2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
27 #include <mach/edma.h>
29 /* Offsets matching "struct edmacc_param" */
32 #define PARM_A_B_CNT 0x08
34 #define PARM_SRC_DST_BIDX 0x10
35 #define PARM_LINK_BCNTRLD 0x14
36 #define PARM_SRC_DST_CIDX 0x18
37 #define PARM_CCNT 0x1c
39 #define PARM_SIZE 0x20
41 /* Offsets for EDMA CC global channel registers and their shadows */
42 #define SH_ER 0x00 /* 64 bits */
43 #define SH_ECR 0x08 /* 64 bits */
44 #define SH_ESR 0x10 /* 64 bits */
45 #define SH_CER 0x18 /* 64 bits */
46 #define SH_EER 0x20 /* 64 bits */
47 #define SH_EECR 0x28 /* 64 bits */
48 #define SH_EESR 0x30 /* 64 bits */
49 #define SH_SER 0x38 /* 64 bits */
50 #define SH_SECR 0x40 /* 64 bits */
51 #define SH_IER 0x50 /* 64 bits */
52 #define SH_IECR 0x58 /* 64 bits */
53 #define SH_IESR 0x60 /* 64 bits */
54 #define SH_IPR 0x68 /* 64 bits */
55 #define SH_ICR 0x70 /* 64 bits */
65 /* Offsets for EDMA CC global registers */
66 #define EDMA_REV 0x0000
67 #define EDMA_CCCFG 0x0004
68 #define EDMA_QCHMAP 0x0200 /* 8 registers */
69 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
70 #define EDMA_QDMAQNUM 0x0260
71 #define EDMA_QUETCMAP 0x0280
72 #define EDMA_QUEPRI 0x0284
73 #define EDMA_EMR 0x0300 /* 64 bits */
74 #define EDMA_EMCR 0x0308 /* 64 bits */
75 #define EDMA_QEMR 0x0310
76 #define EDMA_QEMCR 0x0314
77 #define EDMA_CCERR 0x0318
78 #define EDMA_CCERRCLR 0x031c
79 #define EDMA_EEVAL 0x0320
80 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
81 #define EDMA_QRAE 0x0380 /* 4 registers */
82 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
83 #define EDMA_QSTAT 0x0600 /* 2 registers */
84 #define EDMA_QWMTHRA 0x0620
85 #define EDMA_QWMTHRB 0x0624
86 #define EDMA_CCSTAT 0x0640
88 #define EDMA_M 0x1000 /* global channel registers */
89 #define EDMA_ECR 0x1008
90 #define EDMA_ECRH 0x100C
91 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
92 #define EDMA_PARM 0x4000 /* 128 param entries */
94 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96 #define EDMA_DCHMAP 0x0100 /* 64 registers */
97 #define CHMAP_EXIST BIT(24)
99 #define EDMA_MAX_DMACH 64
100 #define EDMA_MAX_PARAMENTRY 512
101 #define EDMA_MAX_CC 2
104 /*****************************************************************************/
106 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
108 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
110 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
113 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
115 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
117 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
120 unsigned val
= edma_read(ctlr
, offset
);
123 edma_write(ctlr
, offset
, val
);
125 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
127 unsigned val
= edma_read(ctlr
, offset
);
129 edma_write(ctlr
, offset
, val
);
131 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
133 unsigned val
= edma_read(ctlr
, offset
);
135 edma_write(ctlr
, offset
, val
);
137 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
139 return edma_read(ctlr
, offset
+ (i
<< 2));
141 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
144 edma_write(ctlr
, offset
+ (i
<< 2), val
);
146 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
147 unsigned and, unsigned or)
149 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
151 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
153 edma_or(ctlr
, offset
+ (i
<< 2), or);
155 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
158 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
160 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
163 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
165 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
167 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
169 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
172 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
174 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
176 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
178 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
181 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
183 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
186 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
188 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
191 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
193 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
194 unsigned and, unsigned or)
196 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
198 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
201 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
203 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
206 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
209 /*****************************************************************************/
211 /* actual number of DMA channels and slots on this silicon */
213 /* how many dma resources of each type */
214 unsigned num_channels
;
219 enum dma_event_q default_queue
;
221 /* list of channels with no even trigger; terminated by "-1" */
224 /* The edma_inuse bit for each PaRAM slot is clear unless the
225 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
229 /* The edma_noevent bit for each channel is clear unless
230 * it doesn't trigger DMA events on this platform. It uses a
231 * bit of SOC-specific initialization code.
233 DECLARE_BITMAP(edma_noevent
, EDMA_MAX_DMACH
);
235 unsigned irq_res_start
;
236 unsigned irq_res_end
;
238 struct dma_interrupt_data
{
239 void (*callback
)(unsigned channel
, unsigned short ch_status
,
242 } intr_data
[EDMA_MAX_DMACH
];
245 static struct edma
*edma_info
[EDMA_MAX_CC
];
247 /* dummy param set used to (re)initialize parameter RAM slots */
248 static const struct edmacc_param dummy_paramset
= {
249 .link_bcntrld
= 0xffff,
253 /*****************************************************************************/
255 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
256 enum dma_event_q queue_no
)
258 int bit
= (ch_no
& 0x7) * 4;
260 /* default to low priority queue */
261 if (queue_no
== EVENTQ_DEFAULT
)
262 queue_no
= edma_info
[ctlr
]->default_queue
;
265 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
266 ~(0x7 << bit
), queue_no
<< bit
);
269 static void __init
map_queue_tc(unsigned ctlr
, int queue_no
, int tc_no
)
271 int bit
= queue_no
* 4;
272 edma_modify(ctlr
, EDMA_QUETCMAP
, ~(0x7 << bit
), ((tc_no
& 0x7) << bit
));
275 static void __init
assign_priority_to_queue(unsigned ctlr
, int queue_no
,
278 int bit
= queue_no
* 4;
279 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
280 ((priority
& 0x7) << bit
));
284 * map_dmach_param - Maps channel number to param entry number
286 * This maps the dma channel number to param entry numberter. In
287 * other words using the DMA channel mapping registers a param entry
288 * can be mapped to any channel
290 * Callers are responsible for ensuring the channel mapping logic is
291 * included in that particular EDMA variant (Eg : dm646x)
294 static void __init
map_dmach_param(unsigned ctlr
)
297 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
298 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
302 setup_dma_interrupt(unsigned lch
,
303 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
308 ctlr
= EDMA_CTLR(lch
);
309 lch
= EDMA_CHAN_SLOT(lch
);
312 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
313 (1 << (lch
& 0x1f)));
316 edma_info
[ctlr
]->intr_data
[lch
].callback
= callback
;
317 edma_info
[ctlr
]->intr_data
[lch
].data
= data
;
320 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
321 (1 << (lch
& 0x1f)));
322 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
323 (1 << (lch
& 0x1f)));
327 static int irq2ctlr(int irq
)
329 if (irq
>= edma_info
[0]->irq_res_start
&&
330 irq
<= edma_info
[0]->irq_res_end
)
332 else if (irq
>= edma_info
[1]->irq_res_start
&&
333 irq
<= edma_info
[1]->irq_res_end
)
339 /******************************************************************************
341 * DMA interrupt handler
343 *****************************************************************************/
344 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
348 unsigned int cnt
= 0;
350 ctlr
= irq2ctlr(irq
);
352 dev_dbg(data
, "dma_irq_handler\n");
354 if ((edma_shadow0_read_array(ctlr
, SH_IPR
, 0) == 0)
355 && (edma_shadow0_read_array(ctlr
, SH_IPR
, 1) == 0))
360 if (edma_shadow0_read_array(ctlr
, SH_IPR
, 0))
362 else if (edma_shadow0_read_array(ctlr
, SH_IPR
, 1))
366 dev_dbg(data
, "IPR%d %08x\n", j
,
367 edma_shadow0_read_array(ctlr
, SH_IPR
, j
));
368 for (i
= 0; i
< 32; i
++) {
369 int k
= (j
<< 5) + i
;
370 if (edma_shadow0_read_array(ctlr
, SH_IPR
, j
) &
372 /* Clear the corresponding IPR bits */
373 edma_shadow0_write_array(ctlr
, SH_ICR
, j
,
375 if (edma_info
[ctlr
]->intr_data
[k
].callback
) {
376 edma_info
[ctlr
]->intr_data
[k
].callback(
378 edma_info
[ctlr
]->intr_data
[k
].
387 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
391 /******************************************************************************
393 * DMA error interrupt handler
395 *****************************************************************************/
396 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
400 unsigned int cnt
= 0;
402 ctlr
= irq2ctlr(irq
);
404 dev_dbg(data
, "dma_ccerr_handler\n");
406 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
407 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
408 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
409 (edma_read(ctlr
, EDMA_CCERR
) == 0))
414 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
416 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
419 dev_dbg(data
, "EMR%d %08x\n", j
,
420 edma_read_array(ctlr
, EDMA_EMR
, j
));
421 for (i
= 0; i
< 32; i
++) {
422 int k
= (j
<< 5) + i
;
423 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
425 /* Clear the corresponding EMR bits */
426 edma_write_array(ctlr
, EDMA_EMCR
, j
,
429 edma_shadow0_write_array(ctlr
, SH_SECR
,
431 if (edma_info
[ctlr
]->intr_data
[k
].
433 edma_info
[ctlr
]->intr_data
[k
].
436 edma_info
[ctlr
]->intr_data
441 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
442 dev_dbg(data
, "QEMR %02x\n",
443 edma_read(ctlr
, EDMA_QEMR
));
444 for (i
= 0; i
< 8; i
++) {
445 if (edma_read(ctlr
, EDMA_QEMR
) & (1 << i
)) {
446 /* Clear the corresponding IPR bits */
447 edma_write(ctlr
, EDMA_QEMCR
, 1 << i
);
448 edma_shadow0_write(ctlr
, SH_QSECR
,
451 /* NOTE: not reported!! */
454 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
455 dev_dbg(data
, "CCERR %08x\n",
456 edma_read(ctlr
, EDMA_CCERR
));
457 /* FIXME: CCERR.BIT(16) ignored! much better
458 * to just write CCERRCLR with CCERR value...
460 for (i
= 0; i
< 8; i
++) {
461 if (edma_read(ctlr
, EDMA_CCERR
) & (1 << i
)) {
462 /* Clear the corresponding IPR bits */
463 edma_write(ctlr
, EDMA_CCERRCLR
, 1 << i
);
465 /* NOTE: not reported!! */
469 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0)
470 && (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0)
471 && (edma_read(ctlr
, EDMA_QEMR
) == 0)
472 && (edma_read(ctlr
, EDMA_CCERR
) == 0)) {
479 edma_write(ctlr
, EDMA_EEVAL
, 1);
483 /******************************************************************************
485 * Transfer controller error interrupt handlers
487 *****************************************************************************/
489 #define tc_errs_handled false /* disabled as long as they're NOPs */
491 static irqreturn_t
dma_tc0err_handler(int irq
, void *data
)
493 dev_dbg(data
, "dma_tc0err_handler\n");
497 static irqreturn_t
dma_tc1err_handler(int irq
, void *data
)
499 dev_dbg(data
, "dma_tc1err_handler\n");
503 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
504 unsigned int num_slots
,
505 unsigned int start_slot
)
508 unsigned int count
= num_slots
;
509 int stop_slot
= start_slot
;
510 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
512 for (i
= start_slot
; i
< edma_info
[ctlr
]->num_slots
; ++i
) {
513 j
= EDMA_CHAN_SLOT(i
);
514 if (!test_and_set_bit(j
, edma_info
[ctlr
]->edma_inuse
)) {
515 /* Record our current beginning slot */
516 if (count
== num_slots
)
520 set_bit(j
, tmp_inuse
);
525 clear_bit(j
, tmp_inuse
);
527 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
536 * We have to clear any bits that we set
537 * if we run out parameter RAM slots, i.e we do find a set
538 * of contiguous parameter RAM slots but do not find the exact number
539 * requested as we may reach the total number of parameter RAM slots
541 if (i
== edma_info
[ctlr
]->num_slots
)
544 for (j
= start_slot
; j
< stop_slot
; j
++)
545 if (test_bit(j
, tmp_inuse
))
546 clear_bit(j
, edma_info
[ctlr
]->edma_inuse
);
551 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
552 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
553 &dummy_paramset
, PARM_SIZE
);
555 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
558 /*-----------------------------------------------------------------------*/
560 /* Resource alloc/free: dma channels, parameter RAM slots */
563 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
564 * @channel: specific channel to allocate; negative for "any unmapped channel"
565 * @callback: optional; to be issued on DMA completion or errors
566 * @data: passed to callback
567 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
568 * Controller (TC) executes requests using this channel. Use
569 * EVENTQ_DEFAULT unless you really need a high priority queue.
571 * This allocates a DMA channel and its associated parameter RAM slot.
572 * The parameter RAM is initialized to hold a dummy transfer.
574 * Normal use is to pass a specific channel number as @channel, to make
575 * use of hardware events mapped to that channel. When the channel will
576 * be used only for software triggering or event chaining, channels not
577 * mapped to hardware events (or mapped to unused events) are preferable.
579 * DMA transfers start from a channel using edma_start(), or by
580 * chaining. When the transfer described in that channel's parameter RAM
581 * slot completes, that slot's data may be reloaded through a link.
583 * DMA errors are only reported to the @callback associated with the
584 * channel driving that transfer, but transfer completion callbacks can
585 * be sent to another channel under control of the TCC field in
586 * the option word of the transfer's parameter RAM set. Drivers must not
587 * use DMA transfer completion callbacks for channels they did not allocate.
588 * (The same applies to TCC codes used in transfer chaining.)
590 * Returns the number of the channel, else negative errno.
592 int edma_alloc_channel(int channel
,
593 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
595 enum dma_event_q eventq_no
)
597 unsigned i
, done
, ctlr
= 0;
600 ctlr
= EDMA_CTLR(channel
);
601 channel
= EDMA_CHAN_SLOT(channel
);
605 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
608 channel
= find_next_bit(edma_info
[i
]->
610 edma_info
[i
]->num_channels
,
612 if (channel
== edma_info
[i
]->num_channels
)
614 if (!test_and_set_bit(channel
,
615 edma_info
[i
]->edma_inuse
)) {
625 } else if (channel
>= edma_info
[ctlr
]->num_channels
) {
627 } else if (test_and_set_bit(channel
, edma_info
[ctlr
]->edma_inuse
)) {
631 /* ensure access through shadow region 0 */
632 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, 1 << (channel
& 0x1f));
634 /* ensure no events are pending */
635 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
636 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
637 &dummy_paramset
, PARM_SIZE
);
640 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
643 map_dmach_queue(ctlr
, channel
, eventq_no
);
647 EXPORT_SYMBOL(edma_alloc_channel
);
651 * edma_free_channel - deallocate DMA channel
652 * @channel: dma channel returned from edma_alloc_channel()
654 * This deallocates the DMA channel and associated parameter RAM slot
655 * allocated by edma_alloc_channel().
657 * Callers are responsible for ensuring the channel is inactive, and
658 * will not be reactivated by linking, chaining, or software calls to
661 void edma_free_channel(unsigned channel
)
665 ctlr
= EDMA_CTLR(channel
);
666 channel
= EDMA_CHAN_SLOT(channel
);
668 if (channel
>= edma_info
[ctlr
]->num_channels
)
671 setup_dma_interrupt(channel
, NULL
, NULL
);
672 /* REVISIT should probably take out of shadow region 0 */
674 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
675 &dummy_paramset
, PARM_SIZE
);
676 clear_bit(channel
, edma_info
[ctlr
]->edma_inuse
);
678 EXPORT_SYMBOL(edma_free_channel
);
681 * edma_alloc_slot - allocate DMA parameter RAM
682 * @slot: specific slot to allocate; negative for "any unused slot"
684 * This allocates a parameter RAM slot, initializing it to hold a
685 * dummy transfer. Slots allocated using this routine have not been
686 * mapped to a hardware DMA channel, and will normally be used by
687 * linking to them from a slot associated with a DMA channel.
689 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
690 * slots may be allocated on behalf of DSP firmware.
692 * Returns the number of the slot, else negative errno.
694 int edma_alloc_slot(unsigned ctlr
, int slot
)
697 slot
= EDMA_CHAN_SLOT(slot
);
700 slot
= edma_info
[ctlr
]->num_channels
;
702 slot
= find_next_zero_bit(edma_info
[ctlr
]->edma_inuse
,
703 edma_info
[ctlr
]->num_slots
, slot
);
704 if (slot
== edma_info
[ctlr
]->num_slots
)
706 if (!test_and_set_bit(slot
,
707 edma_info
[ctlr
]->edma_inuse
))
710 } else if (slot
< edma_info
[ctlr
]->num_channels
||
711 slot
>= edma_info
[ctlr
]->num_slots
) {
713 } else if (test_and_set_bit(slot
, edma_info
[ctlr
]->edma_inuse
)) {
717 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
718 &dummy_paramset
, PARM_SIZE
);
720 return EDMA_CTLR_CHAN(ctlr
, slot
);
722 EXPORT_SYMBOL(edma_alloc_slot
);
725 * edma_free_slot - deallocate DMA parameter RAM
726 * @slot: parameter RAM slot returned from edma_alloc_slot()
728 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
729 * Callers are responsible for ensuring the slot is inactive, and will
732 void edma_free_slot(unsigned slot
)
736 ctlr
= EDMA_CTLR(slot
);
737 slot
= EDMA_CHAN_SLOT(slot
);
739 if (slot
< edma_info
[ctlr
]->num_channels
||
740 slot
>= edma_info
[ctlr
]->num_slots
)
743 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
744 &dummy_paramset
, PARM_SIZE
);
745 clear_bit(slot
, edma_info
[ctlr
]->edma_inuse
);
747 EXPORT_SYMBOL(edma_free_slot
);
751 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
752 * The API will return the starting point of a set of
753 * contiguous parameter RAM slots that have been requested
755 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
756 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
757 * @count: number of contiguous Paramter RAM slots
758 * @slot - the start value of Parameter RAM slot that should be passed if id
759 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
761 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
762 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
763 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
765 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
766 * set of contiguous parameter RAM slots from the "slot" that is passed as an
767 * argument to the API.
769 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
770 * starts looking for a set of contiguous parameter RAMs from the "slot"
771 * that is passed as an argument to the API. On failure the API will try to
772 * find a set of contiguous Parameter RAM slots from the remaining Parameter
775 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
778 * The start slot requested should be greater than
779 * the number of channels and lesser than the total number
782 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
783 (slot
< edma_info
[ctlr
]->num_channels
||
784 slot
>= edma_info
[ctlr
]->num_slots
))
788 * The number of parameter RAM slots requested cannot be less than 1
789 * and cannot be more than the number of slots minus the number of
792 if (count
< 1 || count
>
793 (edma_info
[ctlr
]->num_slots
- edma_info
[ctlr
]->num_channels
))
797 case EDMA_CONT_PARAMS_ANY
:
798 return reserve_contiguous_slots(ctlr
, id
, count
,
799 edma_info
[ctlr
]->num_channels
);
800 case EDMA_CONT_PARAMS_FIXED_EXACT
:
801 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
802 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
808 EXPORT_SYMBOL(edma_alloc_cont_slots
);
811 * edma_free_cont_slots - deallocate DMA parameter RAM slots
812 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
813 * @count: the number of contiguous parameter RAM slots to be freed
815 * This deallocates the parameter RAM slots allocated by
816 * edma_alloc_cont_slots.
817 * Callers/applications need to keep track of sets of contiguous
818 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
820 * Callers are responsible for ensuring the slots are inactive, and will
823 int edma_free_cont_slots(unsigned slot
, int count
)
825 unsigned ctlr
, slot_to_free
;
828 ctlr
= EDMA_CTLR(slot
);
829 slot
= EDMA_CHAN_SLOT(slot
);
831 if (slot
< edma_info
[ctlr
]->num_channels
||
832 slot
>= edma_info
[ctlr
]->num_slots
||
836 for (i
= slot
; i
< slot
+ count
; ++i
) {
838 slot_to_free
= EDMA_CHAN_SLOT(i
);
840 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
841 &dummy_paramset
, PARM_SIZE
);
842 clear_bit(slot_to_free
, edma_info
[ctlr
]->edma_inuse
);
847 EXPORT_SYMBOL(edma_free_cont_slots
);
849 /*-----------------------------------------------------------------------*/
851 /* Parameter RAM operations (i) -- read/write partial slots */
854 * edma_set_src - set initial DMA source address in parameter RAM slot
855 * @slot: parameter RAM slot being configured
856 * @src_port: physical address of source (memory, controller FIFO, etc)
857 * @addressMode: INCR, except in very rare cases
858 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
859 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
861 * Note that the source address is modified during the DMA transfer
862 * according to edma_set_src_index().
864 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
865 enum address_mode mode
, enum fifo_width width
)
869 ctlr
= EDMA_CTLR(slot
);
870 slot
= EDMA_CHAN_SLOT(slot
);
872 if (slot
< edma_info
[ctlr
]->num_slots
) {
873 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
876 /* set SAM and program FWID */
877 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
882 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
884 /* set the source port address
885 in source register of param structure */
886 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
889 EXPORT_SYMBOL(edma_set_src
);
892 * edma_set_dest - set initial DMA destination address in parameter RAM slot
893 * @slot: parameter RAM slot being configured
894 * @dest_port: physical address of destination (memory, controller FIFO, etc)
895 * @addressMode: INCR, except in very rare cases
896 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
897 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
899 * Note that the destination address is modified during the DMA transfer
900 * according to edma_set_dest_index().
902 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
903 enum address_mode mode
, enum fifo_width width
)
907 ctlr
= EDMA_CTLR(slot
);
908 slot
= EDMA_CHAN_SLOT(slot
);
910 if (slot
< edma_info
[ctlr
]->num_slots
) {
911 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
914 /* set DAM and program FWID */
915 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
920 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
921 /* set the destination port address
922 in dest register of param structure */
923 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
926 EXPORT_SYMBOL(edma_set_dest
);
929 * edma_get_position - returns the current transfer points
930 * @slot: parameter RAM slot being examined
931 * @src: pointer to source port position
932 * @dst: pointer to destination port position
934 * Returns current source and destination addresses for a particular
935 * parameter RAM slot. Its channel should not be active when this is called.
937 void edma_get_position(unsigned slot
, dma_addr_t
*src
, dma_addr_t
*dst
)
939 struct edmacc_param temp
;
942 ctlr
= EDMA_CTLR(slot
);
943 slot
= EDMA_CHAN_SLOT(slot
);
945 edma_read_slot(EDMA_CTLR_CHAN(ctlr
, slot
), &temp
);
951 EXPORT_SYMBOL(edma_get_position
);
954 * edma_set_src_index - configure DMA source address indexing
955 * @slot: parameter RAM slot being configured
956 * @src_bidx: byte offset between source arrays in a frame
957 * @src_cidx: byte offset between source frames in a block
959 * Offsets are specified to support either contiguous or discontiguous
960 * memory transfers, or repeated access to a hardware register, as needed.
961 * When accessing hardware registers, both offsets are normally zero.
963 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
967 ctlr
= EDMA_CTLR(slot
);
968 slot
= EDMA_CHAN_SLOT(slot
);
970 if (slot
< edma_info
[ctlr
]->num_slots
) {
971 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
972 0xffff0000, src_bidx
);
973 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
974 0xffff0000, src_cidx
);
977 EXPORT_SYMBOL(edma_set_src_index
);
980 * edma_set_dest_index - configure DMA destination address indexing
981 * @slot: parameter RAM slot being configured
982 * @dest_bidx: byte offset between destination arrays in a frame
983 * @dest_cidx: byte offset between destination frames in a block
985 * Offsets are specified to support either contiguous or discontiguous
986 * memory transfers, or repeated access to a hardware register, as needed.
987 * When accessing hardware registers, both offsets are normally zero.
989 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
993 ctlr
= EDMA_CTLR(slot
);
994 slot
= EDMA_CHAN_SLOT(slot
);
996 if (slot
< edma_info
[ctlr
]->num_slots
) {
997 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
998 0x0000ffff, dest_bidx
<< 16);
999 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1000 0x0000ffff, dest_cidx
<< 16);
1003 EXPORT_SYMBOL(edma_set_dest_index
);
1006 * edma_set_transfer_params - configure DMA transfer parameters
1007 * @slot: parameter RAM slot being configured
1008 * @acnt: how many bytes per array (at least one)
1009 * @bcnt: how many arrays per frame (at least one)
1010 * @ccnt: how many frames per block (at least one)
1011 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1012 * the value to reload into bcnt when it decrements to zero
1013 * @sync_mode: ASYNC or ABSYNC
1015 * See the EDMA3 documentation to understand how to configure and link
1016 * transfers using the fields in PaRAM slots. If you are not doing it
1017 * all at once with edma_write_slot(), you will use this routine
1018 * plus two calls each for source and destination, setting the initial
1019 * address and saying how to index that address.
1021 * An example of an A-Synchronized transfer is a serial link using a
1022 * single word shift register. In that case, @acnt would be equal to
1023 * that word size; the serial controller issues a DMA synchronization
1024 * event to transfer each word, and memory access by the DMA transfer
1025 * controller will be word-at-a-time.
1027 * An example of an AB-Synchronized transfer is a device using a FIFO.
1028 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1029 * The controller with the FIFO issues DMA synchronization events when
1030 * the FIFO threshold is reached, and the DMA transfer controller will
1031 * transfer one frame to (or from) the FIFO. It will probably use
1032 * efficient burst modes to access memory.
1034 void edma_set_transfer_params(unsigned slot
,
1035 u16 acnt
, u16 bcnt
, u16 ccnt
,
1036 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1040 ctlr
= EDMA_CTLR(slot
);
1041 slot
= EDMA_CHAN_SLOT(slot
);
1043 if (slot
< edma_info
[ctlr
]->num_slots
) {
1044 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1045 0x0000ffff, bcnt_rld
<< 16);
1046 if (sync_mode
== ASYNC
)
1047 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1049 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1050 /* Set the acount, bcount, ccount registers */
1051 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1052 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1055 EXPORT_SYMBOL(edma_set_transfer_params
);
1058 * edma_link - link one parameter RAM slot to another
1059 * @from: parameter RAM slot originating the link
1060 * @to: parameter RAM slot which is the link target
1062 * The originating slot should not be part of any active DMA transfer.
1064 void edma_link(unsigned from
, unsigned to
)
1066 unsigned ctlr_from
, ctlr_to
;
1068 ctlr_from
= EDMA_CTLR(from
);
1069 from
= EDMA_CHAN_SLOT(from
);
1070 ctlr_to
= EDMA_CTLR(to
);
1071 to
= EDMA_CHAN_SLOT(to
);
1073 if (from
>= edma_info
[ctlr_from
]->num_slots
)
1075 if (to
>= edma_info
[ctlr_to
]->num_slots
)
1077 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1080 EXPORT_SYMBOL(edma_link
);
1083 * edma_unlink - cut link from one parameter RAM slot
1084 * @from: parameter RAM slot originating the link
1086 * The originating slot should not be part of any active DMA transfer.
1087 * Its link is set to 0xffff.
1089 void edma_unlink(unsigned from
)
1093 ctlr
= EDMA_CTLR(from
);
1094 from
= EDMA_CHAN_SLOT(from
);
1096 if (from
>= edma_info
[ctlr
]->num_slots
)
1098 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1100 EXPORT_SYMBOL(edma_unlink
);
1102 /*-----------------------------------------------------------------------*/
1104 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1107 * edma_write_slot - write parameter RAM data for slot
1108 * @slot: number of parameter RAM slot being modified
1109 * @param: data to be written into parameter RAM slot
1111 * Use this to assign all parameters of a transfer at once. This
1112 * allows more efficient setup of transfers than issuing multiple
1113 * calls to set up those parameters in small pieces, and provides
1114 * complete control over all transfer options.
1116 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1120 ctlr
= EDMA_CTLR(slot
);
1121 slot
= EDMA_CHAN_SLOT(slot
);
1123 if (slot
>= edma_info
[ctlr
]->num_slots
)
1125 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1128 EXPORT_SYMBOL(edma_write_slot
);
1131 * edma_read_slot - read parameter RAM data from slot
1132 * @slot: number of parameter RAM slot being copied
1133 * @param: where to store copy of parameter RAM data
1135 * Use this to read data from a parameter RAM slot, perhaps to
1136 * save them as a template for later reuse.
1138 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1142 ctlr
= EDMA_CTLR(slot
);
1143 slot
= EDMA_CHAN_SLOT(slot
);
1145 if (slot
>= edma_info
[ctlr
]->num_slots
)
1147 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1150 EXPORT_SYMBOL(edma_read_slot
);
1152 /*-----------------------------------------------------------------------*/
1154 /* Various EDMA channel control operations */
1157 * edma_pause - pause dma on a channel
1158 * @channel: on which edma_start() has been called
1160 * This temporarily disables EDMA hardware events on the specified channel,
1161 * preventing them from triggering new transfers on its behalf
1163 void edma_pause(unsigned channel
)
1167 ctlr
= EDMA_CTLR(channel
);
1168 channel
= EDMA_CHAN_SLOT(channel
);
1170 if (channel
< edma_info
[ctlr
]->num_channels
) {
1171 unsigned int mask
= (1 << (channel
& 0x1f));
1173 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1176 EXPORT_SYMBOL(edma_pause
);
1179 * edma_resume - resumes dma on a paused channel
1180 * @channel: on which edma_pause() has been called
1182 * This re-enables EDMA hardware events on the specified channel.
1184 void edma_resume(unsigned channel
)
1188 ctlr
= EDMA_CTLR(channel
);
1189 channel
= EDMA_CHAN_SLOT(channel
);
1191 if (channel
< edma_info
[ctlr
]->num_channels
) {
1192 unsigned int mask
= (1 << (channel
& 0x1f));
1194 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1197 EXPORT_SYMBOL(edma_resume
);
1200 * edma_start - start dma on a channel
1201 * @channel: channel being activated
1203 * Channels with event associations will be triggered by their hardware
1204 * events, and channels without such associations will be triggered by
1205 * software. (At this writing there is no interface for using software
1206 * triggers except with channels that don't support hardware triggers.)
1208 * Returns zero on success, else negative errno.
1210 int edma_start(unsigned channel
)
1214 ctlr
= EDMA_CTLR(channel
);
1215 channel
= EDMA_CHAN_SLOT(channel
);
1217 if (channel
< edma_info
[ctlr
]->num_channels
) {
1218 int j
= channel
>> 5;
1219 unsigned int mask
= (1 << (channel
& 0x1f));
1221 /* EDMA channels without event association */
1222 if (test_bit(channel
, edma_info
[ctlr
]->edma_noevent
)) {
1223 pr_debug("EDMA: ESR%d %08x\n", j
,
1224 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1225 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1229 /* EDMA channel with event association */
1230 pr_debug("EDMA: ER%d %08x\n", j
,
1231 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1232 /* Clear any pending error */
1233 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1235 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1236 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1237 pr_debug("EDMA: EER%d %08x\n", j
,
1238 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1244 EXPORT_SYMBOL(edma_start
);
1247 * edma_stop - stops dma on the channel passed
1248 * @channel: channel being deactivated
1250 * When @lch is a channel, any active transfer is paused and
1251 * all pending hardware events are cleared. The current transfer
1252 * may not be resumed, and the channel's Parameter RAM should be
1253 * reinitialized before being reused.
1255 void edma_stop(unsigned channel
)
1259 ctlr
= EDMA_CTLR(channel
);
1260 channel
= EDMA_CHAN_SLOT(channel
);
1262 if (channel
< edma_info
[ctlr
]->num_channels
) {
1263 int j
= channel
>> 5;
1264 unsigned int mask
= (1 << (channel
& 0x1f));
1266 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1267 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1268 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1269 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1271 pr_debug("EDMA: EER%d %08x\n", j
,
1272 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1274 /* REVISIT: consider guarding against inappropriate event
1275 * chaining by overwriting with dummy_paramset.
1279 EXPORT_SYMBOL(edma_stop
);
1281 /******************************************************************************
1283 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1284 * been removed before EDMA has finished.It is usedful for removable media.
1286 * ch_no - channel no
1288 * Return: zero on success, or corresponding error no on failure
1290 * FIXME this should not be needed ... edma_stop() should suffice.
1292 *****************************************************************************/
1294 void edma_clean_channel(unsigned channel
)
1298 ctlr
= EDMA_CTLR(channel
);
1299 channel
= EDMA_CHAN_SLOT(channel
);
1301 if (channel
< edma_info
[ctlr
]->num_channels
) {
1302 int j
= (channel
>> 5);
1303 unsigned int mask
= 1 << (channel
& 0x1f);
1305 pr_debug("EDMA: EMR%d %08x\n", j
,
1306 edma_read_array(ctlr
, EDMA_EMR
, j
));
1307 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1308 /* Clear the corresponding EMR bits */
1309 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1311 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1312 edma_write(ctlr
, EDMA_CCERRCLR
, (1 << 16) | 0x3);
1315 EXPORT_SYMBOL(edma_clean_channel
);
1318 * edma_clear_event - clear an outstanding event on the DMA channel
1320 * channel - channel number
1322 void edma_clear_event(unsigned channel
)
1326 ctlr
= EDMA_CTLR(channel
);
1327 channel
= EDMA_CHAN_SLOT(channel
);
1329 if (channel
>= edma_info
[ctlr
]->num_channels
)
1332 edma_write(ctlr
, EDMA_ECR
, 1 << channel
);
1334 edma_write(ctlr
, EDMA_ECRH
, 1 << (channel
- 32));
1336 EXPORT_SYMBOL(edma_clear_event
);
1338 /*-----------------------------------------------------------------------*/
1340 static int __init
edma_probe(struct platform_device
*pdev
)
1342 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
1343 const s8 (*queue_priority_mapping
)[2];
1344 const s8 (*queue_tc_mapping
)[2];
1345 int i
, j
, found
= 0;
1348 int irq
[EDMA_MAX_CC
] = {0, 0};
1349 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1350 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1351 resource_size_t len
[EDMA_MAX_CC
];
1358 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1359 sprintf(res_name
, "edma_cc%d", j
);
1360 r
[j
] = platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1370 len
[j
] = resource_size(r
[j
]);
1372 r
[j
] = request_mem_region(r
[j
]->start
, len
[j
],
1373 dev_name(&pdev
->dev
));
1379 edmacc_regs_base
[j
] = ioremap(r
[j
]->start
, len
[j
]);
1380 if (!edmacc_regs_base
[j
]) {
1385 edma_info
[j
] = kmalloc(sizeof(struct edma
), GFP_KERNEL
);
1386 if (!edma_info
[j
]) {
1390 memset(edma_info
[j
], 0, sizeof(struct edma
));
1392 edma_info
[j
]->num_channels
= min_t(unsigned, info
[j
].n_channel
,
1394 edma_info
[j
]->num_slots
= min_t(unsigned, info
[j
].n_slot
,
1395 EDMA_MAX_PARAMENTRY
);
1396 edma_info
[j
]->num_cc
= min_t(unsigned, info
[j
].n_cc
,
1399 edma_info
[j
]->default_queue
= info
[j
].default_queue
;
1400 if (!edma_info
[j
]->default_queue
)
1401 edma_info
[j
]->default_queue
= EVENTQ_1
;
1403 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1404 edmacc_regs_base
[j
]);
1406 for (i
= 0; i
< edma_info
[j
]->num_slots
; i
++)
1407 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1408 &dummy_paramset
, PARM_SIZE
);
1410 noevent
= info
[j
].noevent
;
1412 while (*noevent
!= -1)
1413 set_bit(*noevent
++, edma_info
[j
]->edma_noevent
);
1416 sprintf(irq_name
, "edma%d", j
);
1417 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1418 edma_info
[j
]->irq_res_start
= irq
[j
];
1419 status
= request_irq(irq
[j
], dma_irq_handler
, 0, "edma",
1422 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1427 sprintf(irq_name
, "edma%d_err", j
);
1428 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1429 edma_info
[j
]->irq_res_end
= err_irq
[j
];
1430 status
= request_irq(err_irq
[j
], dma_ccerr_handler
, 0,
1431 "edma_error", &pdev
->dev
);
1433 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1434 err_irq
[j
], status
);
1438 /* Everything lives on transfer controller 1 until otherwise
1439 * specified. This way, long transfers on the low priority queue
1440 * started by the codec engine will not cause audio defects.
1442 for (i
= 0; i
< edma_info
[j
]->num_channels
; i
++)
1443 map_dmach_queue(j
, i
, EVENTQ_1
);
1445 queue_tc_mapping
= info
[j
].queue_tc_mapping
;
1446 queue_priority_mapping
= info
[j
].queue_priority_mapping
;
1448 /* Event queue to TC mapping */
1449 for (i
= 0; queue_tc_mapping
[i
][0] != -1; i
++)
1450 map_queue_tc(j
, queue_tc_mapping
[i
][0],
1451 queue_tc_mapping
[i
][1]);
1453 /* Event queue priority mapping */
1454 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1455 assign_priority_to_queue(j
,
1456 queue_priority_mapping
[i
][0],
1457 queue_priority_mapping
[i
][1]);
1459 /* Map the channel to param entry if channel mapping logic
1462 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1465 for (i
= 0; i
< info
[j
].n_region
; i
++) {
1466 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1467 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1468 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1472 if (tc_errs_handled
) {
1473 status
= request_irq(IRQ_TCERRINT0
, dma_tc0err_handler
, 0,
1474 "edma_tc0", &pdev
->dev
);
1476 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1477 IRQ_TCERRINT0
, status
);
1480 status
= request_irq(IRQ_TCERRINT
, dma_tc1err_handler
, 0,
1481 "edma_tc1", &pdev
->dev
);
1483 dev_dbg(&pdev
->dev
, "request_irq %d --> %d\n",
1484 IRQ_TCERRINT
, status
);
1492 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1494 free_irq(err_irq
[i
], &pdev
->dev
);
1496 free_irq(irq
[i
], &pdev
->dev
);
1499 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1501 release_mem_region(r
[i
]->start
, len
[i
]);
1502 if (edmacc_regs_base
[i
])
1503 iounmap(edmacc_regs_base
[i
]);
1504 kfree(edma_info
[i
]);
1510 static struct platform_driver edma_driver
= {
1511 .driver
.name
= "edma",
1514 static int __init
edma_init(void)
1516 return platform_driver_probe(&edma_driver
, edma_probe
);
1518 arch_initcall(edma_init
);