Linux 2.6.33
[pohmelfs.git] / arch / arm / mm / mmu.c
blob761ffede6a23a9027bd6d805a7fdb8d5e674c7ec
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
31 #include "mm.h"
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
43 * The pmd table for the upper-most set of pages.
45 pmd_t *top_pmd;
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
61 struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
68 static struct cachepolicy cache_policies[] __initdata = {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
73 .pte = L_PTE_MT_UNCACHED,
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
78 .pte = L_PTE_MT_BUFFERABLE,
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
83 .pte = L_PTE_MT_WRITETHROUGH,
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
88 .pte = L_PTE_MT_WRITEBACK,
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
93 .pte = L_PTE_MT_WRITEALLOC,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static void __init early_cachepolicy(char **p)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
110 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
114 *p += len;
115 break;
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
131 flush_cache_all();
132 set_cr(cr_alignment);
134 __early_param("cachepolicy=", early_cachepolicy);
136 static void __init early_nocache(char **__unused)
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
142 __early_param("nocache", early_nocache);
144 static void __init early_nowrite(char **__unused)
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 early_cachepolicy(&p);
150 __early_param("nowb", early_nowrite);
152 static void __init early_ecc(char **p)
154 if (memcmp(*p, "on", 2) == 0) {
155 ecc_mask = PMD_PROTECTION;
156 *p += 2;
157 } else if (memcmp(*p, "off", 3) == 0) {
158 ecc_mask = 0;
159 *p += 3;
162 __early_param("ecc=", early_ecc);
164 static int __init noalign_setup(char *__unused)
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
171 __setup("noalign", noalign_setup);
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
176 unsigned long flags;
178 mask &= ~CR_A;
180 set &= mask;
182 local_irq_save(flags);
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
187 set_cr((get_cr() & ~mask) | set);
189 local_irq_restore(flags);
191 #endif
193 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 static struct mem_type mem_types[] = {
197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
200 .prot_l1 = PMD_TYPE_TABLE,
201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
202 .domain = DOMAIN_IO,
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 .prot_l1 = PMD_TYPE_TABLE,
207 .prot_sect = PROT_SECT_DEVICE,
208 .domain = DOMAIN_IO,
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
216 [MT_DEVICE_WC] = { /* ioremap_wc */
217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 .prot_l1 = PMD_TYPE_TABLE,
219 .prot_sect = PROT_SECT_DEVICE,
220 .domain = DOMAIN_IO,
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
228 [MT_CACHECLEAN] = {
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_KERNEL,
232 [MT_MINICLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 .domain = DOMAIN_KERNEL,
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
248 [MT_MEMORY] = {
249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 .domain = DOMAIN_KERNEL,
252 [MT_ROM] = {
253 .prot_sect = PMD_TYPE_SECT,
254 .domain = DOMAIN_KERNEL,
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
262 const struct mem_type *get_mem_type(unsigned int type)
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266 EXPORT_SYMBOL(get_mem_type);
269 * Adjust the PMD section entries according to the CPU in use.
271 static void __init build_mem_type_table(void)
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276 int cpu_arch = cpu_architecture();
277 int i;
279 if (cpu_arch < CPU_ARCH_ARMv6) {
280 #if defined(CONFIG_CPU_DCACHE_DISABLE)
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
286 #endif
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
293 #ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295 #endif
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
314 if (cpu_is_xscale() || cpu_is_xsc3()) {
315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316 mem_types[i].prot_sect &= ~PMD_BIT4;
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
329 * Mark the device areas according to the CPU/architecture.
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376 } else {
378 * On others, write combining is "Uncached/Buffered"
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
384 * Now deal with the memory-type mappings
386 cp = &cache_policies[cachepolicy];
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389 #ifndef CONFIG_SMP
391 * Only use write-through for non-SMP systems
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395 #endif
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
405 * ARMv6 and above have extended page tables.
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416 #ifdef CONFIG_SMP
418 * Mark memory with the "shared" attribute for SMP systems
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
422 vecs_pgprot |= L_PTE_SHARED;
423 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425 #endif
429 * Non-cacheable Normal - intended for memory areas that must
430 * not cause dirty cache line writebacks when used
432 if (cpu_arch >= CPU_ARCH_ARMv6) {
433 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
434 /* Non-cacheable Normal is XCB = 001 */
435 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
436 PMD_SECT_BUFFERED;
437 } else {
438 /* For both ARMv6 and non-TEX-remapping ARMv7 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_TEX(1);
442 } else {
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
446 for (i = 0; i < 16; i++) {
447 unsigned long v = pgprot_val(protection_map[i]);
448 protection_map[i] = __pgprot(v | user_pgprot);
451 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
452 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
454 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
455 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
456 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
458 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
459 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
460 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
461 mem_types[MT_ROM].prot_sect |= cp->pmd;
463 switch (cp->pmd) {
464 case PMD_SECT_WT:
465 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
466 break;
467 case PMD_SECT_WB:
468 case PMD_SECT_WBWA:
469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
470 break;
472 printk("Memory policy: ECC %sabled, Data cache %s\n",
473 ecc_mask ? "en" : "dis", cp->policy);
475 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 struct mem_type *t = &mem_types[i];
477 if (t->prot_l1)
478 t->prot_l1 |= PMD_DOMAIN(t->domain);
479 if (t->prot_sect)
480 t->prot_sect |= PMD_DOMAIN(t->domain);
484 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
486 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
487 unsigned long end, unsigned long pfn,
488 const struct mem_type *type)
490 pte_t *pte;
492 if (pmd_none(*pmd)) {
493 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
494 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
497 pte = pte_offset_kernel(pmd, addr);
498 do {
499 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
500 pfn++;
501 } while (pte++, addr += PAGE_SIZE, addr != end);
504 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
505 unsigned long end, unsigned long phys,
506 const struct mem_type *type)
508 pmd_t *pmd = pmd_offset(pgd, addr);
511 * Try a section mapping - end, addr and phys must all be aligned
512 * to a section boundary. Note that PMDs refer to the individual
513 * L1 entries, whereas PGDs refer to a group of L1 entries making
514 * up one logical pointer to an L2 table.
516 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
517 pmd_t *p = pmd;
519 if (addr & SECTION_SIZE)
520 pmd++;
522 do {
523 *pmd = __pmd(phys | type->prot_sect);
524 phys += SECTION_SIZE;
525 } while (pmd++, addr += SECTION_SIZE, addr != end);
527 flush_pmd_entry(p);
528 } else {
530 * No need to loop; pte's aren't interested in the
531 * individual L1 entries.
533 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
537 static void __init create_36bit_mapping(struct map_desc *md,
538 const struct mem_type *type)
540 unsigned long phys, addr, length, end;
541 pgd_t *pgd;
543 addr = md->virtual;
544 phys = (unsigned long)__pfn_to_phys(md->pfn);
545 length = PAGE_ALIGN(md->length);
547 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
548 printk(KERN_ERR "MM: CPU does not support supersection "
549 "mapping for 0x%08llx at 0x%08lx\n",
550 __pfn_to_phys((u64)md->pfn), addr);
551 return;
554 /* N.B. ARMv6 supersections are only defined to work with domain 0.
555 * Since domain assignments can in fact be arbitrary, the
556 * 'domain == 0' check below is required to insure that ARMv6
557 * supersections are only allocated for domain 0 regardless
558 * of the actual domain assignments in use.
560 if (type->domain) {
561 printk(KERN_ERR "MM: invalid domain in supersection "
562 "mapping for 0x%08llx at 0x%08lx\n",
563 __pfn_to_phys((u64)md->pfn), addr);
564 return;
567 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
568 printk(KERN_ERR "MM: cannot create mapping for "
569 "0x%08llx at 0x%08lx invalid alignment\n",
570 __pfn_to_phys((u64)md->pfn), addr);
571 return;
575 * Shift bits [35:32] of address into bits [23:20] of PMD
576 * (See ARMv6 spec).
578 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
580 pgd = pgd_offset_k(addr);
581 end = addr + length;
582 do {
583 pmd_t *pmd = pmd_offset(pgd, addr);
584 int i;
586 for (i = 0; i < 16; i++)
587 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
589 addr += SUPERSECTION_SIZE;
590 phys += SUPERSECTION_SIZE;
591 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
592 } while (addr != end);
596 * Create the page directory entries and any necessary
597 * page tables for the mapping specified by `md'. We
598 * are able to cope here with varying sizes and address
599 * offsets, and we take full advantage of sections and
600 * supersections.
602 void __init create_mapping(struct map_desc *md)
604 unsigned long phys, addr, length, end;
605 const struct mem_type *type;
606 pgd_t *pgd;
608 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
609 printk(KERN_WARNING "BUG: not creating mapping for "
610 "0x%08llx at 0x%08lx in user region\n",
611 __pfn_to_phys((u64)md->pfn), md->virtual);
612 return;
615 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
616 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
617 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
618 "overlaps vmalloc space\n",
619 __pfn_to_phys((u64)md->pfn), md->virtual);
622 type = &mem_types[md->type];
625 * Catch 36-bit addresses
627 if (md->pfn >= 0x100000) {
628 create_36bit_mapping(md, type);
629 return;
632 addr = md->virtual & PAGE_MASK;
633 phys = (unsigned long)__pfn_to_phys(md->pfn);
634 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
636 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
637 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
638 "be mapped using pages, ignoring.\n",
639 __pfn_to_phys(md->pfn), addr);
640 return;
643 pgd = pgd_offset_k(addr);
644 end = addr + length;
645 do {
646 unsigned long next = pgd_addr_end(addr, end);
648 alloc_init_section(pgd, addr, next, phys, type);
650 phys += next - addr;
651 addr = next;
652 } while (pgd++, addr != end);
656 * Create the architecture specific mappings
658 void __init iotable_init(struct map_desc *io_desc, int nr)
660 int i;
662 for (i = 0; i < nr; i++)
663 create_mapping(io_desc + i);
666 static unsigned long __initdata vmalloc_reserve = SZ_128M;
669 * vmalloc=size forces the vmalloc area to be exactly 'size'
670 * bytes. This can be used to increase (or decrease) the vmalloc
671 * area - the default is 128m.
673 static void __init early_vmalloc(char **arg)
675 vmalloc_reserve = memparse(*arg, arg);
677 if (vmalloc_reserve < SZ_16M) {
678 vmalloc_reserve = SZ_16M;
679 printk(KERN_WARNING
680 "vmalloc area too small, limiting to %luMB\n",
681 vmalloc_reserve >> 20);
684 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
685 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
686 printk(KERN_WARNING
687 "vmalloc area is too big, limiting to %luMB\n",
688 vmalloc_reserve >> 20);
691 __early_param("vmalloc=", early_vmalloc);
693 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
695 static void __init sanity_check_meminfo(void)
697 int i, j, highmem = 0;
699 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
700 struct membank *bank = &meminfo.bank[j];
701 *bank = meminfo.bank[i];
703 #ifdef CONFIG_HIGHMEM
704 if (__va(bank->start) > VMALLOC_MIN ||
705 __va(bank->start) < (void *)PAGE_OFFSET)
706 highmem = 1;
708 bank->highmem = highmem;
711 * Split those memory banks which are partially overlapping
712 * the vmalloc area greatly simplifying things later.
714 if (__va(bank->start) < VMALLOC_MIN &&
715 bank->size > VMALLOC_MIN - __va(bank->start)) {
716 if (meminfo.nr_banks >= NR_BANKS) {
717 printk(KERN_CRIT "NR_BANKS too low, "
718 "ignoring high memory\n");
719 } else {
720 memmove(bank + 1, bank,
721 (meminfo.nr_banks - i) * sizeof(*bank));
722 meminfo.nr_banks++;
723 i++;
724 bank[1].size -= VMALLOC_MIN - __va(bank->start);
725 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
726 bank[1].highmem = highmem = 1;
727 j++;
729 bank->size = VMALLOC_MIN - __va(bank->start);
731 #else
732 bank->highmem = highmem;
735 * Check whether this memory bank would entirely overlap
736 * the vmalloc area.
738 if (__va(bank->start) >= VMALLOC_MIN ||
739 __va(bank->start) < (void *)PAGE_OFFSET) {
740 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
741 "(vmalloc region overlap).\n",
742 bank->start, bank->start + bank->size - 1);
743 continue;
747 * Check whether this memory bank would partially overlap
748 * the vmalloc area.
750 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
751 __va(bank->start + bank->size) < __va(bank->start)) {
752 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
753 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
754 "to -%.8lx (vmalloc region overlap).\n",
755 bank->start, bank->start + bank->size - 1,
756 bank->start + newsize - 1);
757 bank->size = newsize;
759 #endif
760 j++;
762 #ifdef CONFIG_HIGHMEM
763 if (highmem) {
764 const char *reason = NULL;
766 if (cache_is_vipt_aliasing()) {
768 * Interactions between kmap and other mappings
769 * make highmem support with aliasing VIPT caches
770 * rather difficult.
772 reason = "with VIPT aliasing cache";
773 #ifdef CONFIG_SMP
774 } else if (tlb_ops_need_broadcast()) {
776 * kmap_high needs to occasionally flush TLB entries,
777 * however, if the TLB entries need to be broadcast
778 * we may deadlock:
779 * kmap_high(irqs off)->flush_all_zero_pkmaps->
780 * flush_tlb_kernel_range->smp_call_function_many
781 * (must not be called with irqs off)
783 reason = "without hardware TLB ops broadcasting";
784 #endif
786 if (reason) {
787 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
788 reason);
789 while (j > 0 && meminfo.bank[j - 1].highmem)
790 j--;
793 #endif
794 meminfo.nr_banks = j;
797 static inline void prepare_page_table(void)
799 unsigned long addr;
802 * Clear out all the mappings below the kernel image.
804 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
805 pmd_clear(pmd_off_k(addr));
807 #ifdef CONFIG_XIP_KERNEL
808 /* The XIP kernel is mapped in the module area -- skip over it */
809 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
810 #endif
811 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
812 pmd_clear(pmd_off_k(addr));
815 * Clear out all the kernel space mappings, except for the first
816 * memory bank, up to the end of the vmalloc region.
818 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
819 addr < VMALLOC_END; addr += PGDIR_SIZE)
820 pmd_clear(pmd_off_k(addr));
824 * Reserve the various regions of node 0
826 void __init reserve_node_zero(pg_data_t *pgdat)
828 unsigned long res_size = 0;
831 * Register the kernel text and data with bootmem.
832 * Note that this can only be in node 0.
834 #ifdef CONFIG_XIP_KERNEL
835 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
836 BOOTMEM_DEFAULT);
837 #else
838 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
839 BOOTMEM_DEFAULT);
840 #endif
843 * Reserve the page tables. These are already in use,
844 * and can only be in node 0.
846 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
847 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
850 * Hmm... This should go elsewhere, but we really really need to
851 * stop things allocating the low memory; ideally we need a better
852 * implementation of GFP_DMA which does not assume that DMA-able
853 * memory starts at zero.
855 if (machine_is_integrator() || machine_is_cintegrator())
856 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
859 * These should likewise go elsewhere. They pre-reserve the
860 * screen memory region at the start of main system memory.
862 if (machine_is_edb7211())
863 res_size = 0x00020000;
864 if (machine_is_p720t())
865 res_size = 0x00014000;
867 /* H1940 and RX3715 need to reserve this for suspend */
869 if (machine_is_h1940() || machine_is_rx3715()) {
870 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
871 BOOTMEM_DEFAULT);
872 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
873 BOOTMEM_DEFAULT);
876 if (machine_is_palmld() || machine_is_palmtx()) {
877 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
878 BOOTMEM_EXCLUSIVE);
879 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
880 BOOTMEM_EXCLUSIVE);
883 if (machine_is_treo680() || machine_is_centro()) {
884 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
885 BOOTMEM_EXCLUSIVE);
886 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
887 BOOTMEM_EXCLUSIVE);
890 if (machine_is_palmt5())
891 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
892 BOOTMEM_EXCLUSIVE);
895 * U300 - This platform family can share physical memory
896 * between two ARM cpus, one running Linux and the other
897 * running another OS.
899 if (machine_is_u300()) {
900 #ifdef CONFIG_MACH_U300_SINGLE_RAM
901 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
902 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
903 res_size = 0x00100000;
904 #endif
905 #endif
908 #ifdef CONFIG_SA1111
910 * Because of the SA1111 DMA bug, we want to preserve our
911 * precious DMA-able memory...
913 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
914 #endif
915 if (res_size)
916 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
917 BOOTMEM_DEFAULT);
921 * Set up device the mappings. Since we clear out the page tables for all
922 * mappings above VMALLOC_END, we will remove any debug device mappings.
923 * This means you have to be careful how you debug this function, or any
924 * called function. This means you can't use any function or debugging
925 * method which may touch any device, otherwise the kernel _will_ crash.
927 static void __init devicemaps_init(struct machine_desc *mdesc)
929 struct map_desc map;
930 unsigned long addr;
931 void *vectors;
934 * Allocate the vector page early.
936 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
938 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
939 pmd_clear(pmd_off_k(addr));
942 * Map the kernel if it is XIP.
943 * It is always first in the modulearea.
945 #ifdef CONFIG_XIP_KERNEL
946 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
947 map.virtual = MODULES_VADDR;
948 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
949 map.type = MT_ROM;
950 create_mapping(&map);
951 #endif
954 * Map the cache flushing regions.
956 #ifdef FLUSH_BASE
957 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
958 map.virtual = FLUSH_BASE;
959 map.length = SZ_1M;
960 map.type = MT_CACHECLEAN;
961 create_mapping(&map);
962 #endif
963 #ifdef FLUSH_BASE_MINICACHE
964 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
965 map.virtual = FLUSH_BASE_MINICACHE;
966 map.length = SZ_1M;
967 map.type = MT_MINICLEAN;
968 create_mapping(&map);
969 #endif
972 * Create a mapping for the machine vectors at the high-vectors
973 * location (0xffff0000). If we aren't using high-vectors, also
974 * create a mapping at the low-vectors virtual address.
976 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
977 map.virtual = 0xffff0000;
978 map.length = PAGE_SIZE;
979 map.type = MT_HIGH_VECTORS;
980 create_mapping(&map);
982 if (!vectors_high()) {
983 map.virtual = 0;
984 map.type = MT_LOW_VECTORS;
985 create_mapping(&map);
989 * Ask the machine support to map in the statically mapped devices.
991 if (mdesc->map_io)
992 mdesc->map_io();
995 * Finally flush the caches and tlb to ensure that we're in a
996 * consistent state wrt the writebuffer. This also ensures that
997 * any write-allocated cache lines in the vector page are written
998 * back. After this point, we can start to touch devices again.
1000 local_flush_tlb_all();
1001 flush_cache_all();
1004 static void __init kmap_init(void)
1006 #ifdef CONFIG_HIGHMEM
1007 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1008 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1009 BUG_ON(!pmd_none(*pmd) || !pte);
1010 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1011 pkmap_page_table = pte + PTRS_PER_PTE;
1012 #endif
1016 * paging_init() sets up the page tables, initialises the zone memory
1017 * maps, and sets up the zero page, bad page and bad page tables.
1019 void __init paging_init(struct machine_desc *mdesc)
1021 void *zero_page;
1023 build_mem_type_table();
1024 sanity_check_meminfo();
1025 prepare_page_table();
1026 bootmem_init();
1027 devicemaps_init(mdesc);
1028 kmap_init();
1030 top_pmd = pmd_off_k(0xffff0000);
1033 * allocate the zero page. Note that this always succeeds and
1034 * returns a zeroed result.
1036 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1037 empty_zero_page = virt_to_page(zero_page);
1038 __flush_dcache_page(NULL, empty_zero_page);
1042 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1043 * the user-mode pages. This will then ensure that we have predictable
1044 * results when turning the mmu off
1046 void setup_mm_for_reboot(char mode)
1048 unsigned long base_pmdval;
1049 pgd_t *pgd;
1050 int i;
1052 if (current->mm && current->mm->pgd)
1053 pgd = current->mm->pgd;
1054 else
1055 pgd = init_mm.pgd;
1057 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1058 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1059 base_pmdval |= PMD_BIT4;
1061 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1062 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1063 pmd_t *pmd;
1065 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1066 pmd[0] = __pmd(pmdval);
1067 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1068 flush_pmd_entry(pmd);
1071 local_flush_tlb_all();