Prefetch inodes in readdir
[pohmelfs.git] / arch / sh / kernel / perf_event.c
blob10b14e3a7eb8142bd88a81ddd9c3a9cb96941a36
1 /*
2 * Performance event support framework for SuperH hardware counters.
4 * Copyright (C) 2009 Paul Mundt
6 * Heavily based on the x86 and PowerPC implementations.
8 * x86:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16 * ppc:
17 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19 * This file is subject to the terms and conditions of the GNU General Public
20 * License. See the file "COPYING" in the main directory of this archive
21 * for more details.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <linux/export.h>
29 #include <asm/processor.h>
31 struct cpu_hw_events {
32 struct perf_event *events[MAX_HWEVENTS];
33 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
37 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
39 static struct sh_pmu *sh_pmu __read_mostly;
41 /* Number of perf_events counting hardware events */
42 static atomic_t num_events;
43 /* Used to avoid races in calling reserve/release_pmc_hardware */
44 static DEFINE_MUTEX(pmc_reserve_mutex);
47 * Stub these out for now, do something more profound later.
49 int reserve_pmc_hardware(void)
51 return 0;
54 void release_pmc_hardware(void)
58 static inline int sh_pmu_initialized(void)
60 return !!sh_pmu;
63 const char *perf_pmu_name(void)
65 if (!sh_pmu)
66 return NULL;
68 return sh_pmu->name;
70 EXPORT_SYMBOL_GPL(perf_pmu_name);
72 int perf_num_counters(void)
74 if (!sh_pmu)
75 return 0;
77 return sh_pmu->num_events;
79 EXPORT_SYMBOL_GPL(perf_num_counters);
82 * Release the PMU if this is the last perf_event.
84 static void hw_perf_event_destroy(struct perf_event *event)
86 if (!atomic_add_unless(&num_events, -1, 1)) {
87 mutex_lock(&pmc_reserve_mutex);
88 if (atomic_dec_return(&num_events) == 0)
89 release_pmc_hardware();
90 mutex_unlock(&pmc_reserve_mutex);
94 static int hw_perf_cache_event(int config, int *evp)
96 unsigned long type, op, result;
97 int ev;
99 if (!sh_pmu->cache_events)
100 return -EINVAL;
102 /* unpack config */
103 type = config & 0xff;
104 op = (config >> 8) & 0xff;
105 result = (config >> 16) & 0xff;
107 if (type >= PERF_COUNT_HW_CACHE_MAX ||
108 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110 return -EINVAL;
112 ev = (*sh_pmu->cache_events)[type][op][result];
113 if (ev == 0)
114 return -EOPNOTSUPP;
115 if (ev == -1)
116 return -EINVAL;
117 *evp = ev;
118 return 0;
121 static int __hw_perf_event_init(struct perf_event *event)
123 struct perf_event_attr *attr = &event->attr;
124 struct hw_perf_event *hwc = &event->hw;
125 int config = -1;
126 int err;
128 if (!sh_pmu_initialized())
129 return -ENODEV;
132 * All of the on-chip counters are "limited", in that they have
133 * no interrupts, and are therefore unable to do sampling without
134 * further work and timer assistance.
136 if (hwc->sample_period)
137 return -EINVAL;
140 * See if we need to reserve the counter.
142 * If no events are currently in use, then we have to take a
143 * mutex to ensure that we don't race with another task doing
144 * reserve_pmc_hardware or release_pmc_hardware.
146 err = 0;
147 if (!atomic_inc_not_zero(&num_events)) {
148 mutex_lock(&pmc_reserve_mutex);
149 if (atomic_read(&num_events) == 0 &&
150 reserve_pmc_hardware())
151 err = -EBUSY;
152 else
153 atomic_inc(&num_events);
154 mutex_unlock(&pmc_reserve_mutex);
157 if (err)
158 return err;
160 event->destroy = hw_perf_event_destroy;
162 switch (attr->type) {
163 case PERF_TYPE_RAW:
164 config = attr->config & sh_pmu->raw_event_mask;
165 break;
166 case PERF_TYPE_HW_CACHE:
167 err = hw_perf_cache_event(attr->config, &config);
168 if (err)
169 return err;
170 break;
171 case PERF_TYPE_HARDWARE:
172 if (attr->config >= sh_pmu->max_events)
173 return -EINVAL;
175 config = sh_pmu->event_map(attr->config);
176 break;
179 if (config == -1)
180 return -EINVAL;
182 hwc->config |= config;
184 return 0;
187 static void sh_perf_event_update(struct perf_event *event,
188 struct hw_perf_event *hwc, int idx)
190 u64 prev_raw_count, new_raw_count;
191 s64 delta;
192 int shift = 0;
195 * Depending on the counter configuration, they may or may not
196 * be chained, in which case the previous counter value can be
197 * updated underneath us if the lower-half overflows.
199 * Our tactic to handle this is to first atomically read and
200 * exchange a new raw count - then add that new-prev delta
201 * count to the generic counter atomically.
203 * As there is no interrupt associated with the overflow events,
204 * this is the simplest approach for maintaining consistency.
206 again:
207 prev_raw_count = local64_read(&hwc->prev_count);
208 new_raw_count = sh_pmu->read(idx);
210 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
211 new_raw_count) != prev_raw_count)
212 goto again;
215 * Now we have the new raw value and have updated the prev
216 * timestamp already. We can now calculate the elapsed delta
217 * (counter-)time and add that to the generic counter.
219 * Careful, not all hw sign-extends above the physical width
220 * of the count.
222 delta = (new_raw_count << shift) - (prev_raw_count << shift);
223 delta >>= shift;
225 local64_add(delta, &event->count);
228 static void sh_pmu_stop(struct perf_event *event, int flags)
230 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231 struct hw_perf_event *hwc = &event->hw;
232 int idx = hwc->idx;
234 if (!(event->hw.state & PERF_HES_STOPPED)) {
235 sh_pmu->disable(hwc, idx);
236 cpuc->events[idx] = NULL;
237 event->hw.state |= PERF_HES_STOPPED;
240 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
241 sh_perf_event_update(event, &event->hw, idx);
242 event->hw.state |= PERF_HES_UPTODATE;
246 static void sh_pmu_start(struct perf_event *event, int flags)
248 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
249 struct hw_perf_event *hwc = &event->hw;
250 int idx = hwc->idx;
252 if (WARN_ON_ONCE(idx == -1))
253 return;
255 if (flags & PERF_EF_RELOAD)
256 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
258 cpuc->events[idx] = event;
259 event->hw.state = 0;
260 sh_pmu->enable(hwc, idx);
263 static void sh_pmu_del(struct perf_event *event, int flags)
265 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
267 sh_pmu_stop(event, PERF_EF_UPDATE);
268 __clear_bit(event->hw.idx, cpuc->used_mask);
270 perf_event_update_userpage(event);
273 static int sh_pmu_add(struct perf_event *event, int flags)
275 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
276 struct hw_perf_event *hwc = &event->hw;
277 int idx = hwc->idx;
278 int ret = -EAGAIN;
280 perf_pmu_disable(event->pmu);
282 if (__test_and_set_bit(idx, cpuc->used_mask)) {
283 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
284 if (idx == sh_pmu->num_events)
285 goto out;
287 __set_bit(idx, cpuc->used_mask);
288 hwc->idx = idx;
291 sh_pmu->disable(hwc, idx);
293 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
294 if (flags & PERF_EF_START)
295 sh_pmu_start(event, PERF_EF_RELOAD);
297 perf_event_update_userpage(event);
298 ret = 0;
299 out:
300 perf_pmu_enable(event->pmu);
301 return ret;
304 static void sh_pmu_read(struct perf_event *event)
306 sh_perf_event_update(event, &event->hw, event->hw.idx);
309 static int sh_pmu_event_init(struct perf_event *event)
311 int err;
313 switch (event->attr.type) {
314 case PERF_TYPE_RAW:
315 case PERF_TYPE_HW_CACHE:
316 case PERF_TYPE_HARDWARE:
317 err = __hw_perf_event_init(event);
318 break;
320 default:
321 return -ENOENT;
324 if (unlikely(err)) {
325 if (event->destroy)
326 event->destroy(event);
329 return err;
332 static void sh_pmu_enable(struct pmu *pmu)
334 if (!sh_pmu_initialized())
335 return;
337 sh_pmu->enable_all();
340 static void sh_pmu_disable(struct pmu *pmu)
342 if (!sh_pmu_initialized())
343 return;
345 sh_pmu->disable_all();
348 static struct pmu pmu = {
349 .pmu_enable = sh_pmu_enable,
350 .pmu_disable = sh_pmu_disable,
351 .event_init = sh_pmu_event_init,
352 .add = sh_pmu_add,
353 .del = sh_pmu_del,
354 .start = sh_pmu_start,
355 .stop = sh_pmu_stop,
356 .read = sh_pmu_read,
359 static void sh_pmu_setup(int cpu)
361 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
363 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
366 static int __cpuinit
367 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
369 unsigned int cpu = (long)hcpu;
371 switch (action & ~CPU_TASKS_FROZEN) {
372 case CPU_UP_PREPARE:
373 sh_pmu_setup(cpu);
374 break;
376 default:
377 break;
380 return NOTIFY_OK;
383 int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
385 if (sh_pmu)
386 return -EBUSY;
387 sh_pmu = _pmu;
389 pr_info("Performance Events: %s support registered\n", _pmu->name);
391 WARN_ON(_pmu->num_events > MAX_HWEVENTS);
393 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
394 perf_cpu_notifier(sh_pmu_notifier);
395 return 0;