3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-au1x00/au1xxx_dbdma.h>
41 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
44 * The Descriptor Based DMA supports up to 16 channels.
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59 static dbdma_global_t
*dbdma_gptr
= (dbdma_global_t
*)DDMA_GLOBAL_BASE
;
60 static int dbdma_initialized
;
61 static void au1xxx_dbdma_init(void);
63 static dbdev_tab_t dbdev_tab
[] = {
64 #ifdef CONFIG_SOC_AU1550
66 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
67 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
68 { DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
69 { DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
72 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
78 { DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
79 { DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
82 { DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
86 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
87 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
90 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
94 { DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
98 { DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
101 { DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
102 { DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
105 { DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
106 { DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
109 { DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
112 #endif /* CONFIG_SOC_AU1550 */
114 #ifdef CONFIG_SOC_AU1200
115 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
116 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
117 { DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
118 { DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
120 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
123 { DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
129 { DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
130 { DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
133 { DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
134 { DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
136 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
137 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
140 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
141 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
144 { DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
145 { DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
146 { DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
147 { DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
149 { DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
151 #endif /* CONFIG_SOC_AU1200 */
153 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
154 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
156 /* Provide 16 user definable device types */
157 { ~0, 0, 0, 0, 0, 0, 0 },
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
175 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
178 static u32 au1xxx_dbdma_pm_regs
[NUM_DBDMA_CHANS
+ 1][6];
182 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
184 static dbdev_tab_t
*find_dbdev_id(u32 id
)
188 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
196 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
198 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
200 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
202 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
206 static u16 new_id
= 0x1000;
208 p
= find_dbdev_id(~0);
210 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
211 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
215 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
216 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
222 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
224 void au1xxx_ddma_del_device(u32 devid
)
226 dbdev_tab_t
*p
= find_dbdev_id(devid
);
229 memset(p
, 0, sizeof(dbdev_tab_t
));
233 EXPORT_SYMBOL(au1xxx_ddma_del_device
);
235 /* Allocate a channel and return a non-zero descriptor if successful. */
236 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
237 void (*callback
)(int, void *), void *callparam
)
243 dbdev_tab_t
*stp
, *dtp
;
248 * We do the intialization on the first channel allocation.
249 * We have to wait because of the interrupt handler initialization
250 * which can't be done successfully during board set up.
252 if (!dbdma_initialized
)
254 dbdma_initialized
= 1;
256 stp
= find_dbdev_id(srcid
);
259 dtp
= find_dbdev_id(destid
);
266 /* Check to see if we can get both channels. */
267 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
268 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
269 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
271 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
272 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
273 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
274 /* Got destination */
275 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
277 /* Can't get dest. Release src. */
278 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
283 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
286 /* Let's see if we can allocate a channel for it. */
289 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
290 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
291 if (chan_tab_ptr
[i
] == NULL
) {
293 * If kmalloc fails, it is caught below same
294 * as a channel not available.
296 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
297 chan_tab_ptr
[i
] = ctp
;
300 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
303 memset(ctp
, 0, sizeof(chan_tab_t
));
304 ctp
->chan_index
= chan
= i
;
305 dcp
= DDMA_CHANNEL_BASE
;
306 dcp
+= (0x0100 * chan
);
307 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
308 cp
= (au1x_dma_chan_t
*)dcp
;
310 ctp
->chan_dest
= dtp
;
311 ctp
->chan_callback
= callback
;
312 ctp
->chan_callparam
= callparam
;
314 /* Initialize channel configuration. */
316 if (stp
->dev_intlevel
)
318 if (stp
->dev_intpolarity
)
320 if (dtp
->dev_intlevel
)
322 if (dtp
->dev_intpolarity
)
324 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
325 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
330 /* Return a non-zero value that can be used to
331 * find the channel information in subsequent
334 rv
= (u32
)(&chan_tab_ptr
[chan
]);
336 /* Release devices */
337 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
338 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
343 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
346 * Set the device width if source or destination is a FIFO.
347 * Should be 8, 16, or 32 bits.
349 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
353 dbdev_tab_t
*stp
, *dtp
;
355 ctp
= *((chan_tab_t
**)chanid
);
357 dtp
= ctp
->chan_dest
;
360 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
361 rv
= stp
->dev_devwidth
;
362 stp
->dev_devwidth
= bits
;
364 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
365 rv
= dtp
->dev_devwidth
;
366 dtp
->dev_devwidth
= bits
;
371 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
373 /* Allocate a descriptor ring, initializing as much as possible. */
374 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
377 u32 desc_base
, srcid
, destid
;
378 u32 cmd0
, cmd1
, src1
, dest1
;
381 dbdev_tab_t
*stp
, *dtp
;
382 au1x_ddma_desc_t
*dp
;
385 * I guess we could check this to be within the
386 * range of the table......
388 ctp
= *((chan_tab_t
**)chanid
);
390 dtp
= ctp
->chan_dest
;
393 * The descriptors must be 32-byte aligned. There is a
394 * possibility the allocation will give us such an address,
395 * and if we try that first we are likely to not waste larger
398 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
403 if (desc_base
& 0x1f) {
405 * Lost....do it again, allocate extra, and round
408 kfree((const void *)desc_base
);
409 i
= entries
* sizeof(au1x_ddma_desc_t
);
410 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
411 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
415 ctp
->cdb_membase
= desc_base
;
416 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
418 ctp
->cdb_membase
= desc_base
;
420 dp
= (au1x_ddma_desc_t
*)desc_base
;
422 /* Keep track of the base descriptor. */
423 ctp
->chan_desc_base
= dp
;
425 /* Initialize the rings with as much information as we know. */
427 destid
= dtp
->dev_id
;
429 cmd0
= cmd1
= src1
= dest1
= 0;
432 cmd0
|= DSCR_CMD0_SID(srcid
);
433 cmd0
|= DSCR_CMD0_DID(destid
);
434 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
435 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
437 /* Is it mem to mem transfer? */
438 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
439 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
440 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
441 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
442 cmd0
|= DSCR_CMD0_MEM
;
444 switch (stp
->dev_devwidth
) {
446 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
449 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
453 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
457 switch (dtp
->dev_devwidth
) {
459 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
462 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
466 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
471 * If the device is marked as an in/out FIFO, ensure it is
474 if (stp
->dev_flags
& DEV_FLAGS_IN
)
475 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
476 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
477 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
480 * Set up source1. For now, assume no stride and increment.
481 * A channel attribute update can change this later.
483 switch (stp
->dev_tsize
) {
485 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
488 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
491 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
495 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
499 /* If source input is FIFO, set static address. */
500 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
501 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
502 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
504 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
507 if (stp
->dev_physaddr
)
508 src0
= stp
->dev_physaddr
;
511 * Set up dest1. For now, assume no stride and increment.
512 * A channel attribute update can change this later.
514 switch (dtp
->dev_tsize
) {
516 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
519 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
522 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
526 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
530 /* If destination output is FIFO, set static address. */
531 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
532 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
533 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
535 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
538 if (dtp
->dev_physaddr
)
539 dest0
= dtp
->dev_physaddr
;
542 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
543 "source1:%x dest0:%x dest1:%x\n",
544 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
547 for (i
= 0; i
< entries
; i
++) {
548 dp
->dscr_cmd0
= cmd0
;
549 dp
->dscr_cmd1
= cmd1
;
550 dp
->dscr_source0
= src0
;
551 dp
->dscr_source1
= src1
;
552 dp
->dscr_dest0
= dest0
;
553 dp
->dscr_dest1
= dest1
;
557 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
561 /* Make last descrptor point to the first. */
563 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
564 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
566 return (u32
)ctp
->chan_desc_base
;
568 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
571 * Put a source buffer into the DMA ring.
572 * This updates the source pointer and byte count. Normally used
573 * for memory to fifo transfers.
575 u32
_au1xxx_dbdma_put_source(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
578 au1x_ddma_desc_t
*dp
;
581 * I guess we could check this to be within the
582 * range of the table......
584 ctp
= *(chan_tab_t
**)chanid
;
587 * We should have multiple callers for a particular channel,
588 * an interrupt doesn't affect this pointer nor the descriptor,
589 * so no locking should be needed.
594 * If the descriptor is valid, we are way ahead of the DMA
595 * engine, so just return an error condition.
597 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
600 /* Load up buffer address and byte count. */
601 dp
->dscr_source0
= virt_to_phys(buf
);
602 dp
->dscr_cmd1
= nbytes
;
604 if (flags
& DDMA_FLAGS_IE
)
605 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
606 if (flags
& DDMA_FLAGS_NOIE
)
607 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
610 * There is an errata on the Au1200/Au1550 parts that could result
611 * in "stale" data being DMA'ed. It has to do with the snoop logic on
612 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
613 * these parts. If it is fixed in the future, these dma_cache_inv will
614 * just be nothing more than empty macros. See io.h.
616 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
617 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
619 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
620 ctp
->chan_ptr
->ddma_dbell
= 0;
622 /* Get next descriptor pointer. */
623 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
625 /* Return something non-zero. */
628 EXPORT_SYMBOL(_au1xxx_dbdma_put_source
);
630 /* Put a destination buffer into the DMA ring.
631 * This updates the destination pointer and byte count. Normally used
632 * to place an empty buffer into the ring for fifo to memory transfers.
635 _au1xxx_dbdma_put_dest(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
638 au1x_ddma_desc_t
*dp
;
640 /* I guess we could check this to be within the
641 * range of the table......
643 ctp
= *((chan_tab_t
**)chanid
);
645 /* We should have multiple callers for a particular channel,
646 * an interrupt doesn't affect this pointer nor the descriptor,
647 * so no locking should be needed.
651 /* If the descriptor is valid, we are way ahead of the DMA
652 * engine, so just return an error condition.
654 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
657 /* Load up buffer address and byte count */
660 if (flags
& DDMA_FLAGS_IE
)
661 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
662 if (flags
& DDMA_FLAGS_NOIE
)
663 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
665 dp
->dscr_dest0
= virt_to_phys(buf
);
666 dp
->dscr_cmd1
= nbytes
;
668 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
669 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
670 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
673 * There is an errata on the Au1200/Au1550 parts that could result in
674 * "stale" data being DMA'ed. It has to do with the snoop logic on the
675 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
676 * parts. If it is fixed in the future, these dma_cache_inv will just
677 * be nothing more than empty macros. See io.h.
679 dma_cache_inv((unsigned long)buf
, nbytes
);
680 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
682 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
683 ctp
->chan_ptr
->ddma_dbell
= 0;
685 /* Get next descriptor pointer. */
686 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
688 /* Return something non-zero. */
691 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest
);
694 * Get a destination buffer into the DMA ring.
695 * Normally used to get a full buffer from the ring during fifo
696 * to memory transfers. This does not set the valid bit, you will
697 * have to put another destination buffer to keep the DMA going.
699 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
702 au1x_ddma_desc_t
*dp
;
706 * I guess we could check this to be within the
707 * range of the table......
709 ctp
= *((chan_tab_t
**)chanid
);
712 * We should have multiple callers for a particular channel,
713 * an interrupt doesn't affect this pointer nor the descriptor,
714 * so no locking should be needed.
719 * If the descriptor is valid, we are way ahead of the DMA
720 * engine, so just return an error condition.
722 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
725 /* Return buffer address and byte count. */
726 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
727 *nbytes
= dp
->dscr_cmd1
;
730 /* Get next descriptor pointer. */
731 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
733 /* Return something non-zero. */
736 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
738 void au1xxx_dbdma_stop(u32 chanid
)
742 int halt_timeout
= 0;
744 ctp
= *((chan_tab_t
**)chanid
);
747 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
749 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
752 if (halt_timeout
> 100) {
753 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
757 /* clear current desc valid and doorbell */
758 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
761 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
764 * Start using the current descriptor pointer. If the DBDMA encounters
765 * a non-valid descriptor, it will stop. In this case, we can just
766 * continue by adding a buffer to the list and starting again.
768 void au1xxx_dbdma_start(u32 chanid
)
773 ctp
= *((chan_tab_t
**)chanid
);
775 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
776 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
781 EXPORT_SYMBOL(au1xxx_dbdma_start
);
783 void au1xxx_dbdma_reset(u32 chanid
)
786 au1x_ddma_desc_t
*dp
;
788 au1xxx_dbdma_stop(chanid
);
790 ctp
= *((chan_tab_t
**)chanid
);
791 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
793 /* Run through the descriptors and reset the valid indicator. */
794 dp
= ctp
->chan_desc_base
;
797 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
799 * Reset our software status -- this is used to determine
800 * if a descriptor is in use by upper level software. Since
801 * posting can reset 'V' bit.
804 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
805 } while (dp
!= ctp
->chan_desc_base
);
807 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
809 u32
au1xxx_get_dma_residue(u32 chanid
)
815 ctp
= *((chan_tab_t
**)chanid
);
818 /* This is only valid if the channel is stopped. */
819 rv
= cp
->ddma_bytecnt
;
824 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
826 void au1xxx_dbdma_chan_free(u32 chanid
)
829 dbdev_tab_t
*stp
, *dtp
;
831 ctp
= *((chan_tab_t
**)chanid
);
833 dtp
= ctp
->chan_dest
;
835 au1xxx_dbdma_stop(chanid
);
837 kfree((void *)ctp
->cdb_membase
);
839 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
840 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
841 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
845 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
847 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
852 au1x_ddma_desc_t
*dp
;
855 intstat
= dbdma_gptr
->ddma_intstat
;
857 chan_index
= __ffs(intstat
);
859 ctp
= chan_tab_ptr
[chan_index
];
863 /* Reset interrupt. */
867 if (ctp
->chan_callback
)
868 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
870 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
871 return IRQ_RETVAL(1);
874 static void au1xxx_dbdma_init(void)
878 dbdma_gptr
->ddma_config
= 0;
879 dbdma_gptr
->ddma_throttle
= 0;
880 dbdma_gptr
->ddma_inten
= 0xffff;
883 #if defined(CONFIG_SOC_AU1550)
884 irq_nr
= AU1550_DDMA_INT
;
885 #elif defined(CONFIG_SOC_AU1200)
886 irq_nr
= AU1200_DDMA_INT
;
888 #error Unknown Au1x00 SOC
891 if (request_irq(irq_nr
, dbdma_interrupt
, IRQF_DISABLED
,
892 "Au1xxx dbdma", (void *)dbdma_gptr
))
893 printk(KERN_ERR
"Can't get 1550 dbdma irq");
896 void au1xxx_dbdma_dump(u32 chanid
)
899 au1x_ddma_desc_t
*dp
;
900 dbdev_tab_t
*stp
, *dtp
;
904 ctp
= *((chan_tab_t
**)chanid
);
906 dtp
= ctp
->chan_dest
;
909 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
910 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
912 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
913 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
914 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
916 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
917 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
918 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
919 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
920 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
923 /* Run through the descriptors */
924 dp
= ctp
->chan_desc_base
;
927 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
928 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
929 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
930 dp
->dscr_source0
, dp
->dscr_source1
,
931 dp
->dscr_dest0
, dp
->dscr_dest1
);
932 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
933 dp
->dscr_stat
, dp
->dscr_nxtptr
);
934 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
935 } while (dp
!= ctp
->chan_desc_base
);
938 /* Put a descriptor into the DMA ring.
939 * This updates the source/destination pointers and byte count.
941 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
944 au1x_ddma_desc_t
*dp
;
948 * I guess we could check this to be within the
949 * range of the table......
951 ctp
= *((chan_tab_t
**)chanid
);
954 * We should have multiple callers for a particular channel,
955 * an interrupt doesn't affect this pointer nor the descriptor,
956 * so no locking should be needed.
961 * If the descriptor is valid, we are way ahead of the DMA
962 * engine, so just return an error condition.
964 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
967 /* Load up buffer addresses and byte count. */
968 dp
->dscr_dest0
= dscr
->dscr_dest0
;
969 dp
->dscr_source0
= dscr
->dscr_source0
;
970 dp
->dscr_dest1
= dscr
->dscr_dest1
;
971 dp
->dscr_source1
= dscr
->dscr_source1
;
972 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
973 nbytes
= dscr
->dscr_cmd1
;
974 /* Allow the caller to specifiy if an interrupt is generated */
975 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
976 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
977 ctp
->chan_ptr
->ddma_dbell
= 0;
979 /* Get next descriptor pointer. */
980 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
982 /* Return something non-zero. */
987 void au1xxx_dbdma_suspend(void)
992 addr
= DDMA_GLOBAL_BASE
;
993 au1xxx_dbdma_pm_regs
[0][0] = au_readl(addr
+ 0x00);
994 au1xxx_dbdma_pm_regs
[0][1] = au_readl(addr
+ 0x04);
995 au1xxx_dbdma_pm_regs
[0][2] = au_readl(addr
+ 0x08);
996 au1xxx_dbdma_pm_regs
[0][3] = au_readl(addr
+ 0x0c);
998 /* save channel configurations */
999 for (i
= 1, addr
= DDMA_CHANNEL_BASE
; i
<= NUM_DBDMA_CHANS
; i
++) {
1000 au1xxx_dbdma_pm_regs
[i
][0] = au_readl(addr
+ 0x00);
1001 au1xxx_dbdma_pm_regs
[i
][1] = au_readl(addr
+ 0x04);
1002 au1xxx_dbdma_pm_regs
[i
][2] = au_readl(addr
+ 0x08);
1003 au1xxx_dbdma_pm_regs
[i
][3] = au_readl(addr
+ 0x0c);
1004 au1xxx_dbdma_pm_regs
[i
][4] = au_readl(addr
+ 0x10);
1005 au1xxx_dbdma_pm_regs
[i
][5] = au_readl(addr
+ 0x14);
1008 au_writel(au1xxx_dbdma_pm_regs
[i
][0] & ~1, addr
+ 0x00);
1010 while (!(au_readl(addr
+ 0x14) & 1))
1013 addr
+= 0x100; /* next channel base */
1015 /* disable channel interrupts */
1016 au_writel(0, DDMA_GLOBAL_BASE
+ 0x0c);
1020 void au1xxx_dbdma_resume(void)
1025 addr
= DDMA_GLOBAL_BASE
;
1026 au_writel(au1xxx_dbdma_pm_regs
[0][0], addr
+ 0x00);
1027 au_writel(au1xxx_dbdma_pm_regs
[0][1], addr
+ 0x04);
1028 au_writel(au1xxx_dbdma_pm_regs
[0][2], addr
+ 0x08);
1029 au_writel(au1xxx_dbdma_pm_regs
[0][3], addr
+ 0x0c);
1031 /* restore channel configurations */
1032 for (i
= 1, addr
= DDMA_CHANNEL_BASE
; i
<= NUM_DBDMA_CHANS
; i
++) {
1033 au_writel(au1xxx_dbdma_pm_regs
[i
][0], addr
+ 0x00);
1034 au_writel(au1xxx_dbdma_pm_regs
[i
][1], addr
+ 0x04);
1035 au_writel(au1xxx_dbdma_pm_regs
[i
][2], addr
+ 0x08);
1036 au_writel(au1xxx_dbdma_pm_regs
[i
][3], addr
+ 0x0c);
1037 au_writel(au1xxx_dbdma_pm_regs
[i
][4], addr
+ 0x10);
1038 au_writel(au1xxx_dbdma_pm_regs
[i
][5], addr
+ 0x14);
1040 addr
+= 0x100; /* next channel base */
1043 #endif /* CONFIG_PM */
1044 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */