Linux 2.6.34-rc3
[pohmelfs.git] / drivers / scsi / aacraid / commsup.c
blob94d2954d79ae0411a00507a8f5c7b4f0fa5bdf16
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <linux/semaphore.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_host.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_cmnd.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev * dev)
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
110 if (i<0)
111 return -ENOMEM;
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
117 * Initialise the fibs
119 for (i = 0, fibptr = &dev->fibs[i];
120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121 i++, fibptr++)
123 fibptr->dev = dev;
124 fibptr->hw_fib_va = hw_fib;
125 fibptr->data = (void *) fibptr->hw_fib_va->data;
126 fibptr->next = fibptr+1; /* Forward chain the fibs */
127 init_MUTEX_LOCKED(&fibptr->event_wait);
128 spin_lock_init(&fibptr->event_lock);
129 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131 fibptr->hw_fib_pa = hw_fib_pa;
132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
136 * Add the fib chain to the free list
138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
140 * Enable this to debug out of queue space
142 dev->free_fib = &dev->fibs[0];
143 return 0;
147 * aac_fib_alloc - allocate a fib
148 * @dev: Adapter to allocate the fib for
150 * Allocate a fib from the adapter fib pool. If the pool is empty we
151 * return NULL.
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
156 struct fib * fibptr;
157 unsigned long flags;
158 spin_lock_irqsave(&dev->fib_lock, flags);
159 fibptr = dev->free_fib;
160 if(!fibptr){
161 spin_unlock_irqrestore(&dev->fib_lock, flags);
162 return fibptr;
164 dev->free_fib = fibptr->next;
165 spin_unlock_irqrestore(&dev->fib_lock, flags);
167 * Set the proper node type code and node byte size
169 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170 fibptr->size = sizeof(struct fib);
172 * Null out fields that depend on being zero at the start of
173 * each I/O
175 fibptr->hw_fib_va->header.XferState = 0;
176 fibptr->flags = 0;
177 fibptr->callback = NULL;
178 fibptr->callback_data = NULL;
180 return fibptr;
184 * aac_fib_free - free a fib
185 * @fibptr: fib to free up
187 * Frees up a fib and places it on the appropriate queue
190 void aac_fib_free(struct fib *fibptr)
192 unsigned long flags, flagsv;
194 spin_lock_irqsave(&fibptr->event_lock, flagsv);
195 if (fibptr->done == 2) {
196 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
197 return;
199 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
201 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
202 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
203 aac_config.fib_timeouts++;
204 if (fibptr->hw_fib_va->header.XferState != 0) {
205 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
206 (void*)fibptr,
207 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
209 fibptr->next = fibptr->dev->free_fib;
210 fibptr->dev->free_fib = fibptr;
211 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
215 * aac_fib_init - initialise a fib
216 * @fibptr: The fib to initialize
218 * Set up the generic fib fields ready for use
221 void aac_fib_init(struct fib *fibptr)
223 struct hw_fib *hw_fib = fibptr->hw_fib_va;
225 hw_fib->header.StructType = FIB_MAGIC;
226 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
227 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
228 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
229 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
230 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
234 * fib_deallocate - deallocate a fib
235 * @fibptr: fib to deallocate
237 * Will deallocate and return to the free pool the FIB pointed to by the
238 * caller.
241 static void fib_dealloc(struct fib * fibptr)
243 struct hw_fib *hw_fib = fibptr->hw_fib_va;
244 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
245 hw_fib->header.XferState = 0;
249 * Commuication primitives define and support the queuing method we use to
250 * support host to adapter commuication. All queue accesses happen through
251 * these routines and are the only routines which have a knowledge of the
252 * how these queues are implemented.
256 * aac_get_entry - get a queue entry
257 * @dev: Adapter
258 * @qid: Queue Number
259 * @entry: Entry return
260 * @index: Index return
261 * @nonotify: notification control
263 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
264 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
265 * returned.
268 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
270 struct aac_queue * q;
271 unsigned long idx;
274 * All of the queues wrap when they reach the end, so we check
275 * to see if they have reached the end and if they have we just
276 * set the index back to zero. This is a wrap. You could or off
277 * the high bits in all updates but this is a bit faster I think.
280 q = &dev->queues->queue[qid];
282 idx = *index = le32_to_cpu(*(q->headers.producer));
283 /* Interrupt Moderation, only interrupt for first two entries */
284 if (idx != le32_to_cpu(*(q->headers.consumer))) {
285 if (--idx == 0) {
286 if (qid == AdapNormCmdQueue)
287 idx = ADAP_NORM_CMD_ENTRIES;
288 else
289 idx = ADAP_NORM_RESP_ENTRIES;
291 if (idx != le32_to_cpu(*(q->headers.consumer)))
292 *nonotify = 1;
295 if (qid == AdapNormCmdQueue) {
296 if (*index >= ADAP_NORM_CMD_ENTRIES)
297 *index = 0; /* Wrap to front of the Producer Queue. */
298 } else {
299 if (*index >= ADAP_NORM_RESP_ENTRIES)
300 *index = 0; /* Wrap to front of the Producer Queue. */
303 /* Queue is full */
304 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
305 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
306 qid, q->numpending);
307 return 0;
308 } else {
309 *entry = q->base + *index;
310 return 1;
315 * aac_queue_get - get the next free QE
316 * @dev: Adapter
317 * @index: Returned index
318 * @priority: Priority of fib
319 * @fib: Fib to associate with the queue entry
320 * @wait: Wait if queue full
321 * @fibptr: Driver fib object to go with fib
322 * @nonotify: Don't notify the adapter
324 * Gets the next free QE off the requested priorty adapter command
325 * queue and associates the Fib with the QE. The QE represented by
326 * index is ready to insert on the queue when this routine returns
327 * success.
330 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
332 struct aac_entry * entry = NULL;
333 int map = 0;
335 if (qid == AdapNormCmdQueue) {
336 /* if no entries wait for some if caller wants to */
337 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
338 printk(KERN_ERR "GetEntries failed\n");
341 * Setup queue entry with a command, status and fib mapped
343 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344 map = 1;
345 } else {
346 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
347 /* if no entries wait for some if caller wants to */
350 * Setup queue entry with command, status and fib mapped
352 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
353 entry->addr = hw_fib->header.SenderFibAddress;
354 /* Restore adapters pointer to the FIB */
355 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
356 map = 0;
359 * If MapFib is true than we need to map the Fib and put pointers
360 * in the queue entry.
362 if (map)
363 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
364 return 0;
368 * Define the highest level of host to adapter communication routines.
369 * These routines will support host to adapter FS commuication. These
370 * routines have no knowledge of the commuication method used. This level
371 * sends and receives FIBs. This level has no knowledge of how these FIBs
372 * get passed back and forth.
376 * aac_fib_send - send a fib to the adapter
377 * @command: Command to send
378 * @fibptr: The fib
379 * @size: Size of fib data area
380 * @priority: Priority of Fib
381 * @wait: Async/sync select
382 * @reply: True if a reply is wanted
383 * @callback: Called with reply
384 * @callback_data: Passed to callback
386 * Sends the requested FIB to the adapter and optionally will wait for a
387 * response FIB. If the caller does not wish to wait for a response than
388 * an event to wait on must be supplied. This event will be set when a
389 * response FIB is received from the adapter.
392 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
393 int priority, int wait, int reply, fib_callback callback,
394 void *callback_data)
396 struct aac_dev * dev = fibptr->dev;
397 struct hw_fib * hw_fib = fibptr->hw_fib_va;
398 unsigned long flags = 0;
399 unsigned long qflags;
400 unsigned long mflags = 0;
403 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
404 return -EBUSY;
406 * There are 5 cases with the wait and reponse requested flags.
407 * The only invalid cases are if the caller requests to wait and
408 * does not request a response and if the caller does not want a
409 * response and the Fib is not allocated from pool. If a response
410 * is not requesed the Fib will just be deallocaed by the DPC
411 * routine when the response comes back from the adapter. No
412 * further processing will be done besides deleting the Fib. We
413 * will have a debug mode where the adapter can notify the host
414 * it had a problem and the host can log that fact.
416 fibptr->flags = 0;
417 if (wait && !reply) {
418 return -EINVAL;
419 } else if (!wait && reply) {
420 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
421 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
422 } else if (!wait && !reply) {
423 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
424 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
425 } else if (wait && reply) {
426 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
427 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
430 * Map the fib into 32bits by using the fib number
433 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
434 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
436 * Set FIB state to indicate where it came from and if we want a
437 * response from the adapter. Also load the command from the
438 * caller.
440 * Map the hw fib pointer as a 32bit value
442 hw_fib->header.Command = cpu_to_le16(command);
443 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
444 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
446 * Set the size of the Fib we want to send to the adapter
448 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
449 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
450 return -EMSGSIZE;
453 * Get a queue entry connect the FIB to it and send an notify
454 * the adapter a command is ready.
456 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
459 * Fill in the Callback and CallbackContext if we are not
460 * going to wait.
462 if (!wait) {
463 fibptr->callback = callback;
464 fibptr->callback_data = callback_data;
465 fibptr->flags = FIB_CONTEXT_FLAG;
468 fibptr->done = 0;
470 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
472 dprintk((KERN_DEBUG "Fib contents:.\n"));
473 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
474 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
475 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
476 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
477 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
478 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
480 if (!dev->queues)
481 return -EBUSY;
483 if (wait) {
485 spin_lock_irqsave(&dev->manage_lock, mflags);
486 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
487 printk(KERN_INFO "No management Fibs Available:%d\n",
488 dev->management_fib_count);
489 spin_unlock_irqrestore(&dev->manage_lock, mflags);
490 return -EBUSY;
492 dev->management_fib_count++;
493 spin_unlock_irqrestore(&dev->manage_lock, mflags);
494 spin_lock_irqsave(&fibptr->event_lock, flags);
497 if (aac_adapter_deliver(fibptr) != 0) {
498 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
499 if (wait) {
500 spin_unlock_irqrestore(&fibptr->event_lock, flags);
501 spin_lock_irqsave(&dev->manage_lock, mflags);
502 dev->management_fib_count--;
503 spin_unlock_irqrestore(&dev->manage_lock, mflags);
505 return -EBUSY;
510 * If the caller wanted us to wait for response wait now.
513 if (wait) {
514 spin_unlock_irqrestore(&fibptr->event_lock, flags);
515 /* Only set for first known interruptable command */
516 if (wait < 0) {
518 * *VERY* Dangerous to time out a command, the
519 * assumption is made that we have no hope of
520 * functioning because an interrupt routing or other
521 * hardware failure has occurred.
523 unsigned long count = 36000000L; /* 3 minutes */
524 while (down_trylock(&fibptr->event_wait)) {
525 int blink;
526 if (--count == 0) {
527 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
528 spin_lock_irqsave(q->lock, qflags);
529 q->numpending--;
530 spin_unlock_irqrestore(q->lock, qflags);
531 if (wait == -1) {
532 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
533 "Usually a result of a PCI interrupt routing problem;\n"
534 "update mother board BIOS or consider utilizing one of\n"
535 "the SAFE mode kernel options (acpi, apic etc)\n");
537 return -ETIMEDOUT;
539 if ((blink = aac_adapter_check_health(dev)) > 0) {
540 if (wait == -1) {
541 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
542 "Usually a result of a serious unrecoverable hardware problem\n",
543 blink);
545 return -EFAULT;
547 udelay(5);
549 } else if (down_interruptible(&fibptr->event_wait)) {
550 /* Do nothing ... satisfy
551 * down_interruptible must_check */
554 spin_lock_irqsave(&fibptr->event_lock, flags);
555 if (fibptr->done == 0) {
556 fibptr->done = 2; /* Tell interrupt we aborted */
557 spin_unlock_irqrestore(&fibptr->event_lock, flags);
558 return -ERESTARTSYS;
560 spin_unlock_irqrestore(&fibptr->event_lock, flags);
561 BUG_ON(fibptr->done == 0);
563 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
564 return -ETIMEDOUT;
565 return 0;
568 * If the user does not want a response than return success otherwise
569 * return pending
571 if (reply)
572 return -EINPROGRESS;
573 else
574 return 0;
578 * aac_consumer_get - get the top of the queue
579 * @dev: Adapter
580 * @q: Queue
581 * @entry: Return entry
583 * Will return a pointer to the entry on the top of the queue requested that
584 * we are a consumer of, and return the address of the queue entry. It does
585 * not change the state of the queue.
588 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
590 u32 index;
591 int status;
592 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
593 status = 0;
594 } else {
596 * The consumer index must be wrapped if we have reached
597 * the end of the queue, else we just use the entry
598 * pointed to by the header index
600 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
601 index = 0;
602 else
603 index = le32_to_cpu(*q->headers.consumer);
604 *entry = q->base + index;
605 status = 1;
607 return(status);
611 * aac_consumer_free - free consumer entry
612 * @dev: Adapter
613 * @q: Queue
614 * @qid: Queue ident
616 * Frees up the current top of the queue we are a consumer of. If the
617 * queue was full notify the producer that the queue is no longer full.
620 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
622 int wasfull = 0;
623 u32 notify;
625 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
626 wasfull = 1;
628 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
629 *q->headers.consumer = cpu_to_le32(1);
630 else
631 le32_add_cpu(q->headers.consumer, 1);
633 if (wasfull) {
634 switch (qid) {
636 case HostNormCmdQueue:
637 notify = HostNormCmdNotFull;
638 break;
639 case HostNormRespQueue:
640 notify = HostNormRespNotFull;
641 break;
642 default:
643 BUG();
644 return;
646 aac_adapter_notify(dev, notify);
651 * aac_fib_adapter_complete - complete adapter issued fib
652 * @fibptr: fib to complete
653 * @size: size of fib
655 * Will do all necessary work to complete a FIB that was sent from
656 * the adapter.
659 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
661 struct hw_fib * hw_fib = fibptr->hw_fib_va;
662 struct aac_dev * dev = fibptr->dev;
663 struct aac_queue * q;
664 unsigned long nointr = 0;
665 unsigned long qflags;
667 if (hw_fib->header.XferState == 0) {
668 if (dev->comm_interface == AAC_COMM_MESSAGE)
669 kfree (hw_fib);
670 return 0;
673 * If we plan to do anything check the structure type first.
675 if (hw_fib->header.StructType != FIB_MAGIC) {
676 if (dev->comm_interface == AAC_COMM_MESSAGE)
677 kfree (hw_fib);
678 return -EINVAL;
681 * This block handles the case where the adapter had sent us a
682 * command and we have finished processing the command. We
683 * call completeFib when we are done processing the command
684 * and want to send a response back to the adapter. This will
685 * send the completed cdb to the adapter.
687 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
688 if (dev->comm_interface == AAC_COMM_MESSAGE) {
689 kfree (hw_fib);
690 } else {
691 u32 index;
692 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
693 if (size) {
694 size += sizeof(struct aac_fibhdr);
695 if (size > le16_to_cpu(hw_fib->header.SenderSize))
696 return -EMSGSIZE;
697 hw_fib->header.Size = cpu_to_le16(size);
699 q = &dev->queues->queue[AdapNormRespQueue];
700 spin_lock_irqsave(q->lock, qflags);
701 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
702 *(q->headers.producer) = cpu_to_le32(index + 1);
703 spin_unlock_irqrestore(q->lock, qflags);
704 if (!(nointr & (int)aac_config.irq_mod))
705 aac_adapter_notify(dev, AdapNormRespQueue);
707 } else {
708 printk(KERN_WARNING "aac_fib_adapter_complete: "
709 "Unknown xferstate detected.\n");
710 BUG();
712 return 0;
716 * aac_fib_complete - fib completion handler
717 * @fib: FIB to complete
719 * Will do all necessary work to complete a FIB.
722 int aac_fib_complete(struct fib *fibptr)
724 unsigned long flags;
725 struct hw_fib * hw_fib = fibptr->hw_fib_va;
728 * Check for a fib which has already been completed
731 if (hw_fib->header.XferState == 0)
732 return 0;
734 * If we plan to do anything check the structure type first.
737 if (hw_fib->header.StructType != FIB_MAGIC)
738 return -EINVAL;
740 * This block completes a cdb which orginated on the host and we
741 * just need to deallocate the cdb or reinit it. At this point the
742 * command is complete that we had sent to the adapter and this
743 * cdb could be reused.
745 spin_lock_irqsave(&fibptr->event_lock, flags);
746 if (fibptr->done == 2) {
747 spin_unlock_irqrestore(&fibptr->event_lock, flags);
748 return 0;
750 spin_unlock_irqrestore(&fibptr->event_lock, flags);
752 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
753 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
755 fib_dealloc(fibptr);
757 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
760 * This handles the case when the host has aborted the I/O
761 * to the adapter because the adapter is not responding
763 fib_dealloc(fibptr);
764 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
765 fib_dealloc(fibptr);
766 } else {
767 BUG();
769 return 0;
773 * aac_printf - handle printf from firmware
774 * @dev: Adapter
775 * @val: Message info
777 * Print a message passed to us by the controller firmware on the
778 * Adaptec board
781 void aac_printf(struct aac_dev *dev, u32 val)
783 char *cp = dev->printfbuf;
784 if (dev->printf_enabled)
786 int length = val & 0xffff;
787 int level = (val >> 16) & 0xffff;
790 * The size of the printfbuf is set in port.c
791 * There is no variable or define for it
793 if (length > 255)
794 length = 255;
795 if (cp[length] != 0)
796 cp[length] = 0;
797 if (level == LOG_AAC_HIGH_ERROR)
798 printk(KERN_WARNING "%s:%s", dev->name, cp);
799 else
800 printk(KERN_INFO "%s:%s", dev->name, cp);
802 memset(cp, 0, 256);
807 * aac_handle_aif - Handle a message from the firmware
808 * @dev: Which adapter this fib is from
809 * @fibptr: Pointer to fibptr from adapter
811 * This routine handles a driver notify fib from the adapter and
812 * dispatches it to the appropriate routine for handling.
815 #define AIF_SNIFF_TIMEOUT (30*HZ)
816 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
818 struct hw_fib * hw_fib = fibptr->hw_fib_va;
819 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
820 u32 channel, id, lun, container;
821 struct scsi_device *device;
822 enum {
823 NOTHING,
824 DELETE,
825 ADD,
826 CHANGE
827 } device_config_needed = NOTHING;
829 /* Sniff for container changes */
831 if (!dev || !dev->fsa_dev)
832 return;
833 container = channel = id = lun = (u32)-1;
836 * We have set this up to try and minimize the number of
837 * re-configures that take place. As a result of this when
838 * certain AIF's come in we will set a flag waiting for another
839 * type of AIF before setting the re-config flag.
841 switch (le32_to_cpu(aifcmd->command)) {
842 case AifCmdDriverNotify:
843 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
845 * Morph or Expand complete
847 case AifDenMorphComplete:
848 case AifDenVolumeExtendComplete:
849 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
850 if (container >= dev->maximum_num_containers)
851 break;
854 * Find the scsi_device associated with the SCSI
855 * address. Make sure we have the right array, and if
856 * so set the flag to initiate a new re-config once we
857 * see an AifEnConfigChange AIF come through.
860 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
861 device = scsi_device_lookup(dev->scsi_host_ptr,
862 CONTAINER_TO_CHANNEL(container),
863 CONTAINER_TO_ID(container),
864 CONTAINER_TO_LUN(container));
865 if (device) {
866 dev->fsa_dev[container].config_needed = CHANGE;
867 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
868 dev->fsa_dev[container].config_waiting_stamp = jiffies;
869 scsi_device_put(device);
875 * If we are waiting on something and this happens to be
876 * that thing then set the re-configure flag.
878 if (container != (u32)-1) {
879 if (container >= dev->maximum_num_containers)
880 break;
881 if ((dev->fsa_dev[container].config_waiting_on ==
882 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884 dev->fsa_dev[container].config_waiting_on = 0;
885 } else for (container = 0;
886 container < dev->maximum_num_containers; ++container) {
887 if ((dev->fsa_dev[container].config_waiting_on ==
888 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
889 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
890 dev->fsa_dev[container].config_waiting_on = 0;
892 break;
894 case AifCmdEventNotify:
895 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
896 case AifEnBatteryEvent:
897 dev->cache_protected =
898 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
899 break;
901 * Add an Array.
903 case AifEnAddContainer:
904 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
905 if (container >= dev->maximum_num_containers)
906 break;
907 dev->fsa_dev[container].config_needed = ADD;
908 dev->fsa_dev[container].config_waiting_on =
909 AifEnConfigChange;
910 dev->fsa_dev[container].config_waiting_stamp = jiffies;
911 break;
914 * Delete an Array.
916 case AifEnDeleteContainer:
917 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
918 if (container >= dev->maximum_num_containers)
919 break;
920 dev->fsa_dev[container].config_needed = DELETE;
921 dev->fsa_dev[container].config_waiting_on =
922 AifEnConfigChange;
923 dev->fsa_dev[container].config_waiting_stamp = jiffies;
924 break;
927 * Container change detected. If we currently are not
928 * waiting on something else, setup to wait on a Config Change.
930 case AifEnContainerChange:
931 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
932 if (container >= dev->maximum_num_containers)
933 break;
934 if (dev->fsa_dev[container].config_waiting_on &&
935 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
936 break;
937 dev->fsa_dev[container].config_needed = CHANGE;
938 dev->fsa_dev[container].config_waiting_on =
939 AifEnConfigChange;
940 dev->fsa_dev[container].config_waiting_stamp = jiffies;
941 break;
943 case AifEnConfigChange:
944 break;
946 case AifEnAddJBOD:
947 case AifEnDeleteJBOD:
948 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
949 if ((container >> 28)) {
950 container = (u32)-1;
951 break;
953 channel = (container >> 24) & 0xF;
954 if (channel >= dev->maximum_num_channels) {
955 container = (u32)-1;
956 break;
958 id = container & 0xFFFF;
959 if (id >= dev->maximum_num_physicals) {
960 container = (u32)-1;
961 break;
963 lun = (container >> 16) & 0xFF;
964 container = (u32)-1;
965 channel = aac_phys_to_logical(channel);
966 device_config_needed =
967 (((__le32 *)aifcmd->data)[0] ==
968 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
969 break;
971 case AifEnEnclosureManagement:
973 * If in JBOD mode, automatic exposure of new
974 * physical target to be suppressed until configured.
976 if (dev->jbod)
977 break;
978 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
979 case EM_DRIVE_INSERTION:
980 case EM_DRIVE_REMOVAL:
981 container = le32_to_cpu(
982 ((__le32 *)aifcmd->data)[2]);
983 if ((container >> 28)) {
984 container = (u32)-1;
985 break;
987 channel = (container >> 24) & 0xF;
988 if (channel >= dev->maximum_num_channels) {
989 container = (u32)-1;
990 break;
992 id = container & 0xFFFF;
993 lun = (container >> 16) & 0xFF;
994 container = (u32)-1;
995 if (id >= dev->maximum_num_physicals) {
996 /* legacy dev_t ? */
997 if ((0x2000 <= id) || lun || channel ||
998 ((channel = (id >> 7) & 0x3F) >=
999 dev->maximum_num_channels))
1000 break;
1001 lun = (id >> 4) & 7;
1002 id &= 0xF;
1004 channel = aac_phys_to_logical(channel);
1005 device_config_needed =
1006 (((__le32 *)aifcmd->data)[3]
1007 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1008 ADD : DELETE;
1009 break;
1011 break;
1015 * If we are waiting on something and this happens to be
1016 * that thing then set the re-configure flag.
1018 if (container != (u32)-1) {
1019 if (container >= dev->maximum_num_containers)
1020 break;
1021 if ((dev->fsa_dev[container].config_waiting_on ==
1022 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1023 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1024 dev->fsa_dev[container].config_waiting_on = 0;
1025 } else for (container = 0;
1026 container < dev->maximum_num_containers; ++container) {
1027 if ((dev->fsa_dev[container].config_waiting_on ==
1028 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1029 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1030 dev->fsa_dev[container].config_waiting_on = 0;
1032 break;
1034 case AifCmdJobProgress:
1036 * These are job progress AIF's. When a Clear is being
1037 * done on a container it is initially created then hidden from
1038 * the OS. When the clear completes we don't get a config
1039 * change so we monitor the job status complete on a clear then
1040 * wait for a container change.
1043 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1044 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1045 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1046 for (container = 0;
1047 container < dev->maximum_num_containers;
1048 ++container) {
1050 * Stomp on all config sequencing for all
1051 * containers?
1053 dev->fsa_dev[container].config_waiting_on =
1054 AifEnContainerChange;
1055 dev->fsa_dev[container].config_needed = ADD;
1056 dev->fsa_dev[container].config_waiting_stamp =
1057 jiffies;
1060 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1061 ((__le32 *)aifcmd->data)[6] == 0 &&
1062 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1063 for (container = 0;
1064 container < dev->maximum_num_containers;
1065 ++container) {
1067 * Stomp on all config sequencing for all
1068 * containers?
1070 dev->fsa_dev[container].config_waiting_on =
1071 AifEnContainerChange;
1072 dev->fsa_dev[container].config_needed = DELETE;
1073 dev->fsa_dev[container].config_waiting_stamp =
1074 jiffies;
1077 break;
1080 container = 0;
1081 retry_next:
1082 if (device_config_needed == NOTHING)
1083 for (; container < dev->maximum_num_containers; ++container) {
1084 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1085 (dev->fsa_dev[container].config_needed != NOTHING) &&
1086 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1087 device_config_needed =
1088 dev->fsa_dev[container].config_needed;
1089 dev->fsa_dev[container].config_needed = NOTHING;
1090 channel = CONTAINER_TO_CHANNEL(container);
1091 id = CONTAINER_TO_ID(container);
1092 lun = CONTAINER_TO_LUN(container);
1093 break;
1096 if (device_config_needed == NOTHING)
1097 return;
1100 * If we decided that a re-configuration needs to be done,
1101 * schedule it here on the way out the door, please close the door
1102 * behind you.
1106 * Find the scsi_device associated with the SCSI address,
1107 * and mark it as changed, invalidating the cache. This deals
1108 * with changes to existing device IDs.
1111 if (!dev || !dev->scsi_host_ptr)
1112 return;
1114 * force reload of disk info via aac_probe_container
1116 if ((channel == CONTAINER_CHANNEL) &&
1117 (device_config_needed != NOTHING)) {
1118 if (dev->fsa_dev[container].valid == 1)
1119 dev->fsa_dev[container].valid = 2;
1120 aac_probe_container(dev, container);
1122 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1123 if (device) {
1124 switch (device_config_needed) {
1125 case DELETE:
1126 if (scsi_device_online(device)) {
1127 scsi_device_set_state(device, SDEV_OFFLINE);
1128 sdev_printk(KERN_INFO, device,
1129 "Device offlined - %s\n",
1130 (channel == CONTAINER_CHANNEL) ?
1131 "array deleted" :
1132 "enclosure services event");
1134 break;
1135 case ADD:
1136 if (!scsi_device_online(device)) {
1137 sdev_printk(KERN_INFO, device,
1138 "Device online - %s\n",
1139 (channel == CONTAINER_CHANNEL) ?
1140 "array created" :
1141 "enclosure services event");
1142 scsi_device_set_state(device, SDEV_RUNNING);
1144 /* FALLTHRU */
1145 case CHANGE:
1146 if ((channel == CONTAINER_CHANNEL)
1147 && (!dev->fsa_dev[container].valid)) {
1148 if (!scsi_device_online(device))
1149 break;
1150 scsi_device_set_state(device, SDEV_OFFLINE);
1151 sdev_printk(KERN_INFO, device,
1152 "Device offlined - %s\n",
1153 "array failed");
1154 break;
1156 scsi_rescan_device(&device->sdev_gendev);
1158 default:
1159 break;
1161 scsi_device_put(device);
1162 device_config_needed = NOTHING;
1164 if (device_config_needed == ADD)
1165 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1166 if (channel == CONTAINER_CHANNEL) {
1167 container++;
1168 device_config_needed = NOTHING;
1169 goto retry_next;
1173 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1175 int index, quirks;
1176 int retval;
1177 struct Scsi_Host *host;
1178 struct scsi_device *dev;
1179 struct scsi_cmnd *command;
1180 struct scsi_cmnd *command_list;
1181 int jafo = 0;
1184 * Assumptions:
1185 * - host is locked, unless called by the aacraid thread.
1186 * (a matter of convenience, due to legacy issues surrounding
1187 * eh_host_adapter_reset).
1188 * - in_reset is asserted, so no new i/o is getting to the
1189 * card.
1190 * - The card is dead, or will be very shortly ;-/ so no new
1191 * commands are completing in the interrupt service.
1193 host = aac->scsi_host_ptr;
1194 scsi_block_requests(host);
1195 aac_adapter_disable_int(aac);
1196 if (aac->thread->pid != current->pid) {
1197 spin_unlock_irq(host->host_lock);
1198 kthread_stop(aac->thread);
1199 jafo = 1;
1203 * If a positive health, means in a known DEAD PANIC
1204 * state and the adapter could be reset to `try again'.
1206 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1208 if (retval)
1209 goto out;
1212 * Loop through the fibs, close the synchronous FIBS
1214 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1215 struct fib *fib = &aac->fibs[index];
1216 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1217 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1218 unsigned long flagv;
1219 spin_lock_irqsave(&fib->event_lock, flagv);
1220 up(&fib->event_wait);
1221 spin_unlock_irqrestore(&fib->event_lock, flagv);
1222 schedule();
1223 retval = 0;
1226 /* Give some extra time for ioctls to complete. */
1227 if (retval == 0)
1228 ssleep(2);
1229 index = aac->cardtype;
1232 * Re-initialize the adapter, first free resources, then carefully
1233 * apply the initialization sequence to come back again. Only risk
1234 * is a change in Firmware dropping cache, it is assumed the caller
1235 * will ensure that i/o is queisced and the card is flushed in that
1236 * case.
1238 aac_fib_map_free(aac);
1239 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1240 aac->comm_addr = NULL;
1241 aac->comm_phys = 0;
1242 kfree(aac->queues);
1243 aac->queues = NULL;
1244 free_irq(aac->pdev->irq, aac);
1245 kfree(aac->fsa_dev);
1246 aac->fsa_dev = NULL;
1247 quirks = aac_get_driver_ident(index)->quirks;
1248 if (quirks & AAC_QUIRK_31BIT) {
1249 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1250 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1251 goto out;
1252 } else {
1253 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1254 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1255 goto out;
1257 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1258 goto out;
1259 if (quirks & AAC_QUIRK_31BIT)
1260 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1261 goto out;
1262 if (jafo) {
1263 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1264 if (IS_ERR(aac->thread)) {
1265 retval = PTR_ERR(aac->thread);
1266 goto out;
1269 (void)aac_get_adapter_info(aac);
1270 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1271 host->sg_tablesize = 34;
1272 host->max_sectors = (host->sg_tablesize * 8) + 112;
1274 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1275 host->sg_tablesize = 17;
1276 host->max_sectors = (host->sg_tablesize * 8) + 112;
1278 aac_get_config_status(aac, 1);
1279 aac_get_containers(aac);
1281 * This is where the assumption that the Adapter is quiesced
1282 * is important.
1284 command_list = NULL;
1285 __shost_for_each_device(dev, host) {
1286 unsigned long flags;
1287 spin_lock_irqsave(&dev->list_lock, flags);
1288 list_for_each_entry(command, &dev->cmd_list, list)
1289 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1290 command->SCp.buffer = (struct scatterlist *)command_list;
1291 command_list = command;
1293 spin_unlock_irqrestore(&dev->list_lock, flags);
1295 while ((command = command_list)) {
1296 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1297 command->SCp.buffer = NULL;
1298 command->result = DID_OK << 16
1299 | COMMAND_COMPLETE << 8
1300 | SAM_STAT_TASK_SET_FULL;
1301 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1302 command->scsi_done(command);
1304 retval = 0;
1306 out:
1307 aac->in_reset = 0;
1308 scsi_unblock_requests(host);
1309 if (jafo) {
1310 spin_lock_irq(host->host_lock);
1312 return retval;
1315 int aac_reset_adapter(struct aac_dev * aac, int forced)
1317 unsigned long flagv = 0;
1318 int retval;
1319 struct Scsi_Host * host;
1321 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1322 return -EBUSY;
1324 if (aac->in_reset) {
1325 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1326 return -EBUSY;
1328 aac->in_reset = 1;
1329 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1332 * Wait for all commands to complete to this specific
1333 * target (block maximum 60 seconds). Although not necessary,
1334 * it does make us a good storage citizen.
1336 host = aac->scsi_host_ptr;
1337 scsi_block_requests(host);
1338 if (forced < 2) for (retval = 60; retval; --retval) {
1339 struct scsi_device * dev;
1340 struct scsi_cmnd * command;
1341 int active = 0;
1343 __shost_for_each_device(dev, host) {
1344 spin_lock_irqsave(&dev->list_lock, flagv);
1345 list_for_each_entry(command, &dev->cmd_list, list) {
1346 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1347 active++;
1348 break;
1351 spin_unlock_irqrestore(&dev->list_lock, flagv);
1352 if (active)
1353 break;
1357 * We can exit If all the commands are complete
1359 if (active == 0)
1360 break;
1361 ssleep(1);
1364 /* Quiesce build, flush cache, write through mode */
1365 if (forced < 2)
1366 aac_send_shutdown(aac);
1367 spin_lock_irqsave(host->host_lock, flagv);
1368 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1369 spin_unlock_irqrestore(host->host_lock, flagv);
1371 if ((forced < 2) && (retval == -ENODEV)) {
1372 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1373 struct fib * fibctx = aac_fib_alloc(aac);
1374 if (fibctx) {
1375 struct aac_pause *cmd;
1376 int status;
1378 aac_fib_init(fibctx);
1380 cmd = (struct aac_pause *) fib_data(fibctx);
1382 cmd->command = cpu_to_le32(VM_ContainerConfig);
1383 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1384 cmd->timeout = cpu_to_le32(1);
1385 cmd->min = cpu_to_le32(1);
1386 cmd->noRescan = cpu_to_le32(1);
1387 cmd->count = cpu_to_le32(0);
1389 status = aac_fib_send(ContainerCommand,
1390 fibctx,
1391 sizeof(struct aac_pause),
1392 FsaNormal,
1393 -2 /* Timeout silently */, 1,
1394 NULL, NULL);
1396 if (status >= 0)
1397 aac_fib_complete(fibctx);
1398 /* FIB should be freed only after getting
1399 * the response from the F/W */
1400 if (status != -ERESTARTSYS)
1401 aac_fib_free(fibctx);
1405 return retval;
1408 int aac_check_health(struct aac_dev * aac)
1410 int BlinkLED;
1411 unsigned long time_now, flagv = 0;
1412 struct list_head * entry;
1413 struct Scsi_Host * host;
1415 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1416 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1417 return 0;
1419 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1420 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1421 return 0; /* OK */
1424 aac->in_reset = 1;
1426 /* Fake up an AIF:
1427 * aac_aifcmd.command = AifCmdEventNotify = 1
1428 * aac_aifcmd.seqnum = 0xFFFFFFFF
1429 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1430 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1431 * aac.aifcmd.data[2] = AifHighPriority = 3
1432 * aac.aifcmd.data[3] = BlinkLED
1435 time_now = jiffies/HZ;
1436 entry = aac->fib_list.next;
1439 * For each Context that is on the
1440 * fibctxList, make a copy of the
1441 * fib, and then set the event to wake up the
1442 * thread that is waiting for it.
1444 while (entry != &aac->fib_list) {
1446 * Extract the fibctx
1448 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1449 struct hw_fib * hw_fib;
1450 struct fib * fib;
1452 * Check if the queue is getting
1453 * backlogged
1455 if (fibctx->count > 20) {
1457 * It's *not* jiffies folks,
1458 * but jiffies / HZ, so do not
1459 * panic ...
1461 u32 time_last = fibctx->jiffies;
1463 * Has it been > 2 minutes
1464 * since the last read off
1465 * the queue?
1467 if ((time_now - time_last) > aif_timeout) {
1468 entry = entry->next;
1469 aac_close_fib_context(aac, fibctx);
1470 continue;
1474 * Warning: no sleep allowed while
1475 * holding spinlock
1477 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1478 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1479 if (fib && hw_fib) {
1480 struct aac_aifcmd * aif;
1482 fib->hw_fib_va = hw_fib;
1483 fib->dev = aac;
1484 aac_fib_init(fib);
1485 fib->type = FSAFS_NTC_FIB_CONTEXT;
1486 fib->size = sizeof (struct fib);
1487 fib->data = hw_fib->data;
1488 aif = (struct aac_aifcmd *)hw_fib->data;
1489 aif->command = cpu_to_le32(AifCmdEventNotify);
1490 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1491 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1492 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1493 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1494 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1497 * Put the FIB onto the
1498 * fibctx's fibs
1500 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1501 fibctx->count++;
1503 * Set the event to wake up the
1504 * thread that will waiting.
1506 up(&fibctx->wait_sem);
1507 } else {
1508 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1509 kfree(fib);
1510 kfree(hw_fib);
1512 entry = entry->next;
1515 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1517 if (BlinkLED < 0) {
1518 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1519 goto out;
1522 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1524 if (!aac_check_reset || ((aac_check_reset == 1) &&
1525 (aac->supplement_adapter_info.SupportedOptions2 &
1526 AAC_OPTION_IGNORE_RESET)))
1527 goto out;
1528 host = aac->scsi_host_ptr;
1529 if (aac->thread->pid != current->pid)
1530 spin_lock_irqsave(host->host_lock, flagv);
1531 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1532 if (aac->thread->pid != current->pid)
1533 spin_unlock_irqrestore(host->host_lock, flagv);
1534 return BlinkLED;
1536 out:
1537 aac->in_reset = 0;
1538 return BlinkLED;
1543 * aac_command_thread - command processing thread
1544 * @dev: Adapter to monitor
1546 * Waits on the commandready event in it's queue. When the event gets set
1547 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1548 * until the queue is empty. When the queue is empty it will wait for
1549 * more FIBs.
1552 int aac_command_thread(void *data)
1554 struct aac_dev *dev = data;
1555 struct hw_fib *hw_fib, *hw_newfib;
1556 struct fib *fib, *newfib;
1557 struct aac_fib_context *fibctx;
1558 unsigned long flags;
1559 DECLARE_WAITQUEUE(wait, current);
1560 unsigned long next_jiffies = jiffies + HZ;
1561 unsigned long next_check_jiffies = next_jiffies;
1562 long difference = HZ;
1565 * We can only have one thread per adapter for AIF's.
1567 if (dev->aif_thread)
1568 return -EINVAL;
1571 * Let the DPC know it has a place to send the AIF's to.
1573 dev->aif_thread = 1;
1574 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1575 set_current_state(TASK_INTERRUPTIBLE);
1576 dprintk ((KERN_INFO "aac_command_thread start\n"));
1577 while (1) {
1578 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1579 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1580 struct list_head *entry;
1581 struct aac_aifcmd * aifcmd;
1583 set_current_state(TASK_RUNNING);
1585 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1586 list_del(entry);
1588 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1589 fib = list_entry(entry, struct fib, fiblink);
1591 * We will process the FIB here or pass it to a
1592 * worker thread that is TBD. We Really can't
1593 * do anything at this point since we don't have
1594 * anything defined for this thread to do.
1596 hw_fib = fib->hw_fib_va;
1597 memset(fib, 0, sizeof(struct fib));
1598 fib->type = FSAFS_NTC_FIB_CONTEXT;
1599 fib->size = sizeof(struct fib);
1600 fib->hw_fib_va = hw_fib;
1601 fib->data = hw_fib->data;
1602 fib->dev = dev;
1604 * We only handle AifRequest fibs from the adapter.
1606 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1607 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1608 /* Handle Driver Notify Events */
1609 aac_handle_aif(dev, fib);
1610 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1611 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1612 } else {
1613 /* The u32 here is important and intended. We are using
1614 32bit wrapping time to fit the adapter field */
1616 u32 time_now, time_last;
1617 unsigned long flagv;
1618 unsigned num;
1619 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1620 struct fib ** fib_pool, ** fib_p;
1622 /* Sniff events */
1623 if ((aifcmd->command ==
1624 cpu_to_le32(AifCmdEventNotify)) ||
1625 (aifcmd->command ==
1626 cpu_to_le32(AifCmdJobProgress))) {
1627 aac_handle_aif(dev, fib);
1630 time_now = jiffies/HZ;
1633 * Warning: no sleep allowed while
1634 * holding spinlock. We take the estimate
1635 * and pre-allocate a set of fibs outside the
1636 * lock.
1638 num = le32_to_cpu(dev->init->AdapterFibsSize)
1639 / sizeof(struct hw_fib); /* some extra */
1640 spin_lock_irqsave(&dev->fib_lock, flagv);
1641 entry = dev->fib_list.next;
1642 while (entry != &dev->fib_list) {
1643 entry = entry->next;
1644 ++num;
1646 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1647 hw_fib_pool = NULL;
1648 fib_pool = NULL;
1649 if (num
1650 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1651 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1652 hw_fib_p = hw_fib_pool;
1653 fib_p = fib_pool;
1654 while (hw_fib_p < &hw_fib_pool[num]) {
1655 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1656 --hw_fib_p;
1657 break;
1659 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1660 kfree(*(--hw_fib_p));
1661 break;
1664 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1665 kfree(fib_pool);
1666 fib_pool = NULL;
1667 kfree(hw_fib_pool);
1668 hw_fib_pool = NULL;
1670 } else {
1671 kfree(hw_fib_pool);
1672 hw_fib_pool = NULL;
1674 spin_lock_irqsave(&dev->fib_lock, flagv);
1675 entry = dev->fib_list.next;
1677 * For each Context that is on the
1678 * fibctxList, make a copy of the
1679 * fib, and then set the event to wake up the
1680 * thread that is waiting for it.
1682 hw_fib_p = hw_fib_pool;
1683 fib_p = fib_pool;
1684 while (entry != &dev->fib_list) {
1686 * Extract the fibctx
1688 fibctx = list_entry(entry, struct aac_fib_context, next);
1690 * Check if the queue is getting
1691 * backlogged
1693 if (fibctx->count > 20)
1696 * It's *not* jiffies folks,
1697 * but jiffies / HZ so do not
1698 * panic ...
1700 time_last = fibctx->jiffies;
1702 * Has it been > 2 minutes
1703 * since the last read off
1704 * the queue?
1706 if ((time_now - time_last) > aif_timeout) {
1707 entry = entry->next;
1708 aac_close_fib_context(dev, fibctx);
1709 continue;
1713 * Warning: no sleep allowed while
1714 * holding spinlock
1716 if (hw_fib_p < &hw_fib_pool[num]) {
1717 hw_newfib = *hw_fib_p;
1718 *(hw_fib_p++) = NULL;
1719 newfib = *fib_p;
1720 *(fib_p++) = NULL;
1722 * Make the copy of the FIB
1724 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1725 memcpy(newfib, fib, sizeof(struct fib));
1726 newfib->hw_fib_va = hw_newfib;
1728 * Put the FIB onto the
1729 * fibctx's fibs
1731 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1732 fibctx->count++;
1734 * Set the event to wake up the
1735 * thread that is waiting.
1737 up(&fibctx->wait_sem);
1738 } else {
1739 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1741 entry = entry->next;
1744 * Set the status of this FIB
1746 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1747 aac_fib_adapter_complete(fib, sizeof(u32));
1748 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1749 /* Free up the remaining resources */
1750 hw_fib_p = hw_fib_pool;
1751 fib_p = fib_pool;
1752 while (hw_fib_p < &hw_fib_pool[num]) {
1753 kfree(*hw_fib_p);
1754 kfree(*fib_p);
1755 ++fib_p;
1756 ++hw_fib_p;
1758 kfree(hw_fib_pool);
1759 kfree(fib_pool);
1761 kfree(fib);
1762 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1765 * There are no more AIF's
1767 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1770 * Background activity
1772 if ((time_before(next_check_jiffies,next_jiffies))
1773 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1774 next_check_jiffies = next_jiffies;
1775 if (aac_check_health(dev) == 0) {
1776 difference = ((long)(unsigned)check_interval)
1777 * HZ;
1778 next_check_jiffies = jiffies + difference;
1779 } else if (!dev->queues)
1780 break;
1782 if (!time_before(next_check_jiffies,next_jiffies)
1783 && ((difference = next_jiffies - jiffies) <= 0)) {
1784 struct timeval now;
1785 int ret;
1787 /* Don't even try to talk to adapter if its sick */
1788 ret = aac_check_health(dev);
1789 if (!ret && !dev->queues)
1790 break;
1791 next_check_jiffies = jiffies
1792 + ((long)(unsigned)check_interval)
1793 * HZ;
1794 do_gettimeofday(&now);
1796 /* Synchronize our watches */
1797 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1798 && (now.tv_usec > (1000000 / HZ)))
1799 difference = (((1000000 - now.tv_usec) * HZ)
1800 + 500000) / 1000000;
1801 else if (ret == 0) {
1802 struct fib *fibptr;
1804 if ((fibptr = aac_fib_alloc(dev))) {
1805 int status;
1806 __le32 *info;
1808 aac_fib_init(fibptr);
1810 info = (__le32 *) fib_data(fibptr);
1811 if (now.tv_usec > 500000)
1812 ++now.tv_sec;
1814 *info = cpu_to_le32(now.tv_sec);
1816 status = aac_fib_send(SendHostTime,
1817 fibptr,
1818 sizeof(*info),
1819 FsaNormal,
1820 1, 1,
1821 NULL,
1822 NULL);
1823 /* Do not set XferState to zero unless
1824 * receives a response from F/W */
1825 if (status >= 0)
1826 aac_fib_complete(fibptr);
1827 /* FIB should be freed only after
1828 * getting the response from the F/W */
1829 if (status != -ERESTARTSYS)
1830 aac_fib_free(fibptr);
1832 difference = (long)(unsigned)update_interval*HZ;
1833 } else {
1834 /* retry shortly */
1835 difference = 10 * HZ;
1837 next_jiffies = jiffies + difference;
1838 if (time_before(next_check_jiffies,next_jiffies))
1839 difference = next_check_jiffies - jiffies;
1841 if (difference <= 0)
1842 difference = 1;
1843 set_current_state(TASK_INTERRUPTIBLE);
1844 schedule_timeout(difference);
1846 if (kthread_should_stop())
1847 break;
1849 if (dev->queues)
1850 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1851 dev->aif_thread = 0;
1852 return 0;