Linux 2.6.33
[pohmelfs.git] / arch / x86 / mm / numa_64.c
blob83bbc70d11bb7a03754b88b432781fa142dffe9e
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
23 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
24 EXPORT_SYMBOL(node_data);
26 struct memnode memnode;
28 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
29 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
32 int numa_off __initdata;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
36 DEFINE_PER_CPU(int, node_number) = 0;
37 EXPORT_PER_CPU_SYMBOL(node_number);
40 * Map cpu index to node index
42 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
43 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
46 * Given a shift value, try to populate memnodemap[]
47 * Returns :
48 * 1 if OK
49 * 0 if memnodmap[] too small (of shift too small)
50 * -1 if node overlap or lost ram (shift too big)
52 static int __init populate_memnodemap(const struct bootnode *nodes,
53 int numnodes, int shift, int *nodeids)
55 unsigned long addr, end;
56 int i, res = -1;
58 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
59 for (i = 0; i < numnodes; i++) {
60 addr = nodes[i].start;
61 end = nodes[i].end;
62 if (addr >= end)
63 continue;
64 if ((end >> shift) >= memnodemapsize)
65 return 0;
66 do {
67 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
68 return -1;
70 if (!nodeids)
71 memnodemap[addr >> shift] = i;
72 else
73 memnodemap[addr >> shift] = nodeids[i];
75 addr += (1UL << shift);
76 } while (addr < end);
77 res = 1;
79 return res;
82 static int __init allocate_cachealigned_memnodemap(void)
84 unsigned long addr;
86 memnodemap = memnode.embedded_map;
87 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
88 return 0;
90 addr = 0x8000;
91 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
92 nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
93 nodemap_size, L1_CACHE_BYTES);
94 if (nodemap_addr == -1UL) {
95 printk(KERN_ERR
96 "NUMA: Unable to allocate Memory to Node hash map\n");
97 nodemap_addr = nodemap_size = 0;
98 return -1;
100 memnodemap = phys_to_virt(nodemap_addr);
101 reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
103 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 nodemap_addr, nodemap_addr + nodemap_size);
105 return 0;
109 * The LSB of all start and end addresses in the node map is the value of the
110 * maximum possible shift.
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 int numnodes)
115 int i, nodes_used = 0;
116 unsigned long start, end;
117 unsigned long bitfield = 0, memtop = 0;
119 for (i = 0; i < numnodes; i++) {
120 start = nodes[i].start;
121 end = nodes[i].end;
122 if (start >= end)
123 continue;
124 bitfield |= start;
125 nodes_used++;
126 if (end > memtop)
127 memtop = end;
129 if (nodes_used <= 1)
130 i = 63;
131 else
132 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 memnodemapsize = (memtop >> i)+1;
134 return i;
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
138 int *nodeids)
140 int shift;
142 shift = extract_lsb_from_nodes(nodes, numnodes);
143 if (allocate_cachealigned_memnodemap())
144 return -1;
145 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
146 shift);
148 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
149 printk(KERN_INFO "Your memory is not aligned you need to "
150 "rebuild your kernel with a bigger NODEMAPSIZE "
151 "shift=%d\n", shift);
152 return -1;
154 return shift;
157 int __meminit __early_pfn_to_nid(unsigned long pfn)
159 return phys_to_nid(pfn << PAGE_SHIFT);
162 static void * __init early_node_mem(int nodeid, unsigned long start,
163 unsigned long end, unsigned long size,
164 unsigned long align)
166 unsigned long mem = find_e820_area(start, end, size, align);
167 void *ptr;
169 if (mem != -1L)
170 return __va(mem);
172 ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
173 if (ptr == NULL) {
174 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
175 size, nodeid);
176 return NULL;
178 return ptr;
181 /* Initialize bootmem allocator for a node */
182 void __init
183 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
185 unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
186 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
187 unsigned long bootmap_start, nodedata_phys;
188 void *bootmap;
189 int nid;
191 if (!end)
192 return;
195 * Don't confuse VM with a node that doesn't have the
196 * minimum amount of memory:
198 if (end && (end - start) < NODE_MIN_SIZE)
199 return;
201 start = roundup(start, ZONE_ALIGN);
203 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
204 start, end);
206 start_pfn = start >> PAGE_SHIFT;
207 last_pfn = end >> PAGE_SHIFT;
209 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
210 SMP_CACHE_BYTES);
211 if (node_data[nodeid] == NULL)
212 return;
213 nodedata_phys = __pa(node_data[nodeid]);
214 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
215 nodedata_phys + pgdat_size - 1);
217 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
218 NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
219 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
220 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
223 * Find a place for the bootmem map
224 * nodedata_phys could be on other nodes by alloc_bootmem,
225 * so need to sure bootmap_start not to be small, otherwise
226 * early_node_mem will get that with find_e820_area instead
227 * of alloc_bootmem, that could clash with reserved range
229 bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
230 nid = phys_to_nid(nodedata_phys);
231 if (nid == nodeid)
232 bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
233 else
234 bootmap_start = roundup(start, PAGE_SIZE);
236 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
237 * to use that to align to PAGE_SIZE
239 bootmap = early_node_mem(nodeid, bootmap_start, end,
240 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
241 if (bootmap == NULL) {
242 if (nodedata_phys < start || nodedata_phys >= end) {
244 * only need to free it if it is from other node
245 * bootmem
247 if (nid != nodeid)
248 free_bootmem(nodedata_phys, pgdat_size);
250 node_data[nodeid] = NULL;
251 return;
253 bootmap_start = __pa(bootmap);
255 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
256 bootmap_start >> PAGE_SHIFT,
257 start_pfn, last_pfn);
259 printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
260 bootmap_start, bootmap_start + bootmap_size - 1,
261 bootmap_pages);
263 free_bootmem_with_active_regions(nodeid, end);
266 * convert early reserve to bootmem reserve earlier
267 * otherwise early_node_mem could use early reserved mem
268 * on previous node
270 early_res_to_bootmem(start, end);
273 * in some case early_node_mem could use alloc_bootmem
274 * to get range on other node, don't reserve that again
276 if (nid != nodeid)
277 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
278 else
279 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
280 pgdat_size, BOOTMEM_DEFAULT);
281 nid = phys_to_nid(bootmap_start);
282 if (nid != nodeid)
283 printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
284 else
285 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
286 bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
288 node_set_online(nodeid);
292 * There are unfortunately some poorly designed mainboards around that
293 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
294 * mapping. To avoid this fill in the mapping for all possible CPUs,
295 * as the number of CPUs is not known yet. We round robin the existing
296 * nodes.
298 void __init numa_init_array(void)
300 int rr, i;
302 rr = first_node(node_online_map);
303 for (i = 0; i < nr_cpu_ids; i++) {
304 if (early_cpu_to_node(i) != NUMA_NO_NODE)
305 continue;
306 numa_set_node(i, rr);
307 rr = next_node(rr, node_online_map);
308 if (rr == MAX_NUMNODES)
309 rr = first_node(node_online_map);
313 #ifdef CONFIG_NUMA_EMU
314 /* Numa emulation */
315 static struct bootnode nodes[MAX_NUMNODES] __initdata;
316 static struct bootnode physnodes[MAX_NUMNODES] __initdata;
317 static char *cmdline __initdata;
319 static int __init setup_physnodes(unsigned long start, unsigned long end,
320 int acpi, int k8)
322 int nr_nodes = 0;
323 int ret = 0;
324 int i;
326 #ifdef CONFIG_ACPI_NUMA
327 if (acpi)
328 nr_nodes = acpi_get_nodes(physnodes);
329 #endif
330 #ifdef CONFIG_K8_NUMA
331 if (k8)
332 nr_nodes = k8_get_nodes(physnodes);
333 #endif
335 * Basic sanity checking on the physical node map: there may be errors
336 * if the SRAT or K8 incorrectly reported the topology or the mem=
337 * kernel parameter is used.
339 for (i = 0; i < nr_nodes; i++) {
340 if (physnodes[i].start == physnodes[i].end)
341 continue;
342 if (physnodes[i].start > end) {
343 physnodes[i].end = physnodes[i].start;
344 continue;
346 if (physnodes[i].end < start) {
347 physnodes[i].start = physnodes[i].end;
348 continue;
350 if (physnodes[i].start < start)
351 physnodes[i].start = start;
352 if (physnodes[i].end > end)
353 physnodes[i].end = end;
357 * Remove all nodes that have no memory or were truncated because of the
358 * limited address range.
360 for (i = 0; i < nr_nodes; i++) {
361 if (physnodes[i].start == physnodes[i].end)
362 continue;
363 physnodes[ret].start = physnodes[i].start;
364 physnodes[ret].end = physnodes[i].end;
365 ret++;
369 * If no physical topology was detected, a single node is faked to cover
370 * the entire address space.
372 if (!ret) {
373 physnodes[ret].start = start;
374 physnodes[ret].end = end;
375 ret = 1;
377 return ret;
381 * Setups up nid to range from addr to addr + size. If the end
382 * boundary is greater than max_addr, then max_addr is used instead.
383 * The return value is 0 if there is additional memory left for
384 * allocation past addr and -1 otherwise. addr is adjusted to be at
385 * the end of the node.
387 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
389 int ret = 0;
390 nodes[nid].start = *addr;
391 *addr += size;
392 if (*addr >= max_addr) {
393 *addr = max_addr;
394 ret = -1;
396 nodes[nid].end = *addr;
397 node_set(nid, node_possible_map);
398 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
399 nodes[nid].start, nodes[nid].end,
400 (nodes[nid].end - nodes[nid].start) >> 20);
401 return ret;
405 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
406 * to max_addr. The return value is the number of nodes allocated.
408 static int __init split_nodes_interleave(u64 addr, u64 max_addr,
409 int nr_phys_nodes, int nr_nodes)
411 nodemask_t physnode_mask = NODE_MASK_NONE;
412 u64 size;
413 int big;
414 int ret = 0;
415 int i;
417 if (nr_nodes <= 0)
418 return -1;
419 if (nr_nodes > MAX_NUMNODES) {
420 pr_info("numa=fake=%d too large, reducing to %d\n",
421 nr_nodes, MAX_NUMNODES);
422 nr_nodes = MAX_NUMNODES;
425 size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes;
427 * Calculate the number of big nodes that can be allocated as a result
428 * of consolidating the remainder.
430 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) & nr_nodes) /
431 FAKE_NODE_MIN_SIZE;
433 size &= FAKE_NODE_MIN_HASH_MASK;
434 if (!size) {
435 pr_err("Not enough memory for each node. "
436 "NUMA emulation disabled.\n");
437 return -1;
440 for (i = 0; i < nr_phys_nodes; i++)
441 if (physnodes[i].start != physnodes[i].end)
442 node_set(i, physnode_mask);
445 * Continue to fill physical nodes with fake nodes until there is no
446 * memory left on any of them.
448 while (nodes_weight(physnode_mask)) {
449 for_each_node_mask(i, physnode_mask) {
450 u64 end = physnodes[i].start + size;
451 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
453 if (ret < big)
454 end += FAKE_NODE_MIN_SIZE;
457 * Continue to add memory to this fake node if its
458 * non-reserved memory is less than the per-node size.
460 while (end - physnodes[i].start -
461 e820_hole_size(physnodes[i].start, end) < size) {
462 end += FAKE_NODE_MIN_SIZE;
463 if (end > physnodes[i].end) {
464 end = physnodes[i].end;
465 break;
470 * If there won't be at least FAKE_NODE_MIN_SIZE of
471 * non-reserved memory in ZONE_DMA32 for the next node,
472 * this one must extend to the boundary.
474 if (end < dma32_end && dma32_end - end -
475 e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
476 end = dma32_end;
479 * If there won't be enough non-reserved memory for the
480 * next node, this one must extend to the end of the
481 * physical node.
483 if (physnodes[i].end - end -
484 e820_hole_size(end, physnodes[i].end) < size)
485 end = physnodes[i].end;
488 * Avoid allocating more nodes than requested, which can
489 * happen as a result of rounding down each node's size
490 * to FAKE_NODE_MIN_SIZE.
492 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
493 end = physnodes[i].end;
495 if (setup_node_range(ret++, &physnodes[i].start,
496 end - physnodes[i].start,
497 physnodes[i].end) < 0)
498 node_clear(i, physnode_mask);
501 return ret;
505 * Splits num_nodes nodes up equally starting at node_start. The return value
506 * is the number of nodes split up and addr is adjusted to be at the end of the
507 * last node allocated.
509 static int __init split_nodes_equally(u64 *addr, u64 max_addr, int node_start,
510 int num_nodes)
512 unsigned int big;
513 u64 size;
514 int i;
516 if (num_nodes <= 0)
517 return -1;
518 if (num_nodes > MAX_NUMNODES)
519 num_nodes = MAX_NUMNODES;
520 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
521 num_nodes;
523 * Calculate the number of big nodes that can be allocated as a result
524 * of consolidating the leftovers.
526 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
527 FAKE_NODE_MIN_SIZE;
529 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
530 size &= FAKE_NODE_MIN_HASH_MASK;
531 if (!size) {
532 printk(KERN_ERR "Not enough memory for each node. "
533 "NUMA emulation disabled.\n");
534 return -1;
537 for (i = node_start; i < num_nodes + node_start; i++) {
538 u64 end = *addr + size;
540 if (i < big)
541 end += FAKE_NODE_MIN_SIZE;
543 * The final node can have the remaining system RAM. Other
544 * nodes receive roughly the same amount of available pages.
546 if (i == num_nodes + node_start - 1)
547 end = max_addr;
548 else
549 while (end - *addr - e820_hole_size(*addr, end) <
550 size) {
551 end += FAKE_NODE_MIN_SIZE;
552 if (end > max_addr) {
553 end = max_addr;
554 break;
557 if (setup_node_range(i, addr, end - *addr, max_addr) < 0)
558 break;
560 return i - node_start + 1;
564 * Splits the remaining system RAM into chunks of size. The remaining memory is
565 * always assigned to a final node and can be asymmetric. Returns the number of
566 * nodes split.
568 static int __init split_nodes_by_size(u64 *addr, u64 max_addr, int node_start,
569 u64 size)
571 int i = node_start;
572 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
573 while (!setup_node_range(i++, addr, size, max_addr))
575 return i - node_start;
579 * Sets up the system RAM area from start_pfn to last_pfn according to the
580 * numa=fake command-line option.
582 static int __init numa_emulation(unsigned long start_pfn,
583 unsigned long last_pfn, int acpi, int k8)
585 u64 size, addr = start_pfn << PAGE_SHIFT;
586 u64 max_addr = last_pfn << PAGE_SHIFT;
587 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
588 int num_phys_nodes;
590 num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
592 * If the numa=fake command-line is just a single number N, split the
593 * system RAM into N fake nodes.
595 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
596 long n = simple_strtol(cmdline, NULL, 0);
598 num_nodes = split_nodes_interleave(addr, max_addr,
599 num_phys_nodes, n);
600 if (num_nodes < 0)
601 return num_nodes;
602 goto out;
605 /* Parse the command line. */
606 for (coeff_flag = 0; ; cmdline++) {
607 if (*cmdline && isdigit(*cmdline)) {
608 num = num * 10 + *cmdline - '0';
609 continue;
611 if (*cmdline == '*') {
612 if (num > 0)
613 coeff = num;
614 coeff_flag = 1;
616 if (!*cmdline || *cmdline == ',') {
617 if (!coeff_flag)
618 coeff = 1;
620 * Round down to the nearest FAKE_NODE_MIN_SIZE.
621 * Command-line coefficients are in megabytes.
623 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
624 if (size)
625 for (i = 0; i < coeff; i++, num_nodes++)
626 if (setup_node_range(num_nodes, &addr,
627 size, max_addr) < 0)
628 goto done;
629 if (!*cmdline)
630 break;
631 coeff_flag = 0;
632 coeff = -1;
634 num = 0;
636 done:
637 if (!num_nodes)
638 return -1;
639 /* Fill remainder of system RAM, if appropriate. */
640 if (addr < max_addr) {
641 if (coeff_flag && coeff < 0) {
642 /* Split remaining nodes into num-sized chunks */
643 num_nodes += split_nodes_by_size(&addr, max_addr,
644 num_nodes, num);
645 goto out;
647 switch (*(cmdline - 1)) {
648 case '*':
649 /* Split remaining nodes into coeff chunks */
650 if (coeff <= 0)
651 break;
652 num_nodes += split_nodes_equally(&addr, max_addr,
653 num_nodes, coeff);
654 break;
655 case ',':
656 /* Do not allocate remaining system RAM */
657 break;
658 default:
659 /* Give one final node */
660 setup_node_range(num_nodes, &addr, max_addr - addr,
661 max_addr);
662 num_nodes++;
665 out:
666 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
667 if (memnode_shift < 0) {
668 memnode_shift = 0;
669 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
670 "disabled.\n");
671 return -1;
675 * We need to vacate all active ranges that may have been registered for
676 * the e820 memory map.
678 remove_all_active_ranges();
679 for_each_node_mask(i, node_possible_map) {
680 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
681 nodes[i].end >> PAGE_SHIFT);
682 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
684 acpi_fake_nodes(nodes, num_nodes);
685 numa_init_array();
686 return 0;
688 #endif /* CONFIG_NUMA_EMU */
690 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
691 int acpi, int k8)
693 int i;
695 nodes_clear(node_possible_map);
696 nodes_clear(node_online_map);
698 #ifdef CONFIG_NUMA_EMU
699 if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
700 return;
701 nodes_clear(node_possible_map);
702 nodes_clear(node_online_map);
703 #endif
705 #ifdef CONFIG_ACPI_NUMA
706 if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
707 last_pfn << PAGE_SHIFT))
708 return;
709 nodes_clear(node_possible_map);
710 nodes_clear(node_online_map);
711 #endif
713 #ifdef CONFIG_K8_NUMA
714 if (!numa_off && k8 && !k8_scan_nodes())
715 return;
716 nodes_clear(node_possible_map);
717 nodes_clear(node_online_map);
718 #endif
719 printk(KERN_INFO "%s\n",
720 numa_off ? "NUMA turned off" : "No NUMA configuration found");
722 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
723 start_pfn << PAGE_SHIFT,
724 last_pfn << PAGE_SHIFT);
725 /* setup dummy node covering all memory */
726 memnode_shift = 63;
727 memnodemap = memnode.embedded_map;
728 memnodemap[0] = 0;
729 node_set_online(0);
730 node_set(0, node_possible_map);
731 for (i = 0; i < nr_cpu_ids; i++)
732 numa_set_node(i, 0);
733 e820_register_active_regions(0, start_pfn, last_pfn);
734 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
737 unsigned long __init numa_free_all_bootmem(void)
739 unsigned long pages = 0;
740 int i;
742 for_each_online_node(i)
743 pages += free_all_bootmem_node(NODE_DATA(i));
745 return pages;
748 static __init int numa_setup(char *opt)
750 if (!opt)
751 return -EINVAL;
752 if (!strncmp(opt, "off", 3))
753 numa_off = 1;
754 #ifdef CONFIG_NUMA_EMU
755 if (!strncmp(opt, "fake=", 5))
756 cmdline = opt + 5;
757 #endif
758 #ifdef CONFIG_ACPI_NUMA
759 if (!strncmp(opt, "noacpi", 6))
760 acpi_numa = -1;
761 #endif
762 return 0;
764 early_param("numa", numa_setup);
766 #ifdef CONFIG_NUMA
768 static __init int find_near_online_node(int node)
770 int n, val;
771 int min_val = INT_MAX;
772 int best_node = -1;
774 for_each_online_node(n) {
775 val = node_distance(node, n);
777 if (val < min_val) {
778 min_val = val;
779 best_node = n;
783 return best_node;
787 * Setup early cpu_to_node.
789 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
790 * and apicid_to_node[] tables have valid entries for a CPU.
791 * This means we skip cpu_to_node[] initialisation for NUMA
792 * emulation and faking node case (when running a kernel compiled
793 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
794 * is already initialized in a round robin manner at numa_init_array,
795 * prior to this call, and this initialization is good enough
796 * for the fake NUMA cases.
798 * Called before the per_cpu areas are setup.
800 void __init init_cpu_to_node(void)
802 int cpu;
803 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
805 BUG_ON(cpu_to_apicid == NULL);
807 for_each_possible_cpu(cpu) {
808 int node;
809 u16 apicid = cpu_to_apicid[cpu];
811 if (apicid == BAD_APICID)
812 continue;
813 node = apicid_to_node[apicid];
814 if (node == NUMA_NO_NODE)
815 continue;
816 if (!node_online(node))
817 node = find_near_online_node(node);
818 numa_set_node(cpu, node);
821 #endif
824 void __cpuinit numa_set_node(int cpu, int node)
826 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
828 /* early setting, no percpu area yet */
829 if (cpu_to_node_map) {
830 cpu_to_node_map[cpu] = node;
831 return;
834 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
835 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
836 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
837 dump_stack();
838 return;
840 #endif
841 per_cpu(x86_cpu_to_node_map, cpu) = node;
843 if (node != NUMA_NO_NODE)
844 per_cpu(node_number, cpu) = node;
847 void __cpuinit numa_clear_node(int cpu)
849 numa_set_node(cpu, NUMA_NO_NODE);
852 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
854 void __cpuinit numa_add_cpu(int cpu)
856 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
859 void __cpuinit numa_remove_cpu(int cpu)
861 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
864 #else /* CONFIG_DEBUG_PER_CPU_MAPS */
867 * --------- debug versions of the numa functions ---------
869 static void __cpuinit numa_set_cpumask(int cpu, int enable)
871 int node = early_cpu_to_node(cpu);
872 struct cpumask *mask;
873 char buf[64];
875 mask = node_to_cpumask_map[node];
876 if (mask == NULL) {
877 printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
878 dump_stack();
879 return;
882 if (enable)
883 cpumask_set_cpu(cpu, mask);
884 else
885 cpumask_clear_cpu(cpu, mask);
887 cpulist_scnprintf(buf, sizeof(buf), mask);
888 printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
889 enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
892 void __cpuinit numa_add_cpu(int cpu)
894 numa_set_cpumask(cpu, 1);
897 void __cpuinit numa_remove_cpu(int cpu)
899 numa_set_cpumask(cpu, 0);
902 int cpu_to_node(int cpu)
904 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
905 printk(KERN_WARNING
906 "cpu_to_node(%d): usage too early!\n", cpu);
907 dump_stack();
908 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
910 return per_cpu(x86_cpu_to_node_map, cpu);
912 EXPORT_SYMBOL(cpu_to_node);
915 * Same function as cpu_to_node() but used if called before the
916 * per_cpu areas are setup.
918 int early_cpu_to_node(int cpu)
920 if (early_per_cpu_ptr(x86_cpu_to_node_map))
921 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
923 if (!cpu_possible(cpu)) {
924 printk(KERN_WARNING
925 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
926 dump_stack();
927 return NUMA_NO_NODE;
929 return per_cpu(x86_cpu_to_node_map, cpu);
933 * --------- end of debug versions of the numa functions ---------
936 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */