Linux 2.6.33
[pohmelfs.git] / arch / arm / mm / dma-mapping.c
blob26325cb5d368e504e6eb7c669b28ac3ed023e3c6
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
27 /* Sanity check size */
28 #if (CONSISTENT_DMA_SIZE % SZ_2M)
29 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30 #endif
32 #define CONSISTENT_END (0xffe00000)
33 #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
35 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
36 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
39 static u64 get_coherent_dma_mask(struct device *dev)
41 u64 mask = ISA_DMA_THRESHOLD;
43 if (dev) {
44 mask = dev->coherent_dma_mask;
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
63 return mask;
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
70 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
77 #ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
84 #endif
86 if (!mask)
87 return NULL;
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
97 * Now split the huge page and free the excess pages
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
112 return page;
116 * Free a DMA buffer. 'size' must be page aligned.
118 static void __dma_free_buffer(struct page *page, size_t size)
120 struct page *e = page + (size >> PAGE_SHIFT);
122 while (page < e) {
123 __free_page(page);
124 page++;
128 #ifdef CONFIG_MMU
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
132 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
134 #include "vmregion.h"
136 static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
145 #endif
148 * Initialise the consistent memory allocation.
150 static int __init consistent_init(void)
152 int ret = 0;
153 pgd_t *pgd;
154 pmd_t *pmd;
155 pte_t *pte;
156 int i = 0;
157 u32 base = CONSISTENT_BASE;
159 do {
160 pgd = pgd_offset(&init_mm, base);
161 pmd = pmd_alloc(&init_mm, pgd, base);
162 if (!pmd) {
163 printk(KERN_ERR "%s: no pmd tables\n", __func__);
164 ret = -ENOMEM;
165 break;
167 WARN_ON(!pmd_none(*pmd));
169 pte = pte_alloc_kernel(pmd, base);
170 if (!pte) {
171 printk(KERN_ERR "%s: no pte tables\n", __func__);
172 ret = -ENOMEM;
173 break;
176 consistent_pte[i++] = pte;
177 base += (1 << PGDIR_SHIFT);
178 } while (base < CONSISTENT_END);
180 return ret;
183 core_initcall(consistent_init);
185 static void *
186 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
188 struct arm_vmregion *c;
190 if (!consistent_pte[0]) {
191 printk(KERN_ERR "%s: not initialised\n", __func__);
192 dump_stack();
193 return NULL;
197 * Allocate a virtual address in the consistent mapping region.
199 c = arm_vmregion_alloc(&consistent_head, size,
200 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
201 if (c) {
202 pte_t *pte;
203 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
204 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
206 pte = consistent_pte[idx] + off;
207 c->vm_pages = page;
209 do {
210 BUG_ON(!pte_none(*pte));
212 set_pte_ext(pte, mk_pte(page, prot), 0);
213 page++;
214 pte++;
215 off++;
216 if (off >= PTRS_PER_PTE) {
217 off = 0;
218 pte = consistent_pte[++idx];
220 } while (size -= PAGE_SIZE);
222 return (void *)c->vm_start;
224 return NULL;
227 static void __dma_free_remap(void *cpu_addr, size_t size)
229 struct arm_vmregion *c;
230 unsigned long addr;
231 pte_t *ptep;
232 int idx;
233 u32 off;
235 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
236 if (!c) {
237 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
238 __func__, cpu_addr);
239 dump_stack();
240 return;
243 if ((c->vm_end - c->vm_start) != size) {
244 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
245 __func__, c->vm_end - c->vm_start, size);
246 dump_stack();
247 size = c->vm_end - c->vm_start;
250 idx = CONSISTENT_PTE_INDEX(c->vm_start);
251 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
252 ptep = consistent_pte[idx] + off;
253 addr = c->vm_start;
254 do {
255 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
257 ptep++;
258 addr += PAGE_SIZE;
259 off++;
260 if (off >= PTRS_PER_PTE) {
261 off = 0;
262 ptep = consistent_pte[++idx];
265 if (pte_none(pte) || !pte_present(pte))
266 printk(KERN_CRIT "%s: bad page in kernel page table\n",
267 __func__);
268 } while (size -= PAGE_SIZE);
270 flush_tlb_kernel_range(c->vm_start, c->vm_end);
272 arm_vmregion_free(&consistent_head, c);
275 #else /* !CONFIG_MMU */
277 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
278 #define __dma_free_remap(addr, size) do { } while (0)
280 #endif /* CONFIG_MMU */
282 static void *
283 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
284 pgprot_t prot)
286 struct page *page;
287 void *addr;
289 *handle = ~0;
290 size = PAGE_ALIGN(size);
292 page = __dma_alloc_buffer(dev, size, gfp);
293 if (!page)
294 return NULL;
296 if (!arch_is_coherent())
297 addr = __dma_alloc_remap(page, size, gfp, prot);
298 else
299 addr = page_address(page);
301 if (addr)
302 *handle = page_to_dma(dev, page);
304 return addr;
308 * Allocate DMA-coherent memory space and return both the kernel remapped
309 * virtual and bus address for that space.
311 void *
312 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
314 void *memory;
316 if (dma_alloc_from_coherent(dev, size, handle, &memory))
317 return memory;
319 return __dma_alloc(dev, size, handle, gfp,
320 pgprot_dmacoherent(pgprot_kernel));
322 EXPORT_SYMBOL(dma_alloc_coherent);
325 * Allocate a writecombining region, in much the same way as
326 * dma_alloc_coherent above.
328 void *
329 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
331 return __dma_alloc(dev, size, handle, gfp,
332 pgprot_writecombine(pgprot_kernel));
334 EXPORT_SYMBOL(dma_alloc_writecombine);
336 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
337 void *cpu_addr, dma_addr_t dma_addr, size_t size)
339 int ret = -ENXIO;
340 #ifdef CONFIG_MMU
341 unsigned long user_size, kern_size;
342 struct arm_vmregion *c;
344 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
346 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
347 if (c) {
348 unsigned long off = vma->vm_pgoff;
350 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
352 if (off < kern_size &&
353 user_size <= (kern_size - off)) {
354 ret = remap_pfn_range(vma, vma->vm_start,
355 page_to_pfn(c->vm_pages) + off,
356 user_size << PAGE_SHIFT,
357 vma->vm_page_prot);
360 #endif /* CONFIG_MMU */
362 return ret;
365 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
366 void *cpu_addr, dma_addr_t dma_addr, size_t size)
368 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
369 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
371 EXPORT_SYMBOL(dma_mmap_coherent);
373 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
374 void *cpu_addr, dma_addr_t dma_addr, size_t size)
376 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
377 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
379 EXPORT_SYMBOL(dma_mmap_writecombine);
382 * free a page as defined by the above mapping.
383 * Must not be called with IRQs disabled.
385 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
387 WARN_ON(irqs_disabled());
389 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
390 return;
392 size = PAGE_ALIGN(size);
394 if (!arch_is_coherent())
395 __dma_free_remap(cpu_addr, size);
397 __dma_free_buffer(dma_to_page(dev, handle), size);
399 EXPORT_SYMBOL(dma_free_coherent);
402 * Make an area consistent for devices.
403 * Note: Drivers should NOT use this function directly, as it will break
404 * platforms with CONFIG_DMABOUNCE.
405 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
407 void dma_cache_maint(const void *start, size_t size, int direction)
409 void (*inner_op)(const void *, const void *);
410 void (*outer_op)(unsigned long, unsigned long);
412 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
414 switch (direction) {
415 case DMA_FROM_DEVICE: /* invalidate only */
416 inner_op = dmac_inv_range;
417 outer_op = outer_inv_range;
418 break;
419 case DMA_TO_DEVICE: /* writeback only */
420 inner_op = dmac_clean_range;
421 outer_op = outer_clean_range;
422 break;
423 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
424 inner_op = dmac_flush_range;
425 outer_op = outer_flush_range;
426 break;
427 default:
428 BUG();
431 inner_op(start, start + size);
432 outer_op(__pa(start), __pa(start) + size);
434 EXPORT_SYMBOL(dma_cache_maint);
436 static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
437 size_t size, int direction)
439 void *vaddr;
440 unsigned long paddr;
441 void (*inner_op)(const void *, const void *);
442 void (*outer_op)(unsigned long, unsigned long);
444 switch (direction) {
445 case DMA_FROM_DEVICE: /* invalidate only */
446 inner_op = dmac_inv_range;
447 outer_op = outer_inv_range;
448 break;
449 case DMA_TO_DEVICE: /* writeback only */
450 inner_op = dmac_clean_range;
451 outer_op = outer_clean_range;
452 break;
453 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
454 inner_op = dmac_flush_range;
455 outer_op = outer_flush_range;
456 break;
457 default:
458 BUG();
461 if (!PageHighMem(page)) {
462 vaddr = page_address(page) + offset;
463 inner_op(vaddr, vaddr + size);
464 } else {
465 vaddr = kmap_high_get(page);
466 if (vaddr) {
467 vaddr += offset;
468 inner_op(vaddr, vaddr + size);
469 kunmap_high(page);
473 paddr = page_to_phys(page) + offset;
474 outer_op(paddr, paddr + size);
477 void dma_cache_maint_page(struct page *page, unsigned long offset,
478 size_t size, int dir)
481 * A single sg entry may refer to multiple physically contiguous
482 * pages. But we still need to process highmem pages individually.
483 * If highmem is not configured then the bulk of this loop gets
484 * optimized out.
486 size_t left = size;
487 do {
488 size_t len = left;
489 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
490 if (offset >= PAGE_SIZE) {
491 page += offset / PAGE_SIZE;
492 offset %= PAGE_SIZE;
494 len = PAGE_SIZE - offset;
496 dma_cache_maint_contiguous(page, offset, len, dir);
497 offset = 0;
498 page++;
499 left -= len;
500 } while (left);
502 EXPORT_SYMBOL(dma_cache_maint_page);
505 * dma_map_sg - map a set of SG buffers for streaming mode DMA
506 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
507 * @sg: list of buffers
508 * @nents: number of buffers to map
509 * @dir: DMA transfer direction
511 * Map a set of buffers described by scatterlist in streaming mode for DMA.
512 * This is the scatter-gather version of the dma_map_single interface.
513 * Here the scatter gather list elements are each tagged with the
514 * appropriate dma address and length. They are obtained via
515 * sg_dma_{address,length}.
517 * Device ownership issues as mentioned for dma_map_single are the same
518 * here.
520 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
521 enum dma_data_direction dir)
523 struct scatterlist *s;
524 int i, j;
526 for_each_sg(sg, s, nents, i) {
527 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
528 s->length, dir);
529 if (dma_mapping_error(dev, s->dma_address))
530 goto bad_mapping;
532 return nents;
534 bad_mapping:
535 for_each_sg(sg, s, i, j)
536 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
537 return 0;
539 EXPORT_SYMBOL(dma_map_sg);
542 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
543 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
544 * @sg: list of buffers
545 * @nents: number of buffers to unmap (returned from dma_map_sg)
546 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
548 * Unmap a set of streaming mode DMA translations. Again, CPU access
549 * rules concerning calls here are the same as for dma_unmap_single().
551 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
552 enum dma_data_direction dir)
554 struct scatterlist *s;
555 int i;
557 for_each_sg(sg, s, nents, i)
558 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
560 EXPORT_SYMBOL(dma_unmap_sg);
563 * dma_sync_sg_for_cpu
564 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
565 * @sg: list of buffers
566 * @nents: number of buffers to map (returned from dma_map_sg)
567 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
569 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
570 int nents, enum dma_data_direction dir)
572 struct scatterlist *s;
573 int i;
575 for_each_sg(sg, s, nents, i) {
576 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
577 sg_dma_len(s), dir);
580 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
583 * dma_sync_sg_for_device
584 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
585 * @sg: list of buffers
586 * @nents: number of buffers to map (returned from dma_map_sg)
587 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
589 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
590 int nents, enum dma_data_direction dir)
592 struct scatterlist *s;
593 int i;
595 for_each_sg(sg, s, nents, i) {
596 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
597 sg_dma_len(s), dir))
598 continue;
600 if (!arch_is_coherent())
601 dma_cache_maint_page(sg_page(s), s->offset,
602 s->length, dir);
605 EXPORT_SYMBOL(dma_sync_sg_for_device);