB | Device Type Qualifier */
119 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
120 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
121 u8 inqd_len; /* Additional length (n-4) */
122 u8 inqd_pad1[2];/* Reserved - must be zero */
123 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
124 u8 inqd_vid[8]; /* Vendor ID */
125 u8 inqd_pid[16];/* Product ID */
126 u8 inqd_prl[4]; /* Product Revision Level */
130 * M O D U L E G L O B A L S
133 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
134 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
135 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
142 * Non dasd selection is handled entirely in aachba now
145 static int nondasd = -1;
146 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
147 static int dacmode = -1;
148 int aac_msi;
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
155 " 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
158 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
159 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
160 "\tbit 2 - Disable only if Battery is protecting Cache");
161 module_param(dacmode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
163 " 0=off, 1=on");
164 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
166 " adapter for foreign arrays.\n"
167 "This is typically needed in systems that do not have a BIOS."
168 " 0=off, 1=on");
169 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(msi, "IRQ handling."
171 " 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
172 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
174 " adapter to have it's kernel up and\n"
175 "running. This is typically adjusted for large systems that do not"
176 " have a BIOS.");
177 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
179 " applications to pick up AIFs before\n"
180 "deregistering them. This is typically adjusted for heavily burdened"
181 " systems.");
183 int numacb = -1;
184 module_param(numacb, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
186 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
187 " to use suggestion from Firmware.");
189 int acbsize = -1;
190 module_param(acbsize, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
192 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
193 " suggestion from Firmware.");
195 int update_interval = 30 * 60;
196 module_param(update_interval, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
198 " updates issued to adapter.");
200 int check_interval = 24 * 60 * 60;
201 module_param(check_interval, int, S_IRUGO|S_IWUSR);
202 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
203 " checks.");
205 int aac_check_reset = 1;
206 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
207 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
208 " adapter. a value of -1 forces the reset to adapters programmed to"
209 " ignore it.");
211 int expose_physicals = -1;
212 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
214 " -1=protect 0=off, 1=on");
216 int aac_reset_devices;
217 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
218 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
220 int aac_wwn = 1;
221 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
222 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
223 "\t0 - Disable\n"
224 "\t1 - Array Meta Data Signature (default)\n"
225 "\t2 - Adapter Serial Number");
228 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
229 struct fib *fibptr) {
230 struct scsi_device *device;
232 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
233 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
234 aac_fib_complete(fibptr);
235 aac_fib_free(fibptr);
236 return 0;
238 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
239 device = scsicmd->device;
240 if (unlikely(!device || !scsi_device_online(device))) {
241 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
242 aac_fib_complete(fibptr);
243 aac_fib_free(fibptr);
244 return 0;
246 return 1;
250 * aac_get_config_status - check the adapter configuration
251 * @common: adapter to query
253 * Query config status, and commit the configuration if needed.
255 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
257 int status = 0;
258 struct fib * fibptr;
260 if (!(fibptr = aac_fib_alloc(dev)))
261 return -ENOMEM;
263 aac_fib_init(fibptr);
265 struct aac_get_config_status *dinfo;
266 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
268 dinfo->command = cpu_to_le32(VM_ContainerConfig);
269 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
270 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
273 status = aac_fib_send(ContainerCommand,
274 fibptr,
275 sizeof (struct aac_get_config_status),
276 FsaNormal,
277 1, 1,
278 NULL, NULL);
279 if (status < 0) {
280 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
281 } else {
282 struct aac_get_config_status_resp *reply
283 = (struct aac_get_config_status_resp *) fib_data(fibptr);
284 dprintk((KERN_WARNING
285 "aac_get_config_status: response=%d status=%d action=%d\n",
286 le32_to_cpu(reply->response),
287 le32_to_cpu(reply->status),
288 le32_to_cpu(reply->data.action)));
289 if ((le32_to_cpu(reply->response) != ST_OK) ||
290 (le32_to_cpu(reply->status) != CT_OK) ||
291 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
292 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
293 status = -EINVAL;
296 /* Do not set XferState to zero unless receives a response from F/W */
297 if (status >= 0)
298 aac_fib_complete(fibptr);
300 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
301 if (status >= 0) {
302 if ((aac_commit == 1) || commit_flag) {
303 struct aac_commit_config * dinfo;
304 aac_fib_init(fibptr);
305 dinfo = (struct aac_commit_config *) fib_data(fibptr);
307 dinfo->command = cpu_to_le32(VM_ContainerConfig);
308 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
310 status = aac_fib_send(ContainerCommand,
311 fibptr,
312 sizeof (struct aac_commit_config),
313 FsaNormal,
314 1, 1,
315 NULL, NULL);
316 /* Do not set XferState to zero unless
317 * receives a response from F/W */
318 if (status >= 0)
319 aac_fib_complete(fibptr);
320 } else if (aac_commit == 0) {
321 printk(KERN_WARNING
322 "aac_get_config_status: Foreign device configurations are being ignored\n");
325 /* FIB should be freed only after getting the response from the F/W */
326 if (status != -ERESTARTSYS)
327 aac_fib_free(fibptr);
328 return status;
332 * aac_get_containers - list containers
333 * @common: adapter to probe
335 * Make a list of all containers on this controller
337 int aac_get_containers(struct aac_dev *dev)
339 struct fsa_dev_info *fsa_dev_ptr;
340 u32 index;
341 int status = 0;
342 struct fib * fibptr;
343 struct aac_get_container_count *dinfo;
344 struct aac_get_container_count_resp *dresp;
345 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
347 if (!(fibptr = aac_fib_alloc(dev)))
348 return -ENOMEM;
350 aac_fib_init(fibptr);
351 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
352 dinfo->command = cpu_to_le32(VM_ContainerConfig);
353 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
355 status = aac_fib_send(ContainerCommand,
356 fibptr,
357 sizeof (struct aac_get_container_count),
358 FsaNormal,
359 1, 1,
360 NULL, NULL);
361 if (status >= 0) {
362 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
363 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
364 aac_fib_complete(fibptr);
366 /* FIB should be freed only after getting the response from the F/W */
367 if (status != -ERESTARTSYS)
368 aac_fib_free(fibptr);
370 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
371 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
372 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
373 GFP_KERNEL);
374 if (!fsa_dev_ptr)
375 return -ENOMEM;
377 dev->fsa_dev = fsa_dev_ptr;
378 dev->maximum_num_containers = maximum_num_containers;
380 for (index = 0; index < dev->maximum_num_containers; ) {
381 fsa_dev_ptr[index].devname[0] = '\0';
383 status = aac_probe_container(dev, index);
385 if (status < 0) {
386 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
387 break;
391 * If there are no more containers, then stop asking.
393 if (++index >= status)
394 break;
396 return status;
399 static void get_container_name_callback(void *context, struct fib * fibptr)
401 struct aac_get_name_resp * get_name_reply;
402 struct scsi_cmnd * scsicmd;
404 scsicmd = (struct scsi_cmnd *) context;
406 if (!aac_valid_context(scsicmd, fibptr))
407 return;
409 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
410 BUG_ON(fibptr == NULL);
412 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
413 /* Failure is irrelevant, using default value instead */
414 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
415 && (get_name_reply->data[0] != '\0')) {
416 char *sp = get_name_reply->data;
417 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
418 while (*sp == ' ')
419 ++sp;
420 if (*sp) {
421 struct inquiry_data inq;
422 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
423 int count = sizeof(d);
424 char *dp = d;
425 do {
426 *dp++ = (*sp) ? *sp++ : ' ';
427 } while (--count > 0);
429 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
430 memcpy(inq.inqd_pid, d, sizeof(d));
431 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
435 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
437 aac_fib_complete(fibptr);
438 aac_fib_free(fibptr);
439 scsicmd->scsi_done(scsicmd);
443 * aac_get_container_name - get container name, none blocking.
445 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
447 int status;
448 struct aac_get_name *dinfo;
449 struct fib * cmd_fibcontext;
450 struct aac_dev * dev;
452 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
454 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
455 return -ENOMEM;
457 aac_fib_init(cmd_fibcontext);
458 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
460 dinfo->command = cpu_to_le32(VM_ContainerConfig);
461 dinfo->type = cpu_to_le32(CT_READ_NAME);
462 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
463 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
465 status = aac_fib_send(ContainerCommand,
466 cmd_fibcontext,
467 sizeof (struct aac_get_name),
468 FsaNormal,
469 0, 1,
470 (fib_callback)get_container_name_callback,
471 (void *) scsicmd);
474 * Check that the command queued to the controller
476 if (status == -EINPROGRESS) {
477 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
478 return 0;
481 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
482 aac_fib_complete(cmd_fibcontext);
483 aac_fib_free(cmd_fibcontext);
484 return -1;
487 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
489 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
491 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
492 return aac_scsi_cmd(scsicmd);
494 scsicmd->result = DID_NO_CONNECT << 16;
495 scsicmd->scsi_done(scsicmd);
496 return 0;
499 static void _aac_probe_container2(void * context, struct fib * fibptr)
501 struct fsa_dev_info *fsa_dev_ptr;
502 int (*callback)(struct scsi_cmnd *);
503 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
506 if (!aac_valid_context(scsicmd, fibptr))
507 return;
509 scsicmd->SCp.Status = 0;
510 fsa_dev_ptr = fibptr->dev->fsa_dev;
511 if (fsa_dev_ptr) {
512 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
513 fsa_dev_ptr += scmd_id(scsicmd);
515 if ((le32_to_cpu(dresp->status) == ST_OK) &&
516 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
517 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
518 fsa_dev_ptr->valid = 1;
519 /* sense_key holds the current state of the spin-up */
520 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
521 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
522 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
523 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
524 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
525 fsa_dev_ptr->size
526 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
527 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
528 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
530 if ((fsa_dev_ptr->valid & 1) == 0)
531 fsa_dev_ptr->valid = 0;
532 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
534 aac_fib_complete(fibptr);
535 aac_fib_free(fibptr);
536 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
537 scsicmd->SCp.ptr = NULL;
538 (*callback)(scsicmd);
539 return;
542 static void _aac_probe_container1(void * context, struct fib * fibptr)
544 struct scsi_cmnd * scsicmd;
545 struct aac_mount * dresp;
546 struct aac_query_mount *dinfo;
547 int status;
549 dresp = (struct aac_mount *) fib_data(fibptr);
550 dresp->mnt[0].capacityhigh = 0;
551 if ((le32_to_cpu(dresp->status) != ST_OK) ||
552 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
553 _aac_probe_container2(context, fibptr);
554 return;
556 scsicmd = (struct scsi_cmnd *) context;
558 if (!aac_valid_context(scsicmd, fibptr))
559 return;
561 aac_fib_init(fibptr);
563 dinfo = (struct aac_query_mount *)fib_data(fibptr);
565 dinfo->command = cpu_to_le32(VM_NameServe64);
566 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
567 dinfo->type = cpu_to_le32(FT_FILESYS);
569 status = aac_fib_send(ContainerCommand,
570 fibptr,
571 sizeof(struct aac_query_mount),
572 FsaNormal,
573 0, 1,
574 _aac_probe_container2,
575 (void *) scsicmd);
577 * Check that the command queued to the controller
579 if (status == -EINPROGRESS)
580 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
581 else if (status < 0) {
582 /* Inherit results from VM_NameServe, if any */
583 dresp->status = cpu_to_le32(ST_OK);
584 _aac_probe_container2(context, fibptr);
588 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
590 struct fib * fibptr;
591 int status = -ENOMEM;
593 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
594 struct aac_query_mount *dinfo;
596 aac_fib_init(fibptr);
598 dinfo = (struct aac_query_mount *)fib_data(fibptr);
600 dinfo->command = cpu_to_le32(VM_NameServe);
601 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
602 dinfo->type = cpu_to_le32(FT_FILESYS);
603 scsicmd->SCp.ptr = (char *)callback;
605 status = aac_fib_send(ContainerCommand,
606 fibptr,
607 sizeof(struct aac_query_mount),
608 FsaNormal,
609 0, 1,
610 _aac_probe_container1,
611 (void *) scsicmd);
613 * Check that the command queued to the controller
615 if (status == -EINPROGRESS) {
616 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
617 return 0;
619 if (status < 0) {
620 scsicmd->SCp.ptr = NULL;
621 aac_fib_complete(fibptr);
622 aac_fib_free(fibptr);
625 if (status < 0) {
626 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
627 if (fsa_dev_ptr) {
628 fsa_dev_ptr += scmd_id(scsicmd);
629 if ((fsa_dev_ptr->valid & 1) == 0) {
630 fsa_dev_ptr->valid = 0;
631 return (*callback)(scsicmd);
635 return status;
639 * aac_probe_container - query a logical volume
640 * @dev: device to query
641 * @cid: container identifier
643 * Queries the controller about the given volume. The volume information
644 * is updated in the struct fsa_dev_info structure rather than returned.
646 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
648 scsicmd->device = NULL;
649 return 0;
652 int aac_probe_container(struct aac_dev *dev, int cid)
654 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
655 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
656 int status;
658 if (!scsicmd || !scsidev) {
659 kfree(scsicmd);
660 kfree(scsidev);
661 return -ENOMEM;
663 scsicmd->list.next = NULL;
664 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
666 scsicmd->device = scsidev;
667 scsidev->sdev_state = 0;
668 scsidev->id = cid;
669 scsidev->host = dev->scsi_host_ptr;
671 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
672 while (scsicmd->device == scsidev)
673 schedule();
674 kfree(scsidev);
675 status = scsicmd->SCp.Status;
676 kfree(scsicmd);
677 return status;
680 /* Local Structure to set SCSI inquiry data strings */
681 struct scsi_inq {
682 char vid[8]; /* Vendor ID */
683 char pid[16]; /* Product ID */
684 char prl[4]; /* Product Revision Level */
688 * InqStrCopy - string merge
689 * @a: string to copy from
690 * @b: string to copy to
692 * Copy a String from one location to another
693 * without copying \0
696 static void inqstrcpy(char *a, char *b)
699 while (*a != (char)0)
700 *b++ = *a++;
703 static char *container_types[] = {
704 "None",
705 "Volume",
706 "Mirror",
707 "Stripe",
708 "RAID5",
709 "SSRW",
710 "SSRO",
711 "Morph",
712 "Legacy",
713 "RAID4",
714 "RAID10",
715 "RAID00",
716 "V-MIRRORS",
717 "PSEUDO R4",
718 "RAID50",
719 "RAID5D",
720 "RAID5D0",
721 "RAID1E",
722 "RAID6",
723 "RAID60",
724 "Unknown"
727 char * get_container_type(unsigned tindex)
729 if (tindex >= ARRAY_SIZE(container_types))
730 tindex = ARRAY_SIZE(container_types) - 1;
731 return container_types[tindex];
734 /* Function: setinqstr
736 * Arguments: [1] pointer to void [1] int
738 * Purpose: Sets SCSI inquiry data strings for vendor, product
739 * and revision level. Allows strings to be set in platform dependant
740 * files instead of in OS dependant driver source.
743 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
745 struct scsi_inq *str;
747 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
748 memset(str, ' ', sizeof(*str));
750 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
751 char * cp = dev->supplement_adapter_info.AdapterTypeText;
752 int c;
753 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
754 inqstrcpy("SMC", str->vid);
755 else {
756 c = sizeof(str->vid);
757 while (*cp && *cp != ' ' && --c)
758 ++cp;
759 c = *cp;
760 *cp = '\0';
761 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
762 str->vid);
763 *cp = c;
764 while (*cp && *cp != ' ')
765 ++cp;
767 while (*cp == ' ')
768 ++cp;
769 /* last six chars reserved for vol type */
770 c = 0;
771 if (strlen(cp) > sizeof(str->pid)) {
772 c = cp[sizeof(str->pid)];
773 cp[sizeof(str->pid)] = '\0';
775 inqstrcpy (cp, str->pid);
776 if (c)
777 cp[sizeof(str->pid)] = c;
778 } else {
779 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
781 inqstrcpy (mp->vname, str->vid);
782 /* last six chars reserved for vol type */
783 inqstrcpy (mp->model, str->pid);
786 if (tindex < ARRAY_SIZE(container_types)){
787 char *findit = str->pid;
789 for ( ; *findit != ' '; findit++); /* walk till we find a space */
790 /* RAID is superfluous in the context of a RAID device */
791 if (memcmp(findit-4, "RAID", 4) == 0)
792 *(findit -= 4) = ' ';
793 if (((findit - str->pid) + strlen(container_types[tindex]))
794 < (sizeof(str->pid) + sizeof(str->prl)))
795 inqstrcpy (container_types[tindex], findit + 1);
797 inqstrcpy ("V1.0", str->prl);
800 static void get_container_serial_callback(void *context, struct fib * fibptr)
802 struct aac_get_serial_resp * get_serial_reply;
803 struct scsi_cmnd * scsicmd;
805 BUG_ON(fibptr == NULL);
807 scsicmd = (struct scsi_cmnd *) context;
808 if (!aac_valid_context(scsicmd, fibptr))
809 return;
811 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
812 /* Failure is irrelevant, using default value instead */
813 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
814 char sp[13];
815 /* EVPD bit set */
816 sp[0] = INQD_PDT_DA;
817 sp[1] = scsicmd->cmnd[2];
818 sp[2] = 0;
819 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
820 le32_to_cpu(get_serial_reply->uid));
821 scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
824 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
826 aac_fib_complete(fibptr);
827 aac_fib_free(fibptr);
828 scsicmd->scsi_done(scsicmd);
832 * aac_get_container_serial - get container serial, none blocking.
834 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
836 int status;
837 struct aac_get_serial *dinfo;
838 struct fib * cmd_fibcontext;
839 struct aac_dev * dev;
841 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
843 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
844 return -ENOMEM;
846 aac_fib_init(cmd_fibcontext);
847 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
849 dinfo->command = cpu_to_le32(VM_ContainerConfig);
850 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
851 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
853 status = aac_fib_send(ContainerCommand,
854 cmd_fibcontext,
855 sizeof (struct aac_get_serial),
856 FsaNormal,
857 0, 1,
858 (fib_callback) get_container_serial_callback,
859 (void *) scsicmd);
862 * Check that the command queued to the controller
864 if (status == -EINPROGRESS) {
865 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
866 return 0;
869 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
870 aac_fib_complete(cmd_fibcontext);
871 aac_fib_free(cmd_fibcontext);
872 return -1;
875 /* Function: setinqserial
877 * Arguments: [1] pointer to void [1] int
879 * Purpose: Sets SCSI Unit Serial number.
880 * This is a fake. We should read a proper
881 * serial number from the container. <SuSE>But
882 * without docs it's quite hard to do it :-)
883 * So this will have to do in the meantime.</SuSE>
886 static int setinqserial(struct aac_dev *dev, void *data, int cid)
889 * This breaks array migration.
891 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
892 le32_to_cpu(dev->adapter_info.serial[0]), cid);
895 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
896 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
898 u8 *sense_buf = (u8 *)sense_data;
899 /* Sense data valid, err code 70h */
900 sense_buf[0] = 0x70; /* No info field */
901 sense_buf[1] = 0; /* Segment number, always zero */
903 sense_buf[2] = sense_key; /* Sense key */
905 sense_buf[12] = sense_code; /* Additional sense code */
906 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
908 if (sense_key == ILLEGAL_REQUEST) {
909 sense_buf[7] = 10; /* Additional sense length */
911 sense_buf[15] = bit_pointer;
912 /* Illegal parameter is in the parameter block */
913 if (sense_code == SENCODE_INVALID_CDB_FIELD)
914 sense_buf[15] |= 0xc0;/* Std sense key specific field */
915 /* Illegal parameter is in the CDB block */
916 sense_buf[16] = field_pointer >> 8; /* MSB */
917 sense_buf[17] = field_pointer; /* LSB */
918 } else
919 sense_buf[7] = 6; /* Additional sense length */
922 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
924 if (lba & 0xffffffff00000000LL) {
925 int cid = scmd_id(cmd);
926 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
927 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
928 SAM_STAT_CHECK_CONDITION;
929 set_sense(&dev->fsa_dev[cid].sense_data,
930 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
931 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
932 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
933 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
934 SCSI_SENSE_BUFFERSIZE));
935 cmd->scsi_done(cmd);
936 return 1;
938 return 0;
941 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
943 return 0;
946 static void io_callback(void *context, struct fib * fibptr);
948 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
950 u16 fibsize;
951 struct aac_raw_io *readcmd;
952 aac_fib_init(fib);
953 readcmd = (struct aac_raw_io *) fib_data(fib);
954 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
955 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
956 readcmd->count = cpu_to_le32(count<<9);
957 readcmd->cid = cpu_to_le16(scmd_id(cmd));
958 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
959 readcmd->bpTotal = 0;
960 readcmd->bpComplete = 0;
962 aac_build_sgraw(cmd, &readcmd->sg);
963 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
964 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
966 * Now send the Fib to the adapter
968 return aac_fib_send(ContainerRawIo,
969 fib,
970 fibsize,
971 FsaNormal,
972 0, 1,
973 (fib_callback) io_callback,
974 (void *) cmd);
977 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
979 u16 fibsize;
980 struct aac_read64 *readcmd;
981 aac_fib_init(fib);
982 readcmd = (struct aac_read64 *) fib_data(fib);
983 readcmd->command = cpu_to_le32(VM_CtHostRead64);
984 readcmd->cid = cpu_to_le16(scmd_id(cmd));
985 readcmd->sector_count = cpu_to_le16(count);
986 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
987 readcmd->pad = 0;
988 readcmd->flags = 0;
990 aac_build_sg64(cmd, &readcmd->sg);
991 fibsize = sizeof(struct aac_read64) +
992 ((le32_to_cpu(readcmd->sg.count) - 1) *
993 sizeof (struct sgentry64));
994 BUG_ON (fibsize > (fib->dev->max_fib_size -
995 sizeof(struct aac_fibhdr)));
997 * Now send the Fib to the adapter
999 return aac_fib_send(ContainerCommand64,
1000 fib,
1001 fibsize,
1002 FsaNormal,
1003 0, 1,
1004 (fib_callback) io_callback,
1005 (void *) cmd);
1008 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1010 u16 fibsize;
1011 struct aac_read *readcmd;
1012 aac_fib_init(fib);
1013 readcmd = (struct aac_read *) fib_data(fib);
1014 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1015 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1016 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1017 readcmd->count = cpu_to_le32(count * 512);
1019 aac_build_sg(cmd, &readcmd->sg);
1020 fibsize = sizeof(struct aac_read) +
1021 ((le32_to_cpu(readcmd->sg.count) - 1) *
1022 sizeof (struct sgentry));
1023 BUG_ON (fibsize > (fib->dev->max_fib_size -
1024 sizeof(struct aac_fibhdr)));
1026 * Now send the Fib to the adapter
1028 return aac_fib_send(ContainerCommand,
1029 fib,
1030 fibsize,
1031 FsaNormal,
1032 0, 1,
1033 (fib_callback) io_callback,
1034 (void *) cmd);
1037 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1039 u16 fibsize;
1040 struct aac_raw_io *writecmd;
1041 aac_fib_init(fib);
1042 writecmd = (struct aac_raw_io *) fib_data(fib);
1043 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1044 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1045 writecmd->count = cpu_to_le32(count<<9);
1046 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1047 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1048 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1049 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1050 cpu_to_le16(IO_TYPE_WRITE);
1051 writecmd->bpTotal = 0;
1052 writecmd->bpComplete = 0;
1054 aac_build_sgraw(cmd, &writecmd->sg);
1055 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1056 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1058 * Now send the Fib to the adapter
1060 return aac_fib_send(ContainerRawIo,
1061 fib,
1062 fibsize,
1063 FsaNormal,
1064 0, 1,
1065 (fib_callback) io_callback,
1066 (void *) cmd);
1069 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1071 u16 fibsize;
1072 struct aac_write64 *writecmd;
1073 aac_fib_init(fib);
1074 writecmd = (struct aac_write64 *) fib_data(fib);
1075 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1076 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1077 writecmd->sector_count = cpu_to_le16(count);
1078 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1079 writecmd->pad = 0;
1080 writecmd->flags = 0;
1082 aac_build_sg64(cmd, &writecmd->sg);
1083 fibsize = sizeof(struct aac_write64) +
1084 ((le32_to_cpu(writecmd->sg.count) - 1) *
1085 sizeof (struct sgentry64));
1086 BUG_ON (fibsize > (fib->dev->max_fib_size -
1087 sizeof(struct aac_fibhdr)));
1089 * Now send the Fib to the adapter
1091 return aac_fib_send(ContainerCommand64,
1092 fib,
1093 fibsize,
1094 FsaNormal,
1095 0, 1,
1096 (fib_callback) io_callback,
1097 (void *) cmd);
1100 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1102 u16 fibsize;
1103 struct aac_write *writecmd;
1104 aac_fib_init(fib);
1105 writecmd = (struct aac_write *) fib_data(fib);
1106 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1107 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1108 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1109 writecmd->count = cpu_to_le32(count * 512);
1110 writecmd->sg.count = cpu_to_le32(1);
1111 /* ->stable is not used - it did mean which type of write */
1113 aac_build_sg(cmd, &writecmd->sg);
1114 fibsize = sizeof(struct aac_write) +
1115 ((le32_to_cpu(writecmd->sg.count) - 1) *
1116 sizeof (struct sgentry));
1117 BUG_ON (fibsize > (fib->dev->max_fib_size -
1118 sizeof(struct aac_fibhdr)));
1120 * Now send the Fib to the adapter
1122 return aac_fib_send(ContainerCommand,
1123 fib,
1124 fibsize,
1125 FsaNormal,
1126 0, 1,
1127 (fib_callback) io_callback,
1128 (void *) cmd);
1131 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1133 struct aac_srb * srbcmd;
1134 u32 flag;
1135 u32 timeout;
1137 aac_fib_init(fib);
1138 switch(cmd->sc_data_direction){
1139 case DMA_TO_DEVICE:
1140 flag = SRB_DataOut;
1141 break;
1142 case DMA_BIDIRECTIONAL:
1143 flag = SRB_DataIn | SRB_DataOut;
1144 break;
1145 case DMA_FROM_DEVICE:
1146 flag = SRB_DataIn;
1147 break;
1148 case DMA_NONE:
1149 default: /* shuts up some versions of gcc */
1150 flag = SRB_NoDataXfer;
1151 break;
1154 srbcmd = (struct aac_srb*) fib_data(fib);
1155 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1156 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1157 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1158 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1159 srbcmd->flags = cpu_to_le32(flag);
1160 timeout = cmd->request->timeout/HZ;
1161 if (timeout == 0)
1162 timeout = 1;
1163 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1164 srbcmd->retry_limit = 0; /* Obsolete parameter */
1165 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1166 return srbcmd;
1169 static void aac_srb_callback(void *context, struct fib * fibptr);
1171 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1173 u16 fibsize;
1174 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1176 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1177 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1179 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1180 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1182 * Build Scatter/Gather list
1184 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1185 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1186 sizeof (struct sgentry64));
1187 BUG_ON (fibsize > (fib->dev->max_fib_size -
1188 sizeof(struct aac_fibhdr)));
1191 * Now send the Fib to the adapter
1193 return aac_fib_send(ScsiPortCommand64, fib,
1194 fibsize, FsaNormal, 0, 1,
1195 (fib_callback) aac_srb_callback,
1196 (void *) cmd);
1199 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1201 u16 fibsize;
1202 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1204 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1205 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1207 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1208 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1210 * Build Scatter/Gather list
1212 fibsize = sizeof (struct aac_srb) +
1213 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1214 sizeof (struct sgentry));
1215 BUG_ON (fibsize > (fib->dev->max_fib_size -
1216 sizeof(struct aac_fibhdr)));
1219 * Now send the Fib to the adapter
1221 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1222 (fib_callback) aac_srb_callback, (void *) cmd);
1225 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1227 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1228 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1229 return FAILED;
1230 return aac_scsi_32(fib, cmd);
1233 int aac_get_adapter_info(struct aac_dev* dev)
1235 struct fib* fibptr;
1236 int rcode;
1237 u32 tmp;
1238 struct aac_adapter_info *info;
1239 struct aac_bus_info *command;
1240 struct aac_bus_info_response *bus_info;
1242 if (!(fibptr = aac_fib_alloc(dev)))
1243 return -ENOMEM;
1245 aac_fib_init(fibptr);
1246 info = (struct aac_adapter_info *) fib_data(fibptr);
1247 memset(info,0,sizeof(*info));
1249 rcode = aac_fib_send(RequestAdapterInfo,
1250 fibptr,
1251 sizeof(*info),
1252 FsaNormal,
1253 -1, 1, /* First `interrupt' command uses special wait */
1254 NULL,
1255 NULL);
1257 if (rcode < 0) {
1258 /* FIB should be freed only after
1259 * getting the response from the F/W */
1260 if (rcode != -ERESTARTSYS) {
1261 aac_fib_complete(fibptr);
1262 aac_fib_free(fibptr);
1264 return rcode;
1266 memcpy(&dev->adapter_info, info, sizeof(*info));
1268 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1269 struct aac_supplement_adapter_info * sinfo;
1271 aac_fib_init(fibptr);
1273 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1275 memset(sinfo,0,sizeof(*sinfo));
1277 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1278 fibptr,
1279 sizeof(*sinfo),
1280 FsaNormal,
1281 1, 1,
1282 NULL,
1283 NULL);
1285 if (rcode >= 0)
1286 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1287 if (rcode == -ERESTARTSYS) {
1288 fibptr = aac_fib_alloc(dev);
1289 if (!fibptr)
1290 return -ENOMEM;
1297 * GetBusInfo
1300 aac_fib_init(fibptr);
1302 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1304 memset(bus_info, 0, sizeof(*bus_info));
1306 command = (struct aac_bus_info *)bus_info;
1308 command->Command = cpu_to_le32(VM_Ioctl);
1309 command->ObjType = cpu_to_le32(FT_DRIVE);
1310 command->MethodId = cpu_to_le32(1);
1311 command->CtlCmd = cpu_to_le32(GetBusInfo);
1313 rcode = aac_fib_send(ContainerCommand,
1314 fibptr,
1315 sizeof (*bus_info),
1316 FsaNormal,
1317 1, 1,
1318 NULL, NULL);
1320 /* reasoned default */
1321 dev->maximum_num_physicals = 16;
1322 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1323 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1324 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1327 if (!dev->in_reset) {
1328 char buffer[16];
1329 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1330 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1331 dev->name,
1332 dev->id,
1333 tmp>>24,
1334 (tmp>>16)&0xff,
1335 tmp&0xff,
1336 le32_to_cpu(dev->adapter_info.kernelbuild),
1337 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1338 dev->supplement_adapter_info.BuildDate);
1339 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1340 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1341 dev->name, dev->id,
1342 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1343 le32_to_cpu(dev->adapter_info.monitorbuild));
1344 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1345 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1346 dev->name, dev->id,
1347 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1348 le32_to_cpu(dev->adapter_info.biosbuild));
1349 buffer[0] = '\0';
1350 if (aac_get_serial_number(
1351 shost_to_class(dev->scsi_host_ptr), buffer))
1352 printk(KERN_INFO "%s%d: serial %s",
1353 dev->name, dev->id, buffer);
1354 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1355 printk(KERN_INFO "%s%d: TSID %.*s\n",
1356 dev->name, dev->id,
1357 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1358 dev->supplement_adapter_info.VpdInfo.Tsid);
1360 if (!aac_check_reset || ((aac_check_reset == 1) &&
1361 (dev->supplement_adapter_info.SupportedOptions2 &
1362 AAC_OPTION_IGNORE_RESET))) {
1363 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1364 dev->name, dev->id);
1368 dev->cache_protected = 0;
1369 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1370 AAC_FEATURE_JBOD) != 0);
1371 dev->nondasd_support = 0;
1372 dev->raid_scsi_mode = 0;
1373 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1374 dev->nondasd_support = 1;
1377 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1378 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1379 * force nondasd support on. If we decide to allow the non-dasd flag
1380 * additional changes changes will have to be made to support
1381 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1382 * changed to support the new dev->raid_scsi_mode flag instead of
1383 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1384 * function aac_detect will have to be modified where it sets up the
1385 * max number of channels based on the aac->nondasd_support flag only.
1387 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1388 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1389 dev->nondasd_support = 1;
1390 dev->raid_scsi_mode = 1;
1392 if (dev->raid_scsi_mode != 0)
1393 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1394 dev->name, dev->id);
1396 if (nondasd != -1)
1397 dev->nondasd_support = (nondasd!=0);
1398 if (dev->nondasd_support && !dev->in_reset)
1399 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1401 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1402 dev->needs_dac = 1;
1403 dev->dac_support = 0;
1404 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1405 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1406 if (!dev->in_reset)
1407 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1408 dev->name, dev->id);
1409 dev->dac_support = 1;
1412 if(dacmode != -1) {
1413 dev->dac_support = (dacmode!=0);
1416 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1417 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
1418 & AAC_QUIRK_SCSI_32)) {
1419 dev->nondasd_support = 0;
1420 dev->jbod = 0;
1421 expose_physicals = 0;
1424 if(dev->dac_support != 0) {
1425 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1426 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1427 if (!dev->in_reset)
1428 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1429 dev->name, dev->id);
1430 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1431 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1432 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1433 dev->name, dev->id);
1434 dev->dac_support = 0;
1435 } else {
1436 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1437 dev->name, dev->id);
1438 rcode = -ENOMEM;
1442 * Deal with configuring for the individualized limits of each packet
1443 * interface.
1445 dev->a_ops.adapter_scsi = (dev->dac_support)
1446 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1447 ? aac_scsi_32_64
1448 : aac_scsi_64)
1449 : aac_scsi_32;
1450 if (dev->raw_io_interface) {
1451 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1452 ? aac_bounds_64
1453 : aac_bounds_32;
1454 dev->a_ops.adapter_read = aac_read_raw_io;
1455 dev->a_ops.adapter_write = aac_write_raw_io;
1456 } else {
1457 dev->a_ops.adapter_bounds = aac_bounds_32;
1458 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1459 sizeof(struct aac_fibhdr) -
1460 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1461 sizeof(struct sgentry);
1462 if (dev->dac_support) {
1463 dev->a_ops.adapter_read = aac_read_block64;
1464 dev->a_ops.adapter_write = aac_write_block64;
1466 * 38 scatter gather elements
1468 dev->scsi_host_ptr->sg_tablesize =
1469 (dev->max_fib_size -
1470 sizeof(struct aac_fibhdr) -
1471 sizeof(struct aac_write64) +
1472 sizeof(struct sgentry64)) /
1473 sizeof(struct sgentry64);
1474 } else {
1475 dev->a_ops.adapter_read = aac_read_block;
1476 dev->a_ops.adapter_write = aac_write_block;
1478 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1479 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1481 * Worst case size that could cause sg overflow when
1482 * we break up SG elements that are larger than 64KB.
1483 * Would be nice if we could tell the SCSI layer what
1484 * the maximum SG element size can be. Worst case is
1485 * (sg_tablesize-1) 4KB elements with one 64KB
1486 * element.
1487 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1489 dev->scsi_host_ptr->max_sectors =
1490 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1493 /* FIB should be freed only after getting the response from the F/W */
1494 if (rcode != -ERESTARTSYS) {
1495 aac_fib_complete(fibptr);
1496 aac_fib_free(fibptr);
1499 return rcode;
1503 static void io_callback(void *context, struct fib * fibptr)
1505 struct aac_dev *dev;
1506 struct aac_read_reply *readreply;
1507 struct scsi_cmnd *scsicmd;
1508 u32 cid;
1510 scsicmd = (struct scsi_cmnd *) context;
1512 if (!aac_valid_context(scsicmd, fibptr))
1513 return;
1515 dev = fibptr->dev;
1516 cid = scmd_id(scsicmd);
1518 if (nblank(dprintk(x))) {
1519 u64 lba;
1520 switch (scsicmd->cmnd[0]) {
1521 case WRITE_6:
1522 case READ_6:
1523 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1524 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1525 break;
1526 case WRITE_16:
1527 case READ_16:
1528 lba = ((u64)scsicmd->cmnd[2] << 56) |
1529 ((u64)scsicmd->cmnd[3] << 48) |
1530 ((u64)scsicmd->cmnd[4] << 40) |
1531 ((u64)scsicmd->cmnd[5] << 32) |
1532 ((u64)scsicmd->cmnd[6] << 24) |
1533 (scsicmd->cmnd[7] << 16) |
1534 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1535 break;
1536 case WRITE_12:
1537 case READ_12:
1538 lba = ((u64)scsicmd->cmnd[2] << 24) |
1539 (scsicmd->cmnd[3] << 16) |
1540 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1541 break;
1542 default:
1543 lba = ((u64)scsicmd->cmnd[2] << 24) |
1544 (scsicmd->cmnd[3] << 16) |
1545 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1546 break;
1548 printk(KERN_DEBUG
1549 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1550 smp_processor_id(), (unsigned long long)lba, jiffies);
1553 BUG_ON(fibptr == NULL);
1555 scsi_dma_unmap(scsicmd);
1557 readreply = (struct aac_read_reply *)fib_data(fibptr);
1558 switch (le32_to_cpu(readreply->status)) {
1559 case ST_OK:
1560 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1561 SAM_STAT_GOOD;
1562 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1563 break;
1564 case ST_NOT_READY:
1565 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1566 SAM_STAT_CHECK_CONDITION;
1567 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1568 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1569 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1570 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1571 SCSI_SENSE_BUFFERSIZE));
1572 break;
1573 default:
1574 #ifdef AAC_DETAILED_STATUS_INFO
1575 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1576 le32_to_cpu(readreply->status));
1577 #endif
1578 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1579 SAM_STAT_CHECK_CONDITION;
1580 set_sense(&dev->fsa_dev[cid].sense_data,
1581 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1582 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1583 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1584 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1585 SCSI_SENSE_BUFFERSIZE));
1586 break;
1588 aac_fib_complete(fibptr);
1589 aac_fib_free(fibptr);
1591 scsicmd->scsi_done(scsicmd);
1594 static int aac_read(struct scsi_cmnd * scsicmd)
1596 u64 lba;
1597 u32 count;
1598 int status;
1599 struct aac_dev *dev;
1600 struct fib * cmd_fibcontext;
1602 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1604 * Get block address and transfer length
1606 switch (scsicmd->cmnd[0]) {
1607 case READ_6:
1608 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1610 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1611 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1612 count = scsicmd->cmnd[4];
1614 if (count == 0)
1615 count = 256;
1616 break;
1617 case READ_16:
1618 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1620 lba = ((u64)scsicmd->cmnd[2] << 56) |
1621 ((u64)scsicmd->cmnd[3] << 48) |
1622 ((u64)scsicmd->cmnd[4] << 40) |
1623 ((u64)scsicmd->cmnd[5] << 32) |
1624 ((u64)scsicmd->cmnd[6] << 24) |
1625 (scsicmd->cmnd[7] << 16) |
1626 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1627 count = (scsicmd->cmnd[10] << 24) |
1628 (scsicmd->cmnd[11] << 16) |
1629 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1630 break;
1631 case READ_12:
1632 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1634 lba = ((u64)scsicmd->cmnd[2] << 24) |
1635 (scsicmd->cmnd[3] << 16) |
1636 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1637 count = (scsicmd->cmnd[6] << 24) |
1638 (scsicmd->cmnd[7] << 16) |
1639 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1640 break;
1641 default:
1642 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1644 lba = ((u64)scsicmd->cmnd[2] << 24) |
1645 (scsicmd->cmnd[3] << 16) |
1646 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1647 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1648 break;
1650 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1651 smp_processor_id(), (unsigned long long)lba, jiffies));
1652 if (aac_adapter_bounds(dev,scsicmd,lba))
1653 return 0;
1655 * Alocate and initialize a Fib
1657 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1658 printk(KERN_WARNING "aac_read: fib allocation failed\n");
1659 return -1;
1662 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1665 * Check that the command queued to the controller
1667 if (status == -EINPROGRESS) {
1668 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1669 return 0;
1672 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1674 * For some reason, the Fib didn't queue, return QUEUE_FULL
1676 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1677 scsicmd->scsi_done(scsicmd);
1678 aac_fib_complete(cmd_fibcontext);
1679 aac_fib_free(cmd_fibcontext);
1680 return 0;
1683 static int aac_write(struct scsi_cmnd * scsicmd)
1685 u64 lba;
1686 u32 count;
1687 int fua;
1688 int status;
1689 struct aac_dev *dev;
1690 struct fib * cmd_fibcontext;
1692 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1694 * Get block address and transfer length
1696 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1698 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1699 count = scsicmd->cmnd[4];
1700 if (count == 0)
1701 count = 256;
1702 fua = 0;
1703 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1704 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1706 lba = ((u64)scsicmd->cmnd[2] << 56) |
1707 ((u64)scsicmd->cmnd[3] << 48) |
1708 ((u64)scsicmd->cmnd[4] << 40) |
1709 ((u64)scsicmd->cmnd[5] << 32) |
1710 ((u64)scsicmd->cmnd[6] << 24) |
1711 (scsicmd->cmnd[7] << 16) |
1712 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1713 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1714 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1715 fua = scsicmd->cmnd[1] & 0x8;
1716 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1717 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1719 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1720 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1721 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1722 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1723 fua = scsicmd->cmnd[1] & 0x8;
1724 } else {
1725 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1726 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1727 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1728 fua = scsicmd->cmnd[1] & 0x8;
1730 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1731 smp_processor_id(), (unsigned long long)lba, jiffies));
1732 if (aac_adapter_bounds(dev,scsicmd,lba))
1733 return 0;
1735 * Allocate and initialize a Fib then setup a BlockWrite command
1737 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1738 /* FIB temporarily unavailable,not catastrophic failure */
1740 /* scsicmd->result = DID_ERROR << 16;
1741 * scsicmd->scsi_done(scsicmd);
1742 * return 0;
1744 printk(KERN_WARNING "aac_write: fib allocation failed\n");
1745 return -1;
1748 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1751 * Check that the command queued to the controller
1753 if (status == -EINPROGRESS) {
1754 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1755 return 0;
1758 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1760 * For some reason, the Fib didn't queue, return QUEUE_FULL
1762 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1763 scsicmd->scsi_done(scsicmd);
1765 aac_fib_complete(cmd_fibcontext);
1766 aac_fib_free(cmd_fibcontext);
1767 return 0;
1770 static void synchronize_callback(void *context, struct fib *fibptr)
1772 struct aac_synchronize_reply *synchronizereply;
1773 struct scsi_cmnd *cmd;
1775 cmd = context;
1777 if (!aac_valid_context(cmd, fibptr))
1778 return;
1780 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1781 smp_processor_id(), jiffies));
1782 BUG_ON(fibptr == NULL);
1785 synchronizereply = fib_data(fibptr);
1786 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1787 cmd->result = DID_OK << 16 |
1788 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1789 else {
1790 struct scsi_device *sdev = cmd->device;
1791 struct aac_dev *dev = fibptr->dev;
1792 u32 cid = sdev_id(sdev);
1793 printk(KERN_WARNING
1794 "synchronize_callback: synchronize failed, status = %d\n",
1795 le32_to_cpu(synchronizereply->status));
1796 cmd->result = DID_OK << 16 |
1797 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1798 set_sense(&dev->fsa_dev[cid].sense_data,
1799 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1800 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1801 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1802 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1803 SCSI_SENSE_BUFFERSIZE));
1806 aac_fib_complete(fibptr);
1807 aac_fib_free(fibptr);
1808 cmd->scsi_done(cmd);
1811 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1813 int status;
1814 struct fib *cmd_fibcontext;
1815 struct aac_synchronize *synchronizecmd;
1816 struct scsi_cmnd *cmd;
1817 struct scsi_device *sdev = scsicmd->device;
1818 int active = 0;
1819 struct aac_dev *aac;
1820 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1821 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1822 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1823 unsigned long flags;
1826 * Wait for all outstanding queued commands to complete to this
1827 * specific target (block).
1829 spin_lock_irqsave(&sdev->list_lock, flags);
1830 list_for_each_entry(cmd, &sdev->cmd_list, list)
1831 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1832 u64 cmnd_lba;
1833 u32 cmnd_count;
1835 if (cmd->cmnd[0] == WRITE_6) {
1836 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1837 (cmd->cmnd[2] << 8) |
1838 cmd->cmnd[3];
1839 cmnd_count = cmd->cmnd[4];
1840 if (cmnd_count == 0)
1841 cmnd_count = 256;
1842 } else if (cmd->cmnd[0] == WRITE_16) {
1843 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1844 ((u64)cmd->cmnd[3] << 48) |
1845 ((u64)cmd->cmnd[4] << 40) |
1846 ((u64)cmd->cmnd[5] << 32) |
1847 ((u64)cmd->cmnd[6] << 24) |
1848 (cmd->cmnd[7] << 16) |
1849 (cmd->cmnd[8] << 8) |
1850 cmd->cmnd[9];
1851 cmnd_count = (cmd->cmnd[10] << 24) |
1852 (cmd->cmnd[11] << 16) |
1853 (cmd->cmnd[12] << 8) |
1854 cmd->cmnd[13];
1855 } else if (cmd->cmnd[0] == WRITE_12) {
1856 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1857 (cmd->cmnd[3] << 16) |
1858 (cmd->cmnd[4] << 8) |
1859 cmd->cmnd[5];
1860 cmnd_count = (cmd->cmnd[6] << 24) |
1861 (cmd->cmnd[7] << 16) |
1862 (cmd->cmnd[8] << 8) |
1863 cmd->cmnd[9];
1864 } else if (cmd->cmnd[0] == WRITE_10) {
1865 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1866 (cmd->cmnd[3] << 16) |
1867 (cmd->cmnd[4] << 8) |
1868 cmd->cmnd[5];
1869 cmnd_count = (cmd->cmnd[7] << 8) |
1870 cmd->cmnd[8];
1871 } else
1872 continue;
1873 if (((cmnd_lba + cmnd_count) < lba) ||
1874 (count && ((lba + count) < cmnd_lba)))
1875 continue;
1876 ++active;
1877 break;
1880 spin_unlock_irqrestore(&sdev->list_lock, flags);
1883 * Yield the processor (requeue for later)
1885 if (active)
1886 return SCSI_MLQUEUE_DEVICE_BUSY;
1888 aac = (struct aac_dev *)sdev->host->hostdata;
1889 if (aac->in_reset)
1890 return SCSI_MLQUEUE_HOST_BUSY;
1893 * Allocate and initialize a Fib
1895 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1896 return SCSI_MLQUEUE_HOST_BUSY;
1898 aac_fib_init(cmd_fibcontext);
1900 synchronizecmd = fib_data(cmd_fibcontext);
1901 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1902 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1903 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1904 synchronizecmd->count =
1905 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1908 * Now send the Fib to the adapter
1910 status = aac_fib_send(ContainerCommand,
1911 cmd_fibcontext,
1912 sizeof(struct aac_synchronize),
1913 FsaNormal,
1914 0, 1,
1915 (fib_callback)synchronize_callback,
1916 (void *)scsicmd);
1919 * Check that the command queued to the controller
1921 if (status == -EINPROGRESS) {
1922 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1923 return 0;
1926 printk(KERN_WARNING
1927 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1928 aac_fib_complete(cmd_fibcontext);
1929 aac_fib_free(cmd_fibcontext);
1930 return SCSI_MLQUEUE_HOST_BUSY;
1933 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1935 struct scsi_cmnd *scsicmd = context;
1937 if (!aac_valid_context(scsicmd, fibptr))
1938 return;
1940 BUG_ON(fibptr == NULL);
1942 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1944 aac_fib_complete(fibptr);
1945 aac_fib_free(fibptr);
1946 scsicmd->scsi_done(scsicmd);
1949 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1951 int status;
1952 struct fib *cmd_fibcontext;
1953 struct aac_power_management *pmcmd;
1954 struct scsi_device *sdev = scsicmd->device;
1955 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
1957 if (!(aac->supplement_adapter_info.SupportedOptions2 &
1958 AAC_OPTION_POWER_MANAGEMENT)) {
1959 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1960 SAM_STAT_GOOD;
1961 scsicmd->scsi_done(scsicmd);
1962 return 0;
1965 if (aac->in_reset)
1966 return SCSI_MLQUEUE_HOST_BUSY;
1969 * Allocate and initialize a Fib
1971 cmd_fibcontext = aac_fib_alloc(aac);
1972 if (!cmd_fibcontext)
1973 return SCSI_MLQUEUE_HOST_BUSY;
1975 aac_fib_init(cmd_fibcontext);
1977 pmcmd = fib_data(cmd_fibcontext);
1978 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
1979 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
1980 /* Eject bit ignored, not relevant */
1981 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
1982 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
1983 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
1984 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
1985 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
1988 * Now send the Fib to the adapter
1990 status = aac_fib_send(ContainerCommand,
1991 cmd_fibcontext,
1992 sizeof(struct aac_power_management),
1993 FsaNormal,
1994 0, 1,
1995 (fib_callback)aac_start_stop_callback,
1996 (void *)scsicmd);
1999 * Check that the command queued to the controller
2001 if (status == -EINPROGRESS) {
2002 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2003 return 0;
2006 aac_fib_complete(cmd_fibcontext);
2007 aac_fib_free(cmd_fibcontext);
2008 return SCSI_MLQUEUE_HOST_BUSY;
2012 * aac_scsi_cmd() - Process SCSI command
2013 * @scsicmd: SCSI command block
2015 * Emulate a SCSI command and queue the required request for the
2016 * aacraid firmware.
2019 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2021 u32 cid;
2022 struct Scsi_Host *host = scsicmd->device->host;
2023 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2024 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2026 if (fsa_dev_ptr == NULL)
2027 return -1;
2029 * If the bus, id or lun is out of range, return fail
2030 * Test does not apply to ID 16, the pseudo id for the controller
2031 * itself.
2033 cid = scmd_id(scsicmd);
2034 if (cid != host->this_id) {
2035 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2036 if((cid >= dev->maximum_num_containers) ||
2037 (scsicmd->device->lun != 0)) {
2038 scsicmd->result = DID_NO_CONNECT << 16;
2039 scsicmd->scsi_done(scsicmd);
2040 return 0;
2044 * If the target container doesn't exist, it may have
2045 * been newly created
2047 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2048 (fsa_dev_ptr[cid].sense_data.sense_key ==
2049 NOT_READY)) {
2050 switch (scsicmd->cmnd[0]) {
2051 case SERVICE_ACTION_IN:
2052 if (!(dev->raw_io_interface) ||
2053 !(dev->raw_io_64) ||
2054 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2055 break;
2056 case INQUIRY:
2057 case READ_CAPACITY:
2058 case TEST_UNIT_READY:
2059 if (dev->in_reset)
2060 return -1;
2061 return _aac_probe_container(scsicmd,
2062 aac_probe_container_callback2);
2063 default:
2064 break;
2067 } else { /* check for physical non-dasd devices */
2068 if (dev->nondasd_support || expose_physicals ||
2069 dev->jbod) {
2070 if (dev->in_reset)
2071 return -1;
2072 return aac_send_srb_fib(scsicmd);
2073 } else {
2074 scsicmd->result = DID_NO_CONNECT << 16;
2075 scsicmd->scsi_done(scsicmd);
2076 return 0;
2081 * else Command for the controller itself
2083 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2084 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2086 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2087 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2088 set_sense(&dev->fsa_dev[cid].sense_data,
2089 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2090 ASENCODE_INVALID_COMMAND, 0, 0);
2091 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2092 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2093 SCSI_SENSE_BUFFERSIZE));
2094 scsicmd->scsi_done(scsicmd);
2095 return 0;
2099 /* Handle commands here that don't really require going out to the adapter */
2100 switch (scsicmd->cmnd[0]) {
2101 case INQUIRY:
2103 struct inquiry_data inq_data;
2105 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2106 memset(&inq_data, 0, sizeof (struct inquiry_data));
2108 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2109 char *arr = (char *)&inq_data;
2111 /* EVPD bit set */
2112 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2113 INQD_PDT_PROC : INQD_PDT_DA;
2114 if (scsicmd->cmnd[2] == 0) {
2115 /* supported vital product data pages */
2116 arr[3] = 2;
2117 arr[4] = 0x0;
2118 arr[5] = 0x80;
2119 arr[1] = scsicmd->cmnd[2];
2120 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2121 sizeof(inq_data));
2122 scsicmd->result = DID_OK << 16 |
2123 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2124 } else if (scsicmd->cmnd[2] == 0x80) {
2125 /* unit serial number page */
2126 arr[3] = setinqserial(dev, &arr[4],
2127 scmd_id(scsicmd));
2128 arr[1] = scsicmd->cmnd[2];
2129 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2130 sizeof(inq_data));
2131 if (aac_wwn != 2)
2132 return aac_get_container_serial(
2133 scsicmd);
2134 /* SLES 10 SP1 special */
2135 scsicmd->result = DID_OK << 16 |
2136 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2137 } else {
2138 /* vpd page not implemented */
2139 scsicmd->result = DID_OK << 16 |
2140 COMMAND_COMPLETE << 8 |
2141 SAM_STAT_CHECK_CONDITION;
2142 set_sense(&dev->fsa_dev[cid].sense_data,
2143 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2144 ASENCODE_NO_SENSE, 7, 2);
2145 memcpy(scsicmd->sense_buffer,
2146 &dev->fsa_dev[cid].sense_data,
2147 min_t(size_t,
2148 sizeof(dev->fsa_dev[cid].sense_data),
2149 SCSI_SENSE_BUFFERSIZE));
2151 scsicmd->scsi_done(scsicmd);
2152 return 0;
2154 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2155 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2156 inq_data.inqd_len = 31;
2157 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2158 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2160 * Set the Vendor, Product, and Revision Level
2161 * see: <vendor>.c i.e. aac.c
2163 if (cid == host->this_id) {
2164 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2165 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2166 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2167 sizeof(inq_data));
2168 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2169 scsicmd->scsi_done(scsicmd);
2170 return 0;
2172 if (dev->in_reset)
2173 return -1;
2174 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2175 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2176 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2177 return aac_get_container_name(scsicmd);
2179 case SERVICE_ACTION_IN:
2180 if (!(dev->raw_io_interface) ||
2181 !(dev->raw_io_64) ||
2182 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2183 break;
2185 u64 capacity;
2186 char cp[13];
2187 unsigned int alloc_len;
2189 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2190 capacity = fsa_dev_ptr[cid].size - 1;
2191 cp[0] = (capacity >> 56) & 0xff;
2192 cp[1] = (capacity >> 48) & 0xff;
2193 cp[2] = (capacity >> 40) & 0xff;
2194 cp[3] = (capacity >> 32) & 0xff;
2195 cp[4] = (capacity >> 24) & 0xff;
2196 cp[5] = (capacity >> 16) & 0xff;
2197 cp[6] = (capacity >> 8) & 0xff;
2198 cp[7] = (capacity >> 0) & 0xff;
2199 cp[8] = 0;
2200 cp[9] = 0;
2201 cp[10] = 2;
2202 cp[11] = 0;
2203 cp[12] = 0;
2205 alloc_len = ((scsicmd->cmnd[10] << 24)
2206 + (scsicmd->cmnd[11] << 16)
2207 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2209 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2210 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2211 if (alloc_len < scsi_bufflen(scsicmd))
2212 scsi_set_resid(scsicmd,
2213 scsi_bufflen(scsicmd) - alloc_len);
2215 /* Do not cache partition table for arrays */
2216 scsicmd->device->removable = 1;
2218 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2219 scsicmd->scsi_done(scsicmd);
2221 return 0;
2224 case READ_CAPACITY:
2226 u32 capacity;
2227 char cp[8];
2229 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2230 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2231 capacity = fsa_dev_ptr[cid].size - 1;
2232 else
2233 capacity = (u32)-1;
2235 cp[0] = (capacity >> 24) & 0xff;
2236 cp[1] = (capacity >> 16) & 0xff;
2237 cp[2] = (capacity >> 8) & 0xff;
2238 cp[3] = (capacity >> 0) & 0xff;
2239 cp[4] = 0;
2240 cp[5] = 0;
2241 cp[6] = 2;
2242 cp[7] = 0;
2243 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2244 /* Do not cache partition table for arrays */
2245 scsicmd->device->removable = 1;
2246 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2247 SAM_STAT_GOOD;
2248 scsicmd->scsi_done(scsicmd);
2250 return 0;
2253 case MODE_SENSE:
2255 char mode_buf[7];
2256 int mode_buf_length = 4;
2258 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2259 mode_buf[0] = 3; /* Mode data length */
2260 mode_buf[1] = 0; /* Medium type - default */
2261 mode_buf[2] = 0; /* Device-specific param,
2262 bit 8: 0/1 = write enabled/protected
2263 bit 4: 0/1 = FUA enabled */
2264 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2265 mode_buf[2] = 0x10;
2266 mode_buf[3] = 0; /* Block descriptor length */
2267 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2268 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2269 mode_buf[0] = 6;
2270 mode_buf[4] = 8;
2271 mode_buf[5] = 1;
2272 mode_buf[6] = ((aac_cache & 6) == 2)
2273 ? 0 : 0x04; /* WCE */
2274 mode_buf_length = 7;
2275 if (mode_buf_length > scsicmd->cmnd[4])
2276 mode_buf_length = scsicmd->cmnd[4];
2278 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2279 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2280 scsicmd->scsi_done(scsicmd);
2282 return 0;
2284 case MODE_SENSE_10:
2286 char mode_buf[11];
2287 int mode_buf_length = 8;
2289 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2290 mode_buf[0] = 0; /* Mode data length (MSB) */
2291 mode_buf[1] = 6; /* Mode data length (LSB) */
2292 mode_buf[2] = 0; /* Medium type - default */
2293 mode_buf[3] = 0; /* Device-specific param,
2294 bit 8: 0/1 = write enabled/protected
2295 bit 4: 0/1 = FUA enabled */
2296 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2297 mode_buf[3] = 0x10;
2298 mode_buf[4] = 0; /* reserved */
2299 mode_buf[5] = 0; /* reserved */
2300 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2301 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2302 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2303 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2304 mode_buf[1] = 9;
2305 mode_buf[8] = 8;
2306 mode_buf[9] = 1;
2307 mode_buf[10] = ((aac_cache & 6) == 2)
2308 ? 0 : 0x04; /* WCE */
2309 mode_buf_length = 11;
2310 if (mode_buf_length > scsicmd->cmnd[8])
2311 mode_buf_length = scsicmd->cmnd[8];
2313 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2315 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2316 scsicmd->scsi_done(scsicmd);
2318 return 0;
2320 case REQUEST_SENSE:
2321 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2322 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2323 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2324 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2325 scsicmd->scsi_done(scsicmd);
2326 return 0;
2328 case ALLOW_MEDIUM_REMOVAL:
2329 dprintk((KERN_DEBUG "LOCK command.\n"));
2330 if (scsicmd->cmnd[4])
2331 fsa_dev_ptr[cid].locked = 1;
2332 else
2333 fsa_dev_ptr[cid].locked = 0;
2335 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2336 scsicmd->scsi_done(scsicmd);
2337 return 0;
2339 * These commands are all No-Ops
2341 case TEST_UNIT_READY:
2342 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2343 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2344 SAM_STAT_CHECK_CONDITION;
2345 set_sense(&dev->fsa_dev[cid].sense_data,
2346 NOT_READY, SENCODE_BECOMING_READY,
2347 ASENCODE_BECOMING_READY, 0, 0);
2348 memcpy(scsicmd->sense_buffer,
2349 &dev->fsa_dev[cid].sense_data,
2350 min_t(size_t,
2351 sizeof(dev->fsa_dev[cid].sense_data),
2352 SCSI_SENSE_BUFFERSIZE));
2353 scsicmd->scsi_done(scsicmd);
2354 return 0;
2356 /* FALLTHRU */
2357 case RESERVE:
2358 case RELEASE:
2359 case REZERO_UNIT:
2360 case REASSIGN_BLOCKS:
2361 case SEEK_10:
2362 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2363 scsicmd->scsi_done(scsicmd);
2364 return 0;
2366 case START_STOP:
2367 return aac_start_stop(scsicmd);
2370 switch (scsicmd->cmnd[0])
2372 case READ_6:
2373 case READ_10:
2374 case READ_12:
2375 case READ_16:
2376 if (dev->in_reset)
2377 return -1;
2379 * Hack to keep track of ordinal number of the device that
2380 * corresponds to a container. Needed to convert
2381 * containers to /dev/sd device names
2384 if (scsicmd->request->rq_disk)
2385 strlcpy(fsa_dev_ptr[cid].devname,
2386 scsicmd->request->rq_disk->disk_name,
2387 min(sizeof(fsa_dev_ptr[cid].devname),
2388 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2390 return aac_read(scsicmd);
2392 case WRITE_6:
2393 case WRITE_10:
2394 case WRITE_12:
2395 case WRITE_16:
2396 if (dev->in_reset)
2397 return -1;
2398 return aac_write(scsicmd);
2400 case SYNCHRONIZE_CACHE:
2401 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2402 scsicmd->result = DID_OK << 16 |
2403 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2404 scsicmd->scsi_done(scsicmd);
2405 return 0;
2407 /* Issue FIB to tell Firmware to flush it's cache */
2408 if ((aac_cache & 6) != 2)
2409 return aac_synchronize(scsicmd);
2410 /* FALLTHRU */
2411 default:
2413 * Unhandled commands
2415 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2416 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2417 set_sense(&dev->fsa_dev[cid].sense_data,
2418 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2419 ASENCODE_INVALID_COMMAND, 0, 0);
2420 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2421 min_t(size_t,
2422 sizeof(dev->fsa_dev[cid].sense_data),
2423 SCSI_SENSE_BUFFERSIZE));
2424 scsicmd->scsi_done(scsicmd);
2425 return 0;
2429 static int query_disk(struct aac_dev *dev, void __user *arg)
2431 struct aac_query_disk qd;
2432 struct fsa_dev_info *fsa_dev_ptr;
2434 fsa_dev_ptr = dev->fsa_dev;
2435 if (!fsa_dev_ptr)
2436 return -EBUSY;
2437 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2438 return -EFAULT;
2439 if (qd.cnum == -1)
2440 qd.cnum = qd.id;
2441 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2443 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2444 return -EINVAL;
2445 qd.instance = dev->scsi_host_ptr->host_no;
2446 qd.bus = 0;
2447 qd.id = CONTAINER_TO_ID(qd.cnum);
2448 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2450 else return -EINVAL;
2452 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2453 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2454 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2456 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2457 qd.unmapped = 1;
2458 else
2459 qd.unmapped = 0;
2461 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2462 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2464 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2465 return -EFAULT;
2466 return 0;
2469 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2471 struct aac_delete_disk dd;
2472 struct fsa_dev_info *fsa_dev_ptr;
2474 fsa_dev_ptr = dev->fsa_dev;
2475 if (!fsa_dev_ptr)
2476 return -EBUSY;
2478 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2479 return -EFAULT;
2481 if (dd.cnum >= dev->maximum_num_containers)
2482 return -EINVAL;
2484 * Mark this container as being deleted.
2486 fsa_dev_ptr[dd.cnum].deleted = 1;
2488 * Mark the container as no longer valid
2490 fsa_dev_ptr[dd.cnum].valid = 0;
2491 return 0;
2494 static int delete_disk(struct aac_dev *dev, void __user *arg)
2496 struct aac_delete_disk dd;
2497 struct fsa_dev_info *fsa_dev_ptr;
2499 fsa_dev_ptr = dev->fsa_dev;
2500 if (!fsa_dev_ptr)
2501 return -EBUSY;
2503 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2504 return -EFAULT;
2506 if (dd.cnum >= dev->maximum_num_containers)
2507 return -EINVAL;
2509 * If the container is locked, it can not be deleted by the API.
2511 if (fsa_dev_ptr[dd.cnum].locked)
2512 return -EBUSY;
2513 else {
2515 * Mark the container as no longer being valid.
2517 fsa_dev_ptr[dd.cnum].valid = 0;
2518 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2519 return 0;
2523 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2525 switch (cmd) {
2526 case FSACTL_QUERY_DISK:
2527 return query_disk(dev, arg);
2528 case FSACTL_DELETE_DISK:
2529 return delete_disk(dev, arg);
2530 case FSACTL_FORCE_DELETE_DISK:
2531 return force_delete_disk(dev, arg);
2532 case FSACTL_GET_CONTAINERS:
2533 return aac_get_containers(dev);
2534 default:
2535 return -ENOTTY;
2541 * aac_srb_callback
2542 * @context: the context set in the fib - here it is scsi cmd
2543 * @fibptr: pointer to the fib
2545 * Handles the completion of a scsi command to a non dasd device
2549 static void aac_srb_callback(void *context, struct fib * fibptr)
2551 struct aac_dev *dev;
2552 struct aac_srb_reply *srbreply;
2553 struct scsi_cmnd *scsicmd;
2555 scsicmd = (struct scsi_cmnd *) context;
2557 if (!aac_valid_context(scsicmd, fibptr))
2558 return;
2560 BUG_ON(fibptr == NULL);
2562 dev = fibptr->dev;
2564 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2566 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2568 * Calculate resid for sg
2571 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2572 - le32_to_cpu(srbreply->data_xfer_length));
2574 scsi_dma_unmap(scsicmd);
2577 * First check the fib status
2580 if (le32_to_cpu(srbreply->status) != ST_OK){
2581 int len;
2582 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2583 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2584 SCSI_SENSE_BUFFERSIZE);
2585 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2586 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2590 * Next check the srb status
2592 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2593 case SRB_STATUS_ERROR_RECOVERY:
2594 case SRB_STATUS_PENDING:
2595 case SRB_STATUS_SUCCESS:
2596 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2597 break;
2598 case SRB_STATUS_DATA_OVERRUN:
2599 switch(scsicmd->cmnd[0]){
2600 case READ_6:
2601 case WRITE_6:
2602 case READ_10:
2603 case WRITE_10:
2604 case READ_12:
2605 case WRITE_12:
2606 case READ_16:
2607 case WRITE_16:
2608 if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2609 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2610 } else {
2611 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2613 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2614 break;
2615 case INQUIRY: {
2616 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2617 break;
2619 default:
2620 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2621 break;
2623 break;
2624 case SRB_STATUS_ABORTED:
2625 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2626 break;
2627 case SRB_STATUS_ABORT_FAILED:
2628 // Not sure about this one - but assuming the hba was trying to abort for some reason
2629 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2630 break;
2631 case SRB_STATUS_PARITY_ERROR:
2632 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2633 break;
2634 case SRB_STATUS_NO_DEVICE:
2635 case SRB_STATUS_INVALID_PATH_ID:
2636 case SRB_STATUS_INVALID_TARGET_ID:
2637 case SRB_STATUS_INVALID_LUN:
2638 case SRB_STATUS_SELECTION_TIMEOUT:
2639 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2640 break;
2642 case SRB_STATUS_COMMAND_TIMEOUT:
2643 case SRB_STATUS_TIMEOUT:
2644 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2645 break;
2647 case SRB_STATUS_BUSY:
2648 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2649 break;
2651 case SRB_STATUS_BUS_RESET:
2652 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2653 break;
2655 case SRB_STATUS_MESSAGE_REJECTED:
2656 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2657 break;
2658 case SRB_STATUS_REQUEST_FLUSHED:
2659 case SRB_STATUS_ERROR:
2660 case SRB_STATUS_INVALID_REQUEST:
2661 case SRB_STATUS_REQUEST_SENSE_FAILED:
2662 case SRB_STATUS_NO_HBA:
2663 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2664 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2665 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2666 case SRB_STATUS_DELAYED_RETRY:
2667 case SRB_STATUS_BAD_FUNCTION:
2668 case SRB_STATUS_NOT_STARTED:
2669 case SRB_STATUS_NOT_IN_USE:
2670 case SRB_STATUS_FORCE_ABORT:
2671 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2672 default:
2673 #ifdef AAC_DETAILED_STATUS_INFO
2674 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2675 le32_to_cpu(srbreply->srb_status) & 0x3F,
2676 aac_get_status_string(
2677 le32_to_cpu(srbreply->srb_status) & 0x3F),
2678 scsicmd->cmnd[0],
2679 le32_to_cpu(srbreply->scsi_status));
2680 #endif
2681 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2682 break;
2684 if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2685 int len;
2686 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2687 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2688 SCSI_SENSE_BUFFERSIZE);
2689 #ifdef AAC_DETAILED_STATUS_INFO
2690 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2691 le32_to_cpu(srbreply->status), len);
2692 #endif
2693 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2696 * OR in the scsi status (already shifted up a bit)
2698 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2700 aac_fib_complete(fibptr);
2701 aac_fib_free(fibptr);
2702 scsicmd->scsi_done(scsicmd);
2707 * aac_send_scb_fib
2708 * @scsicmd: the scsi command block
2710 * This routine will form a FIB and fill in the aac_srb from the
2711 * scsicmd passed in.
2714 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2716 struct fib* cmd_fibcontext;
2717 struct aac_dev* dev;
2718 int status;
2720 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2721 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2722 scsicmd->device->lun > 7) {
2723 scsicmd->result = DID_NO_CONNECT << 16;
2724 scsicmd->scsi_done(scsicmd);
2725 return 0;
2729 * Allocate and initialize a Fib then setup a BlockWrite command
2731 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2732 return -1;
2734 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2737 * Check that the command queued to the controller
2739 if (status == -EINPROGRESS) {
2740 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2741 return 0;
2744 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2745 aac_fib_complete(cmd_fibcontext);
2746 aac_fib_free(cmd_fibcontext);
2748 return -1;
2751 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2753 struct aac_dev *dev;
2754 unsigned long byte_count = 0;
2755 int nseg;
2757 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2758 // Get rid of old data
2759 psg->count = 0;
2760 psg->sg[0].addr = 0;
2761 psg->sg[0].count = 0;
2763 nseg = scsi_dma_map(scsicmd);
2764 BUG_ON(nseg < 0);
2765 if (nseg) {
2766 struct scatterlist *sg;
2767 int i;
2769 psg->count = cpu_to_le32(nseg);
2771 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2772 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2773 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2774 byte_count += sg_dma_len(sg);
2776 /* hba wants the size to be exact */
2777 if (byte_count > scsi_bufflen(scsicmd)) {
2778 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2779 (byte_count - scsi_bufflen(scsicmd));
2780 psg->sg[i-1].count = cpu_to_le32(temp);
2781 byte_count = scsi_bufflen(scsicmd);
2783 /* Check for command underflow */
2784 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2785 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2786 byte_count, scsicmd->underflow);
2789 return byte_count;
2793 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2795 struct aac_dev *dev;
2796 unsigned long byte_count = 0;
2797 u64 addr;
2798 int nseg;
2800 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2801 // Get rid of old data
2802 psg->count = 0;
2803 psg->sg[0].addr[0] = 0;
2804 psg->sg[0].addr[1] = 0;
2805 psg->sg[0].count = 0;
2807 nseg = scsi_dma_map(scsicmd);
2808 BUG_ON(nseg < 0);
2809 if (nseg) {
2810 struct scatterlist *sg;
2811 int i;
2813 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2814 int count = sg_dma_len(sg);
2815 addr = sg_dma_address(sg);
2816 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2817 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2818 psg->sg[i].count = cpu_to_le32(count);
2819 byte_count += count;
2821 psg->count = cpu_to_le32(nseg);
2822 /* hba wants the size to be exact */
2823 if (byte_count > scsi_bufflen(scsicmd)) {
2824 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2825 (byte_count - scsi_bufflen(scsicmd));
2826 psg->sg[i-1].count = cpu_to_le32(temp);
2827 byte_count = scsi_bufflen(scsicmd);
2829 /* Check for command underflow */
2830 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2831 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2832 byte_count, scsicmd->underflow);
2835 return byte_count;
2838 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2840 unsigned long byte_count = 0;
2841 int nseg;
2843 // Get rid of old data
2844 psg->count = 0;
2845 psg->sg[0].next = 0;
2846 psg->sg[0].prev = 0;
2847 psg->sg[0].addr[0] = 0;
2848 psg->sg[0].addr[1] = 0;
2849 psg->sg[0].count = 0;
2850 psg->sg[0].flags = 0;
2852 nseg = scsi_dma_map(scsicmd);
2853 BUG_ON(nseg < 0);
2854 if (nseg) {
2855 struct scatterlist *sg;
2856 int i;
2858 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2859 int count = sg_dma_len(sg);
2860 u64 addr = sg_dma_address(sg);
2861 psg->sg[i].next = 0;
2862 psg->sg[i].prev = 0;
2863 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2864 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2865 psg->sg[i].count = cpu_to_le32(count);
2866 psg->sg[i].flags = 0;
2867 byte_count += count;
2869 psg->count = cpu_to_le32(nseg);
2870 /* hba wants the size to be exact */
2871 if (byte_count > scsi_bufflen(scsicmd)) {
2872 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2873 (byte_count - scsi_bufflen(scsicmd));
2874 psg->sg[i-1].count = cpu_to_le32(temp);
2875 byte_count = scsi_bufflen(scsicmd);
2877 /* Check for command underflow */
2878 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2879 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2880 byte_count, scsicmd->underflow);
2883 return byte_count;
2886 #ifdef AAC_DETAILED_STATUS_INFO
2888 struct aac_srb_status_info {
2889 u32 status;
2890 char *str;
2894 static struct aac_srb_status_info srb_status_info[] = {
2895 { SRB_STATUS_PENDING, "Pending Status"},
2896 { SRB_STATUS_SUCCESS, "Success"},
2897 { SRB_STATUS_ABORTED, "Aborted Command"},
2898 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2899 { SRB_STATUS_ERROR, "Error Event"},
2900 { SRB_STATUS_BUSY, "Device Busy"},
2901 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2902 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2903 { SRB_STATUS_NO_DEVICE, "No Device"},
2904 { SRB_STATUS_TIMEOUT, "Timeout"},
2905 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2906 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2907 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2908 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2909 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2910 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2911 { SRB_STATUS_NO_HBA, "No HBA"},
2912 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2913 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2914 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2915 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2916 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2917 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2918 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2919 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2920 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2921 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2922 { SRB_STATUS_NOT_STARTED, "Not Started"},
2923 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2924 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2925 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2926 { 0xff, "Unknown Error"}
2929 char *aac_get_status_string(u32 status)
2931 int i;
2933 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2934 if (srb_status_info[i].status == status)
2935 return srb_status_info[i].str;
2937 return "Bad Status Code";
2940 #endif