Linux 2.6.33
[pohmelfs.git] / arch / x86 / mm / fault.c
blobf62777940dfbcc1ef534f9a90dbd96873ba453e1
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 * Page fault error code bits:
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
28 enum x86_pf_error_code {
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static inline int __kprobes
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
47 return 0;
50 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
52 int ret = 0;
54 /* kprobe_running() needs smp_processor_id() */
55 if (kprobes_built_in() && !user_mode_vm(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 14))
58 ret = 1;
59 preempt_enable();
62 return ret;
66 * Prefetch quirks:
68 * 32-bit mode:
70 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * 64-bit mode:
75 * Sometimes the CPU reports invalid exceptions on prefetch.
76 * Check that here and ignore it.
78 * Opcode checker based on code by Richard Brunner.
80 static inline int
81 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
82 unsigned char opcode, int *prefetch)
84 unsigned char instr_hi = opcode & 0xf0;
85 unsigned char instr_lo = opcode & 0x0f;
87 switch (instr_hi) {
88 case 0x20:
89 case 0x30:
91 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92 * In X86_64 long mode, the CPU will signal invalid
93 * opcode if some of these prefixes are present so
94 * X86_64 will never get here anyway
96 return ((instr_lo & 7) == 0x6);
97 #ifdef CONFIG_X86_64
98 case 0x40:
100 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101 * Need to figure out under what instruction mode the
102 * instruction was issued. Could check the LDT for lm,
103 * but for now it's good enough to assume that long
104 * mode only uses well known segments or kernel.
106 return (!user_mode(regs)) || (regs->cs == __USER_CS);
107 #endif
108 case 0x60:
109 /* 0x64 thru 0x67 are valid prefixes in all modes. */
110 return (instr_lo & 0xC) == 0x4;
111 case 0xF0:
112 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113 return !instr_lo || (instr_lo>>1) == 1;
114 case 0x00:
115 /* Prefetch instruction is 0x0F0D or 0x0F18 */
116 if (probe_kernel_address(instr, opcode))
117 return 0;
119 *prefetch = (instr_lo == 0xF) &&
120 (opcode == 0x0D || opcode == 0x18);
121 return 0;
122 default:
123 return 0;
127 static int
128 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
130 unsigned char *max_instr;
131 unsigned char *instr;
132 int prefetch = 0;
135 * If it was a exec (instruction fetch) fault on NX page, then
136 * do not ignore the fault:
138 if (error_code & PF_INSTR)
139 return 0;
141 instr = (void *)convert_ip_to_linear(current, regs);
142 max_instr = instr + 15;
144 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
145 return 0;
147 while (instr < max_instr) {
148 unsigned char opcode;
150 if (probe_kernel_address(instr, opcode))
151 break;
153 instr++;
155 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
156 break;
158 return prefetch;
161 static void
162 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
163 struct task_struct *tsk)
165 siginfo_t info;
167 info.si_signo = si_signo;
168 info.si_errno = 0;
169 info.si_code = si_code;
170 info.si_addr = (void __user *)address;
171 info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
173 force_sig_info(si_signo, &info, tsk);
176 DEFINE_SPINLOCK(pgd_lock);
177 LIST_HEAD(pgd_list);
179 #ifdef CONFIG_X86_32
180 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
182 unsigned index = pgd_index(address);
183 pgd_t *pgd_k;
184 pud_t *pud, *pud_k;
185 pmd_t *pmd, *pmd_k;
187 pgd += index;
188 pgd_k = init_mm.pgd + index;
190 if (!pgd_present(*pgd_k))
191 return NULL;
194 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195 * and redundant with the set_pmd() on non-PAE. As would
196 * set_pud.
198 pud = pud_offset(pgd, address);
199 pud_k = pud_offset(pgd_k, address);
200 if (!pud_present(*pud_k))
201 return NULL;
203 pmd = pmd_offset(pud, address);
204 pmd_k = pmd_offset(pud_k, address);
205 if (!pmd_present(*pmd_k))
206 return NULL;
208 if (!pmd_present(*pmd))
209 set_pmd(pmd, *pmd_k);
210 else
211 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
213 return pmd_k;
216 void vmalloc_sync_all(void)
218 unsigned long address;
220 if (SHARED_KERNEL_PMD)
221 return;
223 for (address = VMALLOC_START & PMD_MASK;
224 address >= TASK_SIZE && address < FIXADDR_TOP;
225 address += PMD_SIZE) {
227 unsigned long flags;
228 struct page *page;
230 spin_lock_irqsave(&pgd_lock, flags);
231 list_for_each_entry(page, &pgd_list, lru) {
232 if (!vmalloc_sync_one(page_address(page), address))
233 break;
235 spin_unlock_irqrestore(&pgd_lock, flags);
240 * 32-bit:
242 * Handle a fault on the vmalloc or module mapping area
244 static noinline __kprobes int vmalloc_fault(unsigned long address)
246 unsigned long pgd_paddr;
247 pmd_t *pmd_k;
248 pte_t *pte_k;
250 /* Make sure we are in vmalloc area: */
251 if (!(address >= VMALLOC_START && address < VMALLOC_END))
252 return -1;
255 * Synchronize this task's top level page-table
256 * with the 'reference' page table.
258 * Do _not_ use "current" here. We might be inside
259 * an interrupt in the middle of a task switch..
261 pgd_paddr = read_cr3();
262 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
263 if (!pmd_k)
264 return -1;
266 pte_k = pte_offset_kernel(pmd_k, address);
267 if (!pte_present(*pte_k))
268 return -1;
270 return 0;
274 * Did it hit the DOS screen memory VA from vm86 mode?
276 static inline void
277 check_v8086_mode(struct pt_regs *regs, unsigned long address,
278 struct task_struct *tsk)
280 unsigned long bit;
282 if (!v8086_mode(regs))
283 return;
285 bit = (address - 0xA0000) >> PAGE_SHIFT;
286 if (bit < 32)
287 tsk->thread.screen_bitmap |= 1 << bit;
290 static bool low_pfn(unsigned long pfn)
292 return pfn < max_low_pfn;
295 static void dump_pagetable(unsigned long address)
297 pgd_t *base = __va(read_cr3());
298 pgd_t *pgd = &base[pgd_index(address)];
299 pmd_t *pmd;
300 pte_t *pte;
302 #ifdef CONFIG_X86_PAE
303 printk("*pdpt = %016Lx ", pgd_val(*pgd));
304 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305 goto out;
306 #endif
307 pmd = pmd_offset(pud_offset(pgd, address), address);
308 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
311 * We must not directly access the pte in the highpte
312 * case if the page table is located in highmem.
313 * And let's rather not kmap-atomic the pte, just in case
314 * it's allocated already:
316 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
317 goto out;
319 pte = pte_offset_kernel(pmd, address);
320 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
321 out:
322 printk("\n");
325 #else /* CONFIG_X86_64: */
327 void vmalloc_sync_all(void)
329 unsigned long address;
331 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
332 address += PGDIR_SIZE) {
334 const pgd_t *pgd_ref = pgd_offset_k(address);
335 unsigned long flags;
336 struct page *page;
338 if (pgd_none(*pgd_ref))
339 continue;
341 spin_lock_irqsave(&pgd_lock, flags);
342 list_for_each_entry(page, &pgd_list, lru) {
343 pgd_t *pgd;
344 pgd = (pgd_t *)page_address(page) + pgd_index(address);
345 if (pgd_none(*pgd))
346 set_pgd(pgd, *pgd_ref);
347 else
348 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
350 spin_unlock_irqrestore(&pgd_lock, flags);
355 * 64-bit:
357 * Handle a fault on the vmalloc area
359 * This assumes no large pages in there.
361 static noinline __kprobes int vmalloc_fault(unsigned long address)
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
373 * Copy kernel mappings over when needed. This can also
374 * happen within a race in page table update. In the later
375 * case just flush:
377 pgd = pgd_offset(current->active_mm, address);
378 pgd_ref = pgd_offset_k(address);
379 if (pgd_none(*pgd_ref))
380 return -1;
382 if (pgd_none(*pgd))
383 set_pgd(pgd, *pgd_ref);
384 else
385 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
388 * Below here mismatches are bugs because these lower tables
389 * are shared:
392 pud = pud_offset(pgd, address);
393 pud_ref = pud_offset(pgd_ref, address);
394 if (pud_none(*pud_ref))
395 return -1;
397 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
398 BUG();
400 pmd = pmd_offset(pud, address);
401 pmd_ref = pmd_offset(pud_ref, address);
402 if (pmd_none(*pmd_ref))
403 return -1;
405 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
406 BUG();
408 pte_ref = pte_offset_kernel(pmd_ref, address);
409 if (!pte_present(*pte_ref))
410 return -1;
412 pte = pte_offset_kernel(pmd, address);
415 * Don't use pte_page here, because the mappings can point
416 * outside mem_map, and the NUMA hash lookup cannot handle
417 * that:
419 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
420 BUG();
422 return 0;
425 static const char errata93_warning[] =
426 KERN_ERR
427 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
428 "******* Working around it, but it may cause SEGVs or burn power.\n"
429 "******* Please consider a BIOS update.\n"
430 "******* Disabling USB legacy in the BIOS may also help.\n";
433 * No vm86 mode in 64-bit mode:
435 static inline void
436 check_v8086_mode(struct pt_regs *regs, unsigned long address,
437 struct task_struct *tsk)
441 static int bad_address(void *p)
443 unsigned long dummy;
445 return probe_kernel_address((unsigned long *)p, dummy);
448 static void dump_pagetable(unsigned long address)
450 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
451 pgd_t *pgd = base + pgd_index(address);
452 pud_t *pud;
453 pmd_t *pmd;
454 pte_t *pte;
456 if (bad_address(pgd))
457 goto bad;
459 printk("PGD %lx ", pgd_val(*pgd));
461 if (!pgd_present(*pgd))
462 goto out;
464 pud = pud_offset(pgd, address);
465 if (bad_address(pud))
466 goto bad;
468 printk("PUD %lx ", pud_val(*pud));
469 if (!pud_present(*pud) || pud_large(*pud))
470 goto out;
472 pmd = pmd_offset(pud, address);
473 if (bad_address(pmd))
474 goto bad;
476 printk("PMD %lx ", pmd_val(*pmd));
477 if (!pmd_present(*pmd) || pmd_large(*pmd))
478 goto out;
480 pte = pte_offset_kernel(pmd, address);
481 if (bad_address(pte))
482 goto bad;
484 printk("PTE %lx", pte_val(*pte));
485 out:
486 printk("\n");
487 return;
488 bad:
489 printk("BAD\n");
492 #endif /* CONFIG_X86_64 */
495 * Workaround for K8 erratum #93 & buggy BIOS.
497 * BIOS SMM functions are required to use a specific workaround
498 * to avoid corruption of the 64bit RIP register on C stepping K8.
500 * A lot of BIOS that didn't get tested properly miss this.
502 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
503 * Try to work around it here.
505 * Note we only handle faults in kernel here.
506 * Does nothing on 32-bit.
508 static int is_errata93(struct pt_regs *regs, unsigned long address)
510 #ifdef CONFIG_X86_64
511 if (address != regs->ip)
512 return 0;
514 if ((address >> 32) != 0)
515 return 0;
517 address |= 0xffffffffUL << 32;
518 if ((address >= (u64)_stext && address <= (u64)_etext) ||
519 (address >= MODULES_VADDR && address <= MODULES_END)) {
520 printk_once(errata93_warning);
521 regs->ip = address;
522 return 1;
524 #endif
525 return 0;
529 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
530 * to illegal addresses >4GB.
532 * We catch this in the page fault handler because these addresses
533 * are not reachable. Just detect this case and return. Any code
534 * segment in LDT is compatibility mode.
536 static int is_errata100(struct pt_regs *regs, unsigned long address)
538 #ifdef CONFIG_X86_64
539 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
540 return 1;
541 #endif
542 return 0;
545 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
547 #ifdef CONFIG_X86_F00F_BUG
548 unsigned long nr;
551 * Pentium F0 0F C7 C8 bug workaround:
553 if (boot_cpu_data.f00f_bug) {
554 nr = (address - idt_descr.address) >> 3;
556 if (nr == 6) {
557 do_invalid_op(regs, 0);
558 return 1;
561 #endif
562 return 0;
565 static const char nx_warning[] = KERN_CRIT
566 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
568 static void
569 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
570 unsigned long address)
572 if (!oops_may_print())
573 return;
575 if (error_code & PF_INSTR) {
576 unsigned int level;
578 pte_t *pte = lookup_address(address, &level);
580 if (pte && pte_present(*pte) && !pte_exec(*pte))
581 printk(nx_warning, current_uid());
584 printk(KERN_ALERT "BUG: unable to handle kernel ");
585 if (address < PAGE_SIZE)
586 printk(KERN_CONT "NULL pointer dereference");
587 else
588 printk(KERN_CONT "paging request");
590 printk(KERN_CONT " at %p\n", (void *) address);
591 printk(KERN_ALERT "IP:");
592 printk_address(regs->ip, 1);
594 dump_pagetable(address);
597 static noinline void
598 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
599 unsigned long address)
601 struct task_struct *tsk;
602 unsigned long flags;
603 int sig;
605 flags = oops_begin();
606 tsk = current;
607 sig = SIGKILL;
609 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
610 tsk->comm, address);
611 dump_pagetable(address);
613 tsk->thread.cr2 = address;
614 tsk->thread.trap_no = 14;
615 tsk->thread.error_code = error_code;
617 if (__die("Bad pagetable", regs, error_code))
618 sig = 0;
620 oops_end(flags, regs, sig);
623 static noinline void
624 no_context(struct pt_regs *regs, unsigned long error_code,
625 unsigned long address)
627 struct task_struct *tsk = current;
628 unsigned long *stackend;
629 unsigned long flags;
630 int sig;
632 /* Are we prepared to handle this kernel fault? */
633 if (fixup_exception(regs))
634 return;
637 * 32-bit:
639 * Valid to do another page fault here, because if this fault
640 * had been triggered by is_prefetch fixup_exception would have
641 * handled it.
643 * 64-bit:
645 * Hall of shame of CPU/BIOS bugs.
647 if (is_prefetch(regs, error_code, address))
648 return;
650 if (is_errata93(regs, address))
651 return;
654 * Oops. The kernel tried to access some bad page. We'll have to
655 * terminate things with extreme prejudice:
657 flags = oops_begin();
659 show_fault_oops(regs, error_code, address);
661 stackend = end_of_stack(tsk);
662 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
663 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
665 tsk->thread.cr2 = address;
666 tsk->thread.trap_no = 14;
667 tsk->thread.error_code = error_code;
669 sig = SIGKILL;
670 if (__die("Oops", regs, error_code))
671 sig = 0;
673 /* Executive summary in case the body of the oops scrolled away */
674 printk(KERN_EMERG "CR2: %016lx\n", address);
676 oops_end(flags, regs, sig);
680 * Print out info about fatal segfaults, if the show_unhandled_signals
681 * sysctl is set:
683 static inline void
684 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
685 unsigned long address, struct task_struct *tsk)
687 if (!unhandled_signal(tsk, SIGSEGV))
688 return;
690 if (!printk_ratelimit())
691 return;
693 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
694 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
695 tsk->comm, task_pid_nr(tsk), address,
696 (void *)regs->ip, (void *)regs->sp, error_code);
698 print_vma_addr(KERN_CONT " in ", regs->ip);
700 printk(KERN_CONT "\n");
703 static void
704 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
705 unsigned long address, int si_code)
707 struct task_struct *tsk = current;
709 /* User mode accesses just cause a SIGSEGV */
710 if (error_code & PF_USER) {
712 * It's possible to have interrupts off here:
714 local_irq_enable();
717 * Valid to do another page fault here because this one came
718 * from user space:
720 if (is_prefetch(regs, error_code, address))
721 return;
723 if (is_errata100(regs, address))
724 return;
726 if (unlikely(show_unhandled_signals))
727 show_signal_msg(regs, error_code, address, tsk);
729 /* Kernel addresses are always protection faults: */
730 tsk->thread.cr2 = address;
731 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
732 tsk->thread.trap_no = 14;
734 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
736 return;
739 if (is_f00f_bug(regs, address))
740 return;
742 no_context(regs, error_code, address);
745 static noinline void
746 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
747 unsigned long address)
749 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
752 static void
753 __bad_area(struct pt_regs *regs, unsigned long error_code,
754 unsigned long address, int si_code)
756 struct mm_struct *mm = current->mm;
759 * Something tried to access memory that isn't in our memory map..
760 * Fix it, but check if it's kernel or user first..
762 up_read(&mm->mmap_sem);
764 __bad_area_nosemaphore(regs, error_code, address, si_code);
767 static noinline void
768 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
770 __bad_area(regs, error_code, address, SEGV_MAPERR);
773 static noinline void
774 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
775 unsigned long address)
777 __bad_area(regs, error_code, address, SEGV_ACCERR);
780 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
781 static void
782 out_of_memory(struct pt_regs *regs, unsigned long error_code,
783 unsigned long address)
786 * We ran out of memory, call the OOM killer, and return the userspace
787 * (which will retry the fault, or kill us if we got oom-killed):
789 up_read(&current->mm->mmap_sem);
791 pagefault_out_of_memory();
794 static void
795 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
796 unsigned int fault)
798 struct task_struct *tsk = current;
799 struct mm_struct *mm = tsk->mm;
800 int code = BUS_ADRERR;
802 up_read(&mm->mmap_sem);
804 /* Kernel mode? Handle exceptions or die: */
805 if (!(error_code & PF_USER))
806 no_context(regs, error_code, address);
808 /* User-space => ok to do another page fault: */
809 if (is_prefetch(regs, error_code, address))
810 return;
812 tsk->thread.cr2 = address;
813 tsk->thread.error_code = error_code;
814 tsk->thread.trap_no = 14;
816 #ifdef CONFIG_MEMORY_FAILURE
817 if (fault & VM_FAULT_HWPOISON) {
818 printk(KERN_ERR
819 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
820 tsk->comm, tsk->pid, address);
821 code = BUS_MCEERR_AR;
823 #endif
824 force_sig_info_fault(SIGBUS, code, address, tsk);
827 static noinline void
828 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
829 unsigned long address, unsigned int fault)
831 if (fault & VM_FAULT_OOM) {
832 out_of_memory(regs, error_code, address);
833 } else {
834 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
835 do_sigbus(regs, error_code, address, fault);
836 else
837 BUG();
841 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
843 if ((error_code & PF_WRITE) && !pte_write(*pte))
844 return 0;
846 if ((error_code & PF_INSTR) && !pte_exec(*pte))
847 return 0;
849 return 1;
853 * Handle a spurious fault caused by a stale TLB entry.
855 * This allows us to lazily refresh the TLB when increasing the
856 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
857 * eagerly is very expensive since that implies doing a full
858 * cross-processor TLB flush, even if no stale TLB entries exist
859 * on other processors.
861 * There are no security implications to leaving a stale TLB when
862 * increasing the permissions on a page.
864 static noinline __kprobes int
865 spurious_fault(unsigned long error_code, unsigned long address)
867 pgd_t *pgd;
868 pud_t *pud;
869 pmd_t *pmd;
870 pte_t *pte;
871 int ret;
873 /* Reserved-bit violation or user access to kernel space? */
874 if (error_code & (PF_USER | PF_RSVD))
875 return 0;
877 pgd = init_mm.pgd + pgd_index(address);
878 if (!pgd_present(*pgd))
879 return 0;
881 pud = pud_offset(pgd, address);
882 if (!pud_present(*pud))
883 return 0;
885 if (pud_large(*pud))
886 return spurious_fault_check(error_code, (pte_t *) pud);
888 pmd = pmd_offset(pud, address);
889 if (!pmd_present(*pmd))
890 return 0;
892 if (pmd_large(*pmd))
893 return spurious_fault_check(error_code, (pte_t *) pmd);
895 pte = pte_offset_kernel(pmd, address);
896 if (!pte_present(*pte))
897 return 0;
899 ret = spurious_fault_check(error_code, pte);
900 if (!ret)
901 return 0;
904 * Make sure we have permissions in PMD.
905 * If not, then there's a bug in the page tables:
907 ret = spurious_fault_check(error_code, (pte_t *) pmd);
908 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
910 return ret;
913 int show_unhandled_signals = 1;
915 static inline int
916 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
918 if (write) {
919 /* write, present and write, not present: */
920 if (unlikely(!(vma->vm_flags & VM_WRITE)))
921 return 1;
922 return 0;
925 /* read, present: */
926 if (unlikely(error_code & PF_PROT))
927 return 1;
929 /* read, not present: */
930 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
931 return 1;
933 return 0;
936 static int fault_in_kernel_space(unsigned long address)
938 return address >= TASK_SIZE_MAX;
942 * This routine handles page faults. It determines the address,
943 * and the problem, and then passes it off to one of the appropriate
944 * routines.
946 dotraplinkage void __kprobes
947 do_page_fault(struct pt_regs *regs, unsigned long error_code)
949 struct vm_area_struct *vma;
950 struct task_struct *tsk;
951 unsigned long address;
952 struct mm_struct *mm;
953 int write;
954 int fault;
956 tsk = current;
957 mm = tsk->mm;
959 /* Get the faulting address: */
960 address = read_cr2();
963 * Detect and handle instructions that would cause a page fault for
964 * both a tracked kernel page and a userspace page.
966 if (kmemcheck_active(regs))
967 kmemcheck_hide(regs);
968 prefetchw(&mm->mmap_sem);
970 if (unlikely(kmmio_fault(regs, address)))
971 return;
974 * We fault-in kernel-space virtual memory on-demand. The
975 * 'reference' page table is init_mm.pgd.
977 * NOTE! We MUST NOT take any locks for this case. We may
978 * be in an interrupt or a critical region, and should
979 * only copy the information from the master page table,
980 * nothing more.
982 * This verifies that the fault happens in kernel space
983 * (error_code & 4) == 0, and that the fault was not a
984 * protection error (error_code & 9) == 0.
986 if (unlikely(fault_in_kernel_space(address))) {
987 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
988 if (vmalloc_fault(address) >= 0)
989 return;
991 if (kmemcheck_fault(regs, address, error_code))
992 return;
995 /* Can handle a stale RO->RW TLB: */
996 if (spurious_fault(error_code, address))
997 return;
999 /* kprobes don't want to hook the spurious faults: */
1000 if (notify_page_fault(regs))
1001 return;
1003 * Don't take the mm semaphore here. If we fixup a prefetch
1004 * fault we could otherwise deadlock:
1006 bad_area_nosemaphore(regs, error_code, address);
1008 return;
1011 /* kprobes don't want to hook the spurious faults: */
1012 if (unlikely(notify_page_fault(regs)))
1013 return;
1015 * It's safe to allow irq's after cr2 has been saved and the
1016 * vmalloc fault has been handled.
1018 * User-mode registers count as a user access even for any
1019 * potential system fault or CPU buglet:
1021 if (user_mode_vm(regs)) {
1022 local_irq_enable();
1023 error_code |= PF_USER;
1024 } else {
1025 if (regs->flags & X86_EFLAGS_IF)
1026 local_irq_enable();
1029 if (unlikely(error_code & PF_RSVD))
1030 pgtable_bad(regs, error_code, address);
1032 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1035 * If we're in an interrupt, have no user context or are running
1036 * in an atomic region then we must not take the fault:
1038 if (unlikely(in_atomic() || !mm)) {
1039 bad_area_nosemaphore(regs, error_code, address);
1040 return;
1044 * When running in the kernel we expect faults to occur only to
1045 * addresses in user space. All other faults represent errors in
1046 * the kernel and should generate an OOPS. Unfortunately, in the
1047 * case of an erroneous fault occurring in a code path which already
1048 * holds mmap_sem we will deadlock attempting to validate the fault
1049 * against the address space. Luckily the kernel only validly
1050 * references user space from well defined areas of code, which are
1051 * listed in the exceptions table.
1053 * As the vast majority of faults will be valid we will only perform
1054 * the source reference check when there is a possibility of a
1055 * deadlock. Attempt to lock the address space, if we cannot we then
1056 * validate the source. If this is invalid we can skip the address
1057 * space check, thus avoiding the deadlock:
1059 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1060 if ((error_code & PF_USER) == 0 &&
1061 !search_exception_tables(regs->ip)) {
1062 bad_area_nosemaphore(regs, error_code, address);
1063 return;
1065 down_read(&mm->mmap_sem);
1066 } else {
1068 * The above down_read_trylock() might have succeeded in
1069 * which case we'll have missed the might_sleep() from
1070 * down_read():
1072 might_sleep();
1075 vma = find_vma(mm, address);
1076 if (unlikely(!vma)) {
1077 bad_area(regs, error_code, address);
1078 return;
1080 if (likely(vma->vm_start <= address))
1081 goto good_area;
1082 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1083 bad_area(regs, error_code, address);
1084 return;
1086 if (error_code & PF_USER) {
1088 * Accessing the stack below %sp is always a bug.
1089 * The large cushion allows instructions like enter
1090 * and pusha to work. ("enter $65535, $31" pushes
1091 * 32 pointers and then decrements %sp by 65535.)
1093 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1094 bad_area(regs, error_code, address);
1095 return;
1098 if (unlikely(expand_stack(vma, address))) {
1099 bad_area(regs, error_code, address);
1100 return;
1104 * Ok, we have a good vm_area for this memory access, so
1105 * we can handle it..
1107 good_area:
1108 write = error_code & PF_WRITE;
1110 if (unlikely(access_error(error_code, write, vma))) {
1111 bad_area_access_error(regs, error_code, address);
1112 return;
1116 * If for any reason at all we couldn't handle the fault,
1117 * make sure we exit gracefully rather than endlessly redo
1118 * the fault:
1120 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1122 if (unlikely(fault & VM_FAULT_ERROR)) {
1123 mm_fault_error(regs, error_code, address, fault);
1124 return;
1127 if (fault & VM_FAULT_MAJOR) {
1128 tsk->maj_flt++;
1129 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1130 regs, address);
1131 } else {
1132 tsk->min_flt++;
1133 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1134 regs, address);
1137 check_v8086_mode(regs, address, tsk);
1139 up_read(&mm->mmap_sem);