1 /* niu.c: Neptune ethernet driver.
3 * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/netdevice.h>
11 #include <linux/ethtool.h>
12 #include <linux/etherdevice.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/bitops.h>
16 #include <linux/mii.h>
17 #include <linux/if_ether.h>
18 #include <linux/if_vlan.h>
21 #include <linux/ipv6.h>
22 #include <linux/log2.h>
23 #include <linux/jiffies.h>
24 #include <linux/crc32.h>
25 #include <linux/list.h>
30 #include <linux/of_device.h>
35 #define DRV_MODULE_NAME "niu"
36 #define PFX DRV_MODULE_NAME ": "
37 #define DRV_MODULE_VERSION "1.0"
38 #define DRV_MODULE_RELDATE "Nov 14, 2008"
40 static char version
[] __devinitdata
=
41 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
43 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
44 MODULE_DESCRIPTION("NIU ethernet driver");
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(DRV_MODULE_VERSION
);
49 static u64
readq(void __iomem
*reg
)
51 return ((u64
) readl(reg
)) | (((u64
) readl(reg
+ 4UL)) << 32);
54 static void writeq(u64 val
, void __iomem
*reg
)
56 writel(val
& 0xffffffff, reg
);
57 writel(val
>> 32, reg
+ 0x4UL
);
61 static struct pci_device_id niu_pci_tbl
[] = {
62 {PCI_DEVICE(PCI_VENDOR_ID_SUN
, 0xabcd)},
66 MODULE_DEVICE_TABLE(pci
, niu_pci_tbl
);
68 #define NIU_TX_TIMEOUT (5 * HZ)
70 #define nr64(reg) readq(np->regs + (reg))
71 #define nw64(reg, val) writeq((val), np->regs + (reg))
73 #define nr64_mac(reg) readq(np->mac_regs + (reg))
74 #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
76 #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
77 #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
79 #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
80 #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
82 #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
83 #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
85 #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
88 static int debug
= -1;
89 module_param(debug
, int, 0);
90 MODULE_PARM_DESC(debug
, "NIU debug level");
92 #define niudbg(TYPE, f, a...) \
93 do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
94 printk(KERN_DEBUG PFX f, ## a); \
97 #define niuinfo(TYPE, f, a...) \
98 do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
99 printk(KERN_INFO PFX f, ## a); \
102 #define niuwarn(TYPE, f, a...) \
103 do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
104 printk(KERN_WARNING PFX f, ## a); \
107 #define niu_lock_parent(np, flags) \
108 spin_lock_irqsave(&np->parent->lock, flags)
109 #define niu_unlock_parent(np, flags) \
110 spin_unlock_irqrestore(&np->parent->lock, flags)
112 static int serdes_init_10g_serdes(struct niu
*np
);
114 static int __niu_wait_bits_clear_mac(struct niu
*np
, unsigned long reg
,
115 u64 bits
, int limit
, int delay
)
117 while (--limit
>= 0) {
118 u64 val
= nr64_mac(reg
);
129 static int __niu_set_and_wait_clear_mac(struct niu
*np
, unsigned long reg
,
130 u64 bits
, int limit
, int delay
,
131 const char *reg_name
)
136 err
= __niu_wait_bits_clear_mac(np
, reg
, bits
, limit
, delay
);
138 dev_err(np
->device
, PFX
"%s: bits (%llx) of register %s "
139 "would not clear, val[%llx]\n",
140 np
->dev
->name
, (unsigned long long) bits
, reg_name
,
141 (unsigned long long) nr64_mac(reg
));
145 #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
146 ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
147 __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
150 static int __niu_wait_bits_clear_ipp(struct niu
*np
, unsigned long reg
,
151 u64 bits
, int limit
, int delay
)
153 while (--limit
>= 0) {
154 u64 val
= nr64_ipp(reg
);
165 static int __niu_set_and_wait_clear_ipp(struct niu
*np
, unsigned long reg
,
166 u64 bits
, int limit
, int delay
,
167 const char *reg_name
)
176 err
= __niu_wait_bits_clear_ipp(np
, reg
, bits
, limit
, delay
);
178 dev_err(np
->device
, PFX
"%s: bits (%llx) of register %s "
179 "would not clear, val[%llx]\n",
180 np
->dev
->name
, (unsigned long long) bits
, reg_name
,
181 (unsigned long long) nr64_ipp(reg
));
185 #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
186 ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
187 __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
190 static int __niu_wait_bits_clear(struct niu
*np
, unsigned long reg
,
191 u64 bits
, int limit
, int delay
)
193 while (--limit
>= 0) {
205 #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
206 ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
207 __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
210 static int __niu_set_and_wait_clear(struct niu
*np
, unsigned long reg
,
211 u64 bits
, int limit
, int delay
,
212 const char *reg_name
)
217 err
= __niu_wait_bits_clear(np
, reg
, bits
, limit
, delay
);
219 dev_err(np
->device
, PFX
"%s: bits (%llx) of register %s "
220 "would not clear, val[%llx]\n",
221 np
->dev
->name
, (unsigned long long) bits
, reg_name
,
222 (unsigned long long) nr64(reg
));
226 #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
227 ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
228 __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
231 static void niu_ldg_rearm(struct niu
*np
, struct niu_ldg
*lp
, int on
)
233 u64 val
= (u64
) lp
->timer
;
236 val
|= LDG_IMGMT_ARM
;
238 nw64(LDG_IMGMT(lp
->ldg_num
), val
);
241 static int niu_ldn_irq_enable(struct niu
*np
, int ldn
, int on
)
243 unsigned long mask_reg
, bits
;
246 if (ldn
< 0 || ldn
> LDN_MAX
)
250 mask_reg
= LD_IM0(ldn
);
253 mask_reg
= LD_IM1(ldn
- 64);
257 val
= nr64(mask_reg
);
267 static int niu_enable_ldn_in_ldg(struct niu
*np
, struct niu_ldg
*lp
, int on
)
269 struct niu_parent
*parent
= np
->parent
;
272 for (i
= 0; i
<= LDN_MAX
; i
++) {
275 if (parent
->ldg_map
[i
] != lp
->ldg_num
)
278 err
= niu_ldn_irq_enable(np
, i
, on
);
285 static int niu_enable_interrupts(struct niu
*np
, int on
)
289 for (i
= 0; i
< np
->num_ldg
; i
++) {
290 struct niu_ldg
*lp
= &np
->ldg
[i
];
293 err
= niu_enable_ldn_in_ldg(np
, lp
, on
);
297 for (i
= 0; i
< np
->num_ldg
; i
++)
298 niu_ldg_rearm(np
, &np
->ldg
[i
], on
);
303 static u32
phy_encode(u32 type
, int port
)
305 return (type
<< (port
* 2));
308 static u32
phy_decode(u32 val
, int port
)
310 return (val
>> (port
* 2)) & PORT_TYPE_MASK
;
313 static int mdio_wait(struct niu
*np
)
318 while (--limit
> 0) {
319 val
= nr64(MIF_FRAME_OUTPUT
);
320 if ((val
>> MIF_FRAME_OUTPUT_TA_SHIFT
) & 0x1)
321 return val
& MIF_FRAME_OUTPUT_DATA
;
329 static int mdio_read(struct niu
*np
, int port
, int dev
, int reg
)
333 nw64(MIF_FRAME_OUTPUT
, MDIO_ADDR_OP(port
, dev
, reg
));
338 nw64(MIF_FRAME_OUTPUT
, MDIO_READ_OP(port
, dev
));
339 return mdio_wait(np
);
342 static int mdio_write(struct niu
*np
, int port
, int dev
, int reg
, int data
)
346 nw64(MIF_FRAME_OUTPUT
, MDIO_ADDR_OP(port
, dev
, reg
));
351 nw64(MIF_FRAME_OUTPUT
, MDIO_WRITE_OP(port
, dev
, data
));
359 static int mii_read(struct niu
*np
, int port
, int reg
)
361 nw64(MIF_FRAME_OUTPUT
, MII_READ_OP(port
, reg
));
362 return mdio_wait(np
);
365 static int mii_write(struct niu
*np
, int port
, int reg
, int data
)
369 nw64(MIF_FRAME_OUTPUT
, MII_WRITE_OP(port
, reg
, data
));
377 static int esr2_set_tx_cfg(struct niu
*np
, unsigned long channel
, u32 val
)
381 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
382 ESR2_TI_PLL_TX_CFG_L(channel
),
385 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
386 ESR2_TI_PLL_TX_CFG_H(channel
),
391 static int esr2_set_rx_cfg(struct niu
*np
, unsigned long channel
, u32 val
)
395 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
396 ESR2_TI_PLL_RX_CFG_L(channel
),
399 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
400 ESR2_TI_PLL_RX_CFG_H(channel
),
405 /* Mode is always 10G fiber. */
406 static int serdes_init_niu_10g_fiber(struct niu
*np
)
408 struct niu_link_config
*lp
= &np
->link_config
;
412 tx_cfg
= (PLL_TX_CFG_ENTX
| PLL_TX_CFG_SWING_1375MV
);
413 rx_cfg
= (PLL_RX_CFG_ENRX
| PLL_RX_CFG_TERM_0P8VDDT
|
414 PLL_RX_CFG_ALIGN_ENA
| PLL_RX_CFG_LOS_LTHRESH
|
415 PLL_RX_CFG_EQ_LP_ADAPTIVE
);
417 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
418 u16 test_cfg
= PLL_TEST_CFG_LOOPBACK_CML_DIS
;
420 mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
421 ESR2_TI_PLL_TEST_CFG_L
, test_cfg
);
423 tx_cfg
|= PLL_TX_CFG_ENTEST
;
424 rx_cfg
|= PLL_RX_CFG_ENTEST
;
427 /* Initialize all 4 lanes of the SERDES. */
428 for (i
= 0; i
< 4; i
++) {
429 int err
= esr2_set_tx_cfg(np
, i
, tx_cfg
);
434 for (i
= 0; i
< 4; i
++) {
435 int err
= esr2_set_rx_cfg(np
, i
, rx_cfg
);
443 static int serdes_init_niu_1g_serdes(struct niu
*np
)
445 struct niu_link_config
*lp
= &np
->link_config
;
446 u16 pll_cfg
, pll_sts
;
448 u64
uninitialized_var(sig
), mask
, val
;
453 tx_cfg
= (PLL_TX_CFG_ENTX
| PLL_TX_CFG_SWING_1375MV
|
454 PLL_TX_CFG_RATE_HALF
);
455 rx_cfg
= (PLL_RX_CFG_ENRX
| PLL_RX_CFG_TERM_0P8VDDT
|
456 PLL_RX_CFG_ALIGN_ENA
| PLL_RX_CFG_LOS_LTHRESH
|
457 PLL_RX_CFG_RATE_HALF
);
460 rx_cfg
|= PLL_RX_CFG_EQ_LP_ADAPTIVE
;
462 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
463 u16 test_cfg
= PLL_TEST_CFG_LOOPBACK_CML_DIS
;
465 mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
466 ESR2_TI_PLL_TEST_CFG_L
, test_cfg
);
468 tx_cfg
|= PLL_TX_CFG_ENTEST
;
469 rx_cfg
|= PLL_RX_CFG_ENTEST
;
472 /* Initialize PLL for 1G */
473 pll_cfg
= (PLL_CFG_ENPLL
| PLL_CFG_MPY_8X
);
475 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
476 ESR2_TI_PLL_CFG_L
, pll_cfg
);
478 dev_err(np
->device
, PFX
"NIU Port %d "
479 "serdes_init_niu_1g_serdes: "
480 "mdio write to ESR2_TI_PLL_CFG_L failed", np
->port
);
484 pll_sts
= PLL_CFG_ENPLL
;
486 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
487 ESR2_TI_PLL_STS_L
, pll_sts
);
489 dev_err(np
->device
, PFX
"NIU Port %d "
490 "serdes_init_niu_1g_serdes: "
491 "mdio write to ESR2_TI_PLL_STS_L failed", np
->port
);
497 /* Initialize all 4 lanes of the SERDES. */
498 for (i
= 0; i
< 4; i
++) {
499 err
= esr2_set_tx_cfg(np
, i
, tx_cfg
);
504 for (i
= 0; i
< 4; i
++) {
505 err
= esr2_set_rx_cfg(np
, i
, rx_cfg
);
512 val
= (ESR_INT_SRDY0_P0
| ESR_INT_DET0_P0
);
517 val
= (ESR_INT_SRDY0_P1
| ESR_INT_DET0_P1
);
525 while (max_retry
--) {
526 sig
= nr64(ESR_INT_SIGNALS
);
527 if ((sig
& mask
) == val
)
533 if ((sig
& mask
) != val
) {
534 dev_err(np
->device
, PFX
"Port %u signal bits [%08x] are not "
535 "[%08x]\n", np
->port
, (int) (sig
& mask
), (int) val
);
542 static int serdes_init_niu_10g_serdes(struct niu
*np
)
544 struct niu_link_config
*lp
= &np
->link_config
;
545 u32 tx_cfg
, rx_cfg
, pll_cfg
, pll_sts
;
547 u64
uninitialized_var(sig
), mask
, val
;
551 tx_cfg
= (PLL_TX_CFG_ENTX
| PLL_TX_CFG_SWING_1375MV
);
552 rx_cfg
= (PLL_RX_CFG_ENRX
| PLL_RX_CFG_TERM_0P8VDDT
|
553 PLL_RX_CFG_ALIGN_ENA
| PLL_RX_CFG_LOS_LTHRESH
|
554 PLL_RX_CFG_EQ_LP_ADAPTIVE
);
556 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
557 u16 test_cfg
= PLL_TEST_CFG_LOOPBACK_CML_DIS
;
559 mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
560 ESR2_TI_PLL_TEST_CFG_L
, test_cfg
);
562 tx_cfg
|= PLL_TX_CFG_ENTEST
;
563 rx_cfg
|= PLL_RX_CFG_ENTEST
;
566 /* Initialize PLL for 10G */
567 pll_cfg
= (PLL_CFG_ENPLL
| PLL_CFG_MPY_10X
);
569 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
570 ESR2_TI_PLL_CFG_L
, pll_cfg
& 0xffff);
572 dev_err(np
->device
, PFX
"NIU Port %d "
573 "serdes_init_niu_10g_serdes: "
574 "mdio write to ESR2_TI_PLL_CFG_L failed", np
->port
);
578 pll_sts
= PLL_CFG_ENPLL
;
580 err
= mdio_write(np
, np
->port
, NIU_ESR2_DEV_ADDR
,
581 ESR2_TI_PLL_STS_L
, pll_sts
& 0xffff);
583 dev_err(np
->device
, PFX
"NIU Port %d "
584 "serdes_init_niu_10g_serdes: "
585 "mdio write to ESR2_TI_PLL_STS_L failed", np
->port
);
591 /* Initialize all 4 lanes of the SERDES. */
592 for (i
= 0; i
< 4; i
++) {
593 err
= esr2_set_tx_cfg(np
, i
, tx_cfg
);
598 for (i
= 0; i
< 4; i
++) {
599 err
= esr2_set_rx_cfg(np
, i
, rx_cfg
);
604 /* check if serdes is ready */
608 mask
= ESR_INT_SIGNALS_P0_BITS
;
609 val
= (ESR_INT_SRDY0_P0
|
619 mask
= ESR_INT_SIGNALS_P1_BITS
;
620 val
= (ESR_INT_SRDY0_P1
|
633 while (max_retry
--) {
634 sig
= nr64(ESR_INT_SIGNALS
);
635 if ((sig
& mask
) == val
)
641 if ((sig
& mask
) != val
) {
642 pr_info(PFX
"NIU Port %u signal bits [%08x] are not "
643 "[%08x] for 10G...trying 1G\n",
644 np
->port
, (int) (sig
& mask
), (int) val
);
646 /* 10G failed, try initializing at 1G */
647 err
= serdes_init_niu_1g_serdes(np
);
649 np
->flags
&= ~NIU_FLAGS_10G
;
650 np
->mac_xcvr
= MAC_XCVR_PCS
;
652 dev_err(np
->device
, PFX
"Port %u 10G/1G SERDES "
653 "Link Failed \n", np
->port
);
660 static int esr_read_rxtx_ctrl(struct niu
*np
, unsigned long chan
, u32
*val
)
664 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
, ESR_RXTX_CTRL_L(chan
));
666 *val
= (err
& 0xffff);
667 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
,
668 ESR_RXTX_CTRL_H(chan
));
670 *val
|= ((err
& 0xffff) << 16);
676 static int esr_read_glue0(struct niu
*np
, unsigned long chan
, u32
*val
)
680 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
,
681 ESR_GLUE_CTRL0_L(chan
));
683 *val
= (err
& 0xffff);
684 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
,
685 ESR_GLUE_CTRL0_H(chan
));
687 *val
|= ((err
& 0xffff) << 16);
694 static int esr_read_reset(struct niu
*np
, u32
*val
)
698 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
,
699 ESR_RXTX_RESET_CTRL_L
);
701 *val
= (err
& 0xffff);
702 err
= mdio_read(np
, np
->port
, NIU_ESR_DEV_ADDR
,
703 ESR_RXTX_RESET_CTRL_H
);
705 *val
|= ((err
& 0xffff) << 16);
712 static int esr_write_rxtx_ctrl(struct niu
*np
, unsigned long chan
, u32 val
)
716 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
717 ESR_RXTX_CTRL_L(chan
), val
& 0xffff);
719 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
720 ESR_RXTX_CTRL_H(chan
), (val
>> 16));
724 static int esr_write_glue0(struct niu
*np
, unsigned long chan
, u32 val
)
728 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
729 ESR_GLUE_CTRL0_L(chan
), val
& 0xffff);
731 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
732 ESR_GLUE_CTRL0_H(chan
), (val
>> 16));
736 static int esr_reset(struct niu
*np
)
738 u32
uninitialized_var(reset
);
741 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
742 ESR_RXTX_RESET_CTRL_L
, 0x0000);
745 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
746 ESR_RXTX_RESET_CTRL_H
, 0xffff);
751 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
752 ESR_RXTX_RESET_CTRL_L
, 0xffff);
757 err
= mdio_write(np
, np
->port
, NIU_ESR_DEV_ADDR
,
758 ESR_RXTX_RESET_CTRL_H
, 0x0000);
763 err
= esr_read_reset(np
, &reset
);
767 dev_err(np
->device
, PFX
"Port %u ESR_RESET "
768 "did not clear [%08x]\n",
776 static int serdes_init_10g(struct niu
*np
)
778 struct niu_link_config
*lp
= &np
->link_config
;
779 unsigned long ctrl_reg
, test_cfg_reg
, i
;
780 u64 ctrl_val
, test_cfg_val
, sig
, mask
, val
;
785 ctrl_reg
= ENET_SERDES_0_CTRL_CFG
;
786 test_cfg_reg
= ENET_SERDES_0_TEST_CFG
;
789 ctrl_reg
= ENET_SERDES_1_CTRL_CFG
;
790 test_cfg_reg
= ENET_SERDES_1_TEST_CFG
;
796 ctrl_val
= (ENET_SERDES_CTRL_SDET_0
|
797 ENET_SERDES_CTRL_SDET_1
|
798 ENET_SERDES_CTRL_SDET_2
|
799 ENET_SERDES_CTRL_SDET_3
|
800 (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT
) |
801 (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT
) |
802 (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT
) |
803 (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT
) |
804 (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT
) |
805 (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT
) |
806 (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT
) |
807 (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT
));
810 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
811 test_cfg_val
|= ((ENET_TEST_MD_PAD_LOOPBACK
<<
812 ENET_SERDES_TEST_MD_0_SHIFT
) |
813 (ENET_TEST_MD_PAD_LOOPBACK
<<
814 ENET_SERDES_TEST_MD_1_SHIFT
) |
815 (ENET_TEST_MD_PAD_LOOPBACK
<<
816 ENET_SERDES_TEST_MD_2_SHIFT
) |
817 (ENET_TEST_MD_PAD_LOOPBACK
<<
818 ENET_SERDES_TEST_MD_3_SHIFT
));
821 nw64(ctrl_reg
, ctrl_val
);
822 nw64(test_cfg_reg
, test_cfg_val
);
824 /* Initialize all 4 lanes of the SERDES. */
825 for (i
= 0; i
< 4; i
++) {
826 u32 rxtx_ctrl
, glue0
;
828 err
= esr_read_rxtx_ctrl(np
, i
, &rxtx_ctrl
);
831 err
= esr_read_glue0(np
, i
, &glue0
);
835 rxtx_ctrl
&= ~(ESR_RXTX_CTRL_VMUXLO
);
836 rxtx_ctrl
|= (ESR_RXTX_CTRL_ENSTRETCH
|
837 (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT
));
839 glue0
&= ~(ESR_GLUE_CTRL0_SRATE
|
840 ESR_GLUE_CTRL0_THCNT
|
841 ESR_GLUE_CTRL0_BLTIME
);
842 glue0
|= (ESR_GLUE_CTRL0_RXLOSENAB
|
843 (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT
) |
844 (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT
) |
845 (BLTIME_300_CYCLES
<<
846 ESR_GLUE_CTRL0_BLTIME_SHIFT
));
848 err
= esr_write_rxtx_ctrl(np
, i
, rxtx_ctrl
);
851 err
= esr_write_glue0(np
, i
, glue0
);
860 sig
= nr64(ESR_INT_SIGNALS
);
863 mask
= ESR_INT_SIGNALS_P0_BITS
;
864 val
= (ESR_INT_SRDY0_P0
|
874 mask
= ESR_INT_SIGNALS_P1_BITS
;
875 val
= (ESR_INT_SRDY0_P1
|
888 if ((sig
& mask
) != val
) {
889 if (np
->flags
& NIU_FLAGS_HOTPLUG_PHY
) {
890 np
->flags
&= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT
;
893 dev_err(np
->device
, PFX
"Port %u signal bits [%08x] are not "
894 "[%08x]\n", np
->port
, (int) (sig
& mask
), (int) val
);
897 if (np
->flags
& NIU_FLAGS_HOTPLUG_PHY
)
898 np
->flags
|= NIU_FLAGS_HOTPLUG_PHY_PRESENT
;
902 static int serdes_init_1g(struct niu
*np
)
906 val
= nr64(ENET_SERDES_1_PLL_CFG
);
907 val
&= ~ENET_SERDES_PLL_FBDIV2
;
910 val
|= ENET_SERDES_PLL_HRATE0
;
913 val
|= ENET_SERDES_PLL_HRATE1
;
916 val
|= ENET_SERDES_PLL_HRATE2
;
919 val
|= ENET_SERDES_PLL_HRATE3
;
924 nw64(ENET_SERDES_1_PLL_CFG
, val
);
929 static int serdes_init_1g_serdes(struct niu
*np
)
931 struct niu_link_config
*lp
= &np
->link_config
;
932 unsigned long ctrl_reg
, test_cfg_reg
, pll_cfg
, i
;
933 u64 ctrl_val
, test_cfg_val
, sig
, mask
, val
;
935 u64 reset_val
, val_rd
;
937 val
= ENET_SERDES_PLL_HRATE0
| ENET_SERDES_PLL_HRATE1
|
938 ENET_SERDES_PLL_HRATE2
| ENET_SERDES_PLL_HRATE3
|
939 ENET_SERDES_PLL_FBDIV0
;
942 reset_val
= ENET_SERDES_RESET_0
;
943 ctrl_reg
= ENET_SERDES_0_CTRL_CFG
;
944 test_cfg_reg
= ENET_SERDES_0_TEST_CFG
;
945 pll_cfg
= ENET_SERDES_0_PLL_CFG
;
948 reset_val
= ENET_SERDES_RESET_1
;
949 ctrl_reg
= ENET_SERDES_1_CTRL_CFG
;
950 test_cfg_reg
= ENET_SERDES_1_TEST_CFG
;
951 pll_cfg
= ENET_SERDES_1_PLL_CFG
;
957 ctrl_val
= (ENET_SERDES_CTRL_SDET_0
|
958 ENET_SERDES_CTRL_SDET_1
|
959 ENET_SERDES_CTRL_SDET_2
|
960 ENET_SERDES_CTRL_SDET_3
|
961 (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT
) |
962 (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT
) |
963 (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT
) |
964 (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT
) |
965 (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT
) |
966 (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT
) |
967 (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT
) |
968 (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT
));
971 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
972 test_cfg_val
|= ((ENET_TEST_MD_PAD_LOOPBACK
<<
973 ENET_SERDES_TEST_MD_0_SHIFT
) |
974 (ENET_TEST_MD_PAD_LOOPBACK
<<
975 ENET_SERDES_TEST_MD_1_SHIFT
) |
976 (ENET_TEST_MD_PAD_LOOPBACK
<<
977 ENET_SERDES_TEST_MD_2_SHIFT
) |
978 (ENET_TEST_MD_PAD_LOOPBACK
<<
979 ENET_SERDES_TEST_MD_3_SHIFT
));
982 nw64(ENET_SERDES_RESET
, reset_val
);
984 val_rd
= nr64(ENET_SERDES_RESET
);
985 val_rd
&= ~reset_val
;
987 nw64(ctrl_reg
, ctrl_val
);
988 nw64(test_cfg_reg
, test_cfg_val
);
989 nw64(ENET_SERDES_RESET
, val_rd
);
992 /* Initialize all 4 lanes of the SERDES. */
993 for (i
= 0; i
< 4; i
++) {
994 u32 rxtx_ctrl
, glue0
;
996 err
= esr_read_rxtx_ctrl(np
, i
, &rxtx_ctrl
);
999 err
= esr_read_glue0(np
, i
, &glue0
);
1003 rxtx_ctrl
&= ~(ESR_RXTX_CTRL_VMUXLO
);
1004 rxtx_ctrl
|= (ESR_RXTX_CTRL_ENSTRETCH
|
1005 (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT
));
1007 glue0
&= ~(ESR_GLUE_CTRL0_SRATE
|
1008 ESR_GLUE_CTRL0_THCNT
|
1009 ESR_GLUE_CTRL0_BLTIME
);
1010 glue0
|= (ESR_GLUE_CTRL0_RXLOSENAB
|
1011 (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT
) |
1012 (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT
) |
1013 (BLTIME_300_CYCLES
<<
1014 ESR_GLUE_CTRL0_BLTIME_SHIFT
));
1016 err
= esr_write_rxtx_ctrl(np
, i
, rxtx_ctrl
);
1019 err
= esr_write_glue0(np
, i
, glue0
);
1025 sig
= nr64(ESR_INT_SIGNALS
);
1028 val
= (ESR_INT_SRDY0_P0
| ESR_INT_DET0_P0
);
1033 val
= (ESR_INT_SRDY0_P1
| ESR_INT_DET0_P1
);
1041 if ((sig
& mask
) != val
) {
1042 dev_err(np
->device
, PFX
"Port %u signal bits [%08x] are not "
1043 "[%08x]\n", np
->port
, (int) (sig
& mask
), (int) val
);
1050 static int link_status_1g_serdes(struct niu
*np
, int *link_up_p
)
1052 struct niu_link_config
*lp
= &np
->link_config
;
1056 unsigned long flags
;
1060 current_speed
= SPEED_INVALID
;
1061 current_duplex
= DUPLEX_INVALID
;
1063 spin_lock_irqsave(&np
->lock
, flags
);
1065 val
= nr64_pcs(PCS_MII_STAT
);
1067 if (val
& PCS_MII_STAT_LINK_STATUS
) {
1069 current_speed
= SPEED_1000
;
1070 current_duplex
= DUPLEX_FULL
;
1073 lp
->active_speed
= current_speed
;
1074 lp
->active_duplex
= current_duplex
;
1075 spin_unlock_irqrestore(&np
->lock
, flags
);
1077 *link_up_p
= link_up
;
1081 static int link_status_10g_serdes(struct niu
*np
, int *link_up_p
)
1083 unsigned long flags
;
1084 struct niu_link_config
*lp
= &np
->link_config
;
1091 if (!(np
->flags
& NIU_FLAGS_10G
))
1092 return link_status_1g_serdes(np
, link_up_p
);
1094 current_speed
= SPEED_INVALID
;
1095 current_duplex
= DUPLEX_INVALID
;
1096 spin_lock_irqsave(&np
->lock
, flags
);
1098 val
= nr64_xpcs(XPCS_STATUS(0));
1099 val2
= nr64_mac(XMAC_INTER2
);
1100 if (val2
& 0x01000000)
1103 if ((val
& 0x1000ULL
) && link_ok
) {
1105 current_speed
= SPEED_10000
;
1106 current_duplex
= DUPLEX_FULL
;
1108 lp
->active_speed
= current_speed
;
1109 lp
->active_duplex
= current_duplex
;
1110 spin_unlock_irqrestore(&np
->lock
, flags
);
1111 *link_up_p
= link_up
;
1115 static int link_status_mii(struct niu
*np
, int *link_up_p
)
1117 struct niu_link_config
*lp
= &np
->link_config
;
1119 int bmsr
, advert
, ctrl1000
, stat1000
, lpa
, bmcr
, estatus
;
1120 int supported
, advertising
, active_speed
, active_duplex
;
1122 err
= mii_read(np
, np
->phy_addr
, MII_BMCR
);
1123 if (unlikely(err
< 0))
1127 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1128 if (unlikely(err
< 0))
1132 err
= mii_read(np
, np
->phy_addr
, MII_ADVERTISE
);
1133 if (unlikely(err
< 0))
1137 err
= mii_read(np
, np
->phy_addr
, MII_LPA
);
1138 if (unlikely(err
< 0))
1142 if (likely(bmsr
& BMSR_ESTATEN
)) {
1143 err
= mii_read(np
, np
->phy_addr
, MII_ESTATUS
);
1144 if (unlikely(err
< 0))
1148 err
= mii_read(np
, np
->phy_addr
, MII_CTRL1000
);
1149 if (unlikely(err
< 0))
1153 err
= mii_read(np
, np
->phy_addr
, MII_STAT1000
);
1154 if (unlikely(err
< 0))
1158 estatus
= ctrl1000
= stat1000
= 0;
1161 if (bmsr
& BMSR_ANEGCAPABLE
)
1162 supported
|= SUPPORTED_Autoneg
;
1163 if (bmsr
& BMSR_10HALF
)
1164 supported
|= SUPPORTED_10baseT_Half
;
1165 if (bmsr
& BMSR_10FULL
)
1166 supported
|= SUPPORTED_10baseT_Full
;
1167 if (bmsr
& BMSR_100HALF
)
1168 supported
|= SUPPORTED_100baseT_Half
;
1169 if (bmsr
& BMSR_100FULL
)
1170 supported
|= SUPPORTED_100baseT_Full
;
1171 if (estatus
& ESTATUS_1000_THALF
)
1172 supported
|= SUPPORTED_1000baseT_Half
;
1173 if (estatus
& ESTATUS_1000_TFULL
)
1174 supported
|= SUPPORTED_1000baseT_Full
;
1175 lp
->supported
= supported
;
1178 if (advert
& ADVERTISE_10HALF
)
1179 advertising
|= ADVERTISED_10baseT_Half
;
1180 if (advert
& ADVERTISE_10FULL
)
1181 advertising
|= ADVERTISED_10baseT_Full
;
1182 if (advert
& ADVERTISE_100HALF
)
1183 advertising
|= ADVERTISED_100baseT_Half
;
1184 if (advert
& ADVERTISE_100FULL
)
1185 advertising
|= ADVERTISED_100baseT_Full
;
1186 if (ctrl1000
& ADVERTISE_1000HALF
)
1187 advertising
|= ADVERTISED_1000baseT_Half
;
1188 if (ctrl1000
& ADVERTISE_1000FULL
)
1189 advertising
|= ADVERTISED_1000baseT_Full
;
1191 if (bmcr
& BMCR_ANENABLE
) {
1194 lp
->active_autoneg
= 1;
1195 advertising
|= ADVERTISED_Autoneg
;
1198 neg1000
= (ctrl1000
<< 2) & stat1000
;
1200 if (neg1000
& (LPA_1000FULL
| LPA_1000HALF
))
1201 active_speed
= SPEED_1000
;
1202 else if (neg
& LPA_100
)
1203 active_speed
= SPEED_100
;
1204 else if (neg
& (LPA_10HALF
| LPA_10FULL
))
1205 active_speed
= SPEED_10
;
1207 active_speed
= SPEED_INVALID
;
1209 if ((neg1000
& LPA_1000FULL
) || (neg
& LPA_DUPLEX
))
1210 active_duplex
= DUPLEX_FULL
;
1211 else if (active_speed
!= SPEED_INVALID
)
1212 active_duplex
= DUPLEX_HALF
;
1214 active_duplex
= DUPLEX_INVALID
;
1216 lp
->active_autoneg
= 0;
1218 if ((bmcr
& BMCR_SPEED1000
) && !(bmcr
& BMCR_SPEED100
))
1219 active_speed
= SPEED_1000
;
1220 else if (bmcr
& BMCR_SPEED100
)
1221 active_speed
= SPEED_100
;
1223 active_speed
= SPEED_10
;
1225 if (bmcr
& BMCR_FULLDPLX
)
1226 active_duplex
= DUPLEX_FULL
;
1228 active_duplex
= DUPLEX_HALF
;
1231 lp
->active_advertising
= advertising
;
1232 lp
->active_speed
= active_speed
;
1233 lp
->active_duplex
= active_duplex
;
1234 *link_up_p
= !!(bmsr
& BMSR_LSTATUS
);
1239 static int link_status_1g_rgmii(struct niu
*np
, int *link_up_p
)
1241 struct niu_link_config
*lp
= &np
->link_config
;
1242 u16 current_speed
, bmsr
;
1243 unsigned long flags
;
1248 current_speed
= SPEED_INVALID
;
1249 current_duplex
= DUPLEX_INVALID
;
1251 spin_lock_irqsave(&np
->lock
, flags
);
1255 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1260 if (bmsr
& BMSR_LSTATUS
) {
1261 u16 adv
, lpa
, common
, estat
;
1263 err
= mii_read(np
, np
->phy_addr
, MII_ADVERTISE
);
1268 err
= mii_read(np
, np
->phy_addr
, MII_LPA
);
1275 err
= mii_read(np
, np
->phy_addr
, MII_ESTATUS
);
1280 current_speed
= SPEED_1000
;
1281 current_duplex
= DUPLEX_FULL
;
1284 lp
->active_speed
= current_speed
;
1285 lp
->active_duplex
= current_duplex
;
1289 spin_unlock_irqrestore(&np
->lock
, flags
);
1291 *link_up_p
= link_up
;
1295 static int link_status_1g(struct niu
*np
, int *link_up_p
)
1297 struct niu_link_config
*lp
= &np
->link_config
;
1298 unsigned long flags
;
1301 spin_lock_irqsave(&np
->lock
, flags
);
1303 err
= link_status_mii(np
, link_up_p
);
1304 lp
->supported
|= SUPPORTED_TP
;
1305 lp
->active_advertising
|= ADVERTISED_TP
;
1307 spin_unlock_irqrestore(&np
->lock
, flags
);
1311 static int bcm8704_reset(struct niu
*np
)
1315 err
= mdio_read(np
, np
->phy_addr
,
1316 BCM8704_PHYXS_DEV_ADDR
, MII_BMCR
);
1317 if (err
< 0 || err
== 0xffff)
1320 err
= mdio_write(np
, np
->phy_addr
, BCM8704_PHYXS_DEV_ADDR
,
1326 while (--limit
>= 0) {
1327 err
= mdio_read(np
, np
->phy_addr
,
1328 BCM8704_PHYXS_DEV_ADDR
, MII_BMCR
);
1331 if (!(err
& BMCR_RESET
))
1335 dev_err(np
->device
, PFX
"Port %u PHY will not reset "
1336 "(bmcr=%04x)\n", np
->port
, (err
& 0xffff));
1342 /* When written, certain PHY registers need to be read back twice
1343 * in order for the bits to settle properly.
1345 static int bcm8704_user_dev3_readback(struct niu
*np
, int reg
)
1347 int err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
, reg
);
1350 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
, reg
);
1356 static int bcm8706_init_user_dev3(struct niu
*np
)
1361 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1362 BCM8704_USER_OPT_DIGITAL_CTRL
);
1365 err
&= ~USER_ODIG_CTRL_GPIOS
;
1366 err
|= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT
);
1367 err
|= USER_ODIG_CTRL_RESV2
;
1368 err
= mdio_write(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1369 BCM8704_USER_OPT_DIGITAL_CTRL
, err
);
1378 static int bcm8704_init_user_dev3(struct niu
*np
)
1382 err
= mdio_write(np
, np
->phy_addr
,
1383 BCM8704_USER_DEV3_ADDR
, BCM8704_USER_CONTROL
,
1384 (USER_CONTROL_OPTXRST_LVL
|
1385 USER_CONTROL_OPBIASFLT_LVL
|
1386 USER_CONTROL_OBTMPFLT_LVL
|
1387 USER_CONTROL_OPPRFLT_LVL
|
1388 USER_CONTROL_OPTXFLT_LVL
|
1389 USER_CONTROL_OPRXLOS_LVL
|
1390 USER_CONTROL_OPRXFLT_LVL
|
1391 USER_CONTROL_OPTXON_LVL
|
1392 (0x3f << USER_CONTROL_RES1_SHIFT
)));
1396 err
= mdio_write(np
, np
->phy_addr
,
1397 BCM8704_USER_DEV3_ADDR
, BCM8704_USER_PMD_TX_CONTROL
,
1398 (USER_PMD_TX_CTL_XFP_CLKEN
|
1399 (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH
) |
1400 (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH
) |
1401 USER_PMD_TX_CTL_TSCK_LPWREN
));
1405 err
= bcm8704_user_dev3_readback(np
, BCM8704_USER_CONTROL
);
1408 err
= bcm8704_user_dev3_readback(np
, BCM8704_USER_PMD_TX_CONTROL
);
1412 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1413 BCM8704_USER_OPT_DIGITAL_CTRL
);
1416 err
&= ~USER_ODIG_CTRL_GPIOS
;
1417 err
|= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT
);
1418 err
= mdio_write(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1419 BCM8704_USER_OPT_DIGITAL_CTRL
, err
);
1428 static int mrvl88x2011_act_led(struct niu
*np
, int val
)
1432 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV2_ADDR
,
1433 MRVL88X2011_LED_8_TO_11_CTL
);
1437 err
&= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT
,MRVL88X2011_LED_CTL_MASK
);
1438 err
|= MRVL88X2011_LED(MRVL88X2011_LED_ACT
,val
);
1440 return mdio_write(np
, np
->phy_addr
, MRVL88X2011_USER_DEV2_ADDR
,
1441 MRVL88X2011_LED_8_TO_11_CTL
, err
);
1444 static int mrvl88x2011_led_blink_rate(struct niu
*np
, int rate
)
1448 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV2_ADDR
,
1449 MRVL88X2011_LED_BLINK_CTL
);
1451 err
&= ~MRVL88X2011_LED_BLKRATE_MASK
;
1454 err
= mdio_write(np
, np
->phy_addr
, MRVL88X2011_USER_DEV2_ADDR
,
1455 MRVL88X2011_LED_BLINK_CTL
, err
);
1461 static int xcvr_init_10g_mrvl88x2011(struct niu
*np
)
1465 /* Set LED functions */
1466 err
= mrvl88x2011_led_blink_rate(np
, MRVL88X2011_LED_BLKRATE_134MS
);
1471 err
= mrvl88x2011_act_led(np
, MRVL88X2011_LED_CTL_OFF
);
1475 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV3_ADDR
,
1476 MRVL88X2011_GENERAL_CTL
);
1480 err
|= MRVL88X2011_ENA_XFPREFCLK
;
1482 err
= mdio_write(np
, np
->phy_addr
, MRVL88X2011_USER_DEV3_ADDR
,
1483 MRVL88X2011_GENERAL_CTL
, err
);
1487 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV1_ADDR
,
1488 MRVL88X2011_PMA_PMD_CTL_1
);
1492 if (np
->link_config
.loopback_mode
== LOOPBACK_MAC
)
1493 err
|= MRVL88X2011_LOOPBACK
;
1495 err
&= ~MRVL88X2011_LOOPBACK
;
1497 err
= mdio_write(np
, np
->phy_addr
, MRVL88X2011_USER_DEV1_ADDR
,
1498 MRVL88X2011_PMA_PMD_CTL_1
, err
);
1503 return mdio_write(np
, np
->phy_addr
, MRVL88X2011_USER_DEV1_ADDR
,
1504 MRVL88X2011_10G_PMD_TX_DIS
, MRVL88X2011_ENA_PMDTX
);
1508 static int xcvr_diag_bcm870x(struct niu
*np
)
1510 u16 analog_stat0
, tx_alarm_status
;
1514 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PMA_PMD_DEV_ADDR
,
1518 pr_info(PFX
"Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
1521 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
, 0x20);
1524 pr_info(PFX
"Port %u USER_DEV3(0x20) [%04x]\n",
1527 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PHYXS_DEV_ADDR
,
1531 pr_info(PFX
"Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
1535 /* XXX dig this out it might not be so useful XXX */
1536 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1537 BCM8704_USER_ANALOG_STATUS0
);
1540 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1541 BCM8704_USER_ANALOG_STATUS0
);
1546 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1547 BCM8704_USER_TX_ALARM_STATUS
);
1550 err
= mdio_read(np
, np
->phy_addr
, BCM8704_USER_DEV3_ADDR
,
1551 BCM8704_USER_TX_ALARM_STATUS
);
1554 tx_alarm_status
= err
;
1556 if (analog_stat0
!= 0x03fc) {
1557 if ((analog_stat0
== 0x43bc) && (tx_alarm_status
!= 0)) {
1558 pr_info(PFX
"Port %u cable not connected "
1559 "or bad cable.\n", np
->port
);
1560 } else if (analog_stat0
== 0x639c) {
1561 pr_info(PFX
"Port %u optical module is bad "
1562 "or missing.\n", np
->port
);
1569 static int xcvr_10g_set_lb_bcm870x(struct niu
*np
)
1571 struct niu_link_config
*lp
= &np
->link_config
;
1574 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PCS_DEV_ADDR
,
1579 err
&= ~BMCR_LOOPBACK
;
1581 if (lp
->loopback_mode
== LOOPBACK_MAC
)
1582 err
|= BMCR_LOOPBACK
;
1584 err
= mdio_write(np
, np
->phy_addr
, BCM8704_PCS_DEV_ADDR
,
1592 static int xcvr_init_10g_bcm8706(struct niu
*np
)
1597 if ((np
->flags
& NIU_FLAGS_HOTPLUG_PHY
) &&
1598 (np
->flags
& NIU_FLAGS_HOTPLUG_PHY_PRESENT
) == 0)
1601 val
= nr64_mac(XMAC_CONFIG
);
1602 val
&= ~XMAC_CONFIG_LED_POLARITY
;
1603 val
|= XMAC_CONFIG_FORCE_LED_ON
;
1604 nw64_mac(XMAC_CONFIG
, val
);
1606 val
= nr64(MIF_CONFIG
);
1607 val
|= MIF_CONFIG_INDIRECT_MODE
;
1608 nw64(MIF_CONFIG
, val
);
1610 err
= bcm8704_reset(np
);
1614 err
= xcvr_10g_set_lb_bcm870x(np
);
1618 err
= bcm8706_init_user_dev3(np
);
1622 err
= xcvr_diag_bcm870x(np
);
1629 static int xcvr_init_10g_bcm8704(struct niu
*np
)
1633 err
= bcm8704_reset(np
);
1637 err
= bcm8704_init_user_dev3(np
);
1641 err
= xcvr_10g_set_lb_bcm870x(np
);
1645 err
= xcvr_diag_bcm870x(np
);
1652 static int xcvr_init_10g(struct niu
*np
)
1657 val
= nr64_mac(XMAC_CONFIG
);
1658 val
&= ~XMAC_CONFIG_LED_POLARITY
;
1659 val
|= XMAC_CONFIG_FORCE_LED_ON
;
1660 nw64_mac(XMAC_CONFIG
, val
);
1662 /* XXX shared resource, lock parent XXX */
1663 val
= nr64(MIF_CONFIG
);
1664 val
|= MIF_CONFIG_INDIRECT_MODE
;
1665 nw64(MIF_CONFIG
, val
);
1667 phy_id
= phy_decode(np
->parent
->port_phy
, np
->port
);
1668 phy_id
= np
->parent
->phy_probe_info
.phy_id
[phy_id
][np
->port
];
1670 /* handle different phy types */
1671 switch (phy_id
& NIU_PHY_ID_MASK
) {
1672 case NIU_PHY_ID_MRVL88X2011
:
1673 err
= xcvr_init_10g_mrvl88x2011(np
);
1676 default: /* bcom 8704 */
1677 err
= xcvr_init_10g_bcm8704(np
);
1684 static int mii_reset(struct niu
*np
)
1688 err
= mii_write(np
, np
->phy_addr
, MII_BMCR
, BMCR_RESET
);
1693 while (--limit
>= 0) {
1695 err
= mii_read(np
, np
->phy_addr
, MII_BMCR
);
1698 if (!(err
& BMCR_RESET
))
1702 dev_err(np
->device
, PFX
"Port %u MII would not reset, "
1703 "bmcr[%04x]\n", np
->port
, err
);
1710 static int xcvr_init_1g_rgmii(struct niu
*np
)
1714 u16 bmcr
, bmsr
, estat
;
1716 val
= nr64(MIF_CONFIG
);
1717 val
&= ~MIF_CONFIG_INDIRECT_MODE
;
1718 nw64(MIF_CONFIG
, val
);
1720 err
= mii_reset(np
);
1724 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1730 if (bmsr
& BMSR_ESTATEN
) {
1731 err
= mii_read(np
, np
->phy_addr
, MII_ESTATUS
);
1738 err
= mii_write(np
, np
->phy_addr
, MII_BMCR
, bmcr
);
1742 if (bmsr
& BMSR_ESTATEN
) {
1745 if (estat
& ESTATUS_1000_TFULL
)
1746 ctrl1000
|= ADVERTISE_1000FULL
;
1747 err
= mii_write(np
, np
->phy_addr
, MII_CTRL1000
, ctrl1000
);
1752 bmcr
= (BMCR_SPEED1000
| BMCR_FULLDPLX
);
1754 err
= mii_write(np
, np
->phy_addr
, MII_BMCR
, bmcr
);
1758 err
= mii_read(np
, np
->phy_addr
, MII_BMCR
);
1761 bmcr
= mii_read(np
, np
->phy_addr
, MII_BMCR
);
1763 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1770 static int mii_init_common(struct niu
*np
)
1772 struct niu_link_config
*lp
= &np
->link_config
;
1773 u16 bmcr
, bmsr
, adv
, estat
;
1776 err
= mii_reset(np
);
1780 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1786 if (bmsr
& BMSR_ESTATEN
) {
1787 err
= mii_read(np
, np
->phy_addr
, MII_ESTATUS
);
1794 err
= mii_write(np
, np
->phy_addr
, MII_BMCR
, bmcr
);
1798 if (lp
->loopback_mode
== LOOPBACK_MAC
) {
1799 bmcr
|= BMCR_LOOPBACK
;
1800 if (lp
->active_speed
== SPEED_1000
)
1801 bmcr
|= BMCR_SPEED1000
;
1802 if (lp
->active_duplex
== DUPLEX_FULL
)
1803 bmcr
|= BMCR_FULLDPLX
;
1806 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
1809 aux
= (BCM5464R_AUX_CTL_EXT_LB
|
1810 BCM5464R_AUX_CTL_WRITE_1
);
1811 err
= mii_write(np
, np
->phy_addr
, BCM5464R_AUX_CTL
, aux
);
1819 adv
= ADVERTISE_CSMA
| ADVERTISE_PAUSE_CAP
;
1820 if ((bmsr
& BMSR_10HALF
) &&
1821 (lp
->advertising
& ADVERTISED_10baseT_Half
))
1822 adv
|= ADVERTISE_10HALF
;
1823 if ((bmsr
& BMSR_10FULL
) &&
1824 (lp
->advertising
& ADVERTISED_10baseT_Full
))
1825 adv
|= ADVERTISE_10FULL
;
1826 if ((bmsr
& BMSR_100HALF
) &&
1827 (lp
->advertising
& ADVERTISED_100baseT_Half
))
1828 adv
|= ADVERTISE_100HALF
;
1829 if ((bmsr
& BMSR_100FULL
) &&
1830 (lp
->advertising
& ADVERTISED_100baseT_Full
))
1831 adv
|= ADVERTISE_100FULL
;
1832 err
= mii_write(np
, np
->phy_addr
, MII_ADVERTISE
, adv
);
1836 if (likely(bmsr
& BMSR_ESTATEN
)) {
1838 if ((estat
& ESTATUS_1000_THALF
) &&
1839 (lp
->advertising
& ADVERTISED_1000baseT_Half
))
1840 ctrl1000
|= ADVERTISE_1000HALF
;
1841 if ((estat
& ESTATUS_1000_TFULL
) &&
1842 (lp
->advertising
& ADVERTISED_1000baseT_Full
))
1843 ctrl1000
|= ADVERTISE_1000FULL
;
1844 err
= mii_write(np
, np
->phy_addr
,
1845 MII_CTRL1000
, ctrl1000
);
1850 bmcr
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1855 if (lp
->duplex
== DUPLEX_FULL
) {
1856 bmcr
|= BMCR_FULLDPLX
;
1858 } else if (lp
->duplex
== DUPLEX_HALF
)
1863 if (lp
->speed
== SPEED_1000
) {
1864 /* if X-full requested while not supported, or
1865 X-half requested while not supported... */
1866 if ((fulldpx
&& !(estat
& ESTATUS_1000_TFULL
)) ||
1867 (!fulldpx
&& !(estat
& ESTATUS_1000_THALF
)))
1869 bmcr
|= BMCR_SPEED1000
;
1870 } else if (lp
->speed
== SPEED_100
) {
1871 if ((fulldpx
&& !(bmsr
& BMSR_100FULL
)) ||
1872 (!fulldpx
&& !(bmsr
& BMSR_100HALF
)))
1874 bmcr
|= BMCR_SPEED100
;
1875 } else if (lp
->speed
== SPEED_10
) {
1876 if ((fulldpx
&& !(bmsr
& BMSR_10FULL
)) ||
1877 (!fulldpx
&& !(bmsr
& BMSR_10HALF
)))
1883 err
= mii_write(np
, np
->phy_addr
, MII_BMCR
, bmcr
);
1888 err
= mii_read(np
, np
->phy_addr
, MII_BMCR
);
1893 err
= mii_read(np
, np
->phy_addr
, MII_BMSR
);
1898 pr_info(PFX
"Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
1899 np
->port
, bmcr
, bmsr
);
1905 static int xcvr_init_1g(struct niu
*np
)
1909 /* XXX shared resource, lock parent XXX */
1910 val
= nr64(MIF_CONFIG
);
1911 val
&= ~MIF_CONFIG_INDIRECT_MODE
;
1912 nw64(MIF_CONFIG
, val
);
1914 return mii_init_common(np
);
1917 static int niu_xcvr_init(struct niu
*np
)
1919 const struct niu_phy_ops
*ops
= np
->phy_ops
;
1924 err
= ops
->xcvr_init(np
);
1929 static int niu_serdes_init(struct niu
*np
)
1931 const struct niu_phy_ops
*ops
= np
->phy_ops
;
1935 if (ops
->serdes_init
)
1936 err
= ops
->serdes_init(np
);
1941 static void niu_init_xif(struct niu
*);
1942 static void niu_handle_led(struct niu
*, int status
);
1944 static int niu_link_status_common(struct niu
*np
, int link_up
)
1946 struct niu_link_config
*lp
= &np
->link_config
;
1947 struct net_device
*dev
= np
->dev
;
1948 unsigned long flags
;
1950 if (!netif_carrier_ok(dev
) && link_up
) {
1951 niuinfo(LINK
, "%s: Link is up at %s, %s duplex\n",
1953 (lp
->active_speed
== SPEED_10000
?
1955 (lp
->active_speed
== SPEED_1000
?
1957 (lp
->active_speed
== SPEED_100
?
1958 "100Mbit/sec" : "10Mbit/sec"))),
1959 (lp
->active_duplex
== DUPLEX_FULL
?
1962 spin_lock_irqsave(&np
->lock
, flags
);
1964 niu_handle_led(np
, 1);
1965 spin_unlock_irqrestore(&np
->lock
, flags
);
1967 netif_carrier_on(dev
);
1968 } else if (netif_carrier_ok(dev
) && !link_up
) {
1969 niuwarn(LINK
, "%s: Link is down\n", dev
->name
);
1970 spin_lock_irqsave(&np
->lock
, flags
);
1971 niu_handle_led(np
, 0);
1972 spin_unlock_irqrestore(&np
->lock
, flags
);
1973 netif_carrier_off(dev
);
1979 static int link_status_10g_mrvl(struct niu
*np
, int *link_up_p
)
1981 int err
, link_up
, pma_status
, pcs_status
;
1985 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV1_ADDR
,
1986 MRVL88X2011_10G_PMD_STATUS_2
);
1990 /* Check PMA/PMD Register: 1.0001.2 == 1 */
1991 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV1_ADDR
,
1992 MRVL88X2011_PMA_PMD_STATUS_1
);
1996 pma_status
= ((err
& MRVL88X2011_LNK_STATUS_OK
) ? 1 : 0);
1998 /* Check PMC Register : 3.0001.2 == 1: read twice */
1999 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV3_ADDR
,
2000 MRVL88X2011_PMA_PMD_STATUS_1
);
2004 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV3_ADDR
,
2005 MRVL88X2011_PMA_PMD_STATUS_1
);
2009 pcs_status
= ((err
& MRVL88X2011_LNK_STATUS_OK
) ? 1 : 0);
2011 /* Check XGXS Register : 4.0018.[0-3,12] */
2012 err
= mdio_read(np
, np
->phy_addr
, MRVL88X2011_USER_DEV4_ADDR
,
2013 MRVL88X2011_10G_XGXS_LANE_STAT
);
2017 if (err
== (PHYXS_XGXS_LANE_STAT_ALINGED
| PHYXS_XGXS_LANE_STAT_LANE3
|
2018 PHYXS_XGXS_LANE_STAT_LANE2
| PHYXS_XGXS_LANE_STAT_LANE1
|
2019 PHYXS_XGXS_LANE_STAT_LANE0
| PHYXS_XGXS_LANE_STAT_MAGIC
|
2021 link_up
= (pma_status
&& pcs_status
) ? 1 : 0;
2023 np
->link_config
.active_speed
= SPEED_10000
;
2024 np
->link_config
.active_duplex
= DUPLEX_FULL
;
2027 mrvl88x2011_act_led(np
, (link_up
?
2028 MRVL88X2011_LED_CTL_PCS_ACT
:
2029 MRVL88X2011_LED_CTL_OFF
));
2031 *link_up_p
= link_up
;
2035 static int link_status_10g_bcm8706(struct niu
*np
, int *link_up_p
)
2040 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PMA_PMD_DEV_ADDR
,
2041 BCM8704_PMD_RCV_SIGDET
);
2042 if (err
< 0 || err
== 0xffff)
2044 if (!(err
& PMD_RCV_SIGDET_GLOBAL
)) {
2049 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PCS_DEV_ADDR
,
2050 BCM8704_PCS_10G_R_STATUS
);
2054 if (!(err
& PCS_10G_R_STATUS_BLK_LOCK
)) {
2059 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PHYXS_DEV_ADDR
,
2060 BCM8704_PHYXS_XGXS_LANE_STAT
);
2063 if (err
!= (PHYXS_XGXS_LANE_STAT_ALINGED
|
2064 PHYXS_XGXS_LANE_STAT_MAGIC
|
2065 PHYXS_XGXS_LANE_STAT_PATTEST
|
2066 PHYXS_XGXS_LANE_STAT_LANE3
|
2067 PHYXS_XGXS_LANE_STAT_LANE2
|
2068 PHYXS_XGXS_LANE_STAT_LANE1
|
2069 PHYXS_XGXS_LANE_STAT_LANE0
)) {
2071 np
->link_config
.active_speed
= SPEED_INVALID
;
2072 np
->link_config
.active_duplex
= DUPLEX_INVALID
;
2077 np
->link_config
.active_speed
= SPEED_10000
;
2078 np
->link_config
.active_duplex
= DUPLEX_FULL
;
2082 *link_up_p
= link_up
;
2086 static int link_status_10g_bcom(struct niu
*np
, int *link_up_p
)
2092 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PMA_PMD_DEV_ADDR
,
2093 BCM8704_PMD_RCV_SIGDET
);
2096 if (!(err
& PMD_RCV_SIGDET_GLOBAL
)) {
2101 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PCS_DEV_ADDR
,
2102 BCM8704_PCS_10G_R_STATUS
);
2105 if (!(err
& PCS_10G_R_STATUS_BLK_LOCK
)) {
2110 err
= mdio_read(np
, np
->phy_addr
, BCM8704_PHYXS_DEV_ADDR
,
2111 BCM8704_PHYXS_XGXS_LANE_STAT
);
2115 if (err
!= (PHYXS_XGXS_LANE_STAT_ALINGED
|
2116 PHYXS_XGXS_LANE_STAT_MAGIC
|
2117 PHYXS_XGXS_LANE_STAT_LANE3
|
2118 PHYXS_XGXS_LANE_STAT_LANE2
|
2119 PHYXS_XGXS_LANE_STAT_LANE1
|
2120 PHYXS_XGXS_LANE_STAT_LANE0
)) {
2126 np
->link_config
.active_speed
= SPEED_10000
;
2127 np
->link_config
.active_duplex
= DUPLEX_FULL
;
2131 *link_up_p
= link_up
;
2135 static int link_status_10g(struct niu
*np
, int *link_up_p
)
2137 unsigned long flags
;
2140 spin_lock_irqsave(&np
->lock
, flags
);
2142 if (np
->link_config
.loopback_mode
== LOOPBACK_DISABLED
) {
2145 phy_id
= phy_decode(np
->parent
->port_phy
, np
->port
);
2146 phy_id
= np
->parent
->phy_probe_info
.phy_id
[phy_id
][np
->port
];
2148 /* handle different phy types */
2149 switch (phy_id
& NIU_PHY_ID_MASK
) {
2150 case NIU_PHY_ID_MRVL88X2011
:
2151 err
= link_status_10g_mrvl(np
, link_up_p
);
2154 default: /* bcom 8704 */
2155 err
= link_status_10g_bcom(np
, link_up_p
);
2160 spin_unlock_irqrestore(&np
->lock
, flags
);
2165 static int niu_10g_phy_present(struct niu
*np
)
2169 sig
= nr64(ESR_INT_SIGNALS
);
2172 mask
= ESR_INT_SIGNALS_P0_BITS
;
2173 val
= (ESR_INT_SRDY0_P0
|
2176 ESR_INT_XDP_P0_CH3
|
2177 ESR_INT_XDP_P0_CH2
|
2178 ESR_INT_XDP_P0_CH1
|
2179 ESR_INT_XDP_P0_CH0
);
2183 mask
= ESR_INT_SIGNALS_P1_BITS
;
2184 val
= (ESR_INT_SRDY0_P1
|
2187 ESR_INT_XDP_P1_CH3
|
2188 ESR_INT_XDP_P1_CH2
|
2189 ESR_INT_XDP_P1_CH1
|
2190 ESR_INT_XDP_P1_CH0
);
2197 if ((sig
& mask
) != val
)
2202 static int link_status_10g_hotplug(struct niu
*np
, int *link_up_p
)
2204 unsigned long flags
;
2207 int phy_present_prev
;
2209 spin_lock_irqsave(&np
->lock
, flags
);
2211 if (np
->link_config
.loopback_mode
== LOOPBACK_DISABLED
) {
2212 phy_present_prev
= (np
->flags
& NIU_FLAGS_HOTPLUG_PHY_PRESENT
) ?
2214 phy_present
= niu_10g_phy_present(np
);
2215 if (phy_present
!= phy_present_prev
) {
2218 /* A NEM was just plugged in */
2219 np
->flags
|= NIU_FLAGS_HOTPLUG_PHY_PRESENT
;
2220 if (np
->phy_ops
->xcvr_init
)
2221 err
= np
->phy_ops
->xcvr_init(np
);
2223 err
= mdio_read(np
, np
->phy_addr
,
2224 BCM8704_PHYXS_DEV_ADDR
, MII_BMCR
);
2225 if (err
== 0xffff) {
2226 /* No mdio, back-to-back XAUI */
2230 np
->flags
&= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT
;
2233 np
->flags
&= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT
;
2235 niuwarn(LINK
, "%s: Hotplug PHY Removed\n",
2240 if (np
->flags
& NIU_FLAGS_HOTPLUG_PHY_PRESENT
) {
2241 err
= link_status_10g_bcm8706(np
, link_up_p
);
2242 if (err
== 0xffff) {
2243 /* No mdio, back-to-back XAUI: it is C10NEM */
2245 np
->link_config
.active_speed
= SPEED_10000
;
2246 np
->link_config
.active_duplex
= DUPLEX_FULL
;
2251 spin_unlock_irqrestore(&np
->lock
, flags
);
2256 static int niu_link_status(struct niu
*np
, int *link_up_p
)
2258 const struct niu_phy_ops
*ops
= np
->phy_ops
;
2262 if (ops
->link_status
)
2263 err
= ops
->link_status(np
, link_up_p
);
2268 static void niu_timer(unsigned long __opaque
)
2270 struct niu
*np
= (struct niu
*) __opaque
;
2274 err
= niu_link_status(np
, &link_up
);
2276 niu_link_status_common(np
, link_up
);
2278 if (netif_carrier_ok(np
->dev
))
2282 np
->timer
.expires
= jiffies
+ off
;
2284 add_timer(&np
->timer
);
2287 static const struct niu_phy_ops phy_ops_10g_serdes
= {
2288 .serdes_init
= serdes_init_10g_serdes
,
2289 .link_status
= link_status_10g_serdes
,
2292 static const struct niu_phy_ops phy_ops_10g_serdes_niu
= {
2293 .serdes_init
= serdes_init_niu_10g_serdes
,
2294 .link_status
= link_status_10g_serdes
,
2297 static const struct niu_phy_ops phy_ops_1g_serdes_niu
= {
2298 .serdes_init
= serdes_init_niu_1g_serdes
,
2299 .link_status
= link_status_1g_serdes
,
2302 static const struct niu_phy_ops phy_ops_1g_rgmii
= {
2303 .xcvr_init
= xcvr_init_1g_rgmii
,
2304 .link_status
= link_status_1g_rgmii
,
2307 static const struct niu_phy_ops phy_ops_10g_fiber_niu
= {
2308 .serdes_init
= serdes_init_niu_10g_fiber
,
2309 .xcvr_init
= xcvr_init_10g
,
2310 .link_status
= link_status_10g
,
2313 static const struct niu_phy_ops phy_ops_10g_fiber
= {
2314 .serdes_init
= serdes_init_10g
,
2315 .xcvr_init
= xcvr_init_10g
,
2316 .link_status
= link_status_10g
,
2319 static const struct niu_phy_ops phy_ops_10g_fiber_hotplug
= {
2320 .serdes_init
= serdes_init_10g
,
2321 .xcvr_init
= xcvr_init_10g_bcm8706
,
2322 .link_status
= link_status_10g_hotplug
,
2325 static const struct niu_phy_ops phy_ops_niu_10g_hotplug
= {
2326 .serdes_init
= serdes_init_niu_10g_fiber
,
2327 .xcvr_init
= xcvr_init_10g_bcm8706
,
2328 .link_status
= link_status_10g_hotplug
,
2331 static const struct niu_phy_ops phy_ops_10g_copper
= {
2332 .serdes_init
= serdes_init_10g
,
2333 .link_status
= link_status_10g
, /* XXX */
2336 static const struct niu_phy_ops phy_ops_1g_fiber
= {
2337 .serdes_init
= serdes_init_1g
,
2338 .xcvr_init
= xcvr_init_1g
,
2339 .link_status
= link_status_1g
,
2342 static const struct niu_phy_ops phy_ops_1g_copper
= {
2343 .xcvr_init
= xcvr_init_1g
,
2344 .link_status
= link_status_1g
,
2347 struct niu_phy_template
{
2348 const struct niu_phy_ops
*ops
;
2352 static const struct niu_phy_template phy_template_niu_10g_fiber
= {
2353 .ops
= &phy_ops_10g_fiber_niu
,
2354 .phy_addr_base
= 16,
2357 static const struct niu_phy_template phy_template_niu_10g_serdes
= {
2358 .ops
= &phy_ops_10g_serdes_niu
,
2362 static const struct niu_phy_template phy_template_niu_1g_serdes
= {
2363 .ops
= &phy_ops_1g_serdes_niu
,
2367 static const struct niu_phy_template phy_template_10g_fiber
= {
2368 .ops
= &phy_ops_10g_fiber
,
2372 static const struct niu_phy_template phy_template_10g_fiber_hotplug
= {
2373 .ops
= &phy_ops_10g_fiber_hotplug
,
2377 static const struct niu_phy_template phy_template_niu_10g_hotplug
= {
2378 .ops
= &phy_ops_niu_10g_hotplug
,
2382 static const struct niu_phy_template phy_template_10g_copper
= {
2383 .ops
= &phy_ops_10g_copper
,
2384 .phy_addr_base
= 10,
2387 static const struct niu_phy_template phy_template_1g_fiber
= {
2388 .ops
= &phy_ops_1g_fiber
,
2392 static const struct niu_phy_template phy_template_1g_copper
= {
2393 .ops
= &phy_ops_1g_copper
,
2397 static const struct niu_phy_template phy_template_1g_rgmii
= {
2398 .ops
= &phy_ops_1g_rgmii
,
2402 static const struct niu_phy_template phy_template_10g_serdes
= {
2403 .ops
= &phy_ops_10g_serdes
,
2407 static int niu_atca_port_num
[4] = {
2411 static int serdes_init_10g_serdes(struct niu
*np
)
2413 struct niu_link_config
*lp
= &np
->link_config
;
2414 unsigned long ctrl_reg
, test_cfg_reg
, pll_cfg
, i
;
2415 u64 ctrl_val
, test_cfg_val
, sig
, mask
, val
;
2420 reset_val
= ENET_SERDES_RESET_0
;
2421 ctrl_reg
= ENET_SERDES_0_CTRL_CFG
;
2422 test_cfg_reg
= ENET_SERDES_0_TEST_CFG
;
2423 pll_cfg
= ENET_SERDES_0_PLL_CFG
;
2426 reset_val
= ENET_SERDES_RESET_1
;
2427 ctrl_reg
= ENET_SERDES_1_CTRL_CFG
;
2428 test_cfg_reg
= ENET_SERDES_1_TEST_CFG
;
2429 pll_cfg
= ENET_SERDES_1_PLL_CFG
;
2435 ctrl_val
= (ENET_SERDES_CTRL_SDET_0
|
2436 ENET_SERDES_CTRL_SDET_1
|
2437 ENET_SERDES_CTRL_SDET_2
|
2438 ENET_SERDES_CTRL_SDET_3
|
2439 (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT
) |
2440 (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT
) |
2441 (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT
) |
2442 (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT
) |
2443 (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT
) |
2444 (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT
) |
2445 (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT
) |
2446 (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT
));
2449 if (lp
->loopback_mode
== LOOPBACK_PHY
) {
2450 test_cfg_val
|= ((ENET_TEST_MD_PAD_LOOPBACK
<<
2451 ENET_SERDES_TEST_MD_0_SHIFT
) |
2452 (ENET_TEST_MD_PAD_LOOPBACK
<<
2453 ENET_SERDES_TEST_MD_1_SHIFT
) |
2454 (ENET_TEST_MD_PAD_LOOPBACK
<<
2455 ENET_SERDES_TEST_MD_2_SHIFT
) |
2456 (ENET_TEST_MD_PAD_LOOPBACK
<<
2457 ENET_SERDES_TEST_MD_3_SHIFT
));
2461 nw64(pll_cfg
, ENET_SERDES_PLL_FBDIV2
);
2462 nw64(ctrl_reg
, ctrl_val
);
2463 nw64(test_cfg_reg
, test_cfg_val
);
2465 /* Initialize all 4 lanes of the SERDES. */
2466 for (i
= 0; i
< 4; i
++) {
2467 u32 rxtx_ctrl
, glue0
;
2470 err
= esr_read_rxtx_ctrl(np
, i
, &rxtx_ctrl
);
2473 err
= esr_read_glue0(np
, i
, &glue0
);
2477 rxtx_ctrl
&= ~(ESR_RXTX_CTRL_VMUXLO
);
2478 rxtx_ctrl
|= (ESR_RXTX_CTRL_ENSTRETCH
|
2479 (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT
));
2481 glue0
&= ~(ESR_GLUE_CTRL0_SRATE
|
2482 ESR_GLUE_CTRL0_THCNT
|
2483 ESR_GLUE_CTRL0_BLTIME
);
2484 glue0
|= (ESR_GLUE_CTRL0_RXLOSENAB
|
2485 (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT
) |
2486 (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT
) |
2487 (BLTIME_300_CYCLES
<<
2488 ESR_GLUE_CTRL0_BLTIME_SHIFT
));
2490 err
= esr_write_rxtx_ctrl(np
, i
, rxtx_ctrl
);
2493 err
= esr_write_glue0(np
, i
, glue0
);
2499 sig
= nr64(ESR_INT_SIGNALS
);
2502 mask
= ESR_INT_SIGNALS_P0_BITS
;
2503 val
= (ESR_INT_SRDY0_P0
|
2506 ESR_INT_XDP_P0_CH3
|
2507 ESR_INT_XDP_P0_CH2
|
2508 ESR_INT_XDP_P0_CH1
|
2509 ESR_INT_XDP_P0_CH0
);
2513 mask
= ESR_INT_SIGNALS_P1_BITS
;
2514 val
= (ESR_INT_SRDY0_P1
|
2517 ESR_INT_XDP_P1_CH3
|
2518 ESR_INT_XDP_P1_CH2
|
2519 ESR_INT_XDP_P1_CH1
|
2520 ESR_INT_XDP_P1_CH0
);
2527 if ((sig
& mask
) != val
) {
2529 err
= serdes_init_1g_serdes(np
);
2531 np
->flags
&= ~NIU_FLAGS_10G
;
2532 np
->mac_xcvr
= MAC_XCVR_PCS
;
2534 dev_err(np
->device
, PFX
"Port %u 10G/1G SERDES Link Failed \n",
2543 static int niu_determine_phy_disposition(struct niu
*np
)
2545 struct niu_parent
*parent
= np
->parent
;
2546 u8 plat_type
= parent
->plat_type
;
2547 const struct niu_phy_template
*tp
;
2548 u32 phy_addr_off
= 0;
2550 if (plat_type
== PLAT_TYPE_NIU
) {
2554 NIU_FLAGS_XCVR_SERDES
)) {
2555 case NIU_FLAGS_10G
| NIU_FLAGS_XCVR_SERDES
:
2557 tp
= &phy_template_niu_10g_serdes
;
2559 case NIU_FLAGS_XCVR_SERDES
:
2561 tp
= &phy_template_niu_1g_serdes
;
2563 case NIU_FLAGS_10G
| NIU_FLAGS_FIBER
:
2566 if (np
->flags
& NIU_FLAGS_HOTPLUG_PHY
) {
2567 tp
= &phy_template_niu_10g_hotplug
;
2573 tp
= &phy_template_niu_10g_fiber
;
2574 phy_addr_off
+= np
->port
;
2582 NIU_FLAGS_XCVR_SERDES
)) {
2585 tp
= &phy_template_1g_copper
;
2586 if (plat_type
== PLAT_TYPE_VF_P0
)
2588 else if (plat_type
== PLAT_TYPE_VF_P1
)
2591 phy_addr_off
+= (np
->port
^ 0x3);
2596 tp
= &phy_template_10g_copper
;
2599 case NIU_FLAGS_FIBER
:
2601 tp
= &phy_template_1g_fiber
;
2604 case NIU_FLAGS_10G
| NIU_FLAGS_FIBER
:
2606 tp
= &phy_template_10g_fiber
;
2607 if (plat_type
== PLAT_TYPE_VF_P0
||
2608 plat_type
== PLAT_TYPE_VF_P1
)
2610 phy_addr_off
+= np
->port
;
2611 if (np
->flags
& NIU_FLAGS_HOTPLUG_PHY
) {
2612 tp
= &phy_template_10g_fiber_hotplug
;
2620 case NIU_FLAGS_10G
| NIU_FLAGS_XCVR_SERDES
:
2621 case NIU_FLAGS_XCVR_SERDES
| NIU_FLAGS_FIBER
:
2622 case NIU_FLAGS_XCVR_SERDES
:
2626 tp
= &phy_template_10g_serdes
;
2630 tp
= &phy_template_1g_rgmii
;
2636 phy_addr_off
= niu_atca_port_num
[np
->port
];
2644 np
->phy_ops
= tp
->ops
;
2645 np
->phy_addr
= tp
->phy_addr_base
+ phy_addr_off
;
2650 static int niu_init_link(struct niu
*np
)
2652 struct niu_parent
*parent
= np
->parent
;
2655 if (parent
->plat_type
== PLAT_TYPE_NIU
) {
2656 err
= niu_xcvr_init(np
);
2661 err
= niu_serdes_init(np
);
2662 if (err
&& !(np
->flags
& NIU_FLAGS_HOTPLUG_PHY
))
2665 err
= niu_xcvr_init(np
);
2666 if (!err
|| (np
->flags
& NIU_FLAGS_HOTPLUG_PHY
))
2667 niu_link_status(np
, &ignore
);
2671 static void niu_set_primary_mac(struct niu
*np
, unsigned char *addr
)
2673 u16 reg0
= addr
[4] << 8 | addr
[5];
2674 u16 reg1
= addr
[2] << 8 | addr
[3];
2675 u16 reg2
= addr
[0] << 8 | addr
[1];
2677 if (np
->flags
& NIU_FLAGS_XMAC
) {
2678 nw64_mac(XMAC_ADDR0
, reg0
);
2679 nw64_mac(XMAC_ADDR1
, reg1
);
2680 nw64_mac(XMAC_ADDR2
, reg2
);
2682 nw64_mac(BMAC_ADDR0
, reg0
);
2683 nw64_mac(BMAC_ADDR1
, reg1
);
2684 nw64_mac(BMAC_ADDR2
, reg2
);
2688 static int niu_num_alt_addr(struct niu
*np
)
2690 if (np
->flags
& NIU_FLAGS_XMAC
)
2691 return XMAC_NUM_ALT_ADDR
;
2693 return BMAC_NUM_ALT_ADDR
;
2696 static int niu_set_alt_mac(struct niu
*np
, int index
, unsigned char *addr
)
2698 u16 reg0
= addr
[4] << 8 | addr
[5];
2699 u16 reg1
= addr
[2] << 8 | addr
[3];
2700 u16 reg2
= addr
[0] << 8 | addr
[1];
2702 if (index
>= niu_num_alt_addr(np
))
2705 if (np
->flags
& NIU_FLAGS_XMAC
) {
2706 nw64_mac(XMAC_ALT_ADDR0(index
), reg0
);
2707 nw64_mac(XMAC_ALT_ADDR1(index
), reg1
);
2708 nw64_mac(XMAC_ALT_ADDR2(index
), reg2
);
2710 nw64_mac(BMAC_ALT_ADDR0(index
), reg0
);
2711 nw64_mac(BMAC_ALT_ADDR1(index
), reg1
);
2712 nw64_mac(BMAC_ALT_ADDR2(index
), reg2
);
2718 static int niu_enable_alt_mac(struct niu
*np
, int index
, int on
)
2723 if (index
>= niu_num_alt_addr(np
))
2726 if (np
->flags
& NIU_FLAGS_XMAC
) {
2727 reg
= XMAC_ADDR_CMPEN
;
2730 reg
= BMAC_ADDR_CMPEN
;
2731 mask
= 1 << (index
+ 1);
2734 val
= nr64_mac(reg
);
2744 static void __set_rdc_table_num_hw(struct niu
*np
, unsigned long reg
,
2745 int num
, int mac_pref
)
2747 u64 val
= nr64_mac(reg
);
2748 val
&= ~(HOST_INFO_MACRDCTBLN
| HOST_INFO_MPR
);
2751 val
|= HOST_INFO_MPR
;
2755 static int __set_rdc_table_num(struct niu
*np
,
2756 int xmac_index
, int bmac_index
,
2757 int rdc_table_num
, int mac_pref
)
2761 if (rdc_table_num
& ~HOST_INFO_MACRDCTBLN
)
2763 if (np
->flags
& NIU_FLAGS_XMAC
)
2764 reg
= XMAC_HOST_INFO(xmac_index
);
2766 reg
= BMAC_HOST_INFO(bmac_index
);
2767 __set_rdc_table_num_hw(np
, reg
, rdc_table_num
, mac_pref
);
2771 static int niu_set_primary_mac_rdc_table(struct niu
*np
, int table_num
,
2774 return __set_rdc_table_num(np
, 17, 0, table_num
, mac_pref
);
2777 static int niu_set_multicast_mac_rdc_table(struct niu
*np
, int table_num
,
2780 return __set_rdc_table_num(np
, 16, 8, table_num
, mac_pref
);
2783 static int niu_set_alt_mac_rdc_table(struct niu
*np
, int idx
,
2784 int table_num
, int mac_pref
)
2786 if (idx
>= niu_num_alt_addr(np
))
2788 return __set_rdc_table_num(np
, idx
, idx
+ 1, table_num
, mac_pref
);
2791 static u64
vlan_entry_set_parity(u64 reg_val
)
2796 port01_mask
= 0x00ff;
2797 port23_mask
= 0xff00;
2799 if (hweight64(reg_val
& port01_mask
) & 1)
2800 reg_val
|= ENET_VLAN_TBL_PARITY0
;
2802 reg_val
&= ~ENET_VLAN_TBL_PARITY0
;
2804 if (hweight64(reg_val
& port23_mask
) & 1)
2805 reg_val
|= ENET_VLAN_TBL_PARITY1
;
2807 reg_val
&= ~ENET_VLAN_TBL_PARITY1
;
2812 static void vlan_tbl_write(struct niu
*np
, unsigned long index
,
2813 int port
, int vpr
, int rdc_table
)
2815 u64 reg_val
= nr64(ENET_VLAN_TBL(index
));
2817 reg_val
&= ~((ENET_VLAN_TBL_VPR
|
2818 ENET_VLAN_TBL_VLANRDCTBLN
) <<
2819 ENET_VLAN_TBL_SHIFT(port
));
2821 reg_val
|= (ENET_VLAN_TBL_VPR
<<
2822 ENET_VLAN_TBL_SHIFT(port
));
2823 reg_val
|= (rdc_table
<< ENET_VLAN_TBL_SHIFT(port
));
2825 reg_val
= vlan_entry_set_parity(reg_val
);
2827 nw64(ENET_VLAN_TBL(index
), reg_val
);
2830 static void vlan_tbl_clear(struct niu
*np
)
2834 for (i
= 0; i
< ENET_VLAN_TBL_NUM_ENTRIES
; i
++)
2835 nw64(ENET_VLAN_TBL(i
), 0);
2838 static int tcam_wait_bit(struct niu
*np
, u64 bit
)
2842 while (--limit
> 0) {
2843 if (nr64(TCAM_CTL
) & bit
)
2853 static int tcam_flush(struct niu
*np
, int index
)
2855 nw64(TCAM_KEY_0
, 0x00);
2856 nw64(TCAM_KEY_MASK_0
, 0xff);
2857 nw64(TCAM_CTL
, (TCAM_CTL_RWC_TCAM_WRITE
| index
));
2859 return tcam_wait_bit(np
, TCAM_CTL_STAT
);
2863 static int tcam_read(struct niu
*np
, int index
,
2864 u64
*key
, u64
*mask
)
2868 nw64(TCAM_CTL
, (TCAM_CTL_RWC_TCAM_READ
| index
));
2869 err
= tcam_wait_bit(np
, TCAM_CTL_STAT
);
2871 key
[0] = nr64(TCAM_KEY_0
);
2872 key
[1] = nr64(TCAM_KEY_1
);
2873 key
[2] = nr64(TCAM_KEY_2
);
2874 key
[3] = nr64(TCAM_KEY_3
);
2875 mask
[0] = nr64(TCAM_KEY_MASK_0
);
2876 mask
[1] = nr64(TCAM_KEY_MASK_1
);
2877 mask
[2] = nr64(TCAM_KEY_MASK_2
);
2878 mask
[3] = nr64(TCAM_KEY_MASK_3
);
2884 static int tcam_write(struct niu
*np
, int index
,
2885 u64
*key
, u64
*mask
)
2887 nw64(TCAM_KEY_0
, key
[0]);
2888 nw64(TCAM_KEY_1
, key
[1]);
2889 nw64(TCAM_KEY_2
, key
[2]);
2890 nw64(TCAM_KEY_3
, key
[3]);
2891 nw64(TCAM_KEY_MASK_0
, mask
[0]);
2892 nw64(TCAM_KEY_MASK_1
, mask
[1]);
2893 nw64(TCAM_KEY_MASK_2
, mask
[2]);
2894 nw64(TCAM_KEY_MASK_3
, mask
[3]);
2895 nw64(TCAM_CTL
, (TCAM_CTL_RWC_TCAM_WRITE
| index
));
2897 return tcam_wait_bit(np
, TCAM_CTL_STAT
);
2901 static int tcam_assoc_read(struct niu
*np
, int index
, u64
*data
)
2905 nw64(TCAM_CTL
, (TCAM_CTL_RWC_RAM_READ
| index
));
2906 err
= tcam_wait_bit(np
, TCAM_CTL_STAT
);
2908 *data
= nr64(TCAM_KEY_1
);
2914 static int tcam_assoc_write(struct niu
*np
, int index
, u64 assoc_data
)
2916 nw64(TCAM_KEY_1
, assoc_data
);
2917 nw64(TCAM_CTL
, (TCAM_CTL_RWC_RAM_WRITE
| index
));
2919 return tcam_wait_bit(np
, TCAM_CTL_STAT
);
2922 static void tcam_enable(struct niu
*np
, int on
)
2924 u64 val
= nr64(FFLP_CFG_1
);
2927 val
&= ~FFLP_CFG_1_TCAM_DIS
;
2929 val
|= FFLP_CFG_1_TCAM_DIS
;
2930 nw64(FFLP_CFG_1
, val
);
2933 static void tcam_set_lat_and_ratio(struct niu
*np
, u64 latency
, u64 ratio
)
2935 u64 val
= nr64(FFLP_CFG_1
);
2937 val
&= ~(FFLP_CFG_1_FFLPINITDONE
|
2939 FFLP_CFG_1_CAMRATIO
);
2940 val
|= (latency
<< FFLP_CFG_1_CAMLAT_SHIFT
);
2941 val
|= (ratio
<< FFLP_CFG_1_CAMRATIO_SHIFT
);
2942 nw64(FFLP_CFG_1
, val
);
2944 val
= nr64(FFLP_CFG_1
);
2945 val
|= FFLP_CFG_1_FFLPINITDONE
;
2946 nw64(FFLP_CFG_1
, val
);
2949 static int tcam_user_eth_class_enable(struct niu
*np
, unsigned long class,
2955 if (class < CLASS_CODE_ETHERTYPE1
||
2956 class > CLASS_CODE_ETHERTYPE2
)
2959 reg
= L2_CLS(class - CLASS_CODE_ETHERTYPE1
);
2971 static int tcam_user_eth_class_set(struct niu
*np
, unsigned long class,
2977 if (class < CLASS_CODE_ETHERTYPE1
||
2978 class > CLASS_CODE_ETHERTYPE2
||
2979 (ether_type
& ~(u64
)0xffff) != 0)
2982 reg
= L2_CLS(class - CLASS_CODE_ETHERTYPE1
);
2984 val
&= ~L2_CLS_ETYPE
;
2985 val
|= (ether_type
<< L2_CLS_ETYPE_SHIFT
);
2992 static int tcam_user_ip_class_enable(struct niu
*np
, unsigned long class,
2998 if (class < CLASS_CODE_USER_PROG1
||
2999 class > CLASS_CODE_USER_PROG4
)
3002 reg
= L3_CLS(class - CLASS_CODE_USER_PROG1
);
3005 val
|= L3_CLS_VALID
;
3007 val
&= ~L3_CLS_VALID
;
3013 static int tcam_user_ip_class_set(struct niu
*np
, unsigned long class,
3014 int ipv6
, u64 protocol_id
,
3015 u64 tos_mask
, u64 tos_val
)
3020 if (class < CLASS_CODE_USER_PROG1
||
3021 class > CLASS_CODE_USER_PROG4
||
3022 (protocol_id
& ~(u64
)0xff) != 0 ||
3023 (tos_mask
& ~(u64
)0xff) != 0 ||
3024 (tos_val
& ~(u64
)0xff) != 0)
3027 reg
= L3_CLS(class - CLASS_CODE_USER_PROG1
);
3029 val
&= ~(L3_CLS_IPVER
| L3_CLS_PID
|
3030 L3_CLS_TOSMASK
| L3_CLS_TOS
);
3032 val
|= L3_CLS_IPVER
;
3033 val
|= (protocol_id
<< L3_CLS_PID_SHIFT
);
3034 val
|= (tos_mask
<< L3_CLS_TOSMASK_SHIFT
);
3035 val
|= (tos_val
<< L3_CLS_TOS_SHIFT
);
3041 static int tcam_early_init(struct niu
*np
)
3047 tcam_set_lat_and_ratio(np
,
3048 DEFAULT_TCAM_LATENCY
,
3049 DEFAULT_TCAM_ACCESS_RATIO
);
3050 for (i
= CLASS_CODE_ETHERTYPE1
; i
<= CLASS_CODE_ETHERTYPE2
; i
++) {
3051 err
= tcam_user_eth_class_enable(np
, i
, 0);
3055 for (i
= CLASS_CODE_USER_PROG1
; i
<= CLASS_CODE_USER_PROG4
; i
++) {
3056 err
= tcam_user_ip_class_enable(np
, i
, 0);
3064 static int tcam_flush_all(struct niu
*np
)
3068 for (i
= 0; i
< np
->parent
->tcam_num_entries
; i
++) {
3069 int err
= tcam_flush(np
, i
);
3076 static u64
hash_addr_regval(unsigned long index
, unsigned long num_entries
)
3078 return ((u64
)index
| (num_entries
== 1 ?
3079 HASH_TBL_ADDR_AUTOINC
: 0));
3083 static int hash_read(struct niu
*np
, unsigned long partition
,
3084 unsigned long index
, unsigned long num_entries
,
3087 u64 val
= hash_addr_regval(index
, num_entries
);
3090 if (partition
>= FCRAM_NUM_PARTITIONS
||
3091 index
+ num_entries
> FCRAM_SIZE
)
3094 nw64(HASH_TBL_ADDR(partition
), val
);
3095 for (i
= 0; i
< num_entries
; i
++)
3096 data
[i
] = nr64(HASH_TBL_DATA(partition
));
3102 static int hash_write(struct niu
*np
, unsigned long partition
,
3103 unsigned long index
, unsigned long num_entries
,
3106 u64 val
= hash_addr_regval(index
, num_entries
);
3109 if (partition
>= FCRAM_NUM_PARTITIONS
||
3110 index
+ (num_entries
* 8) > FCRAM_SIZE
)
3113 nw64(HASH_TBL_ADDR(partition
), val
);
3114 for (i
= 0; i
< num_entries
; i
++)
3115 nw64(HASH_TBL_DATA(partition
), data
[i
]);
3120 static void fflp_reset(struct niu
*np
)
3124 nw64(FFLP_CFG_1
, FFLP_CFG_1_PIO_FIO_RST
);
3126 nw64(FFLP_CFG_1
, 0);
3128 val
= FFLP_CFG_1_FCRAMOUTDR_NORMAL
| FFLP_CFG_1_FFLPINITDONE
;
3129 nw64(FFLP_CFG_1
, val
);
3132 static void fflp_set_timings(struct niu
*np
)
3134 u64 val
= nr64(FFLP_CFG_1
);
3136 val
&= ~FFLP_CFG_1_FFLPINITDONE
;
3137 val
|= (DEFAULT_FCRAMRATIO
<< FFLP_CFG_1_FCRAMRATIO_SHIFT
);
3138 nw64(FFLP_CFG_1
, val
);
3140 val
= nr64(FFLP_CFG_1
);
3141 val
|= FFLP_CFG_1_FFLPINITDONE
;
3142 nw64(FFLP_CFG_1
, val
);
3144 val
= nr64(FCRAM_REF_TMR
);
3145 val
&= ~(FCRAM_REF_TMR_MAX
| FCRAM_REF_TMR_MIN
);
3146 val
|= (DEFAULT_FCRAM_REFRESH_MAX
<< FCRAM_REF_TMR_MAX_SHIFT
);
3147 val
|= (DEFAULT_FCRAM_REFRESH_MIN
<< FCRAM_REF_TMR_MIN_SHIFT
);
3148 nw64(FCRAM_REF_TMR
, val
);
3151 static int fflp_set_partition(struct niu
*np
, u64 partition
,
3152 u64 mask
, u64 base
, int enable
)
3157 if (partition
>= FCRAM_NUM_PARTITIONS
||
3158 (mask
& ~(u64
)0x1f) != 0 ||
3159 (base
& ~(u64
)0x1f) != 0)
3162 reg
= FLW_PRT_SEL(partition
);
3165 val
&= ~(FLW_PRT_SEL_EXT
| FLW_PRT_SEL_MASK
| FLW_PRT_SEL_BASE
);
3166 val
|= (mask
<< FLW_PRT_SEL_MASK_SHIFT
);
3167 val
|= (base
<< FLW_PRT_SEL_BASE_SHIFT
);
3169 val
|= FLW_PRT_SEL_EXT
;
3175 static int fflp_disable_all_partitions(struct niu
*np
)
3179 for (i
= 0; i
< FCRAM_NUM_PARTITIONS
; i
++) {
3180 int err
= fflp_set_partition(np
, 0, 0, 0, 0);
3187 static void fflp_llcsnap_enable(struct niu
*np
, int on
)
3189 u64 val
= nr64(FFLP_CFG_1
);
3192 val
|= FFLP_CFG_1_LLCSNAP
;
3194 val
&= ~FFLP_CFG_1_LLCSNAP
;
3195 nw64(FFLP_CFG_1
, val
);
3198 static void fflp_errors_enable(struct niu
*np
, int on
)
3200 u64 val
= nr64(FFLP_CFG_1
);
3203 val
&= ~FFLP_CFG_1_ERRORDIS
;
3205 val
|= FFLP_CFG_1_ERRORDIS
;
3206 nw64(FFLP_CFG_1
, val
);
3209 static int fflp_hash_clear(struct niu
*np
)
3211 struct fcram_hash_ipv4 ent
;
3214 /* IPV4 hash entry with valid bit clear, rest is don't care. */
3215 memset(&ent
, 0, sizeof(ent
));
3216 ent
.header
= HASH_HEADER_EXT
;
3218 for (i
= 0; i
< FCRAM_SIZE
; i
+= sizeof(ent
)) {
3219 int err
= hash_write(np
, 0, i
, 1, (u64
*) &ent
);
3226 static int fflp_early_init(struct niu
*np
)
3228 struct niu_parent
*parent
;
3229 unsigned long flags
;
3232 niu_lock_parent(np
, flags
);
3234 parent
= np
->parent
;
3236 if (!(parent
->flags
& PARENT_FLGS_CLS_HWINIT
)) {
3237 niudbg(PROBE
, "fflp_early_init: Initting hw on port %u\n",
3239 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
) {
3241 fflp_set_timings(np
);
3242 err
= fflp_disable_all_partitions(np
);
3244 niudbg(PROBE
, "fflp_disable_all_partitions "
3245 "failed, err=%d\n", err
);
3250 err
= tcam_early_init(np
);
3252 niudbg(PROBE
, "tcam_early_init failed, err=%d\n",
3256 fflp_llcsnap_enable(np
, 1);
3257 fflp_errors_enable(np
, 0);
3261 err
= tcam_flush_all(np
);
3263 niudbg(PROBE
, "tcam_flush_all failed, err=%d\n",
3267 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
) {
3268 err
= fflp_hash_clear(np
);
3270 niudbg(PROBE
, "fflp_hash_clear failed, "
3278 niudbg(PROBE
, "fflp_early_init: Success\n");
3279 parent
->flags
|= PARENT_FLGS_CLS_HWINIT
;
3282 niu_unlock_parent(np
, flags
);
3286 static int niu_set_flow_key(struct niu
*np
, unsigned long class_code
, u64 key
)
3288 if (class_code
< CLASS_CODE_USER_PROG1
||
3289 class_code
> CLASS_CODE_SCTP_IPV6
)
3292 nw64(FLOW_KEY(class_code
- CLASS_CODE_USER_PROG1
), key
);
3296 static int niu_set_tcam_key(struct niu
*np
, unsigned long class_code
, u64 key
)
3298 if (class_code
< CLASS_CODE_USER_PROG1
||
3299 class_code
> CLASS_CODE_SCTP_IPV6
)
3302 nw64(TCAM_KEY(class_code
- CLASS_CODE_USER_PROG1
), key
);
3306 /* Entries for the ports are interleaved in the TCAM */
3307 static u16
tcam_get_index(struct niu
*np
, u16 idx
)
3309 /* One entry reserved for IP fragment rule */
3310 if (idx
>= (np
->clas
.tcam_sz
- 1))
3312 return (np
->clas
.tcam_top
+ ((idx
+1) * np
->parent
->num_ports
));
3315 static u16
tcam_get_size(struct niu
*np
)
3317 /* One entry reserved for IP fragment rule */
3318 return np
->clas
.tcam_sz
- 1;
3321 static u16
tcam_get_valid_entry_cnt(struct niu
*np
)
3323 /* One entry reserved for IP fragment rule */
3324 return np
->clas
.tcam_valid_entries
- 1;
3327 static void niu_rx_skb_append(struct sk_buff
*skb
, struct page
*page
,
3328 u32 offset
, u32 size
)
3330 int i
= skb_shinfo(skb
)->nr_frags
;
3331 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3334 frag
->page_offset
= offset
;
3338 skb
->data_len
+= size
;
3339 skb
->truesize
+= size
;
3341 skb_shinfo(skb
)->nr_frags
= i
+ 1;
3344 static unsigned int niu_hash_rxaddr(struct rx_ring_info
*rp
, u64 a
)
3347 a
^= (a
>> ilog2(MAX_RBR_RING_SIZE
));
3349 return (a
& (MAX_RBR_RING_SIZE
- 1));
3352 static struct page
*niu_find_rxpage(struct rx_ring_info
*rp
, u64 addr
,
3353 struct page
***link
)
3355 unsigned int h
= niu_hash_rxaddr(rp
, addr
);
3356 struct page
*p
, **pp
;
3359 pp
= &rp
->rxhash
[h
];
3360 for (; (p
= *pp
) != NULL
; pp
= (struct page
**) &p
->mapping
) {
3361 if (p
->index
== addr
) {
3370 static void niu_hash_page(struct rx_ring_info
*rp
, struct page
*page
, u64 base
)
3372 unsigned int h
= niu_hash_rxaddr(rp
, base
);
3375 page
->mapping
= (struct address_space
*) rp
->rxhash
[h
];
3376 rp
->rxhash
[h
] = page
;
3379 static int niu_rbr_add_page(struct niu
*np
, struct rx_ring_info
*rp
,
3380 gfp_t mask
, int start_index
)
3386 page
= alloc_page(mask
);
3390 addr
= np
->ops
->map_page(np
->device
, page
, 0,
3391 PAGE_SIZE
, DMA_FROM_DEVICE
);
3393 niu_hash_page(rp
, page
, addr
);
3394 if (rp
->rbr_blocks_per_page
> 1)
3395 atomic_add(rp
->rbr_blocks_per_page
- 1,
3396 &compound_head(page
)->_count
);
3398 for (i
= 0; i
< rp
->rbr_blocks_per_page
; i
++) {
3399 __le32
*rbr
= &rp
->rbr
[start_index
+ i
];
3401 *rbr
= cpu_to_le32(addr
>> RBR_DESCR_ADDR_SHIFT
);
3402 addr
+= rp
->rbr_block_size
;
3408 static void niu_rbr_refill(struct niu
*np
, struct rx_ring_info
*rp
, gfp_t mask
)
3410 int index
= rp
->rbr_index
;
3413 if ((rp
->rbr_pending
% rp
->rbr_blocks_per_page
) == 0) {
3414 int err
= niu_rbr_add_page(np
, rp
, mask
, index
);
3416 if (unlikely(err
)) {
3421 rp
->rbr_index
+= rp
->rbr_blocks_per_page
;
3422 BUG_ON(rp
->rbr_index
> rp
->rbr_table_size
);
3423 if (rp
->rbr_index
== rp
->rbr_table_size
)
3426 if (rp
->rbr_pending
>= rp
->rbr_kick_thresh
) {
3427 nw64(RBR_KICK(rp
->rx_channel
), rp
->rbr_pending
);
3428 rp
->rbr_pending
= 0;
3433 static int niu_rx_pkt_ignore(struct niu
*np
, struct rx_ring_info
*rp
)
3435 unsigned int index
= rp
->rcr_index
;
3440 struct page
*page
, **link
;
3446 val
= le64_to_cpup(&rp
->rcr
[index
]);
3447 addr
= (val
& RCR_ENTRY_PKT_BUF_ADDR
) <<
3448 RCR_ENTRY_PKT_BUF_ADDR_SHIFT
;
3449 page
= niu_find_rxpage(rp
, addr
, &link
);
3451 rcr_size
= rp
->rbr_sizes
[(val
& RCR_ENTRY_PKTBUFSZ
) >>
3452 RCR_ENTRY_PKTBUFSZ_SHIFT
];
3453 if ((page
->index
+ PAGE_SIZE
) - rcr_size
== addr
) {
3454 *link
= (struct page
*) page
->mapping
;
3455 np
->ops
->unmap_page(np
->device
, page
->index
,
3456 PAGE_SIZE
, DMA_FROM_DEVICE
);
3458 page
->mapping
= NULL
;
3460 rp
->rbr_refill_pending
++;
3463 index
= NEXT_RCR(rp
, index
);
3464 if (!(val
& RCR_ENTRY_MULTI
))
3468 rp
->rcr_index
= index
;
3473 static int niu_process_rx_pkt(struct napi_struct
*napi
, struct niu
*np
,
3474 struct rx_ring_info
*rp
)
3476 unsigned int index
= rp
->rcr_index
;
3477 struct sk_buff
*skb
;
3480 skb
= netdev_alloc_skb(np
->dev
, RX_SKB_ALLOC_SIZE
);
3482 return niu_rx_pkt_ignore(np
, rp
);
3486 struct page
*page
, **link
;
3487 u32 rcr_size
, append_size
;
3492 val
= le64_to_cpup(&rp
->rcr
[index
]);
3494 len
= (val
& RCR_ENTRY_L2_LEN
) >>
3495 RCR_ENTRY_L2_LEN_SHIFT
;
3498 addr
= (val
& RCR_ENTRY_PKT_BUF_ADDR
) <<
3499 RCR_ENTRY_PKT_BUF_ADDR_SHIFT
;
3500 page
= niu_find_rxpage(rp
, addr
, &link
);
3502 rcr_size
= rp
->rbr_sizes
[(val
& RCR_ENTRY_PKTBUFSZ
) >>
3503 RCR_ENTRY_PKTBUFSZ_SHIFT
];
3505 off
= addr
& ~PAGE_MASK
;
3506 append_size
= rcr_size
;
3513 ptype
= (val
>> RCR_ENTRY_PKT_TYPE_SHIFT
);
3514 if ((ptype
== RCR_PKT_TYPE_TCP
||
3515 ptype
== RCR_PKT_TYPE_UDP
) &&
3516 !(val
& (RCR_ENTRY_NOPORT
|
3518 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3520 skb
->ip_summed
= CHECKSUM_NONE
;
3522 if (!(val
& RCR_ENTRY_MULTI
))
3523 append_size
= len
- skb
->len
;
3525 niu_rx_skb_append(skb
, page
, off
, append_size
);
3526 if ((page
->index
+ rp
->rbr_block_size
) - rcr_size
== addr
) {
3527 *link
= (struct page
*) page
->mapping
;
3528 np
->ops
->unmap_page(np
->device
, page
->index
,
3529 PAGE_SIZE
, DMA_FROM_DEVICE
);
3531 page
->mapping
= NULL
;
3532 rp
->rbr_refill_pending
++;
3536 index
= NEXT_RCR(rp
, index
);
3537 if (!(val
& RCR_ENTRY_MULTI
))
3541 rp
->rcr_index
= index
;
3543 skb_reserve(skb
, NET_IP_ALIGN
);
3544 __pskb_pull_tail(skb
, min(len
, VLAN_ETH_HLEN
));
3547 rp
->rx_bytes
+= skb
->len
;
3549 skb
->protocol
= eth_type_trans(skb
, np
->dev
);
3550 skb_record_rx_queue(skb
, rp
->rx_channel
);
3551 napi_gro_receive(napi
, skb
);
3556 static int niu_rbr_fill(struct niu
*np
, struct rx_ring_info
*rp
, gfp_t mask
)
3558 int blocks_per_page
= rp
->rbr_blocks_per_page
;
3559 int err
, index
= rp
->rbr_index
;
3562 while (index
< (rp
->rbr_table_size
- blocks_per_page
)) {
3563 err
= niu_rbr_add_page(np
, rp
, mask
, index
);
3567 index
+= blocks_per_page
;
3570 rp
->rbr_index
= index
;
3574 static void niu_rbr_free(struct niu
*np
, struct rx_ring_info
*rp
)
3578 for (i
= 0; i
< MAX_RBR_RING_SIZE
; i
++) {
3581 page
= rp
->rxhash
[i
];
3583 struct page
*next
= (struct page
*) page
->mapping
;
3584 u64 base
= page
->index
;
3586 np
->ops
->unmap_page(np
->device
, base
, PAGE_SIZE
,
3589 page
->mapping
= NULL
;
3597 for (i
= 0; i
< rp
->rbr_table_size
; i
++)
3598 rp
->rbr
[i
] = cpu_to_le32(0);
3602 static int release_tx_packet(struct niu
*np
, struct tx_ring_info
*rp
, int idx
)
3604 struct tx_buff_info
*tb
= &rp
->tx_buffs
[idx
];
3605 struct sk_buff
*skb
= tb
->skb
;
3606 struct tx_pkt_hdr
*tp
;
3610 tp
= (struct tx_pkt_hdr
*) skb
->data
;
3611 tx_flags
= le64_to_cpup(&tp
->flags
);
3614 rp
->tx_bytes
+= (((tx_flags
& TXHDR_LEN
) >> TXHDR_LEN_SHIFT
) -
3615 ((tx_flags
& TXHDR_PAD
) / 2));
3617 len
= skb_headlen(skb
);
3618 np
->ops
->unmap_single(np
->device
, tb
->mapping
,
3619 len
, DMA_TO_DEVICE
);
3621 if (le64_to_cpu(rp
->descr
[idx
]) & TX_DESC_MARK
)
3626 idx
= NEXT_TX(rp
, idx
);
3627 len
-= MAX_TX_DESC_LEN
;
3630 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3631 tb
= &rp
->tx_buffs
[idx
];
3632 BUG_ON(tb
->skb
!= NULL
);
3633 np
->ops
->unmap_page(np
->device
, tb
->mapping
,
3634 skb_shinfo(skb
)->frags
[i
].size
,
3636 idx
= NEXT_TX(rp
, idx
);
3644 #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
3646 static void niu_tx_work(struct niu
*np
, struct tx_ring_info
*rp
)
3648 struct netdev_queue
*txq
;
3653 index
= (rp
- np
->tx_rings
);
3654 txq
= netdev_get_tx_queue(np
->dev
, index
);
3657 if (unlikely(!(cs
& (TX_CS_MK
| TX_CS_MMK
))))
3660 tmp
= pkt_cnt
= (cs
& TX_CS_PKT_CNT
) >> TX_CS_PKT_CNT_SHIFT
;
3661 pkt_cnt
= (pkt_cnt
- rp
->last_pkt_cnt
) &
3662 (TX_CS_PKT_CNT
>> TX_CS_PKT_CNT_SHIFT
);
3664 rp
->last_pkt_cnt
= tmp
;
3668 niudbg(TX_DONE
, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
3669 np
->dev
->name
, pkt_cnt
, cons
);
3672 cons
= release_tx_packet(np
, rp
, cons
);
3678 if (unlikely(netif_tx_queue_stopped(txq
) &&
3679 (niu_tx_avail(rp
) > NIU_TX_WAKEUP_THRESH(rp
)))) {
3680 __netif_tx_lock(txq
, smp_processor_id());
3681 if (netif_tx_queue_stopped(txq
) &&
3682 (niu_tx_avail(rp
) > NIU_TX_WAKEUP_THRESH(rp
)))
3683 netif_tx_wake_queue(txq
);
3684 __netif_tx_unlock(txq
);
3688 static inline void niu_sync_rx_discard_stats(struct niu
*np
,
3689 struct rx_ring_info
*rp
,
3692 /* This elaborate scheme is needed for reading the RX discard
3693 * counters, as they are only 16-bit and can overflow quickly,
3694 * and because the overflow indication bit is not usable as
3695 * the counter value does not wrap, but remains at max value
3698 * In theory and in practice counters can be lost in between
3699 * reading nr64() and clearing the counter nw64(). For this
3700 * reason, the number of counter clearings nw64() is
3701 * limited/reduced though the limit parameter.
3703 int rx_channel
= rp
->rx_channel
;
3706 /* RXMISC (Receive Miscellaneous Discard Count), covers the
3707 * following discard events: IPP (Input Port Process),
3708 * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
3709 * Block Ring) prefetch buffer is empty.
3711 misc
= nr64(RXMISC(rx_channel
));
3712 if (unlikely((misc
& RXMISC_COUNT
) > limit
)) {
3713 nw64(RXMISC(rx_channel
), 0);
3714 rp
->rx_errors
+= misc
& RXMISC_COUNT
;
3716 if (unlikely(misc
& RXMISC_OFLOW
))
3717 dev_err(np
->device
, "rx-%d: Counter overflow "
3718 "RXMISC discard\n", rx_channel
);
3720 niudbg(RX_ERR
, "%s-rx-%d: MISC drop=%u over=%u\n",
3721 np
->dev
->name
, rx_channel
, misc
, misc
-limit
);
3724 /* WRED (Weighted Random Early Discard) by hardware */
3725 wred
= nr64(RED_DIS_CNT(rx_channel
));
3726 if (unlikely((wred
& RED_DIS_CNT_COUNT
) > limit
)) {
3727 nw64(RED_DIS_CNT(rx_channel
), 0);
3728 rp
->rx_dropped
+= wred
& RED_DIS_CNT_COUNT
;
3730 if (unlikely(wred
& RED_DIS_CNT_OFLOW
))
3731 dev_err(np
->device
, "rx-%d: Counter overflow "
3732 "WRED discard\n", rx_channel
);
3734 niudbg(RX_ERR
, "%s-rx-%d: WRED drop=%u over=%u\n",
3735 np
->dev
->name
, rx_channel
, wred
, wred
-limit
);
3739 static int niu_rx_work(struct napi_struct
*napi
, struct niu
*np
,
3740 struct rx_ring_info
*rp
, int budget
)
3742 int qlen
, rcr_done
= 0, work_done
= 0;
3743 struct rxdma_mailbox
*mbox
= rp
->mbox
;
3747 stat
= nr64(RX_DMA_CTL_STAT(rp
->rx_channel
));
3748 qlen
= nr64(RCRSTAT_A(rp
->rx_channel
)) & RCRSTAT_A_QLEN
;
3750 stat
= le64_to_cpup(&mbox
->rx_dma_ctl_stat
);
3751 qlen
= (le64_to_cpup(&mbox
->rcrstat_a
) & RCRSTAT_A_QLEN
);
3753 mbox
->rx_dma_ctl_stat
= 0;
3754 mbox
->rcrstat_a
= 0;
3756 niudbg(RX_STATUS
, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
3757 np
->dev
->name
, rp
->rx_channel
, (unsigned long long) stat
, qlen
);
3759 rcr_done
= work_done
= 0;
3760 qlen
= min(qlen
, budget
);
3761 while (work_done
< qlen
) {
3762 rcr_done
+= niu_process_rx_pkt(napi
, np
, rp
);
3766 if (rp
->rbr_refill_pending
>= rp
->rbr_kick_thresh
) {
3769 for (i
= 0; i
< rp
->rbr_refill_pending
; i
++)
3770 niu_rbr_refill(np
, rp
, GFP_ATOMIC
);
3771 rp
->rbr_refill_pending
= 0;
3774 stat
= (RX_DMA_CTL_STAT_MEX
|
3775 ((u64
)work_done
<< RX_DMA_CTL_STAT_PKTREAD_SHIFT
) |
3776 ((u64
)rcr_done
<< RX_DMA_CTL_STAT_PTRREAD_SHIFT
));
3778 nw64(RX_DMA_CTL_STAT(rp
->rx_channel
), stat
);
3780 /* Only sync discards stats when qlen indicate potential for drops */
3782 niu_sync_rx_discard_stats(np
, rp
, 0x7FFF);
3787 static int niu_poll_core(struct niu
*np
, struct niu_ldg
*lp
, int budget
)
3790 u32 tx_vec
= (v0
>> 32);
3791 u32 rx_vec
= (v0
& 0xffffffff);
3792 int i
, work_done
= 0;
3794 niudbg(INTR
, "%s: niu_poll_core() v0[%016llx]\n",
3795 np
->dev
->name
, (unsigned long long) v0
);
3797 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
3798 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
3799 if (tx_vec
& (1 << rp
->tx_channel
))
3800 niu_tx_work(np
, rp
);
3801 nw64(LD_IM0(LDN_TXDMA(rp
->tx_channel
)), 0);
3804 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
3805 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
3807 if (rx_vec
& (1 << rp
->rx_channel
)) {
3810 this_work_done
= niu_rx_work(&lp
->napi
, np
, rp
,
3813 budget
-= this_work_done
;
3814 work_done
+= this_work_done
;
3816 nw64(LD_IM0(LDN_RXDMA(rp
->rx_channel
)), 0);
3822 static int niu_poll(struct napi_struct
*napi
, int budget
)
3824 struct niu_ldg
*lp
= container_of(napi
, struct niu_ldg
, napi
);
3825 struct niu
*np
= lp
->np
;
3828 work_done
= niu_poll_core(np
, lp
, budget
);
3830 if (work_done
< budget
) {
3831 napi_complete(napi
);
3832 niu_ldg_rearm(np
, lp
, 1);
3837 static void niu_log_rxchan_errors(struct niu
*np
, struct rx_ring_info
*rp
,
3840 dev_err(np
->device
, PFX
"%s: RX channel %u errors ( ",
3841 np
->dev
->name
, rp
->rx_channel
);
3843 if (stat
& RX_DMA_CTL_STAT_RBR_TMOUT
)
3844 printk("RBR_TMOUT ");
3845 if (stat
& RX_DMA_CTL_STAT_RSP_CNT_ERR
)
3847 if (stat
& RX_DMA_CTL_STAT_BYTE_EN_BUS
)
3848 printk("BYTE_EN_BUS ");
3849 if (stat
& RX_DMA_CTL_STAT_RSP_DAT_ERR
)
3851 if (stat
& RX_DMA_CTL_STAT_RCR_ACK_ERR
)
3853 if (stat
& RX_DMA_CTL_STAT_RCR_SHA_PAR
)
3854 printk("RCR_SHA_PAR ");
3855 if (stat
& RX_DMA_CTL_STAT_RBR_PRE_PAR
)
3856 printk("RBR_PRE_PAR ");
3857 if (stat
& RX_DMA_CTL_STAT_CONFIG_ERR
)
3859 if (stat
& RX_DMA_CTL_STAT_RCRINCON
)
3860 printk("RCRINCON ");
3861 if (stat
& RX_DMA_CTL_STAT_RCRFULL
)
3863 if (stat
& RX_DMA_CTL_STAT_RBRFULL
)
3865 if (stat
& RX_DMA_CTL_STAT_RBRLOGPAGE
)
3866 printk("RBRLOGPAGE ");
3867 if (stat
& RX_DMA_CTL_STAT_CFIGLOGPAGE
)
3868 printk("CFIGLOGPAGE ");
3869 if (stat
& RX_DMA_CTL_STAT_DC_FIFO_ERR
)
3875 static int niu_rx_error(struct niu
*np
, struct rx_ring_info
*rp
)
3877 u64 stat
= nr64(RX_DMA_CTL_STAT(rp
->rx_channel
));
3881 if (stat
& (RX_DMA_CTL_STAT_CHAN_FATAL
|
3882 RX_DMA_CTL_STAT_PORT_FATAL
))
3886 dev_err(np
->device
, PFX
"%s: RX channel %u error, stat[%llx]\n",
3887 np
->dev
->name
, rp
->rx_channel
,
3888 (unsigned long long) stat
);
3890 niu_log_rxchan_errors(np
, rp
, stat
);
3893 nw64(RX_DMA_CTL_STAT(rp
->rx_channel
),
3894 stat
& RX_DMA_CTL_WRITE_CLEAR_ERRS
);
3899 static void niu_log_txchan_errors(struct niu
*np
, struct tx_ring_info
*rp
,
3902 dev_err(np
->device
, PFX
"%s: TX channel %u errors ( ",
3903 np
->dev
->name
, rp
->tx_channel
);
3905 if (cs
& TX_CS_MBOX_ERR
)
3907 if (cs
& TX_CS_PKT_SIZE_ERR
)
3908 printk("PKT_SIZE ");
3909 if (cs
& TX_CS_TX_RING_OFLOW
)
3910 printk("TX_RING_OFLOW ");
3911 if (cs
& TX_CS_PREF_BUF_PAR_ERR
)
3912 printk("PREF_BUF_PAR ");
3913 if (cs
& TX_CS_NACK_PREF
)
3914 printk("NACK_PREF ");
3915 if (cs
& TX_CS_NACK_PKT_RD
)
3916 printk("NACK_PKT_RD ");
3917 if (cs
& TX_CS_CONF_PART_ERR
)
3918 printk("CONF_PART ");
3919 if (cs
& TX_CS_PKT_PRT_ERR
)
3925 static int niu_tx_error(struct niu
*np
, struct tx_ring_info
*rp
)
3929 cs
= nr64(TX_CS(rp
->tx_channel
));
3930 logh
= nr64(TX_RNG_ERR_LOGH(rp
->tx_channel
));
3931 logl
= nr64(TX_RNG_ERR_LOGL(rp
->tx_channel
));
3933 dev_err(np
->device
, PFX
"%s: TX channel %u error, "
3934 "cs[%llx] logh[%llx] logl[%llx]\n",
3935 np
->dev
->name
, rp
->tx_channel
,
3936 (unsigned long long) cs
,
3937 (unsigned long long) logh
,
3938 (unsigned long long) logl
);
3940 niu_log_txchan_errors(np
, rp
, cs
);
3945 static int niu_mif_interrupt(struct niu
*np
)
3947 u64 mif_status
= nr64(MIF_STATUS
);
3950 if (np
->flags
& NIU_FLAGS_XMAC
) {
3951 u64 xrxmac_stat
= nr64_mac(XRXMAC_STATUS
);
3953 if (xrxmac_stat
& XRXMAC_STATUS_PHY_MDINT
)
3957 dev_err(np
->device
, PFX
"%s: MIF interrupt, "
3958 "stat[%llx] phy_mdint(%d)\n",
3959 np
->dev
->name
, (unsigned long long) mif_status
, phy_mdint
);
3964 static void niu_xmac_interrupt(struct niu
*np
)
3966 struct niu_xmac_stats
*mp
= &np
->mac_stats
.xmac
;
3969 val
= nr64_mac(XTXMAC_STATUS
);
3970 if (val
& XTXMAC_STATUS_FRAME_CNT_EXP
)
3971 mp
->tx_frames
+= TXMAC_FRM_CNT_COUNT
;
3972 if (val
& XTXMAC_STATUS_BYTE_CNT_EXP
)
3973 mp
->tx_bytes
+= TXMAC_BYTE_CNT_COUNT
;
3974 if (val
& XTXMAC_STATUS_TXFIFO_XFR_ERR
)
3975 mp
->tx_fifo_errors
++;
3976 if (val
& XTXMAC_STATUS_TXMAC_OFLOW
)
3977 mp
->tx_overflow_errors
++;
3978 if (val
& XTXMAC_STATUS_MAX_PSIZE_ERR
)
3979 mp
->tx_max_pkt_size_errors
++;
3980 if (val
& XTXMAC_STATUS_TXMAC_UFLOW
)
3981 mp
->tx_underflow_errors
++;
3983 val
= nr64_mac(XRXMAC_STATUS
);
3984 if (val
& XRXMAC_STATUS_LCL_FLT_STATUS
)
3985 mp
->rx_local_faults
++;
3986 if (val
& XRXMAC_STATUS_RFLT_DET
)
3987 mp
->rx_remote_faults
++;
3988 if (val
& XRXMAC_STATUS_LFLT_CNT_EXP
)
3989 mp
->rx_link_faults
+= LINK_FAULT_CNT_COUNT
;
3990 if (val
& XRXMAC_STATUS_ALIGNERR_CNT_EXP
)
3991 mp
->rx_align_errors
+= RXMAC_ALIGN_ERR_CNT_COUNT
;
3992 if (val
& XRXMAC_STATUS_RXFRAG_CNT_EXP
)
3993 mp
->rx_frags
+= RXMAC_FRAG_CNT_COUNT
;
3994 if (val
& XRXMAC_STATUS_RXMULTF_CNT_EXP
)
3995 mp
->rx_mcasts
+= RXMAC_MC_FRM_CNT_COUNT
;
3996 if (val
& XRXMAC_STATUS_RXBCAST_CNT_EXP
)
3997 mp
->rx_bcasts
+= RXMAC_BC_FRM_CNT_COUNT
;
3998 if (val
& XRXMAC_STATUS_RXBCAST_CNT_EXP
)
3999 mp
->rx_bcasts
+= RXMAC_BC_FRM_CNT_COUNT
;
4000 if (val
& XRXMAC_STATUS_RXHIST1_CNT_EXP
)
4001 mp
->rx_hist_cnt1
+= RXMAC_HIST_CNT1_COUNT
;
4002 if (val
& XRXMAC_STATUS_RXHIST2_CNT_EXP
)
4003 mp
->rx_hist_cnt2
+= RXMAC_HIST_CNT2_COUNT
;
4004 if (val
& XRXMAC_STATUS_RXHIST3_CNT_EXP
)
4005 mp
->rx_hist_cnt3
+= RXMAC_HIST_CNT3_COUNT
;
4006 if (val
& XRXMAC_STATUS_RXHIST4_CNT_EXP
)
4007 mp
->rx_hist_cnt4
+= RXMAC_HIST_CNT4_COUNT
;
4008 if (val
& XRXMAC_STATUS_RXHIST5_CNT_EXP
)
4009 mp
->rx_hist_cnt5
+= RXMAC_HIST_CNT5_COUNT
;
4010 if (val
& XRXMAC_STATUS_RXHIST6_CNT_EXP
)
4011 mp
->rx_hist_cnt6
+= RXMAC_HIST_CNT6_COUNT
;
4012 if (val
& XRXMAC_STATUS_RXHIST7_CNT_EXP
)
4013 mp
->rx_hist_cnt7
+= RXMAC_HIST_CNT7_COUNT
;
4014 if (val
& XRXMAC_STATUS_RXOCTET_CNT_EXP
)
4015 mp
->rx_octets
+= RXMAC_BT_CNT_COUNT
;
4016 if (val
& XRXMAC_STATUS_CVIOLERR_CNT_EXP
)
4017 mp
->rx_code_violations
+= RXMAC_CD_VIO_CNT_COUNT
;
4018 if (val
& XRXMAC_STATUS_LENERR_CNT_EXP
)
4019 mp
->rx_len_errors
+= RXMAC_MPSZER_CNT_COUNT
;
4020 if (val
& XRXMAC_STATUS_CRCERR_CNT_EXP
)
4021 mp
->rx_crc_errors
+= RXMAC_CRC_ER_CNT_COUNT
;
4022 if (val
& XRXMAC_STATUS_RXUFLOW
)
4023 mp
->rx_underflows
++;
4024 if (val
& XRXMAC_STATUS_RXOFLOW
)
4027 val
= nr64_mac(XMAC_FC_STAT
);
4028 if (val
& XMAC_FC_STAT_TX_MAC_NPAUSE
)
4029 mp
->pause_off_state
++;
4030 if (val
& XMAC_FC_STAT_TX_MAC_PAUSE
)
4031 mp
->pause_on_state
++;
4032 if (val
& XMAC_FC_STAT_RX_MAC_RPAUSE
)
4033 mp
->pause_received
++;
4036 static void niu_bmac_interrupt(struct niu
*np
)
4038 struct niu_bmac_stats
*mp
= &np
->mac_stats
.bmac
;
4041 val
= nr64_mac(BTXMAC_STATUS
);
4042 if (val
& BTXMAC_STATUS_UNDERRUN
)
4043 mp
->tx_underflow_errors
++;
4044 if (val
& BTXMAC_STATUS_MAX_PKT_ERR
)
4045 mp
->tx_max_pkt_size_errors
++;
4046 if (val
& BTXMAC_STATUS_BYTE_CNT_EXP
)
4047 mp
->tx_bytes
+= BTXMAC_BYTE_CNT_COUNT
;
4048 if (val
& BTXMAC_STATUS_FRAME_CNT_EXP
)
4049 mp
->tx_frames
+= BTXMAC_FRM_CNT_COUNT
;
4051 val
= nr64_mac(BRXMAC_STATUS
);
4052 if (val
& BRXMAC_STATUS_OVERFLOW
)
4054 if (val
& BRXMAC_STATUS_FRAME_CNT_EXP
)
4055 mp
->rx_frames
+= BRXMAC_FRAME_CNT_COUNT
;
4056 if (val
& BRXMAC_STATUS_ALIGN_ERR_EXP
)
4057 mp
->rx_align_errors
+= BRXMAC_ALIGN_ERR_CNT_COUNT
;
4058 if (val
& BRXMAC_STATUS_CRC_ERR_EXP
)
4059 mp
->rx_crc_errors
+= BRXMAC_ALIGN_ERR_CNT_COUNT
;
4060 if (val
& BRXMAC_STATUS_LEN_ERR_EXP
)
4061 mp
->rx_len_errors
+= BRXMAC_CODE_VIOL_ERR_CNT_COUNT
;
4063 val
= nr64_mac(BMAC_CTRL_STATUS
);
4064 if (val
& BMAC_CTRL_STATUS_NOPAUSE
)
4065 mp
->pause_off_state
++;
4066 if (val
& BMAC_CTRL_STATUS_PAUSE
)
4067 mp
->pause_on_state
++;
4068 if (val
& BMAC_CTRL_STATUS_PAUSE_RECV
)
4069 mp
->pause_received
++;
4072 static int niu_mac_interrupt(struct niu
*np
)
4074 if (np
->flags
& NIU_FLAGS_XMAC
)
4075 niu_xmac_interrupt(np
);
4077 niu_bmac_interrupt(np
);
4082 static void niu_log_device_error(struct niu
*np
, u64 stat
)
4084 dev_err(np
->device
, PFX
"%s: Core device errors ( ",
4087 if (stat
& SYS_ERR_MASK_META2
)
4089 if (stat
& SYS_ERR_MASK_META1
)
4091 if (stat
& SYS_ERR_MASK_PEU
)
4093 if (stat
& SYS_ERR_MASK_TXC
)
4095 if (stat
& SYS_ERR_MASK_RDMC
)
4097 if (stat
& SYS_ERR_MASK_TDMC
)
4099 if (stat
& SYS_ERR_MASK_ZCP
)
4101 if (stat
& SYS_ERR_MASK_FFLP
)
4103 if (stat
& SYS_ERR_MASK_IPP
)
4105 if (stat
& SYS_ERR_MASK_MAC
)
4107 if (stat
& SYS_ERR_MASK_SMX
)
4113 static int niu_device_error(struct niu
*np
)
4115 u64 stat
= nr64(SYS_ERR_STAT
);
4117 dev_err(np
->device
, PFX
"%s: Core device error, stat[%llx]\n",
4118 np
->dev
->name
, (unsigned long long) stat
);
4120 niu_log_device_error(np
, stat
);
4125 static int niu_slowpath_interrupt(struct niu
*np
, struct niu_ldg
*lp
,
4126 u64 v0
, u64 v1
, u64 v2
)
4135 if (v1
& 0x00000000ffffffffULL
) {
4136 u32 rx_vec
= (v1
& 0xffffffff);
4138 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
4139 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
4141 if (rx_vec
& (1 << rp
->rx_channel
)) {
4142 int r
= niu_rx_error(np
, rp
);
4147 nw64(RX_DMA_CTL_STAT(rp
->rx_channel
),
4148 RX_DMA_CTL_STAT_MEX
);
4153 if (v1
& 0x7fffffff00000000ULL
) {
4154 u32 tx_vec
= (v1
>> 32) & 0x7fffffff;
4156 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
4157 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
4159 if (tx_vec
& (1 << rp
->tx_channel
)) {
4160 int r
= niu_tx_error(np
, rp
);
4166 if ((v0
| v1
) & 0x8000000000000000ULL
) {
4167 int r
= niu_mif_interrupt(np
);
4173 int r
= niu_mac_interrupt(np
);
4178 int r
= niu_device_error(np
);
4185 niu_enable_interrupts(np
, 0);
4190 static void niu_rxchan_intr(struct niu
*np
, struct rx_ring_info
*rp
,
4193 struct rxdma_mailbox
*mbox
= rp
->mbox
;
4194 u64 stat_write
, stat
= le64_to_cpup(&mbox
->rx_dma_ctl_stat
);
4196 stat_write
= (RX_DMA_CTL_STAT_RCRTHRES
|
4197 RX_DMA_CTL_STAT_RCRTO
);
4198 nw64(RX_DMA_CTL_STAT(rp
->rx_channel
), stat_write
);
4200 niudbg(INTR
, "%s: rxchan_intr stat[%llx]\n",
4201 np
->dev
->name
, (unsigned long long) stat
);
4204 static void niu_txchan_intr(struct niu
*np
, struct tx_ring_info
*rp
,
4207 rp
->tx_cs
= nr64(TX_CS(rp
->tx_channel
));
4209 niudbg(INTR
, "%s: txchan_intr cs[%llx]\n",
4210 np
->dev
->name
, (unsigned long long) rp
->tx_cs
);
4213 static void __niu_fastpath_interrupt(struct niu
*np
, int ldg
, u64 v0
)
4215 struct niu_parent
*parent
= np
->parent
;
4219 tx_vec
= (v0
>> 32);
4220 rx_vec
= (v0
& 0xffffffff);
4222 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
4223 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
4224 int ldn
= LDN_RXDMA(rp
->rx_channel
);
4226 if (parent
->ldg_map
[ldn
] != ldg
)
4229 nw64(LD_IM0(ldn
), LD_IM0_MASK
);
4230 if (rx_vec
& (1 << rp
->rx_channel
))
4231 niu_rxchan_intr(np
, rp
, ldn
);
4234 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
4235 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
4236 int ldn
= LDN_TXDMA(rp
->tx_channel
);
4238 if (parent
->ldg_map
[ldn
] != ldg
)
4241 nw64(LD_IM0(ldn
), LD_IM0_MASK
);
4242 if (tx_vec
& (1 << rp
->tx_channel
))
4243 niu_txchan_intr(np
, rp
, ldn
);
4247 static void niu_schedule_napi(struct niu
*np
, struct niu_ldg
*lp
,
4248 u64 v0
, u64 v1
, u64 v2
)
4250 if (likely(napi_schedule_prep(&lp
->napi
))) {
4254 __niu_fastpath_interrupt(np
, lp
->ldg_num
, v0
);
4255 __napi_schedule(&lp
->napi
);
4259 static irqreturn_t
niu_interrupt(int irq
, void *dev_id
)
4261 struct niu_ldg
*lp
= dev_id
;
4262 struct niu
*np
= lp
->np
;
4263 int ldg
= lp
->ldg_num
;
4264 unsigned long flags
;
4267 if (netif_msg_intr(np
))
4268 printk(KERN_DEBUG PFX
"niu_interrupt() ldg[%p](%d) ",
4271 spin_lock_irqsave(&np
->lock
, flags
);
4273 v0
= nr64(LDSV0(ldg
));
4274 v1
= nr64(LDSV1(ldg
));
4275 v2
= nr64(LDSV2(ldg
));
4277 if (netif_msg_intr(np
))
4278 printk("v0[%llx] v1[%llx] v2[%llx]\n",
4279 (unsigned long long) v0
,
4280 (unsigned long long) v1
,
4281 (unsigned long long) v2
);
4283 if (unlikely(!v0
&& !v1
&& !v2
)) {
4284 spin_unlock_irqrestore(&np
->lock
, flags
);
4288 if (unlikely((v0
& ((u64
)1 << LDN_MIF
)) || v1
|| v2
)) {
4289 int err
= niu_slowpath_interrupt(np
, lp
, v0
, v1
, v2
);
4293 if (likely(v0
& ~((u64
)1 << LDN_MIF
)))
4294 niu_schedule_napi(np
, lp
, v0
, v1
, v2
);
4296 niu_ldg_rearm(np
, lp
, 1);
4298 spin_unlock_irqrestore(&np
->lock
, flags
);
4303 static void niu_free_rx_ring_info(struct niu
*np
, struct rx_ring_info
*rp
)
4306 np
->ops
->free_coherent(np
->device
,
4307 sizeof(struct rxdma_mailbox
),
4308 rp
->mbox
, rp
->mbox_dma
);
4312 np
->ops
->free_coherent(np
->device
,
4313 MAX_RCR_RING_SIZE
* sizeof(__le64
),
4314 rp
->rcr
, rp
->rcr_dma
);
4316 rp
->rcr_table_size
= 0;
4320 niu_rbr_free(np
, rp
);
4322 np
->ops
->free_coherent(np
->device
,
4323 MAX_RBR_RING_SIZE
* sizeof(__le32
),
4324 rp
->rbr
, rp
->rbr_dma
);
4326 rp
->rbr_table_size
= 0;
4333 static void niu_free_tx_ring_info(struct niu
*np
, struct tx_ring_info
*rp
)
4336 np
->ops
->free_coherent(np
->device
,
4337 sizeof(struct txdma_mailbox
),
4338 rp
->mbox
, rp
->mbox_dma
);
4344 for (i
= 0; i
< MAX_TX_RING_SIZE
; i
++) {
4345 if (rp
->tx_buffs
[i
].skb
)
4346 (void) release_tx_packet(np
, rp
, i
);
4349 np
->ops
->free_coherent(np
->device
,
4350 MAX_TX_RING_SIZE
* sizeof(__le64
),
4351 rp
->descr
, rp
->descr_dma
);
4360 static void niu_free_channels(struct niu
*np
)
4365 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
4366 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
4368 niu_free_rx_ring_info(np
, rp
);
4370 kfree(np
->rx_rings
);
4371 np
->rx_rings
= NULL
;
4372 np
->num_rx_rings
= 0;
4376 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
4377 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
4379 niu_free_tx_ring_info(np
, rp
);
4381 kfree(np
->tx_rings
);
4382 np
->tx_rings
= NULL
;
4383 np
->num_tx_rings
= 0;
4387 static int niu_alloc_rx_ring_info(struct niu
*np
,
4388 struct rx_ring_info
*rp
)
4390 BUILD_BUG_ON(sizeof(struct rxdma_mailbox
) != 64);
4392 rp
->rxhash
= kzalloc(MAX_RBR_RING_SIZE
* sizeof(struct page
*),
4397 rp
->mbox
= np
->ops
->alloc_coherent(np
->device
,
4398 sizeof(struct rxdma_mailbox
),
4399 &rp
->mbox_dma
, GFP_KERNEL
);
4402 if ((unsigned long)rp
->mbox
& (64UL - 1)) {
4403 dev_err(np
->device
, PFX
"%s: Coherent alloc gives misaligned "
4404 "RXDMA mailbox %p\n", np
->dev
->name
, rp
->mbox
);
4408 rp
->rcr
= np
->ops
->alloc_coherent(np
->device
,
4409 MAX_RCR_RING_SIZE
* sizeof(__le64
),
4410 &rp
->rcr_dma
, GFP_KERNEL
);
4413 if ((unsigned long)rp
->rcr
& (64UL - 1)) {
4414 dev_err(np
->device
, PFX
"%s: Coherent alloc gives misaligned "
4415 "RXDMA RCR table %p\n", np
->dev
->name
, rp
->rcr
);
4418 rp
->rcr_table_size
= MAX_RCR_RING_SIZE
;
4421 rp
->rbr
= np
->ops
->alloc_coherent(np
->device
,
4422 MAX_RBR_RING_SIZE
* sizeof(__le32
),
4423 &rp
->rbr_dma
, GFP_KERNEL
);
4426 if ((unsigned long)rp
->rbr
& (64UL - 1)) {
4427 dev_err(np
->device
, PFX
"%s: Coherent alloc gives misaligned "
4428 "RXDMA RBR table %p\n", np
->dev
->name
, rp
->rbr
);
4431 rp
->rbr_table_size
= MAX_RBR_RING_SIZE
;
4433 rp
->rbr_pending
= 0;
4438 static void niu_set_max_burst(struct niu
*np
, struct tx_ring_info
*rp
)
4440 int mtu
= np
->dev
->mtu
;
4442 /* These values are recommended by the HW designers for fair
4443 * utilization of DRR amongst the rings.
4445 rp
->max_burst
= mtu
+ 32;
4446 if (rp
->max_burst
> 4096)
4447 rp
->max_burst
= 4096;
4450 static int niu_alloc_tx_ring_info(struct niu
*np
,
4451 struct tx_ring_info
*rp
)
4453 BUILD_BUG_ON(sizeof(struct txdma_mailbox
) != 64);
4455 rp
->mbox
= np
->ops
->alloc_coherent(np
->device
,
4456 sizeof(struct txdma_mailbox
),
4457 &rp
->mbox_dma
, GFP_KERNEL
);
4460 if ((unsigned long)rp
->mbox
& (64UL - 1)) {
4461 dev_err(np
->device
, PFX
"%s: Coherent alloc gives misaligned "
4462 "TXDMA mailbox %p\n", np
->dev
->name
, rp
->mbox
);
4466 rp
->descr
= np
->ops
->alloc_coherent(np
->device
,
4467 MAX_TX_RING_SIZE
* sizeof(__le64
),
4468 &rp
->descr_dma
, GFP_KERNEL
);
4471 if ((unsigned long)rp
->descr
& (64UL - 1)) {
4472 dev_err(np
->device
, PFX
"%s: Coherent alloc gives misaligned "
4473 "TXDMA descr table %p\n", np
->dev
->name
, rp
->descr
);
4477 rp
->pending
= MAX_TX_RING_SIZE
;
4482 /* XXX make these configurable... XXX */
4483 rp
->mark_freq
= rp
->pending
/ 4;
4485 niu_set_max_burst(np
, rp
);
4490 static void niu_size_rbr(struct niu
*np
, struct rx_ring_info
*rp
)
4494 bss
= min(PAGE_SHIFT
, 15);
4496 rp
->rbr_block_size
= 1 << bss
;
4497 rp
->rbr_blocks_per_page
= 1 << (PAGE_SHIFT
-bss
);
4499 rp
->rbr_sizes
[0] = 256;
4500 rp
->rbr_sizes
[1] = 1024;
4501 if (np
->dev
->mtu
> ETH_DATA_LEN
) {
4502 switch (PAGE_SIZE
) {
4504 rp
->rbr_sizes
[2] = 4096;
4508 rp
->rbr_sizes
[2] = 8192;
4512 rp
->rbr_sizes
[2] = 2048;
4514 rp
->rbr_sizes
[3] = rp
->rbr_block_size
;
4517 static int niu_alloc_channels(struct niu
*np
)
4519 struct niu_parent
*parent
= np
->parent
;
4520 int first_rx_channel
, first_tx_channel
;
4524 first_rx_channel
= first_tx_channel
= 0;
4525 for (i
= 0; i
< port
; i
++) {
4526 first_rx_channel
+= parent
->rxchan_per_port
[i
];
4527 first_tx_channel
+= parent
->txchan_per_port
[i
];
4530 np
->num_rx_rings
= parent
->rxchan_per_port
[port
];
4531 np
->num_tx_rings
= parent
->txchan_per_port
[port
];
4533 np
->dev
->real_num_tx_queues
= np
->num_tx_rings
;
4535 np
->rx_rings
= kzalloc(np
->num_rx_rings
* sizeof(struct rx_ring_info
),
4541 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
4542 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
4545 rp
->rx_channel
= first_rx_channel
+ i
;
4547 err
= niu_alloc_rx_ring_info(np
, rp
);
4551 niu_size_rbr(np
, rp
);
4553 /* XXX better defaults, configurable, etc... XXX */
4554 rp
->nonsyn_window
= 64;
4555 rp
->nonsyn_threshold
= rp
->rcr_table_size
- 64;
4556 rp
->syn_window
= 64;
4557 rp
->syn_threshold
= rp
->rcr_table_size
- 64;
4558 rp
->rcr_pkt_threshold
= 16;
4559 rp
->rcr_timeout
= 8;
4560 rp
->rbr_kick_thresh
= RBR_REFILL_MIN
;
4561 if (rp
->rbr_kick_thresh
< rp
->rbr_blocks_per_page
)
4562 rp
->rbr_kick_thresh
= rp
->rbr_blocks_per_page
;
4564 err
= niu_rbr_fill(np
, rp
, GFP_KERNEL
);
4569 np
->tx_rings
= kzalloc(np
->num_tx_rings
* sizeof(struct tx_ring_info
),
4575 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
4576 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
4579 rp
->tx_channel
= first_tx_channel
+ i
;
4581 err
= niu_alloc_tx_ring_info(np
, rp
);
4589 niu_free_channels(np
);
4593 static int niu_tx_cs_sng_poll(struct niu
*np
, int channel
)
4597 while (--limit
> 0) {
4598 u64 val
= nr64(TX_CS(channel
));
4599 if (val
& TX_CS_SNG_STATE
)
4605 static int niu_tx_channel_stop(struct niu
*np
, int channel
)
4607 u64 val
= nr64(TX_CS(channel
));
4609 val
|= TX_CS_STOP_N_GO
;
4610 nw64(TX_CS(channel
), val
);
4612 return niu_tx_cs_sng_poll(np
, channel
);
4615 static int niu_tx_cs_reset_poll(struct niu
*np
, int channel
)
4619 while (--limit
> 0) {
4620 u64 val
= nr64(TX_CS(channel
));
4621 if (!(val
& TX_CS_RST
))
4627 static int niu_tx_channel_reset(struct niu
*np
, int channel
)
4629 u64 val
= nr64(TX_CS(channel
));
4633 nw64(TX_CS(channel
), val
);
4635 err
= niu_tx_cs_reset_poll(np
, channel
);
4637 nw64(TX_RING_KICK(channel
), 0);
4642 static int niu_tx_channel_lpage_init(struct niu
*np
, int channel
)
4646 nw64(TX_LOG_MASK1(channel
), 0);
4647 nw64(TX_LOG_VAL1(channel
), 0);
4648 nw64(TX_LOG_MASK2(channel
), 0);
4649 nw64(TX_LOG_VAL2(channel
), 0);
4650 nw64(TX_LOG_PAGE_RELO1(channel
), 0);
4651 nw64(TX_LOG_PAGE_RELO2(channel
), 0);
4652 nw64(TX_LOG_PAGE_HDL(channel
), 0);
4654 val
= (u64
)np
->port
<< TX_LOG_PAGE_VLD_FUNC_SHIFT
;
4655 val
|= (TX_LOG_PAGE_VLD_PAGE0
| TX_LOG_PAGE_VLD_PAGE1
);
4656 nw64(TX_LOG_PAGE_VLD(channel
), val
);
4658 /* XXX TXDMA 32bit mode? XXX */
4663 static void niu_txc_enable_port(struct niu
*np
, int on
)
4665 unsigned long flags
;
4668 niu_lock_parent(np
, flags
);
4669 val
= nr64(TXC_CONTROL
);
4670 mask
= (u64
)1 << np
->port
;
4672 val
|= TXC_CONTROL_ENABLE
| mask
;
4675 if ((val
& ~TXC_CONTROL_ENABLE
) == 0)
4676 val
&= ~TXC_CONTROL_ENABLE
;
4678 nw64(TXC_CONTROL
, val
);
4679 niu_unlock_parent(np
, flags
);
4682 static void niu_txc_set_imask(struct niu
*np
, u64 imask
)
4684 unsigned long flags
;
4687 niu_lock_parent(np
, flags
);
4688 val
= nr64(TXC_INT_MASK
);
4689 val
&= ~TXC_INT_MASK_VAL(np
->port
);
4690 val
|= (imask
<< TXC_INT_MASK_VAL_SHIFT(np
->port
));
4691 niu_unlock_parent(np
, flags
);
4694 static void niu_txc_port_dma_enable(struct niu
*np
, int on
)
4701 for (i
= 0; i
< np
->num_tx_rings
; i
++)
4702 val
|= (1 << np
->tx_rings
[i
].tx_channel
);
4704 nw64(TXC_PORT_DMA(np
->port
), val
);
4707 static int niu_init_one_tx_channel(struct niu
*np
, struct tx_ring_info
*rp
)
4709 int err
, channel
= rp
->tx_channel
;
4712 err
= niu_tx_channel_stop(np
, channel
);
4716 err
= niu_tx_channel_reset(np
, channel
);
4720 err
= niu_tx_channel_lpage_init(np
, channel
);
4724 nw64(TXC_DMA_MAX(channel
), rp
->max_burst
);
4725 nw64(TX_ENT_MSK(channel
), 0);
4727 if (rp
->descr_dma
& ~(TX_RNG_CFIG_STADDR_BASE
|
4728 TX_RNG_CFIG_STADDR
)) {
4729 dev_err(np
->device
, PFX
"%s: TX ring channel %d "
4730 "DMA addr (%llx) is not aligned.\n",
4731 np
->dev
->name
, channel
,
4732 (unsigned long long) rp
->descr_dma
);
4736 /* The length field in TX_RNG_CFIG is measured in 64-byte
4737 * blocks. rp->pending is the number of TX descriptors in
4738 * our ring, 8 bytes each, thus we divide by 8 bytes more
4739 * to get the proper value the chip wants.
4741 ring_len
= (rp
->pending
/ 8);
4743 val
= ((ring_len
<< TX_RNG_CFIG_LEN_SHIFT
) |
4745 nw64(TX_RNG_CFIG(channel
), val
);
4747 if (((rp
->mbox_dma
>> 32) & ~TXDMA_MBH_MBADDR
) ||
4748 ((u32
)rp
->mbox_dma
& ~TXDMA_MBL_MBADDR
)) {
4749 dev_err(np
->device
, PFX
"%s: TX ring channel %d "
4750 "MBOX addr (%llx) is has illegal bits.\n",
4751 np
->dev
->name
, channel
,
4752 (unsigned long long) rp
->mbox_dma
);
4755 nw64(TXDMA_MBH(channel
), rp
->mbox_dma
>> 32);
4756 nw64(TXDMA_MBL(channel
), rp
->mbox_dma
& TXDMA_MBL_MBADDR
);
4758 nw64(TX_CS(channel
), 0);
4760 rp
->last_pkt_cnt
= 0;
4765 static void niu_init_rdc_groups(struct niu
*np
)
4767 struct niu_rdc_tables
*tp
= &np
->parent
->rdc_group_cfg
[np
->port
];
4768 int i
, first_table_num
= tp
->first_table_num
;
4770 for (i
= 0; i
< tp
->num_tables
; i
++) {
4771 struct rdc_table
*tbl
= &tp
->tables
[i
];
4772 int this_table
= first_table_num
+ i
;
4775 for (slot
= 0; slot
< NIU_RDC_TABLE_SLOTS
; slot
++)
4776 nw64(RDC_TBL(this_table
, slot
),
4777 tbl
->rxdma_channel
[slot
]);
4780 nw64(DEF_RDC(np
->port
), np
->parent
->rdc_default
[np
->port
]);
4783 static void niu_init_drr_weight(struct niu
*np
)
4785 int type
= phy_decode(np
->parent
->port_phy
, np
->port
);
4790 val
= PT_DRR_WEIGHT_DEFAULT_10G
;
4795 val
= PT_DRR_WEIGHT_DEFAULT_1G
;
4798 nw64(PT_DRR_WT(np
->port
), val
);
4801 static int niu_init_hostinfo(struct niu
*np
)
4803 struct niu_parent
*parent
= np
->parent
;
4804 struct niu_rdc_tables
*tp
= &parent
->rdc_group_cfg
[np
->port
];
4805 int i
, err
, num_alt
= niu_num_alt_addr(np
);
4806 int first_rdc_table
= tp
->first_table_num
;
4808 err
= niu_set_primary_mac_rdc_table(np
, first_rdc_table
, 1);
4812 err
= niu_set_multicast_mac_rdc_table(np
, first_rdc_table
, 1);
4816 for (i
= 0; i
< num_alt
; i
++) {
4817 err
= niu_set_alt_mac_rdc_table(np
, i
, first_rdc_table
, 1);
4825 static int niu_rx_channel_reset(struct niu
*np
, int channel
)
4827 return niu_set_and_wait_clear(np
, RXDMA_CFIG1(channel
),
4828 RXDMA_CFIG1_RST
, 1000, 10,
4832 static int niu_rx_channel_lpage_init(struct niu
*np
, int channel
)
4836 nw64(RX_LOG_MASK1(channel
), 0);
4837 nw64(RX_LOG_VAL1(channel
), 0);
4838 nw64(RX_LOG_MASK2(channel
), 0);
4839 nw64(RX_LOG_VAL2(channel
), 0);
4840 nw64(RX_LOG_PAGE_RELO1(channel
), 0);
4841 nw64(RX_LOG_PAGE_RELO2(channel
), 0);
4842 nw64(RX_LOG_PAGE_HDL(channel
), 0);
4844 val
= (u64
)np
->port
<< RX_LOG_PAGE_VLD_FUNC_SHIFT
;
4845 val
|= (RX_LOG_PAGE_VLD_PAGE0
| RX_LOG_PAGE_VLD_PAGE1
);
4846 nw64(RX_LOG_PAGE_VLD(channel
), val
);
4851 static void niu_rx_channel_wred_init(struct niu
*np
, struct rx_ring_info
*rp
)
4855 val
= (((u64
)rp
->nonsyn_window
<< RDC_RED_PARA_WIN_SHIFT
) |
4856 ((u64
)rp
->nonsyn_threshold
<< RDC_RED_PARA_THRE_SHIFT
) |
4857 ((u64
)rp
->syn_window
<< RDC_RED_PARA_WIN_SYN_SHIFT
) |
4858 ((u64
)rp
->syn_threshold
<< RDC_RED_PARA_THRE_SYN_SHIFT
));
4859 nw64(RDC_RED_PARA(rp
->rx_channel
), val
);
4862 static int niu_compute_rbr_cfig_b(struct rx_ring_info
*rp
, u64
*ret
)
4867 switch (rp
->rbr_block_size
) {
4869 val
|= (RBR_BLKSIZE_4K
<< RBR_CFIG_B_BLKSIZE_SHIFT
);
4872 val
|= (RBR_BLKSIZE_8K
<< RBR_CFIG_B_BLKSIZE_SHIFT
);
4875 val
|= (RBR_BLKSIZE_16K
<< RBR_CFIG_B_BLKSIZE_SHIFT
);
4878 val
|= (RBR_BLKSIZE_32K
<< RBR_CFIG_B_BLKSIZE_SHIFT
);
4883 val
|= RBR_CFIG_B_VLD2
;
4884 switch (rp
->rbr_sizes
[2]) {
4886 val
|= (RBR_BUFSZ2_2K
<< RBR_CFIG_B_BUFSZ2_SHIFT
);
4889 val
|= (RBR_BUFSZ2_4K
<< RBR_CFIG_B_BUFSZ2_SHIFT
);
4892 val
|= (RBR_BUFSZ2_8K
<< RBR_CFIG_B_BUFSZ2_SHIFT
);
4895 val
|= (RBR_BUFSZ2_16K
<< RBR_CFIG_B_BUFSZ2_SHIFT
);
4901 val
|= RBR_CFIG_B_VLD1
;
4902 switch (rp
->rbr_sizes
[1]) {
4904 val
|= (RBR_BUFSZ1_1K
<< RBR_CFIG_B_BUFSZ1_SHIFT
);
4907 val
|= (RBR_BUFSZ1_2K
<< RBR_CFIG_B_BUFSZ1_SHIFT
);
4910 val
|= (RBR_BUFSZ1_4K
<< RBR_CFIG_B_BUFSZ1_SHIFT
);
4913 val
|= (RBR_BUFSZ1_8K
<< RBR_CFIG_B_BUFSZ1_SHIFT
);
4919 val
|= RBR_CFIG_B_VLD0
;
4920 switch (rp
->rbr_sizes
[0]) {
4922 val
|= (RBR_BUFSZ0_256
<< RBR_CFIG_B_BUFSZ0_SHIFT
);
4925 val
|= (RBR_BUFSZ0_512
<< RBR_CFIG_B_BUFSZ0_SHIFT
);
4928 val
|= (RBR_BUFSZ0_1K
<< RBR_CFIG_B_BUFSZ0_SHIFT
);
4931 val
|= (RBR_BUFSZ0_2K
<< RBR_CFIG_B_BUFSZ0_SHIFT
);
4942 static int niu_enable_rx_channel(struct niu
*np
, int channel
, int on
)
4944 u64 val
= nr64(RXDMA_CFIG1(channel
));
4948 val
|= RXDMA_CFIG1_EN
;
4950 val
&= ~RXDMA_CFIG1_EN
;
4951 nw64(RXDMA_CFIG1(channel
), val
);
4954 while (--limit
> 0) {
4955 if (nr64(RXDMA_CFIG1(channel
)) & RXDMA_CFIG1_QST
)
4964 static int niu_init_one_rx_channel(struct niu
*np
, struct rx_ring_info
*rp
)
4966 int err
, channel
= rp
->rx_channel
;
4969 err
= niu_rx_channel_reset(np
, channel
);
4973 err
= niu_rx_channel_lpage_init(np
, channel
);
4977 niu_rx_channel_wred_init(np
, rp
);
4979 nw64(RX_DMA_ENT_MSK(channel
), RX_DMA_ENT_MSK_RBR_EMPTY
);
4980 nw64(RX_DMA_CTL_STAT(channel
),
4981 (RX_DMA_CTL_STAT_MEX
|
4982 RX_DMA_CTL_STAT_RCRTHRES
|
4983 RX_DMA_CTL_STAT_RCRTO
|
4984 RX_DMA_CTL_STAT_RBR_EMPTY
));
4985 nw64(RXDMA_CFIG1(channel
), rp
->mbox_dma
>> 32);
4986 nw64(RXDMA_CFIG2(channel
), (rp
->mbox_dma
& 0x00000000ffffffc0));
4987 nw64(RBR_CFIG_A(channel
),
4988 ((u64
)rp
->rbr_table_size
<< RBR_CFIG_A_LEN_SHIFT
) |
4989 (rp
->rbr_dma
& (RBR_CFIG_A_STADDR_BASE
| RBR_CFIG_A_STADDR
)));
4990 err
= niu_compute_rbr_cfig_b(rp
, &val
);
4993 nw64(RBR_CFIG_B(channel
), val
);
4994 nw64(RCRCFIG_A(channel
),
4995 ((u64
)rp
->rcr_table_size
<< RCRCFIG_A_LEN_SHIFT
) |
4996 (rp
->rcr_dma
& (RCRCFIG_A_STADDR_BASE
| RCRCFIG_A_STADDR
)));
4997 nw64(RCRCFIG_B(channel
),
4998 ((u64
)rp
->rcr_pkt_threshold
<< RCRCFIG_B_PTHRES_SHIFT
) |
5000 ((u64
)rp
->rcr_timeout
<< RCRCFIG_B_TIMEOUT_SHIFT
));
5002 err
= niu_enable_rx_channel(np
, channel
, 1);
5006 nw64(RBR_KICK(channel
), rp
->rbr_index
);
5008 val
= nr64(RX_DMA_CTL_STAT(channel
));
5009 val
|= RX_DMA_CTL_STAT_RBR_EMPTY
;
5010 nw64(RX_DMA_CTL_STAT(channel
), val
);
5015 static int niu_init_rx_channels(struct niu
*np
)
5017 unsigned long flags
;
5018 u64 seed
= jiffies_64
;
5021 niu_lock_parent(np
, flags
);
5022 nw64(RX_DMA_CK_DIV
, np
->parent
->rxdma_clock_divider
);
5023 nw64(RED_RAN_INIT
, RED_RAN_INIT_OPMODE
| (seed
& RED_RAN_INIT_VAL
));
5024 niu_unlock_parent(np
, flags
);
5026 /* XXX RXDMA 32bit mode? XXX */
5028 niu_init_rdc_groups(np
);
5029 niu_init_drr_weight(np
);
5031 err
= niu_init_hostinfo(np
);
5035 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
5036 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
5038 err
= niu_init_one_rx_channel(np
, rp
);
5046 static int niu_set_ip_frag_rule(struct niu
*np
)
5048 struct niu_parent
*parent
= np
->parent
;
5049 struct niu_classifier
*cp
= &np
->clas
;
5050 struct niu_tcam_entry
*tp
;
5053 index
= cp
->tcam_top
;
5054 tp
= &parent
->tcam
[index
];
5056 /* Note that the noport bit is the same in both ipv4 and
5057 * ipv6 format TCAM entries.
5059 memset(tp
, 0, sizeof(*tp
));
5060 tp
->key
[1] = TCAM_V4KEY1_NOPORT
;
5061 tp
->key_mask
[1] = TCAM_V4KEY1_NOPORT
;
5062 tp
->assoc_data
= (TCAM_ASSOCDATA_TRES_USE_OFFSET
|
5063 ((u64
)0 << TCAM_ASSOCDATA_OFFSET_SHIFT
));
5064 err
= tcam_write(np
, index
, tp
->key
, tp
->key_mask
);
5067 err
= tcam_assoc_write(np
, index
, tp
->assoc_data
);
5071 cp
->tcam_valid_entries
++;
5076 static int niu_init_classifier_hw(struct niu
*np
)
5078 struct niu_parent
*parent
= np
->parent
;
5079 struct niu_classifier
*cp
= &np
->clas
;
5082 nw64(H1POLY
, cp
->h1_init
);
5083 nw64(H2POLY
, cp
->h2_init
);
5085 err
= niu_init_hostinfo(np
);
5089 for (i
= 0; i
< ENET_VLAN_TBL_NUM_ENTRIES
; i
++) {
5090 struct niu_vlan_rdc
*vp
= &cp
->vlan_mappings
[i
];
5092 vlan_tbl_write(np
, i
, np
->port
,
5093 vp
->vlan_pref
, vp
->rdc_num
);
5096 for (i
= 0; i
< cp
->num_alt_mac_mappings
; i
++) {
5097 struct niu_altmac_rdc
*ap
= &cp
->alt_mac_mappings
[i
];
5099 err
= niu_set_alt_mac_rdc_table(np
, ap
->alt_mac_num
,
5100 ap
->rdc_num
, ap
->mac_pref
);
5105 for (i
= CLASS_CODE_USER_PROG1
; i
<= CLASS_CODE_SCTP_IPV6
; i
++) {
5106 int index
= i
- CLASS_CODE_USER_PROG1
;
5108 err
= niu_set_tcam_key(np
, i
, parent
->tcam_key
[index
]);
5111 err
= niu_set_flow_key(np
, i
, parent
->flow_key
[index
]);
5116 err
= niu_set_ip_frag_rule(np
);
5125 static int niu_zcp_write(struct niu
*np
, int index
, u64
*data
)
5127 nw64(ZCP_RAM_DATA0
, data
[0]);
5128 nw64(ZCP_RAM_DATA1
, data
[1]);
5129 nw64(ZCP_RAM_DATA2
, data
[2]);
5130 nw64(ZCP_RAM_DATA3
, data
[3]);
5131 nw64(ZCP_RAM_DATA4
, data
[4]);
5132 nw64(ZCP_RAM_BE
, ZCP_RAM_BE_VAL
);
5134 (ZCP_RAM_ACC_WRITE
|
5135 (0 << ZCP_RAM_ACC_ZFCID_SHIFT
) |
5136 (ZCP_RAM_SEL_CFIFO(np
->port
) << ZCP_RAM_ACC_RAM_SEL_SHIFT
)));
5138 return niu_wait_bits_clear(np
, ZCP_RAM_ACC
, ZCP_RAM_ACC_BUSY
,
5142 static int niu_zcp_read(struct niu
*np
, int index
, u64
*data
)
5146 err
= niu_wait_bits_clear(np
, ZCP_RAM_ACC
, ZCP_RAM_ACC_BUSY
,
5149 dev_err(np
->device
, PFX
"%s: ZCP read busy won't clear, "
5150 "ZCP_RAM_ACC[%llx]\n", np
->dev
->name
,
5151 (unsigned long long) nr64(ZCP_RAM_ACC
));
5157 (0 << ZCP_RAM_ACC_ZFCID_SHIFT
) |
5158 (ZCP_RAM_SEL_CFIFO(np
->port
) << ZCP_RAM_ACC_RAM_SEL_SHIFT
)));
5160 err
= niu_wait_bits_clear(np
, ZCP_RAM_ACC
, ZCP_RAM_ACC_BUSY
,
5163 dev_err(np
->device
, PFX
"%s: ZCP read busy2 won't clear, "
5164 "ZCP_RAM_ACC[%llx]\n", np
->dev
->name
,
5165 (unsigned long long) nr64(ZCP_RAM_ACC
));
5169 data
[0] = nr64(ZCP_RAM_DATA0
);
5170 data
[1] = nr64(ZCP_RAM_DATA1
);
5171 data
[2] = nr64(ZCP_RAM_DATA2
);
5172 data
[3] = nr64(ZCP_RAM_DATA3
);
5173 data
[4] = nr64(ZCP_RAM_DATA4
);
5178 static void niu_zcp_cfifo_reset(struct niu
*np
)
5180 u64 val
= nr64(RESET_CFIFO
);
5182 val
|= RESET_CFIFO_RST(np
->port
);
5183 nw64(RESET_CFIFO
, val
);
5186 val
&= ~RESET_CFIFO_RST(np
->port
);
5187 nw64(RESET_CFIFO
, val
);
5190 static int niu_init_zcp(struct niu
*np
)
5192 u64 data
[5], rbuf
[5];
5195 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
) {
5196 if (np
->port
== 0 || np
->port
== 1)
5197 max
= ATLAS_P0_P1_CFIFO_ENTRIES
;
5199 max
= ATLAS_P2_P3_CFIFO_ENTRIES
;
5201 max
= NIU_CFIFO_ENTRIES
;
5209 for (i
= 0; i
< max
; i
++) {
5210 err
= niu_zcp_write(np
, i
, data
);
5213 err
= niu_zcp_read(np
, i
, rbuf
);
5218 niu_zcp_cfifo_reset(np
);
5219 nw64(CFIFO_ECC(np
->port
), 0);
5220 nw64(ZCP_INT_STAT
, ZCP_INT_STAT_ALL
);
5221 (void) nr64(ZCP_INT_STAT
);
5222 nw64(ZCP_INT_MASK
, ZCP_INT_MASK_ALL
);
5227 static void niu_ipp_write(struct niu
*np
, int index
, u64
*data
)
5229 u64 val
= nr64_ipp(IPP_CFIG
);
5231 nw64_ipp(IPP_CFIG
, val
| IPP_CFIG_DFIFO_PIO_W
);
5232 nw64_ipp(IPP_DFIFO_WR_PTR
, index
);
5233 nw64_ipp(IPP_DFIFO_WR0
, data
[0]);
5234 nw64_ipp(IPP_DFIFO_WR1
, data
[1]);
5235 nw64_ipp(IPP_DFIFO_WR2
, data
[2]);
5236 nw64_ipp(IPP_DFIFO_WR3
, data
[3]);
5237 nw64_ipp(IPP_DFIFO_WR4
, data
[4]);
5238 nw64_ipp(IPP_CFIG
, val
& ~IPP_CFIG_DFIFO_PIO_W
);
5241 static void niu_ipp_read(struct niu
*np
, int index
, u64
*data
)
5243 nw64_ipp(IPP_DFIFO_RD_PTR
, index
);
5244 data
[0] = nr64_ipp(IPP_DFIFO_RD0
);
5245 data
[1] = nr64_ipp(IPP_DFIFO_RD1
);
5246 data
[2] = nr64_ipp(IPP_DFIFO_RD2
);
5247 data
[3] = nr64_ipp(IPP_DFIFO_RD3
);
5248 data
[4] = nr64_ipp(IPP_DFIFO_RD4
);
5251 static int niu_ipp_reset(struct niu
*np
)
5253 return niu_set_and_wait_clear_ipp(np
, IPP_CFIG
, IPP_CFIG_SOFT_RST
,
5254 1000, 100, "IPP_CFIG");
5257 static int niu_init_ipp(struct niu
*np
)
5259 u64 data
[5], rbuf
[5], val
;
5262 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
) {
5263 if (np
->port
== 0 || np
->port
== 1)
5264 max
= ATLAS_P0_P1_DFIFO_ENTRIES
;
5266 max
= ATLAS_P2_P3_DFIFO_ENTRIES
;
5268 max
= NIU_DFIFO_ENTRIES
;
5276 for (i
= 0; i
< max
; i
++) {
5277 niu_ipp_write(np
, i
, data
);
5278 niu_ipp_read(np
, i
, rbuf
);
5281 (void) nr64_ipp(IPP_INT_STAT
);
5282 (void) nr64_ipp(IPP_INT_STAT
);
5284 err
= niu_ipp_reset(np
);
5288 (void) nr64_ipp(IPP_PKT_DIS
);
5289 (void) nr64_ipp(IPP_BAD_CS_CNT
);
5290 (void) nr64_ipp(IPP_ECC
);
5292 (void) nr64_ipp(IPP_INT_STAT
);
5294 nw64_ipp(IPP_MSK
, ~IPP_MSK_ALL
);
5296 val
= nr64_ipp(IPP_CFIG
);
5297 val
&= ~IPP_CFIG_IP_MAX_PKT
;
5298 val
|= (IPP_CFIG_IPP_ENABLE
|
5299 IPP_CFIG_DFIFO_ECC_EN
|
5300 IPP_CFIG_DROP_BAD_CRC
|
5302 (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT
));
5303 nw64_ipp(IPP_CFIG
, val
);
5308 static void niu_handle_led(struct niu
*np
, int status
)
5311 val
= nr64_mac(XMAC_CONFIG
);
5313 if ((np
->flags
& NIU_FLAGS_10G
) != 0 &&
5314 (np
->flags
& NIU_FLAGS_FIBER
) != 0) {
5316 val
|= XMAC_CONFIG_LED_POLARITY
;
5317 val
&= ~XMAC_CONFIG_FORCE_LED_ON
;
5319 val
|= XMAC_CONFIG_FORCE_LED_ON
;
5320 val
&= ~XMAC_CONFIG_LED_POLARITY
;
5324 nw64_mac(XMAC_CONFIG
, val
);
5327 static void niu_init_xif_xmac(struct niu
*np
)
5329 struct niu_link_config
*lp
= &np
->link_config
;
5332 if (np
->flags
& NIU_FLAGS_XCVR_SERDES
) {
5333 val
= nr64(MIF_CONFIG
);
5334 val
|= MIF_CONFIG_ATCA_GE
;
5335 nw64(MIF_CONFIG
, val
);
5338 val
= nr64_mac(XMAC_CONFIG
);
5339 val
&= ~XMAC_CONFIG_SEL_POR_CLK_SRC
;
5341 val
|= XMAC_CONFIG_TX_OUTPUT_EN
;
5343 if (lp
->loopback_mode
== LOOPBACK_MAC
) {
5344 val
&= ~XMAC_CONFIG_SEL_POR_CLK_SRC
;
5345 val
|= XMAC_CONFIG_LOOPBACK
;
5347 val
&= ~XMAC_CONFIG_LOOPBACK
;
5350 if (np
->flags
& NIU_FLAGS_10G
) {
5351 val
&= ~XMAC_CONFIG_LFS_DISABLE
;
5353 val
|= XMAC_CONFIG_LFS_DISABLE
;
5354 if (!(np
->flags
& NIU_FLAGS_FIBER
) &&
5355 !(np
->flags
& NIU_FLAGS_XCVR_SERDES
))
5356 val
|= XMAC_CONFIG_1G_PCS_BYPASS
;
5358 val
&= ~XMAC_CONFIG_1G_PCS_BYPASS
;
5361 val
&= ~XMAC_CONFIG_10G_XPCS_BYPASS
;
5363 if (lp
->active_speed
== SPEED_100
)
5364 val
|= XMAC_CONFIG_SEL_CLK_25MHZ
;
5366 val
&= ~XMAC_CONFIG_SEL_CLK_25MHZ
;
5368 nw64_mac(XMAC_CONFIG
, val
);
5370 val
= nr64_mac(XMAC_CONFIG
);
5371 val
&= ~XMAC_CONFIG_MODE_MASK
;
5372 if (np
->flags
& NIU_FLAGS_10G
) {
5373 val
|= XMAC_CONFIG_MODE_XGMII
;
5375 if (lp
->active_speed
== SPEED_1000
)
5376 val
|= XMAC_CONFIG_MODE_GMII
;
5378 val
|= XMAC_CONFIG_MODE_MII
;
5381 nw64_mac(XMAC_CONFIG
, val
);
5384 static void niu_init_xif_bmac(struct niu
*np
)
5386 struct niu_link_config
*lp
= &np
->link_config
;
5389 val
= BMAC_XIF_CONFIG_TX_OUTPUT_EN
;
5391 if (lp
->loopback_mode
== LOOPBACK_MAC
)
5392 val
|= BMAC_XIF_CONFIG_MII_LOOPBACK
;
5394 val
&= ~BMAC_XIF_CONFIG_MII_LOOPBACK
;
5396 if (lp
->active_speed
== SPEED_1000
)
5397 val
|= BMAC_XIF_CONFIG_GMII_MODE
;
5399 val
&= ~BMAC_XIF_CONFIG_GMII_MODE
;
5401 val
&= ~(BMAC_XIF_CONFIG_LINK_LED
|
5402 BMAC_XIF_CONFIG_LED_POLARITY
);
5404 if (!(np
->flags
& NIU_FLAGS_10G
) &&
5405 !(np
->flags
& NIU_FLAGS_FIBER
) &&
5406 lp
->active_speed
== SPEED_100
)
5407 val
|= BMAC_XIF_CONFIG_25MHZ_CLOCK
;
5409 val
&= ~BMAC_XIF_CONFIG_25MHZ_CLOCK
;
5411 nw64_mac(BMAC_XIF_CONFIG
, val
);
5414 static void niu_init_xif(struct niu
*np
)
5416 if (np
->flags
& NIU_FLAGS_XMAC
)
5417 niu_init_xif_xmac(np
);
5419 niu_init_xif_bmac(np
);
5422 static void niu_pcs_mii_reset(struct niu
*np
)
5425 u64 val
= nr64_pcs(PCS_MII_CTL
);
5426 val
|= PCS_MII_CTL_RST
;
5427 nw64_pcs(PCS_MII_CTL
, val
);
5428 while ((--limit
>= 0) && (val
& PCS_MII_CTL_RST
)) {
5430 val
= nr64_pcs(PCS_MII_CTL
);
5434 static void niu_xpcs_reset(struct niu
*np
)
5437 u64 val
= nr64_xpcs(XPCS_CONTROL1
);
5438 val
|= XPCS_CONTROL1_RESET
;
5439 nw64_xpcs(XPCS_CONTROL1
, val
);
5440 while ((--limit
>= 0) && (val
& XPCS_CONTROL1_RESET
)) {
5442 val
= nr64_xpcs(XPCS_CONTROL1
);
5446 static int niu_init_pcs(struct niu
*np
)
5448 struct niu_link_config
*lp
= &np
->link_config
;
5451 switch (np
->flags
& (NIU_FLAGS_10G
|
5453 NIU_FLAGS_XCVR_SERDES
)) {
5454 case NIU_FLAGS_FIBER
:
5456 nw64_pcs(PCS_CONF
, PCS_CONF_MASK
| PCS_CONF_ENABLE
);
5457 nw64_pcs(PCS_DPATH_MODE
, 0);
5458 niu_pcs_mii_reset(np
);
5462 case NIU_FLAGS_10G
| NIU_FLAGS_FIBER
:
5463 case NIU_FLAGS_10G
| NIU_FLAGS_XCVR_SERDES
:
5465 if (!(np
->flags
& NIU_FLAGS_XMAC
))
5468 /* 10G copper or fiber */
5469 val
= nr64_mac(XMAC_CONFIG
);
5470 val
&= ~XMAC_CONFIG_10G_XPCS_BYPASS
;
5471 nw64_mac(XMAC_CONFIG
, val
);
5475 val
= nr64_xpcs(XPCS_CONTROL1
);
5476 if (lp
->loopback_mode
== LOOPBACK_PHY
)
5477 val
|= XPCS_CONTROL1_LOOPBACK
;
5479 val
&= ~XPCS_CONTROL1_LOOPBACK
;
5480 nw64_xpcs(XPCS_CONTROL1
, val
);
5482 nw64_xpcs(XPCS_DESKEW_ERR_CNT
, 0);
5483 (void) nr64_xpcs(XPCS_SYMERR_CNT01
);
5484 (void) nr64_xpcs(XPCS_SYMERR_CNT23
);
5488 case NIU_FLAGS_XCVR_SERDES
:
5490 niu_pcs_mii_reset(np
);
5491 nw64_pcs(PCS_CONF
, PCS_CONF_MASK
| PCS_CONF_ENABLE
);
5492 nw64_pcs(PCS_DPATH_MODE
, 0);
5497 case NIU_FLAGS_XCVR_SERDES
| NIU_FLAGS_FIBER
:
5498 /* 1G RGMII FIBER */
5499 nw64_pcs(PCS_DPATH_MODE
, PCS_DPATH_MODE_MII
);
5500 niu_pcs_mii_reset(np
);
5510 static int niu_reset_tx_xmac(struct niu
*np
)
5512 return niu_set_and_wait_clear_mac(np
, XTXMAC_SW_RST
,
5513 (XTXMAC_SW_RST_REG_RS
|
5514 XTXMAC_SW_RST_SOFT_RST
),
5515 1000, 100, "XTXMAC_SW_RST");
5518 static int niu_reset_tx_bmac(struct niu
*np
)
5522 nw64_mac(BTXMAC_SW_RST
, BTXMAC_SW_RST_RESET
);
5524 while (--limit
>= 0) {
5525 if (!(nr64_mac(BTXMAC_SW_RST
) & BTXMAC_SW_RST_RESET
))
5530 dev_err(np
->device
, PFX
"Port %u TX BMAC would not reset, "
5531 "BTXMAC_SW_RST[%llx]\n",
5533 (unsigned long long) nr64_mac(BTXMAC_SW_RST
));
5540 static int niu_reset_tx_mac(struct niu
*np
)
5542 if (np
->flags
& NIU_FLAGS_XMAC
)
5543 return niu_reset_tx_xmac(np
);
5545 return niu_reset_tx_bmac(np
);
5548 static void niu_init_tx_xmac(struct niu
*np
, u64 min
, u64 max
)
5552 val
= nr64_mac(XMAC_MIN
);
5553 val
&= ~(XMAC_MIN_TX_MIN_PKT_SIZE
|
5554 XMAC_MIN_RX_MIN_PKT_SIZE
);
5555 val
|= (min
<< XMAC_MIN_RX_MIN_PKT_SIZE_SHFT
);
5556 val
|= (min
<< XMAC_MIN_TX_MIN_PKT_SIZE_SHFT
);
5557 nw64_mac(XMAC_MIN
, val
);
5559 nw64_mac(XMAC_MAX
, max
);
5561 nw64_mac(XTXMAC_STAT_MSK
, ~(u64
)0);
5563 val
= nr64_mac(XMAC_IPG
);
5564 if (np
->flags
& NIU_FLAGS_10G
) {
5565 val
&= ~XMAC_IPG_IPG_XGMII
;
5566 val
|= (IPG_12_15_XGMII
<< XMAC_IPG_IPG_XGMII_SHIFT
);
5568 val
&= ~XMAC_IPG_IPG_MII_GMII
;
5569 val
|= (IPG_12_MII_GMII
<< XMAC_IPG_IPG_MII_GMII_SHIFT
);
5571 nw64_mac(XMAC_IPG
, val
);
5573 val
= nr64_mac(XMAC_CONFIG
);
5574 val
&= ~(XMAC_CONFIG_ALWAYS_NO_CRC
|
5575 XMAC_CONFIG_STRETCH_MODE
|
5576 XMAC_CONFIG_VAR_MIN_IPG_EN
|
5577 XMAC_CONFIG_TX_ENABLE
);
5578 nw64_mac(XMAC_CONFIG
, val
);
5580 nw64_mac(TXMAC_FRM_CNT
, 0);
5581 nw64_mac(TXMAC_BYTE_CNT
, 0);
5584 static void niu_init_tx_bmac(struct niu
*np
, u64 min
, u64 max
)
5588 nw64_mac(BMAC_MIN_FRAME
, min
);
5589 nw64_mac(BMAC_MAX_FRAME
, max
);
5591 nw64_mac(BTXMAC_STATUS_MASK
, ~(u64
)0);
5592 nw64_mac(BMAC_CTRL_TYPE
, 0x8808);
5593 nw64_mac(BMAC_PREAMBLE_SIZE
, 7);
5595 val
= nr64_mac(BTXMAC_CONFIG
);
5596 val
&= ~(BTXMAC_CONFIG_FCS_DISABLE
|
5597 BTXMAC_CONFIG_ENABLE
);
5598 nw64_mac(BTXMAC_CONFIG
, val
);
5601 static void niu_init_tx_mac(struct niu
*np
)
5606 if (np
->dev
->mtu
> ETH_DATA_LEN
)
5611 /* The XMAC_MIN register only accepts values for TX min which
5612 * have the low 3 bits cleared.
5616 if (np
->flags
& NIU_FLAGS_XMAC
)
5617 niu_init_tx_xmac(np
, min
, max
);
5619 niu_init_tx_bmac(np
, min
, max
);
5622 static int niu_reset_rx_xmac(struct niu
*np
)
5626 nw64_mac(XRXMAC_SW_RST
,
5627 XRXMAC_SW_RST_REG_RS
| XRXMAC_SW_RST_SOFT_RST
);
5629 while (--limit
>= 0) {
5630 if (!(nr64_mac(XRXMAC_SW_RST
) & (XRXMAC_SW_RST_REG_RS
|
5631 XRXMAC_SW_RST_SOFT_RST
)))
5636 dev_err(np
->device
, PFX
"Port %u RX XMAC would not reset, "
5637 "XRXMAC_SW_RST[%llx]\n",
5639 (unsigned long long) nr64_mac(XRXMAC_SW_RST
));
5646 static int niu_reset_rx_bmac(struct niu
*np
)
5650 nw64_mac(BRXMAC_SW_RST
, BRXMAC_SW_RST_RESET
);
5652 while (--limit
>= 0) {
5653 if (!(nr64_mac(BRXMAC_SW_RST
) & BRXMAC_SW_RST_RESET
))
5658 dev_err(np
->device
, PFX
"Port %u RX BMAC would not reset, "
5659 "BRXMAC_SW_RST[%llx]\n",
5661 (unsigned long long) nr64_mac(BRXMAC_SW_RST
));
5668 static int niu_reset_rx_mac(struct niu
*np
)
5670 if (np
->flags
& NIU_FLAGS_XMAC
)
5671 return niu_reset_rx_xmac(np
);
5673 return niu_reset_rx_bmac(np
);
5676 static void niu_init_rx_xmac(struct niu
*np
)
5678 struct niu_parent
*parent
= np
->parent
;
5679 struct niu_rdc_tables
*tp
= &parent
->rdc_group_cfg
[np
->port
];
5680 int first_rdc_table
= tp
->first_table_num
;
5684 nw64_mac(XMAC_ADD_FILT0
, 0);
5685 nw64_mac(XMAC_ADD_FILT1
, 0);
5686 nw64_mac(XMAC_ADD_FILT2
, 0);
5687 nw64_mac(XMAC_ADD_FILT12_MASK
, 0);
5688 nw64_mac(XMAC_ADD_FILT00_MASK
, 0);
5689 for (i
= 0; i
< MAC_NUM_HASH
; i
++)
5690 nw64_mac(XMAC_HASH_TBL(i
), 0);
5691 nw64_mac(XRXMAC_STAT_MSK
, ~(u64
)0);
5692 niu_set_primary_mac_rdc_table(np
, first_rdc_table
, 1);
5693 niu_set_multicast_mac_rdc_table(np
, first_rdc_table
, 1);
5695 val
= nr64_mac(XMAC_CONFIG
);
5696 val
&= ~(XMAC_CONFIG_RX_MAC_ENABLE
|
5697 XMAC_CONFIG_PROMISCUOUS
|
5698 XMAC_CONFIG_PROMISC_GROUP
|
5699 XMAC_CONFIG_ERR_CHK_DIS
|
5700 XMAC_CONFIG_RX_CRC_CHK_DIS
|
5701 XMAC_CONFIG_RESERVED_MULTICAST
|
5702 XMAC_CONFIG_RX_CODEV_CHK_DIS
|
5703 XMAC_CONFIG_ADDR_FILTER_EN
|
5704 XMAC_CONFIG_RCV_PAUSE_ENABLE
|
5705 XMAC_CONFIG_STRIP_CRC
|
5706 XMAC_CONFIG_PASS_FLOW_CTRL
|
5707 XMAC_CONFIG_MAC2IPP_PKT_CNT_EN
);
5708 val
|= (XMAC_CONFIG_HASH_FILTER_EN
);
5709 nw64_mac(XMAC_CONFIG
, val
);
5711 nw64_mac(RXMAC_BT_CNT
, 0);
5712 nw64_mac(RXMAC_BC_FRM_CNT
, 0);
5713 nw64_mac(RXMAC_MC_FRM_CNT
, 0);
5714 nw64_mac(RXMAC_FRAG_CNT
, 0);
5715 nw64_mac(RXMAC_HIST_CNT1
, 0);
5716 nw64_mac(RXMAC_HIST_CNT2
, 0);
5717 nw64_mac(RXMAC_HIST_CNT3
, 0);
5718 nw64_mac(RXMAC_HIST_CNT4
, 0);
5719 nw64_mac(RXMAC_HIST_CNT5
, 0);
5720 nw64_mac(RXMAC_HIST_CNT6
, 0);
5721 nw64_mac(RXMAC_HIST_CNT7
, 0);
5722 nw64_mac(RXMAC_MPSZER_CNT
, 0);
5723 nw64_mac(RXMAC_CRC_ER_CNT
, 0);
5724 nw64_mac(RXMAC_CD_VIO_CNT
, 0);
5725 nw64_mac(LINK_FAULT_CNT
, 0);
5728 static void niu_init_rx_bmac(struct niu
*np
)
5730 struct niu_parent
*parent
= np
->parent
;
5731 struct niu_rdc_tables
*tp
= &parent
->rdc_group_cfg
[np
->port
];
5732 int first_rdc_table
= tp
->first_table_num
;
5736 nw64_mac(BMAC_ADD_FILT0
, 0);
5737 nw64_mac(BMAC_ADD_FILT1
, 0);
5738 nw64_mac(BMAC_ADD_FILT2
, 0);
5739 nw64_mac(BMAC_ADD_FILT12_MASK
, 0);
5740 nw64_mac(BMAC_ADD_FILT00_MASK
, 0);
5741 for (i
= 0; i
< MAC_NUM_HASH
; i
++)
5742 nw64_mac(BMAC_HASH_TBL(i
), 0);
5743 niu_set_primary_mac_rdc_table(np
, first_rdc_table
, 1);
5744 niu_set_multicast_mac_rdc_table(np
, first_rdc_table
, 1);
5745 nw64_mac(BRXMAC_STATUS_MASK
, ~(u64
)0);
5747 val
= nr64_mac(BRXMAC_CONFIG
);
5748 val
&= ~(BRXMAC_CONFIG_ENABLE
|
5749 BRXMAC_CONFIG_STRIP_PAD
|
5750 BRXMAC_CONFIG_STRIP_FCS
|
5751 BRXMAC_CONFIG_PROMISC
|
5752 BRXMAC_CONFIG_PROMISC_GRP
|
5753 BRXMAC_CONFIG_ADDR_FILT_EN
|
5754 BRXMAC_CONFIG_DISCARD_DIS
);
5755 val
|= (BRXMAC_CONFIG_HASH_FILT_EN
);
5756 nw64_mac(BRXMAC_CONFIG
, val
);
5758 val
= nr64_mac(BMAC_ADDR_CMPEN
);
5759 val
|= BMAC_ADDR_CMPEN_EN0
;
5760 nw64_mac(BMAC_ADDR_CMPEN
, val
);
5763 static void niu_init_rx_mac(struct niu
*np
)
5765 niu_set_primary_mac(np
, np
->dev
->dev_addr
);
5767 if (np
->flags
& NIU_FLAGS_XMAC
)
5768 niu_init_rx_xmac(np
);
5770 niu_init_rx_bmac(np
);
5773 static void niu_enable_tx_xmac(struct niu
*np
, int on
)
5775 u64 val
= nr64_mac(XMAC_CONFIG
);
5778 val
|= XMAC_CONFIG_TX_ENABLE
;
5780 val
&= ~XMAC_CONFIG_TX_ENABLE
;
5781 nw64_mac(XMAC_CONFIG
, val
);
5784 static void niu_enable_tx_bmac(struct niu
*np
, int on
)
5786 u64 val
= nr64_mac(BTXMAC_CONFIG
);
5789 val
|= BTXMAC_CONFIG_ENABLE
;
5791 val
&= ~BTXMAC_CONFIG_ENABLE
;
5792 nw64_mac(BTXMAC_CONFIG
, val
);
5795 static void niu_enable_tx_mac(struct niu
*np
, int on
)
5797 if (np
->flags
& NIU_FLAGS_XMAC
)
5798 niu_enable_tx_xmac(np
, on
);
5800 niu_enable_tx_bmac(np
, on
);
5803 static void niu_enable_rx_xmac(struct niu
*np
, int on
)
5805 u64 val
= nr64_mac(XMAC_CONFIG
);
5807 val
&= ~(XMAC_CONFIG_HASH_FILTER_EN
|
5808 XMAC_CONFIG_PROMISCUOUS
);
5810 if (np
->flags
& NIU_FLAGS_MCAST
)
5811 val
|= XMAC_CONFIG_HASH_FILTER_EN
;
5812 if (np
->flags
& NIU_FLAGS_PROMISC
)
5813 val
|= XMAC_CONFIG_PROMISCUOUS
;
5816 val
|= XMAC_CONFIG_RX_MAC_ENABLE
;
5818 val
&= ~XMAC_CONFIG_RX_MAC_ENABLE
;
5819 nw64_mac(XMAC_CONFIG
, val
);
5822 static void niu_enable_rx_bmac(struct niu
*np
, int on
)
5824 u64 val
= nr64_mac(BRXMAC_CONFIG
);
5826 val
&= ~(BRXMAC_CONFIG_HASH_FILT_EN
|
5827 BRXMAC_CONFIG_PROMISC
);
5829 if (np
->flags
& NIU_FLAGS_MCAST
)
5830 val
|= BRXMAC_CONFIG_HASH_FILT_EN
;
5831 if (np
->flags
& NIU_FLAGS_PROMISC
)
5832 val
|= BRXMAC_CONFIG_PROMISC
;
5835 val
|= BRXMAC_CONFIG_ENABLE
;
5837 val
&= ~BRXMAC_CONFIG_ENABLE
;
5838 nw64_mac(BRXMAC_CONFIG
, val
);
5841 static void niu_enable_rx_mac(struct niu
*np
, int on
)
5843 if (np
->flags
& NIU_FLAGS_XMAC
)
5844 niu_enable_rx_xmac(np
, on
);
5846 niu_enable_rx_bmac(np
, on
);
5849 static int niu_init_mac(struct niu
*np
)
5854 err
= niu_init_pcs(np
);
5858 err
= niu_reset_tx_mac(np
);
5861 niu_init_tx_mac(np
);
5862 err
= niu_reset_rx_mac(np
);
5865 niu_init_rx_mac(np
);
5867 /* This looks hookey but the RX MAC reset we just did will
5868 * undo some of the state we setup in niu_init_tx_mac() so we
5869 * have to call it again. In particular, the RX MAC reset will
5870 * set the XMAC_MAX register back to it's default value.
5872 niu_init_tx_mac(np
);
5873 niu_enable_tx_mac(np
, 1);
5875 niu_enable_rx_mac(np
, 1);
5880 static void niu_stop_one_tx_channel(struct niu
*np
, struct tx_ring_info
*rp
)
5882 (void) niu_tx_channel_stop(np
, rp
->tx_channel
);
5885 static void niu_stop_tx_channels(struct niu
*np
)
5889 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
5890 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
5892 niu_stop_one_tx_channel(np
, rp
);
5896 static void niu_reset_one_tx_channel(struct niu
*np
, struct tx_ring_info
*rp
)
5898 (void) niu_tx_channel_reset(np
, rp
->tx_channel
);
5901 static void niu_reset_tx_channels(struct niu
*np
)
5905 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
5906 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
5908 niu_reset_one_tx_channel(np
, rp
);
5912 static void niu_stop_one_rx_channel(struct niu
*np
, struct rx_ring_info
*rp
)
5914 (void) niu_enable_rx_channel(np
, rp
->rx_channel
, 0);
5917 static void niu_stop_rx_channels(struct niu
*np
)
5921 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
5922 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
5924 niu_stop_one_rx_channel(np
, rp
);
5928 static void niu_reset_one_rx_channel(struct niu
*np
, struct rx_ring_info
*rp
)
5930 int channel
= rp
->rx_channel
;
5932 (void) niu_rx_channel_reset(np
, channel
);
5933 nw64(RX_DMA_ENT_MSK(channel
), RX_DMA_ENT_MSK_ALL
);
5934 nw64(RX_DMA_CTL_STAT(channel
), 0);
5935 (void) niu_enable_rx_channel(np
, channel
, 0);
5938 static void niu_reset_rx_channels(struct niu
*np
)
5942 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
5943 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
5945 niu_reset_one_rx_channel(np
, rp
);
5949 static void niu_disable_ipp(struct niu
*np
)
5954 rd
= nr64_ipp(IPP_DFIFO_RD_PTR
);
5955 wr
= nr64_ipp(IPP_DFIFO_WR_PTR
);
5957 while (--limit
>= 0 && (rd
!= wr
)) {
5958 rd
= nr64_ipp(IPP_DFIFO_RD_PTR
);
5959 wr
= nr64_ipp(IPP_DFIFO_WR_PTR
);
5962 (rd
!= 0 && wr
!= 1)) {
5963 dev_err(np
->device
, PFX
"%s: IPP would not quiesce, "
5964 "rd_ptr[%llx] wr_ptr[%llx]\n",
5966 (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR
),
5967 (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR
));
5970 val
= nr64_ipp(IPP_CFIG
);
5971 val
&= ~(IPP_CFIG_IPP_ENABLE
|
5972 IPP_CFIG_DFIFO_ECC_EN
|
5973 IPP_CFIG_DROP_BAD_CRC
|
5975 nw64_ipp(IPP_CFIG
, val
);
5977 (void) niu_ipp_reset(np
);
5980 static int niu_init_hw(struct niu
*np
)
5984 niudbg(IFUP
, "%s: Initialize TXC\n", np
->dev
->name
);
5985 niu_txc_enable_port(np
, 1);
5986 niu_txc_port_dma_enable(np
, 1);
5987 niu_txc_set_imask(np
, 0);
5989 niudbg(IFUP
, "%s: Initialize TX channels\n", np
->dev
->name
);
5990 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
5991 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
5993 err
= niu_init_one_tx_channel(np
, rp
);
5998 niudbg(IFUP
, "%s: Initialize RX channels\n", np
->dev
->name
);
5999 err
= niu_init_rx_channels(np
);
6001 goto out_uninit_tx_channels
;
6003 niudbg(IFUP
, "%s: Initialize classifier\n", np
->dev
->name
);
6004 err
= niu_init_classifier_hw(np
);
6006 goto out_uninit_rx_channels
;
6008 niudbg(IFUP
, "%s: Initialize ZCP\n", np
->dev
->name
);
6009 err
= niu_init_zcp(np
);
6011 goto out_uninit_rx_channels
;
6013 niudbg(IFUP
, "%s: Initialize IPP\n", np
->dev
->name
);
6014 err
= niu_init_ipp(np
);
6016 goto out_uninit_rx_channels
;
6018 niudbg(IFUP
, "%s: Initialize MAC\n", np
->dev
->name
);
6019 err
= niu_init_mac(np
);
6021 goto out_uninit_ipp
;
6026 niudbg(IFUP
, "%s: Uninit IPP\n", np
->dev
->name
);
6027 niu_disable_ipp(np
);
6029 out_uninit_rx_channels
:
6030 niudbg(IFUP
, "%s: Uninit RX channels\n", np
->dev
->name
);
6031 niu_stop_rx_channels(np
);
6032 niu_reset_rx_channels(np
);
6034 out_uninit_tx_channels
:
6035 niudbg(IFUP
, "%s: Uninit TX channels\n", np
->dev
->name
);
6036 niu_stop_tx_channels(np
);
6037 niu_reset_tx_channels(np
);
6042 static void niu_stop_hw(struct niu
*np
)
6044 niudbg(IFDOWN
, "%s: Disable interrupts\n", np
->dev
->name
);
6045 niu_enable_interrupts(np
, 0);
6047 niudbg(IFDOWN
, "%s: Disable RX MAC\n", np
->dev
->name
);
6048 niu_enable_rx_mac(np
, 0);
6050 niudbg(IFDOWN
, "%s: Disable IPP\n", np
->dev
->name
);
6051 niu_disable_ipp(np
);
6053 niudbg(IFDOWN
, "%s: Stop TX channels\n", np
->dev
->name
);
6054 niu_stop_tx_channels(np
);
6056 niudbg(IFDOWN
, "%s: Stop RX channels\n", np
->dev
->name
);
6057 niu_stop_rx_channels(np
);
6059 niudbg(IFDOWN
, "%s: Reset TX channels\n", np
->dev
->name
);
6060 niu_reset_tx_channels(np
);
6062 niudbg(IFDOWN
, "%s: Reset RX channels\n", np
->dev
->name
);
6063 niu_reset_rx_channels(np
);
6066 static void niu_set_irq_name(struct niu
*np
)
6068 int port
= np
->port
;
6071 sprintf(np
->irq_name
[0], "%s:MAC", np
->dev
->name
);
6074 sprintf(np
->irq_name
[1], "%s:MIF", np
->dev
->name
);
6075 sprintf(np
->irq_name
[2], "%s:SYSERR", np
->dev
->name
);
6079 for (i
= 0; i
< np
->num_ldg
- j
; i
++) {
6080 if (i
< np
->num_rx_rings
)
6081 sprintf(np
->irq_name
[i
+j
], "%s-rx-%d",
6083 else if (i
< np
->num_tx_rings
+ np
->num_rx_rings
)
6084 sprintf(np
->irq_name
[i
+j
], "%s-tx-%d", np
->dev
->name
,
6085 i
- np
->num_rx_rings
);
6089 static int niu_request_irq(struct niu
*np
)
6093 niu_set_irq_name(np
);
6096 for (i
= 0; i
< np
->num_ldg
; i
++) {
6097 struct niu_ldg
*lp
= &np
->ldg
[i
];
6099 err
= request_irq(lp
->irq
, niu_interrupt
,
6100 IRQF_SHARED
| IRQF_SAMPLE_RANDOM
,
6101 np
->irq_name
[i
], lp
);
6110 for (j
= 0; j
< i
; j
++) {
6111 struct niu_ldg
*lp
= &np
->ldg
[j
];
6113 free_irq(lp
->irq
, lp
);
6118 static void niu_free_irq(struct niu
*np
)
6122 for (i
= 0; i
< np
->num_ldg
; i
++) {
6123 struct niu_ldg
*lp
= &np
->ldg
[i
];
6125 free_irq(lp
->irq
, lp
);
6129 static void niu_enable_napi(struct niu
*np
)
6133 for (i
= 0; i
< np
->num_ldg
; i
++)
6134 napi_enable(&np
->ldg
[i
].napi
);
6137 static void niu_disable_napi(struct niu
*np
)
6141 for (i
= 0; i
< np
->num_ldg
; i
++)
6142 napi_disable(&np
->ldg
[i
].napi
);
6145 static int niu_open(struct net_device
*dev
)
6147 struct niu
*np
= netdev_priv(dev
);
6150 netif_carrier_off(dev
);
6152 err
= niu_alloc_channels(np
);
6156 err
= niu_enable_interrupts(np
, 0);
6158 goto out_free_channels
;
6160 err
= niu_request_irq(np
);
6162 goto out_free_channels
;
6164 niu_enable_napi(np
);
6166 spin_lock_irq(&np
->lock
);
6168 err
= niu_init_hw(np
);
6170 init_timer(&np
->timer
);
6171 np
->timer
.expires
= jiffies
+ HZ
;
6172 np
->timer
.data
= (unsigned long) np
;
6173 np
->timer
.function
= niu_timer
;
6175 err
= niu_enable_interrupts(np
, 1);
6180 spin_unlock_irq(&np
->lock
);
6183 niu_disable_napi(np
);
6187 netif_tx_start_all_queues(dev
);
6189 if (np
->link_config
.loopback_mode
!= LOOPBACK_DISABLED
)
6190 netif_carrier_on(dev
);
6192 add_timer(&np
->timer
);
6200 niu_free_channels(np
);
6206 static void niu_full_shutdown(struct niu
*np
, struct net_device
*dev
)
6208 cancel_work_sync(&np
->reset_task
);
6210 niu_disable_napi(np
);
6211 netif_tx_stop_all_queues(dev
);
6213 del_timer_sync(&np
->timer
);
6215 spin_lock_irq(&np
->lock
);
6219 spin_unlock_irq(&np
->lock
);
6222 static int niu_close(struct net_device
*dev
)
6224 struct niu
*np
= netdev_priv(dev
);
6226 niu_full_shutdown(np
, dev
);
6230 niu_free_channels(np
);
6232 niu_handle_led(np
, 0);
6237 static void niu_sync_xmac_stats(struct niu
*np
)
6239 struct niu_xmac_stats
*mp
= &np
->mac_stats
.xmac
;
6241 mp
->tx_frames
+= nr64_mac(TXMAC_FRM_CNT
);
6242 mp
->tx_bytes
+= nr64_mac(TXMAC_BYTE_CNT
);
6244 mp
->rx_link_faults
+= nr64_mac(LINK_FAULT_CNT
);
6245 mp
->rx_align_errors
+= nr64_mac(RXMAC_ALIGN_ERR_CNT
);
6246 mp
->rx_frags
+= nr64_mac(RXMAC_FRAG_CNT
);
6247 mp
->rx_mcasts
+= nr64_mac(RXMAC_MC_FRM_CNT
);
6248 mp
->rx_bcasts
+= nr64_mac(RXMAC_BC_FRM_CNT
);
6249 mp
->rx_hist_cnt1
+= nr64_mac(RXMAC_HIST_CNT1
);
6250 mp
->rx_hist_cnt2
+= nr64_mac(RXMAC_HIST_CNT2
);
6251 mp
->rx_hist_cnt3
+= nr64_mac(RXMAC_HIST_CNT3
);
6252 mp
->rx_hist_cnt4
+= nr64_mac(RXMAC_HIST_CNT4
);
6253 mp
->rx_hist_cnt5
+= nr64_mac(RXMAC_HIST_CNT5
);
6254 mp
->rx_hist_cnt6
+= nr64_mac(RXMAC_HIST_CNT6
);
6255 mp
->rx_hist_cnt7
+= nr64_mac(RXMAC_HIST_CNT7
);
6256 mp
->rx_octets
+= nr64_mac(RXMAC_BT_CNT
);
6257 mp
->rx_code_violations
+= nr64_mac(RXMAC_CD_VIO_CNT
);
6258 mp
->rx_len_errors
+= nr64_mac(RXMAC_MPSZER_CNT
);
6259 mp
->rx_crc_errors
+= nr64_mac(RXMAC_CRC_ER_CNT
);
6262 static void niu_sync_bmac_stats(struct niu
*np
)
6264 struct niu_bmac_stats
*mp
= &np
->mac_stats
.bmac
;
6266 mp
->tx_bytes
+= nr64_mac(BTXMAC_BYTE_CNT
);
6267 mp
->tx_frames
+= nr64_mac(BTXMAC_FRM_CNT
);
6269 mp
->rx_frames
+= nr64_mac(BRXMAC_FRAME_CNT
);
6270 mp
->rx_align_errors
+= nr64_mac(BRXMAC_ALIGN_ERR_CNT
);
6271 mp
->rx_crc_errors
+= nr64_mac(BRXMAC_ALIGN_ERR_CNT
);
6272 mp
->rx_len_errors
+= nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT
);
6275 static void niu_sync_mac_stats(struct niu
*np
)
6277 if (np
->flags
& NIU_FLAGS_XMAC
)
6278 niu_sync_xmac_stats(np
);
6280 niu_sync_bmac_stats(np
);
6283 static void niu_get_rx_stats(struct niu
*np
)
6285 unsigned long pkts
, dropped
, errors
, bytes
;
6288 pkts
= dropped
= errors
= bytes
= 0;
6289 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
6290 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
6292 niu_sync_rx_discard_stats(np
, rp
, 0);
6294 pkts
+= rp
->rx_packets
;
6295 bytes
+= rp
->rx_bytes
;
6296 dropped
+= rp
->rx_dropped
;
6297 errors
+= rp
->rx_errors
;
6299 np
->dev
->stats
.rx_packets
= pkts
;
6300 np
->dev
->stats
.rx_bytes
= bytes
;
6301 np
->dev
->stats
.rx_dropped
= dropped
;
6302 np
->dev
->stats
.rx_errors
= errors
;
6305 static void niu_get_tx_stats(struct niu
*np
)
6307 unsigned long pkts
, errors
, bytes
;
6310 pkts
= errors
= bytes
= 0;
6311 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
6312 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
6314 pkts
+= rp
->tx_packets
;
6315 bytes
+= rp
->tx_bytes
;
6316 errors
+= rp
->tx_errors
;
6318 np
->dev
->stats
.tx_packets
= pkts
;
6319 np
->dev
->stats
.tx_bytes
= bytes
;
6320 np
->dev
->stats
.tx_errors
= errors
;
6323 static struct net_device_stats
*niu_get_stats(struct net_device
*dev
)
6325 struct niu
*np
= netdev_priv(dev
);
6327 niu_get_rx_stats(np
);
6328 niu_get_tx_stats(np
);
6333 static void niu_load_hash_xmac(struct niu
*np
, u16
*hash
)
6337 for (i
= 0; i
< 16; i
++)
6338 nw64_mac(XMAC_HASH_TBL(i
), hash
[i
]);
6341 static void niu_load_hash_bmac(struct niu
*np
, u16
*hash
)
6345 for (i
= 0; i
< 16; i
++)
6346 nw64_mac(BMAC_HASH_TBL(i
), hash
[i
]);
6349 static void niu_load_hash(struct niu
*np
, u16
*hash
)
6351 if (np
->flags
& NIU_FLAGS_XMAC
)
6352 niu_load_hash_xmac(np
, hash
);
6354 niu_load_hash_bmac(np
, hash
);
6357 static void niu_set_rx_mode(struct net_device
*dev
)
6359 struct niu
*np
= netdev_priv(dev
);
6360 int i
, alt_cnt
, err
;
6361 struct dev_addr_list
*addr
;
6362 struct netdev_hw_addr
*ha
;
6363 unsigned long flags
;
6364 u16 hash
[16] = { 0, };
6366 spin_lock_irqsave(&np
->lock
, flags
);
6367 niu_enable_rx_mac(np
, 0);
6369 np
->flags
&= ~(NIU_FLAGS_MCAST
| NIU_FLAGS_PROMISC
);
6370 if (dev
->flags
& IFF_PROMISC
)
6371 np
->flags
|= NIU_FLAGS_PROMISC
;
6372 if ((dev
->flags
& IFF_ALLMULTI
) || (dev
->mc_count
> 0))
6373 np
->flags
|= NIU_FLAGS_MCAST
;
6375 alt_cnt
= dev
->uc
.count
;
6376 if (alt_cnt
> niu_num_alt_addr(np
)) {
6378 np
->flags
|= NIU_FLAGS_PROMISC
;
6384 list_for_each_entry(ha
, &dev
->uc
.list
, list
) {
6385 err
= niu_set_alt_mac(np
, index
, ha
->addr
);
6387 printk(KERN_WARNING PFX
"%s: Error %d "
6388 "adding alt mac %d\n",
6389 dev
->name
, err
, index
);
6390 err
= niu_enable_alt_mac(np
, index
, 1);
6392 printk(KERN_WARNING PFX
"%s: Error %d "
6393 "enabling alt mac %d\n",
6394 dev
->name
, err
, index
);
6400 if (np
->flags
& NIU_FLAGS_XMAC
)
6404 for (i
= alt_start
; i
< niu_num_alt_addr(np
); i
++) {
6405 err
= niu_enable_alt_mac(np
, i
, 0);
6407 printk(KERN_WARNING PFX
"%s: Error %d "
6408 "disabling alt mac %d\n",
6412 if (dev
->flags
& IFF_ALLMULTI
) {
6413 for (i
= 0; i
< 16; i
++)
6415 } else if (dev
->mc_count
> 0) {
6416 for (addr
= dev
->mc_list
; addr
; addr
= addr
->next
) {
6417 u32 crc
= ether_crc_le(ETH_ALEN
, addr
->da_addr
);
6420 hash
[crc
>> 4] |= (1 << (15 - (crc
& 0xf)));
6424 if (np
->flags
& NIU_FLAGS_MCAST
)
6425 niu_load_hash(np
, hash
);
6427 niu_enable_rx_mac(np
, 1);
6428 spin_unlock_irqrestore(&np
->lock
, flags
);
6431 static int niu_set_mac_addr(struct net_device
*dev
, void *p
)
6433 struct niu
*np
= netdev_priv(dev
);
6434 struct sockaddr
*addr
= p
;
6435 unsigned long flags
;
6437 if (!is_valid_ether_addr(addr
->sa_data
))
6440 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
6442 if (!netif_running(dev
))
6445 spin_lock_irqsave(&np
->lock
, flags
);
6446 niu_enable_rx_mac(np
, 0);
6447 niu_set_primary_mac(np
, dev
->dev_addr
);
6448 niu_enable_rx_mac(np
, 1);
6449 spin_unlock_irqrestore(&np
->lock
, flags
);
6454 static int niu_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
6459 static void niu_netif_stop(struct niu
*np
)
6461 np
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
6463 niu_disable_napi(np
);
6465 netif_tx_disable(np
->dev
);
6468 static void niu_netif_start(struct niu
*np
)
6470 /* NOTE: unconditional netif_wake_queue is only appropriate
6471 * so long as all callers are assured to have free tx slots
6472 * (such as after niu_init_hw).
6474 netif_tx_wake_all_queues(np
->dev
);
6476 niu_enable_napi(np
);
6478 niu_enable_interrupts(np
, 1);
6481 static void niu_reset_buffers(struct niu
*np
)
6486 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
6487 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
6489 for (j
= 0, k
= 0; j
< MAX_RBR_RING_SIZE
; j
++) {
6492 page
= rp
->rxhash
[j
];
6495 (struct page
*) page
->mapping
;
6496 u64 base
= page
->index
;
6497 base
= base
>> RBR_DESCR_ADDR_SHIFT
;
6498 rp
->rbr
[k
++] = cpu_to_le32(base
);
6502 for (; k
< MAX_RBR_RING_SIZE
; k
++) {
6503 err
= niu_rbr_add_page(np
, rp
, GFP_ATOMIC
, k
);
6508 rp
->rbr_index
= rp
->rbr_table_size
- 1;
6510 rp
->rbr_pending
= 0;
6511 rp
->rbr_refill_pending
= 0;
6515 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
6516 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
6518 for (j
= 0; j
< MAX_TX_RING_SIZE
; j
++) {
6519 if (rp
->tx_buffs
[j
].skb
)
6520 (void) release_tx_packet(np
, rp
, j
);
6523 rp
->pending
= MAX_TX_RING_SIZE
;
6531 static void niu_reset_task(struct work_struct
*work
)
6533 struct niu
*np
= container_of(work
, struct niu
, reset_task
);
6534 unsigned long flags
;
6537 spin_lock_irqsave(&np
->lock
, flags
);
6538 if (!netif_running(np
->dev
)) {
6539 spin_unlock_irqrestore(&np
->lock
, flags
);
6543 spin_unlock_irqrestore(&np
->lock
, flags
);
6545 del_timer_sync(&np
->timer
);
6549 spin_lock_irqsave(&np
->lock
, flags
);
6553 spin_unlock_irqrestore(&np
->lock
, flags
);
6555 niu_reset_buffers(np
);
6557 spin_lock_irqsave(&np
->lock
, flags
);
6559 err
= niu_init_hw(np
);
6561 np
->timer
.expires
= jiffies
+ HZ
;
6562 add_timer(&np
->timer
);
6563 niu_netif_start(np
);
6566 spin_unlock_irqrestore(&np
->lock
, flags
);
6569 static void niu_tx_timeout(struct net_device
*dev
)
6571 struct niu
*np
= netdev_priv(dev
);
6573 dev_err(np
->device
, PFX
"%s: Transmit timed out, resetting\n",
6576 schedule_work(&np
->reset_task
);
6579 static void niu_set_txd(struct tx_ring_info
*rp
, int index
,
6580 u64 mapping
, u64 len
, u64 mark
,
6583 __le64
*desc
= &rp
->descr
[index
];
6585 *desc
= cpu_to_le64(mark
|
6586 (n_frags
<< TX_DESC_NUM_PTR_SHIFT
) |
6587 (len
<< TX_DESC_TR_LEN_SHIFT
) |
6588 (mapping
& TX_DESC_SAD
));
6591 static u64
niu_compute_tx_flags(struct sk_buff
*skb
, struct ethhdr
*ehdr
,
6592 u64 pad_bytes
, u64 len
)
6594 u16 eth_proto
, eth_proto_inner
;
6595 u64 csum_bits
, l3off
, ihl
, ret
;
6599 eth_proto
= be16_to_cpu(ehdr
->h_proto
);
6600 eth_proto_inner
= eth_proto
;
6601 if (eth_proto
== ETH_P_8021Q
) {
6602 struct vlan_ethhdr
*vp
= (struct vlan_ethhdr
*) ehdr
;
6603 __be16 val
= vp
->h_vlan_encapsulated_proto
;
6605 eth_proto_inner
= be16_to_cpu(val
);
6609 switch (skb
->protocol
) {
6610 case cpu_to_be16(ETH_P_IP
):
6611 ip_proto
= ip_hdr(skb
)->protocol
;
6612 ihl
= ip_hdr(skb
)->ihl
;
6614 case cpu_to_be16(ETH_P_IPV6
):
6615 ip_proto
= ipv6_hdr(skb
)->nexthdr
;
6624 csum_bits
= TXHDR_CSUM_NONE
;
6625 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6628 csum_bits
= (ip_proto
== IPPROTO_TCP
?
6630 (ip_proto
== IPPROTO_UDP
?
6631 TXHDR_CSUM_UDP
: TXHDR_CSUM_SCTP
));
6633 start
= skb_transport_offset(skb
) -
6634 (pad_bytes
+ sizeof(struct tx_pkt_hdr
));
6635 stuff
= start
+ skb
->csum_offset
;
6637 csum_bits
|= (start
/ 2) << TXHDR_L4START_SHIFT
;
6638 csum_bits
|= (stuff
/ 2) << TXHDR_L4STUFF_SHIFT
;
6641 l3off
= skb_network_offset(skb
) -
6642 (pad_bytes
+ sizeof(struct tx_pkt_hdr
));
6644 ret
= (((pad_bytes
/ 2) << TXHDR_PAD_SHIFT
) |
6645 (len
<< TXHDR_LEN_SHIFT
) |
6646 ((l3off
/ 2) << TXHDR_L3START_SHIFT
) |
6647 (ihl
<< TXHDR_IHL_SHIFT
) |
6648 ((eth_proto_inner
< 1536) ? TXHDR_LLC
: 0) |
6649 ((eth_proto
== ETH_P_8021Q
) ? TXHDR_VLAN
: 0) |
6650 (ipv6
? TXHDR_IP_VER
: 0) |
6656 static netdev_tx_t
niu_start_xmit(struct sk_buff
*skb
,
6657 struct net_device
*dev
)
6659 struct niu
*np
= netdev_priv(dev
);
6660 unsigned long align
, headroom
;
6661 struct netdev_queue
*txq
;
6662 struct tx_ring_info
*rp
;
6663 struct tx_pkt_hdr
*tp
;
6664 unsigned int len
, nfg
;
6665 struct ethhdr
*ehdr
;
6669 i
= skb_get_queue_mapping(skb
);
6670 rp
= &np
->tx_rings
[i
];
6671 txq
= netdev_get_tx_queue(dev
, i
);
6673 if (niu_tx_avail(rp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
6674 netif_tx_stop_queue(txq
);
6675 dev_err(np
->device
, PFX
"%s: BUG! Tx ring full when "
6676 "queue awake!\n", dev
->name
);
6678 return NETDEV_TX_BUSY
;
6681 if (skb
->len
< ETH_ZLEN
) {
6682 unsigned int pad_bytes
= ETH_ZLEN
- skb
->len
;
6684 if (skb_pad(skb
, pad_bytes
))
6686 skb_put(skb
, pad_bytes
);
6689 len
= sizeof(struct tx_pkt_hdr
) + 15;
6690 if (skb_headroom(skb
) < len
) {
6691 struct sk_buff
*skb_new
;
6693 skb_new
= skb_realloc_headroom(skb
, len
);
6703 align
= ((unsigned long) skb
->data
& (16 - 1));
6704 headroom
= align
+ sizeof(struct tx_pkt_hdr
);
6706 ehdr
= (struct ethhdr
*) skb
->data
;
6707 tp
= (struct tx_pkt_hdr
*) skb_push(skb
, headroom
);
6709 len
= skb
->len
- sizeof(struct tx_pkt_hdr
);
6710 tp
->flags
= cpu_to_le64(niu_compute_tx_flags(skb
, ehdr
, align
, len
));
6713 len
= skb_headlen(skb
);
6714 mapping
= np
->ops
->map_single(np
->device
, skb
->data
,
6715 len
, DMA_TO_DEVICE
);
6719 rp
->tx_buffs
[prod
].skb
= skb
;
6720 rp
->tx_buffs
[prod
].mapping
= mapping
;
6723 if (++rp
->mark_counter
== rp
->mark_freq
) {
6724 rp
->mark_counter
= 0;
6725 mrk
|= TX_DESC_MARK
;
6730 nfg
= skb_shinfo(skb
)->nr_frags
;
6732 tlen
-= MAX_TX_DESC_LEN
;
6737 unsigned int this_len
= len
;
6739 if (this_len
> MAX_TX_DESC_LEN
)
6740 this_len
= MAX_TX_DESC_LEN
;
6742 niu_set_txd(rp
, prod
, mapping
, this_len
, mrk
, nfg
);
6745 prod
= NEXT_TX(rp
, prod
);
6746 mapping
+= this_len
;
6750 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
6751 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6754 mapping
= np
->ops
->map_page(np
->device
, frag
->page
,
6755 frag
->page_offset
, len
,
6758 rp
->tx_buffs
[prod
].skb
= NULL
;
6759 rp
->tx_buffs
[prod
].mapping
= mapping
;
6761 niu_set_txd(rp
, prod
, mapping
, len
, 0, 0);
6763 prod
= NEXT_TX(rp
, prod
);
6766 if (prod
< rp
->prod
)
6767 rp
->wrap_bit
^= TX_RING_KICK_WRAP
;
6770 nw64(TX_RING_KICK(rp
->tx_channel
), rp
->wrap_bit
| (prod
<< 3));
6772 if (unlikely(niu_tx_avail(rp
) <= (MAX_SKB_FRAGS
+ 1))) {
6773 netif_tx_stop_queue(txq
);
6774 if (niu_tx_avail(rp
) > NIU_TX_WAKEUP_THRESH(rp
))
6775 netif_tx_wake_queue(txq
);
6779 return NETDEV_TX_OK
;
6787 static int niu_change_mtu(struct net_device
*dev
, int new_mtu
)
6789 struct niu
*np
= netdev_priv(dev
);
6790 int err
, orig_jumbo
, new_jumbo
;
6792 if (new_mtu
< 68 || new_mtu
> NIU_MAX_MTU
)
6795 orig_jumbo
= (dev
->mtu
> ETH_DATA_LEN
);
6796 new_jumbo
= (new_mtu
> ETH_DATA_LEN
);
6800 if (!netif_running(dev
) ||
6801 (orig_jumbo
== new_jumbo
))
6804 niu_full_shutdown(np
, dev
);
6806 niu_free_channels(np
);
6808 niu_enable_napi(np
);
6810 err
= niu_alloc_channels(np
);
6814 spin_lock_irq(&np
->lock
);
6816 err
= niu_init_hw(np
);
6818 init_timer(&np
->timer
);
6819 np
->timer
.expires
= jiffies
+ HZ
;
6820 np
->timer
.data
= (unsigned long) np
;
6821 np
->timer
.function
= niu_timer
;
6823 err
= niu_enable_interrupts(np
, 1);
6828 spin_unlock_irq(&np
->lock
);
6831 netif_tx_start_all_queues(dev
);
6832 if (np
->link_config
.loopback_mode
!= LOOPBACK_DISABLED
)
6833 netif_carrier_on(dev
);
6835 add_timer(&np
->timer
);
6841 static void niu_get_drvinfo(struct net_device
*dev
,
6842 struct ethtool_drvinfo
*info
)
6844 struct niu
*np
= netdev_priv(dev
);
6845 struct niu_vpd
*vpd
= &np
->vpd
;
6847 strcpy(info
->driver
, DRV_MODULE_NAME
);
6848 strcpy(info
->version
, DRV_MODULE_VERSION
);
6849 sprintf(info
->fw_version
, "%d.%d",
6850 vpd
->fcode_major
, vpd
->fcode_minor
);
6851 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
)
6852 strcpy(info
->bus_info
, pci_name(np
->pdev
));
6855 static int niu_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6857 struct niu
*np
= netdev_priv(dev
);
6858 struct niu_link_config
*lp
;
6860 lp
= &np
->link_config
;
6862 memset(cmd
, 0, sizeof(*cmd
));
6863 cmd
->phy_address
= np
->phy_addr
;
6864 cmd
->supported
= lp
->supported
;
6865 cmd
->advertising
= lp
->active_advertising
;
6866 cmd
->autoneg
= lp
->active_autoneg
;
6867 cmd
->speed
= lp
->active_speed
;
6868 cmd
->duplex
= lp
->active_duplex
;
6869 cmd
->port
= (np
->flags
& NIU_FLAGS_FIBER
) ? PORT_FIBRE
: PORT_TP
;
6870 cmd
->transceiver
= (np
->flags
& NIU_FLAGS_XCVR_SERDES
) ?
6871 XCVR_EXTERNAL
: XCVR_INTERNAL
;
6876 static int niu_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6878 struct niu
*np
= netdev_priv(dev
);
6879 struct niu_link_config
*lp
= &np
->link_config
;
6881 lp
->advertising
= cmd
->advertising
;
6882 lp
->speed
= cmd
->speed
;
6883 lp
->duplex
= cmd
->duplex
;
6884 lp
->autoneg
= cmd
->autoneg
;
6885 return niu_init_link(np
);
6888 static u32
niu_get_msglevel(struct net_device
*dev
)
6890 struct niu
*np
= netdev_priv(dev
);
6891 return np
->msg_enable
;
6894 static void niu_set_msglevel(struct net_device
*dev
, u32 value
)
6896 struct niu
*np
= netdev_priv(dev
);
6897 np
->msg_enable
= value
;
6900 static int niu_nway_reset(struct net_device
*dev
)
6902 struct niu
*np
= netdev_priv(dev
);
6904 if (np
->link_config
.autoneg
)
6905 return niu_init_link(np
);
6910 static int niu_get_eeprom_len(struct net_device
*dev
)
6912 struct niu
*np
= netdev_priv(dev
);
6914 return np
->eeprom_len
;
6917 static int niu_get_eeprom(struct net_device
*dev
,
6918 struct ethtool_eeprom
*eeprom
, u8
*data
)
6920 struct niu
*np
= netdev_priv(dev
);
6921 u32 offset
, len
, val
;
6923 offset
= eeprom
->offset
;
6926 if (offset
+ len
< offset
)
6928 if (offset
>= np
->eeprom_len
)
6930 if (offset
+ len
> np
->eeprom_len
)
6931 len
= eeprom
->len
= np
->eeprom_len
- offset
;
6934 u32 b_offset
, b_count
;
6936 b_offset
= offset
& 3;
6937 b_count
= 4 - b_offset
;
6941 val
= nr64(ESPC_NCR((offset
- b_offset
) / 4));
6942 memcpy(data
, ((char *)&val
) + b_offset
, b_count
);
6948 val
= nr64(ESPC_NCR(offset
/ 4));
6949 memcpy(data
, &val
, 4);
6955 val
= nr64(ESPC_NCR(offset
/ 4));
6956 memcpy(data
, &val
, len
);
6961 static void niu_ethflow_to_l3proto(int flow_type
, u8
*pid
)
6963 switch (flow_type
) {
6974 *pid
= IPPROTO_SCTP
;
6990 static int niu_class_to_ethflow(u64
class, int *flow_type
)
6993 case CLASS_CODE_TCP_IPV4
:
6994 *flow_type
= TCP_V4_FLOW
;
6996 case CLASS_CODE_UDP_IPV4
:
6997 *flow_type
= UDP_V4_FLOW
;
6999 case CLASS_CODE_AH_ESP_IPV4
:
7000 *flow_type
= AH_V4_FLOW
;
7002 case CLASS_CODE_SCTP_IPV4
:
7003 *flow_type
= SCTP_V4_FLOW
;
7005 case CLASS_CODE_TCP_IPV6
:
7006 *flow_type
= TCP_V6_FLOW
;
7008 case CLASS_CODE_UDP_IPV6
:
7009 *flow_type
= UDP_V6_FLOW
;
7011 case CLASS_CODE_AH_ESP_IPV6
:
7012 *flow_type
= AH_V6_FLOW
;
7014 case CLASS_CODE_SCTP_IPV6
:
7015 *flow_type
= SCTP_V6_FLOW
;
7017 case CLASS_CODE_USER_PROG1
:
7018 case CLASS_CODE_USER_PROG2
:
7019 case CLASS_CODE_USER_PROG3
:
7020 case CLASS_CODE_USER_PROG4
:
7021 *flow_type
= IP_USER_FLOW
;
7030 static int niu_ethflow_to_class(int flow_type
, u64
*class)
7032 switch (flow_type
) {
7034 *class = CLASS_CODE_TCP_IPV4
;
7037 *class = CLASS_CODE_UDP_IPV4
;
7041 *class = CLASS_CODE_AH_ESP_IPV4
;
7044 *class = CLASS_CODE_SCTP_IPV4
;
7047 *class = CLASS_CODE_TCP_IPV6
;
7050 *class = CLASS_CODE_UDP_IPV6
;
7054 *class = CLASS_CODE_AH_ESP_IPV6
;
7057 *class = CLASS_CODE_SCTP_IPV6
;
7066 static u64
niu_flowkey_to_ethflow(u64 flow_key
)
7070 if (flow_key
& FLOW_KEY_L2DA
)
7071 ethflow
|= RXH_L2DA
;
7072 if (flow_key
& FLOW_KEY_VLAN
)
7073 ethflow
|= RXH_VLAN
;
7074 if (flow_key
& FLOW_KEY_IPSA
)
7075 ethflow
|= RXH_IP_SRC
;
7076 if (flow_key
& FLOW_KEY_IPDA
)
7077 ethflow
|= RXH_IP_DST
;
7078 if (flow_key
& FLOW_KEY_PROTO
)
7079 ethflow
|= RXH_L3_PROTO
;
7080 if (flow_key
& (FLOW_KEY_L4_BYTE12
<< FLOW_KEY_L4_0_SHIFT
))
7081 ethflow
|= RXH_L4_B_0_1
;
7082 if (flow_key
& (FLOW_KEY_L4_BYTE12
<< FLOW_KEY_L4_1_SHIFT
))
7083 ethflow
|= RXH_L4_B_2_3
;
7089 static int niu_ethflow_to_flowkey(u64 ethflow
, u64
*flow_key
)
7093 if (ethflow
& RXH_L2DA
)
7094 key
|= FLOW_KEY_L2DA
;
7095 if (ethflow
& RXH_VLAN
)
7096 key
|= FLOW_KEY_VLAN
;
7097 if (ethflow
& RXH_IP_SRC
)
7098 key
|= FLOW_KEY_IPSA
;
7099 if (ethflow
& RXH_IP_DST
)
7100 key
|= FLOW_KEY_IPDA
;
7101 if (ethflow
& RXH_L3_PROTO
)
7102 key
|= FLOW_KEY_PROTO
;
7103 if (ethflow
& RXH_L4_B_0_1
)
7104 key
|= (FLOW_KEY_L4_BYTE12
<< FLOW_KEY_L4_0_SHIFT
);
7105 if (ethflow
& RXH_L4_B_2_3
)
7106 key
|= (FLOW_KEY_L4_BYTE12
<< FLOW_KEY_L4_1_SHIFT
);
7114 static int niu_get_hash_opts(struct niu
*np
, struct ethtool_rxnfc
*nfc
)
7120 if (!niu_ethflow_to_class(nfc
->flow_type
, &class))
7123 if (np
->parent
->tcam_key
[class - CLASS_CODE_USER_PROG1
] &
7125 nfc
->data
= RXH_DISCARD
;
7127 nfc
->data
= niu_flowkey_to_ethflow(np
->parent
->flow_key
[class -
7128 CLASS_CODE_USER_PROG1
]);
7132 static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry
*tp
,
7133 struct ethtool_rx_flow_spec
*fsp
)
7136 fsp
->h_u
.tcp_ip4_spec
.ip4src
= (tp
->key
[3] & TCAM_V4KEY3_SADDR
) >>
7137 TCAM_V4KEY3_SADDR_SHIFT
;
7138 fsp
->h_u
.tcp_ip4_spec
.ip4dst
= (tp
->key
[3] & TCAM_V4KEY3_DADDR
) >>
7139 TCAM_V4KEY3_DADDR_SHIFT
;
7140 fsp
->m_u
.tcp_ip4_spec
.ip4src
= (tp
->key_mask
[3] & TCAM_V4KEY3_SADDR
) >>
7141 TCAM_V4KEY3_SADDR_SHIFT
;
7142 fsp
->m_u
.tcp_ip4_spec
.ip4dst
= (tp
->key_mask
[3] & TCAM_V4KEY3_DADDR
) >>
7143 TCAM_V4KEY3_DADDR_SHIFT
;
7145 fsp
->h_u
.tcp_ip4_spec
.ip4src
=
7146 cpu_to_be32(fsp
->h_u
.tcp_ip4_spec
.ip4src
);
7147 fsp
->m_u
.tcp_ip4_spec
.ip4src
=
7148 cpu_to_be32(fsp
->m_u
.tcp_ip4_spec
.ip4src
);
7149 fsp
->h_u
.tcp_ip4_spec
.ip4dst
=
7150 cpu_to_be32(fsp
->h_u
.tcp_ip4_spec
.ip4dst
);
7151 fsp
->m_u
.tcp_ip4_spec
.ip4dst
=
7152 cpu_to_be32(fsp
->m_u
.tcp_ip4_spec
.ip4dst
);
7154 fsp
->h_u
.tcp_ip4_spec
.tos
= (tp
->key
[2] & TCAM_V4KEY2_TOS
) >>
7155 TCAM_V4KEY2_TOS_SHIFT
;
7156 fsp
->m_u
.tcp_ip4_spec
.tos
= (tp
->key_mask
[2] & TCAM_V4KEY2_TOS
) >>
7157 TCAM_V4KEY2_TOS_SHIFT
;
7159 switch (fsp
->flow_type
) {
7163 fsp
->h_u
.tcp_ip4_spec
.psrc
=
7164 ((tp
->key
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7165 TCAM_V4KEY2_PORT_SPI_SHIFT
) >> 16;
7166 fsp
->h_u
.tcp_ip4_spec
.pdst
=
7167 ((tp
->key
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7168 TCAM_V4KEY2_PORT_SPI_SHIFT
) & 0xffff;
7169 fsp
->m_u
.tcp_ip4_spec
.psrc
=
7170 ((tp
->key_mask
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7171 TCAM_V4KEY2_PORT_SPI_SHIFT
) >> 16;
7172 fsp
->m_u
.tcp_ip4_spec
.pdst
=
7173 ((tp
->key_mask
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7174 TCAM_V4KEY2_PORT_SPI_SHIFT
) & 0xffff;
7176 fsp
->h_u
.tcp_ip4_spec
.psrc
=
7177 cpu_to_be16(fsp
->h_u
.tcp_ip4_spec
.psrc
);
7178 fsp
->h_u
.tcp_ip4_spec
.pdst
=
7179 cpu_to_be16(fsp
->h_u
.tcp_ip4_spec
.pdst
);
7180 fsp
->m_u
.tcp_ip4_spec
.psrc
=
7181 cpu_to_be16(fsp
->m_u
.tcp_ip4_spec
.psrc
);
7182 fsp
->m_u
.tcp_ip4_spec
.pdst
=
7183 cpu_to_be16(fsp
->m_u
.tcp_ip4_spec
.pdst
);
7187 fsp
->h_u
.ah_ip4_spec
.spi
=
7188 (tp
->key
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7189 TCAM_V4KEY2_PORT_SPI_SHIFT
;
7190 fsp
->m_u
.ah_ip4_spec
.spi
=
7191 (tp
->key_mask
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7192 TCAM_V4KEY2_PORT_SPI_SHIFT
;
7194 fsp
->h_u
.ah_ip4_spec
.spi
=
7195 cpu_to_be32(fsp
->h_u
.ah_ip4_spec
.spi
);
7196 fsp
->m_u
.ah_ip4_spec
.spi
=
7197 cpu_to_be32(fsp
->m_u
.ah_ip4_spec
.spi
);
7200 fsp
->h_u
.usr_ip4_spec
.l4_4_bytes
=
7201 (tp
->key
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7202 TCAM_V4KEY2_PORT_SPI_SHIFT
;
7203 fsp
->m_u
.usr_ip4_spec
.l4_4_bytes
=
7204 (tp
->key_mask
[2] & TCAM_V4KEY2_PORT_SPI
) >>
7205 TCAM_V4KEY2_PORT_SPI_SHIFT
;
7207 fsp
->h_u
.usr_ip4_spec
.l4_4_bytes
=
7208 cpu_to_be32(fsp
->h_u
.usr_ip4_spec
.l4_4_bytes
);
7209 fsp
->m_u
.usr_ip4_spec
.l4_4_bytes
=
7210 cpu_to_be32(fsp
->m_u
.usr_ip4_spec
.l4_4_bytes
);
7212 fsp
->h_u
.usr_ip4_spec
.proto
=
7213 (tp
->key
[2] & TCAM_V4KEY2_PROTO
) >>
7214 TCAM_V4KEY2_PROTO_SHIFT
;
7215 fsp
->m_u
.usr_ip4_spec
.proto
=
7216 (tp
->key_mask
[2] & TCAM_V4KEY2_PROTO
) >>
7217 TCAM_V4KEY2_PROTO_SHIFT
;
7219 fsp
->h_u
.usr_ip4_spec
.ip_ver
= ETH_RX_NFC_IP4
;
7226 static int niu_get_ethtool_tcam_entry(struct niu
*np
,
7227 struct ethtool_rxnfc
*nfc
)
7229 struct niu_parent
*parent
= np
->parent
;
7230 struct niu_tcam_entry
*tp
;
7231 struct ethtool_rx_flow_spec
*fsp
= &nfc
->fs
;
7236 idx
= tcam_get_index(np
, (u16
)nfc
->fs
.location
);
7238 tp
= &parent
->tcam
[idx
];
7240 pr_info(PFX
"niu%d: %s entry [%d] invalid for idx[%d]\n",
7241 parent
->index
, np
->dev
->name
, (u16
)nfc
->fs
.location
, idx
);
7245 /* fill the flow spec entry */
7246 class = (tp
->key
[0] & TCAM_V4KEY0_CLASS_CODE
) >>
7247 TCAM_V4KEY0_CLASS_CODE_SHIFT
;
7248 ret
= niu_class_to_ethflow(class, &fsp
->flow_type
);
7251 pr_info(PFX
"niu%d: %s niu_class_to_ethflow failed\n",
7252 parent
->index
, np
->dev
->name
);
7257 if (fsp
->flow_type
== AH_V4_FLOW
|| fsp
->flow_type
== AH_V6_FLOW
) {
7258 u32 proto
= (tp
->key
[2] & TCAM_V4KEY2_PROTO
) >>
7259 TCAM_V4KEY2_PROTO_SHIFT
;
7260 if (proto
== IPPROTO_ESP
) {
7261 if (fsp
->flow_type
== AH_V4_FLOW
)
7262 fsp
->flow_type
= ESP_V4_FLOW
;
7264 fsp
->flow_type
= ESP_V6_FLOW
;
7268 switch (fsp
->flow_type
) {
7274 niu_get_ip4fs_from_tcam_key(tp
, fsp
);
7281 /* Not yet implemented */
7285 niu_get_ip4fs_from_tcam_key(tp
, fsp
);
7295 if (tp
->assoc_data
& TCAM_ASSOCDATA_DISC
)
7296 fsp
->ring_cookie
= RX_CLS_FLOW_DISC
;
7298 fsp
->ring_cookie
= (tp
->assoc_data
& TCAM_ASSOCDATA_OFFSET
) >>
7299 TCAM_ASSOCDATA_OFFSET_SHIFT
;
7301 /* put the tcam size here */
7302 nfc
->data
= tcam_get_size(np
);
7307 static int niu_get_ethtool_tcam_all(struct niu
*np
,
7308 struct ethtool_rxnfc
*nfc
,
7311 struct niu_parent
*parent
= np
->parent
;
7312 struct niu_tcam_entry
*tp
;
7315 unsigned long flags
;
7318 /* put the tcam size here */
7319 nfc
->data
= tcam_get_size(np
);
7321 niu_lock_parent(np
, flags
);
7322 n_entries
= nfc
->rule_cnt
;
7323 for (cnt
= 0, i
= 0; i
< nfc
->data
; i
++) {
7324 idx
= tcam_get_index(np
, i
);
7325 tp
= &parent
->tcam
[idx
];
7331 niu_unlock_parent(np
, flags
);
7333 if (n_entries
!= cnt
) {
7334 /* print warning, this should not happen */
7335 pr_info(PFX
"niu%d: %s In niu_get_ethtool_tcam_all, "
7336 "n_entries[%d] != cnt[%d]!!!\n\n",
7337 np
->parent
->index
, np
->dev
->name
, n_entries
, cnt
);
7343 static int niu_get_nfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
,
7346 struct niu
*np
= netdev_priv(dev
);
7351 ret
= niu_get_hash_opts(np
, cmd
);
7353 case ETHTOOL_GRXRINGS
:
7354 cmd
->data
= np
->num_rx_rings
;
7356 case ETHTOOL_GRXCLSRLCNT
:
7357 cmd
->rule_cnt
= tcam_get_valid_entry_cnt(np
);
7359 case ETHTOOL_GRXCLSRULE
:
7360 ret
= niu_get_ethtool_tcam_entry(np
, cmd
);
7362 case ETHTOOL_GRXCLSRLALL
:
7363 ret
= niu_get_ethtool_tcam_all(np
, cmd
, (u32
*)rule_locs
);
7373 static int niu_set_hash_opts(struct niu
*np
, struct ethtool_rxnfc
*nfc
)
7377 unsigned long flags
;
7379 if (!niu_ethflow_to_class(nfc
->flow_type
, &class))
7382 if (class < CLASS_CODE_USER_PROG1
||
7383 class > CLASS_CODE_SCTP_IPV6
)
7386 if (nfc
->data
& RXH_DISCARD
) {
7387 niu_lock_parent(np
, flags
);
7388 flow_key
= np
->parent
->tcam_key
[class -
7389 CLASS_CODE_USER_PROG1
];
7390 flow_key
|= TCAM_KEY_DISC
;
7391 nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1
), flow_key
);
7392 np
->parent
->tcam_key
[class - CLASS_CODE_USER_PROG1
] = flow_key
;
7393 niu_unlock_parent(np
, flags
);
7396 /* Discard was set before, but is not set now */
7397 if (np
->parent
->tcam_key
[class - CLASS_CODE_USER_PROG1
] &
7399 niu_lock_parent(np
, flags
);
7400 flow_key
= np
->parent
->tcam_key
[class -
7401 CLASS_CODE_USER_PROG1
];
7402 flow_key
&= ~TCAM_KEY_DISC
;
7403 nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1
),
7405 np
->parent
->tcam_key
[class - CLASS_CODE_USER_PROG1
] =
7407 niu_unlock_parent(np
, flags
);
7411 if (!niu_ethflow_to_flowkey(nfc
->data
, &flow_key
))
7414 niu_lock_parent(np
, flags
);
7415 nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1
), flow_key
);
7416 np
->parent
->flow_key
[class - CLASS_CODE_USER_PROG1
] = flow_key
;
7417 niu_unlock_parent(np
, flags
);
7422 static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec
*fsp
,
7423 struct niu_tcam_entry
*tp
,
7424 int l2_rdc_tab
, u64
class)
7427 u32 sip
, dip
, sipm
, dipm
, spi
, spim
;
7428 u16 sport
, dport
, spm
, dpm
;
7430 sip
= be32_to_cpu(fsp
->h_u
.tcp_ip4_spec
.ip4src
);
7431 sipm
= be32_to_cpu(fsp
->m_u
.tcp_ip4_spec
.ip4src
);
7432 dip
= be32_to_cpu(fsp
->h_u
.tcp_ip4_spec
.ip4dst
);
7433 dipm
= be32_to_cpu(fsp
->m_u
.tcp_ip4_spec
.ip4dst
);
7435 tp
->key
[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT
;
7436 tp
->key_mask
[0] = TCAM_V4KEY0_CLASS_CODE
;
7437 tp
->key
[1] = (u64
)l2_rdc_tab
<< TCAM_V4KEY1_L2RDCNUM_SHIFT
;
7438 tp
->key_mask
[1] = TCAM_V4KEY1_L2RDCNUM
;
7440 tp
->key
[3] = (u64
)sip
<< TCAM_V4KEY3_SADDR_SHIFT
;
7443 tp
->key_mask
[3] = (u64
)sipm
<< TCAM_V4KEY3_SADDR_SHIFT
;
7444 tp
->key_mask
[3] |= dipm
;
7446 tp
->key
[2] |= ((u64
)fsp
->h_u
.tcp_ip4_spec
.tos
<<
7447 TCAM_V4KEY2_TOS_SHIFT
);
7448 tp
->key_mask
[2] |= ((u64
)fsp
->m_u
.tcp_ip4_spec
.tos
<<
7449 TCAM_V4KEY2_TOS_SHIFT
);
7450 switch (fsp
->flow_type
) {
7454 sport
= be16_to_cpu(fsp
->h_u
.tcp_ip4_spec
.psrc
);
7455 spm
= be16_to_cpu(fsp
->m_u
.tcp_ip4_spec
.psrc
);
7456 dport
= be16_to_cpu(fsp
->h_u
.tcp_ip4_spec
.pdst
);
7457 dpm
= be16_to_cpu(fsp
->m_u
.tcp_ip4_spec
.pdst
);
7459 tp
->key
[2] |= (((u64
)sport
<< 16) | dport
);
7460 tp
->key_mask
[2] |= (((u64
)spm
<< 16) | dpm
);
7461 niu_ethflow_to_l3proto(fsp
->flow_type
, &pid
);
7465 spi
= be32_to_cpu(fsp
->h_u
.ah_ip4_spec
.spi
);
7466 spim
= be32_to_cpu(fsp
->m_u
.ah_ip4_spec
.spi
);
7469 tp
->key_mask
[2] |= spim
;
7470 niu_ethflow_to_l3proto(fsp
->flow_type
, &pid
);
7473 spi
= be32_to_cpu(fsp
->h_u
.usr_ip4_spec
.l4_4_bytes
);
7474 spim
= be32_to_cpu(fsp
->m_u
.usr_ip4_spec
.l4_4_bytes
);
7477 tp
->key_mask
[2] |= spim
;
7478 pid
= fsp
->h_u
.usr_ip4_spec
.proto
;
7484 tp
->key
[2] |= ((u64
)pid
<< TCAM_V4KEY2_PROTO_SHIFT
);
7486 tp
->key_mask
[2] |= TCAM_V4KEY2_PROTO
;
7490 static int niu_add_ethtool_tcam_entry(struct niu
*np
,
7491 struct ethtool_rxnfc
*nfc
)
7493 struct niu_parent
*parent
= np
->parent
;
7494 struct niu_tcam_entry
*tp
;
7495 struct ethtool_rx_flow_spec
*fsp
= &nfc
->fs
;
7496 struct niu_rdc_tables
*rdc_table
= &parent
->rdc_group_cfg
[np
->port
];
7497 int l2_rdc_table
= rdc_table
->first_table_num
;
7500 unsigned long flags
;
7505 idx
= nfc
->fs
.location
;
7506 if (idx
>= tcam_get_size(np
))
7509 if (fsp
->flow_type
== IP_USER_FLOW
) {
7511 int add_usr_cls
= 0;
7513 struct ethtool_usrip4_spec
*uspec
= &fsp
->h_u
.usr_ip4_spec
;
7514 struct ethtool_usrip4_spec
*umask
= &fsp
->m_u
.usr_ip4_spec
;
7516 niu_lock_parent(np
, flags
);
7518 for (i
= 0; i
< NIU_L3_PROG_CLS
; i
++) {
7519 if (parent
->l3_cls
[i
]) {
7520 if (uspec
->proto
== parent
->l3_cls_pid
[i
]) {
7521 class = parent
->l3_cls
[i
];
7522 parent
->l3_cls_refcnt
[i
]++;
7527 /* Program new user IP class */
7530 class = CLASS_CODE_USER_PROG1
;
7533 class = CLASS_CODE_USER_PROG2
;
7536 class = CLASS_CODE_USER_PROG3
;
7539 class = CLASS_CODE_USER_PROG4
;
7544 if (uspec
->ip_ver
== ETH_RX_NFC_IP6
)
7546 ret
= tcam_user_ip_class_set(np
, class, ipv6
,
7553 ret
= tcam_user_ip_class_enable(np
, class, 1);
7556 parent
->l3_cls
[i
] = class;
7557 parent
->l3_cls_pid
[i
] = uspec
->proto
;
7558 parent
->l3_cls_refcnt
[i
]++;
7564 pr_info(PFX
"niu%d: %s niu_add_ethtool_tcam_entry: "
7565 "Could not find/insert class for pid %d\n",
7566 parent
->index
, np
->dev
->name
, uspec
->proto
);
7570 niu_unlock_parent(np
, flags
);
7572 if (!niu_ethflow_to_class(fsp
->flow_type
, &class)) {
7577 niu_lock_parent(np
, flags
);
7579 idx
= tcam_get_index(np
, idx
);
7580 tp
= &parent
->tcam
[idx
];
7582 memset(tp
, 0, sizeof(*tp
));
7584 /* fill in the tcam key and mask */
7585 switch (fsp
->flow_type
) {
7591 niu_get_tcamkey_from_ip4fs(fsp
, tp
, l2_rdc_table
, class);
7598 /* Not yet implemented */
7599 pr_info(PFX
"niu%d: %s In niu_add_ethtool_tcam_entry: "
7600 "flow %d for IPv6 not implemented\n\n",
7601 parent
->index
, np
->dev
->name
, fsp
->flow_type
);
7605 if (fsp
->h_u
.usr_ip4_spec
.ip_ver
== ETH_RX_NFC_IP4
) {
7606 niu_get_tcamkey_from_ip4fs(fsp
, tp
, l2_rdc_table
,
7609 /* Not yet implemented */
7610 pr_info(PFX
"niu%d: %s In niu_add_ethtool_tcam_entry: "
7611 "usr flow for IPv6 not implemented\n\n",
7612 parent
->index
, np
->dev
->name
);
7618 pr_info(PFX
"niu%d: %s In niu_add_ethtool_tcam_entry: "
7619 "Unknown flow type %d\n\n",
7620 parent
->index
, np
->dev
->name
, fsp
->flow_type
);
7625 /* fill in the assoc data */
7626 if (fsp
->ring_cookie
== RX_CLS_FLOW_DISC
) {
7627 tp
->assoc_data
= TCAM_ASSOCDATA_DISC
;
7629 if (fsp
->ring_cookie
>= np
->num_rx_rings
) {
7630 pr_info(PFX
"niu%d: %s In niu_add_ethtool_tcam_entry: "
7631 "Invalid RX ring %lld\n\n",
7632 parent
->index
, np
->dev
->name
,
7633 (long long) fsp
->ring_cookie
);
7637 tp
->assoc_data
= (TCAM_ASSOCDATA_TRES_USE_OFFSET
|
7638 (fsp
->ring_cookie
<<
7639 TCAM_ASSOCDATA_OFFSET_SHIFT
));
7642 err
= tcam_write(np
, idx
, tp
->key
, tp
->key_mask
);
7647 err
= tcam_assoc_write(np
, idx
, tp
->assoc_data
);
7653 /* validate the entry */
7655 np
->clas
.tcam_valid_entries
++;
7657 niu_unlock_parent(np
, flags
);
7662 static int niu_del_ethtool_tcam_entry(struct niu
*np
, u32 loc
)
7664 struct niu_parent
*parent
= np
->parent
;
7665 struct niu_tcam_entry
*tp
;
7667 unsigned long flags
;
7671 if (loc
>= tcam_get_size(np
))
7674 niu_lock_parent(np
, flags
);
7676 idx
= tcam_get_index(np
, loc
);
7677 tp
= &parent
->tcam
[idx
];
7679 /* if the entry is of a user defined class, then update*/
7680 class = (tp
->key
[0] & TCAM_V4KEY0_CLASS_CODE
) >>
7681 TCAM_V4KEY0_CLASS_CODE_SHIFT
;
7683 if (class >= CLASS_CODE_USER_PROG1
&& class <= CLASS_CODE_USER_PROG4
) {
7685 for (i
= 0; i
< NIU_L3_PROG_CLS
; i
++) {
7686 if (parent
->l3_cls
[i
] == class) {
7687 parent
->l3_cls_refcnt
[i
]--;
7688 if (!parent
->l3_cls_refcnt
[i
]) {
7690 ret
= tcam_user_ip_class_enable(np
,
7695 parent
->l3_cls
[i
] = 0;
7696 parent
->l3_cls_pid
[i
] = 0;
7701 if (i
== NIU_L3_PROG_CLS
) {
7702 pr_info(PFX
"niu%d: %s In niu_del_ethtool_tcam_entry,"
7703 "Usr class 0x%llx not found \n",
7704 parent
->index
, np
->dev
->name
,
7705 (unsigned long long) class);
7711 ret
= tcam_flush(np
, idx
);
7715 /* invalidate the entry */
7717 np
->clas
.tcam_valid_entries
--;
7719 niu_unlock_parent(np
, flags
);
7724 static int niu_set_nfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
)
7726 struct niu
*np
= netdev_priv(dev
);
7731 ret
= niu_set_hash_opts(np
, cmd
);
7733 case ETHTOOL_SRXCLSRLINS
:
7734 ret
= niu_add_ethtool_tcam_entry(np
, cmd
);
7736 case ETHTOOL_SRXCLSRLDEL
:
7737 ret
= niu_del_ethtool_tcam_entry(np
, cmd
->fs
.location
);
7747 static const struct {
7748 const char string
[ETH_GSTRING_LEN
];
7749 } niu_xmac_stat_keys
[] = {
7752 { "tx_fifo_errors" },
7753 { "tx_overflow_errors" },
7754 { "tx_max_pkt_size_errors" },
7755 { "tx_underflow_errors" },
7756 { "rx_local_faults" },
7757 { "rx_remote_faults" },
7758 { "rx_link_faults" },
7759 { "rx_align_errors" },
7771 { "rx_code_violations" },
7772 { "rx_len_errors" },
7773 { "rx_crc_errors" },
7774 { "rx_underflows" },
7776 { "pause_off_state" },
7777 { "pause_on_state" },
7778 { "pause_received" },
7781 #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
7783 static const struct {
7784 const char string
[ETH_GSTRING_LEN
];
7785 } niu_bmac_stat_keys
[] = {
7786 { "tx_underflow_errors" },
7787 { "tx_max_pkt_size_errors" },
7792 { "rx_align_errors" },
7793 { "rx_crc_errors" },
7794 { "rx_len_errors" },
7795 { "pause_off_state" },
7796 { "pause_on_state" },
7797 { "pause_received" },
7800 #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
7802 static const struct {
7803 const char string
[ETH_GSTRING_LEN
];
7804 } niu_rxchan_stat_keys
[] = {
7812 #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
7814 static const struct {
7815 const char string
[ETH_GSTRING_LEN
];
7816 } niu_txchan_stat_keys
[] = {
7823 #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
7825 static void niu_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
7827 struct niu
*np
= netdev_priv(dev
);
7830 if (stringset
!= ETH_SS_STATS
)
7833 if (np
->flags
& NIU_FLAGS_XMAC
) {
7834 memcpy(data
, niu_xmac_stat_keys
,
7835 sizeof(niu_xmac_stat_keys
));
7836 data
+= sizeof(niu_xmac_stat_keys
);
7838 memcpy(data
, niu_bmac_stat_keys
,
7839 sizeof(niu_bmac_stat_keys
));
7840 data
+= sizeof(niu_bmac_stat_keys
);
7842 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
7843 memcpy(data
, niu_rxchan_stat_keys
,
7844 sizeof(niu_rxchan_stat_keys
));
7845 data
+= sizeof(niu_rxchan_stat_keys
);
7847 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
7848 memcpy(data
, niu_txchan_stat_keys
,
7849 sizeof(niu_txchan_stat_keys
));
7850 data
+= sizeof(niu_txchan_stat_keys
);
7854 static int niu_get_sset_count(struct net_device
*dev
, int stringset
)
7856 struct niu
*np
= netdev_priv(dev
);
7858 if (stringset
!= ETH_SS_STATS
)
7861 return ((np
->flags
& NIU_FLAGS_XMAC
?
7862 NUM_XMAC_STAT_KEYS
:
7863 NUM_BMAC_STAT_KEYS
) +
7864 (np
->num_rx_rings
* NUM_RXCHAN_STAT_KEYS
) +
7865 (np
->num_tx_rings
* NUM_TXCHAN_STAT_KEYS
));
7868 static void niu_get_ethtool_stats(struct net_device
*dev
,
7869 struct ethtool_stats
*stats
, u64
*data
)
7871 struct niu
*np
= netdev_priv(dev
);
7874 niu_sync_mac_stats(np
);
7875 if (np
->flags
& NIU_FLAGS_XMAC
) {
7876 memcpy(data
, &np
->mac_stats
.xmac
,
7877 sizeof(struct niu_xmac_stats
));
7878 data
+= (sizeof(struct niu_xmac_stats
) / sizeof(u64
));
7880 memcpy(data
, &np
->mac_stats
.bmac
,
7881 sizeof(struct niu_bmac_stats
));
7882 data
+= (sizeof(struct niu_bmac_stats
) / sizeof(u64
));
7884 for (i
= 0; i
< np
->num_rx_rings
; i
++) {
7885 struct rx_ring_info
*rp
= &np
->rx_rings
[i
];
7887 niu_sync_rx_discard_stats(np
, rp
, 0);
7889 data
[0] = rp
->rx_channel
;
7890 data
[1] = rp
->rx_packets
;
7891 data
[2] = rp
->rx_bytes
;
7892 data
[3] = rp
->rx_dropped
;
7893 data
[4] = rp
->rx_errors
;
7896 for (i
= 0; i
< np
->num_tx_rings
; i
++) {
7897 struct tx_ring_info
*rp
= &np
->tx_rings
[i
];
7899 data
[0] = rp
->tx_channel
;
7900 data
[1] = rp
->tx_packets
;
7901 data
[2] = rp
->tx_bytes
;
7902 data
[3] = rp
->tx_errors
;
7907 static u64
niu_led_state_save(struct niu
*np
)
7909 if (np
->flags
& NIU_FLAGS_XMAC
)
7910 return nr64_mac(XMAC_CONFIG
);
7912 return nr64_mac(BMAC_XIF_CONFIG
);
7915 static void niu_led_state_restore(struct niu
*np
, u64 val
)
7917 if (np
->flags
& NIU_FLAGS_XMAC
)
7918 nw64_mac(XMAC_CONFIG
, val
);
7920 nw64_mac(BMAC_XIF_CONFIG
, val
);
7923 static void niu_force_led(struct niu
*np
, int on
)
7927 if (np
->flags
& NIU_FLAGS_XMAC
) {
7929 bit
= XMAC_CONFIG_FORCE_LED_ON
;
7931 reg
= BMAC_XIF_CONFIG
;
7932 bit
= BMAC_XIF_CONFIG_LINK_LED
;
7935 val
= nr64_mac(reg
);
7943 static int niu_phys_id(struct net_device
*dev
, u32 data
)
7945 struct niu
*np
= netdev_priv(dev
);
7949 if (!netif_running(dev
))
7955 orig_led_state
= niu_led_state_save(np
);
7956 for (i
= 0; i
< (data
* 2); i
++) {
7957 int on
= ((i
% 2) == 0);
7959 niu_force_led(np
, on
);
7961 if (msleep_interruptible(500))
7964 niu_led_state_restore(np
, orig_led_state
);
7969 static const struct ethtool_ops niu_ethtool_ops
= {
7970 .get_drvinfo
= niu_get_drvinfo
,
7971 .get_link
= ethtool_op_get_link
,
7972 .get_msglevel
= niu_get_msglevel
,
7973 .set_msglevel
= niu_set_msglevel
,
7974 .nway_reset
= niu_nway_reset
,
7975 .get_eeprom_len
= niu_get_eeprom_len
,
7976 .get_eeprom
= niu_get_eeprom
,
7977 .get_settings
= niu_get_settings
,
7978 .set_settings
= niu_set_settings
,
7979 .get_strings
= niu_get_strings
,
7980 .get_sset_count
= niu_get_sset_count
,
7981 .get_ethtool_stats
= niu_get_ethtool_stats
,
7982 .phys_id
= niu_phys_id
,
7983 .get_rxnfc
= niu_get_nfc
,
7984 .set_rxnfc
= niu_set_nfc
,
7987 static int niu_ldg_assign_ldn(struct niu
*np
, struct niu_parent
*parent
,
7990 if (ldg
< NIU_LDG_MIN
|| ldg
> NIU_LDG_MAX
)
7992 if (ldn
< 0 || ldn
> LDN_MAX
)
7995 parent
->ldg_map
[ldn
] = ldg
;
7997 if (np
->parent
->plat_type
== PLAT_TYPE_NIU
) {
7998 /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
7999 * the firmware, and we're not supposed to change them.
8000 * Validate the mapping, because if it's wrong we probably
8001 * won't get any interrupts and that's painful to debug.
8003 if (nr64(LDG_NUM(ldn
)) != ldg
) {
8004 dev_err(np
->device
, PFX
"Port %u, mis-matched "
8006 "for ldn %d, should be %d is %llu\n",
8008 (unsigned long long) nr64(LDG_NUM(ldn
)));
8012 nw64(LDG_NUM(ldn
), ldg
);
8017 static int niu_set_ldg_timer_res(struct niu
*np
, int res
)
8019 if (res
< 0 || res
> LDG_TIMER_RES_VAL
)
8023 nw64(LDG_TIMER_RES
, res
);
8028 static int niu_set_ldg_sid(struct niu
*np
, int ldg
, int func
, int vector
)
8030 if ((ldg
< NIU_LDG_MIN
|| ldg
> NIU_LDG_MAX
) ||
8031 (func
< 0 || func
> 3) ||
8032 (vector
< 0 || vector
> 0x1f))
8035 nw64(SID(ldg
), (func
<< SID_FUNC_SHIFT
) | vector
);
8040 static int __devinit
niu_pci_eeprom_read(struct niu
*np
, u32 addr
)
8042 u64 frame
, frame_base
= (ESPC_PIO_STAT_READ_START
|
8043 (addr
<< ESPC_PIO_STAT_ADDR_SHIFT
));
8046 if (addr
> (ESPC_PIO_STAT_ADDR
>> ESPC_PIO_STAT_ADDR_SHIFT
))
8050 nw64(ESPC_PIO_STAT
, frame
);
8054 frame
= nr64(ESPC_PIO_STAT
);
8055 if (frame
& ESPC_PIO_STAT_READ_END
)
8058 if (!(frame
& ESPC_PIO_STAT_READ_END
)) {
8059 dev_err(np
->device
, PFX
"EEPROM read timeout frame[%llx]\n",
8060 (unsigned long long) frame
);
8065 nw64(ESPC_PIO_STAT
, frame
);
8069 frame
= nr64(ESPC_PIO_STAT
);
8070 if (frame
& ESPC_PIO_STAT_READ_END
)
8073 if (!(frame
& ESPC_PIO_STAT_READ_END
)) {
8074 dev_err(np
->device
, PFX
"EEPROM read timeout frame[%llx]\n",
8075 (unsigned long long) frame
);
8079 frame
= nr64(ESPC_PIO_STAT
);
8080 return (frame
& ESPC_PIO_STAT_DATA
) >> ESPC_PIO_STAT_DATA_SHIFT
;
8083 static int __devinit
niu_pci_eeprom_read16(struct niu
*np
, u32 off
)
8085 int err
= niu_pci_eeprom_read(np
, off
);
8091 err
= niu_pci_eeprom_read(np
, off
+ 1);
8094 val
|= (err
& 0xff);
8099 static int __devinit
niu_pci_eeprom_read16_swp(struct niu
*np
, u32 off
)
8101 int err
= niu_pci_eeprom_read(np
, off
);
8108 err
= niu_pci_eeprom_read(np
, off
+ 1);
8112 val
|= (err
& 0xff) << 8;
8117 static int __devinit
niu_pci_vpd_get_propname(struct niu
*np
,
8124 for (i
= 0; i
< namebuf_len
; i
++) {
8125 int err
= niu_pci_eeprom_read(np
, off
+ i
);
8132 if (i
>= namebuf_len
)
8138 static void __devinit
niu_vpd_parse_version(struct niu
*np
)
8140 struct niu_vpd
*vpd
= &np
->vpd
;
8141 int len
= strlen(vpd
->version
) + 1;
8142 const char *s
= vpd
->version
;
8145 for (i
= 0; i
< len
- 5; i
++) {
8146 if (!strncmp(s
+ i
, "FCode ", 6))
8153 sscanf(s
, "%d.%d", &vpd
->fcode_major
, &vpd
->fcode_minor
);
8155 niudbg(PROBE
, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
8156 vpd
->fcode_major
, vpd
->fcode_minor
);
8157 if (vpd
->fcode_major
> NIU_VPD_MIN_MAJOR
||
8158 (vpd
->fcode_major
== NIU_VPD_MIN_MAJOR
&&
8159 vpd
->fcode_minor
>= NIU_VPD_MIN_MINOR
))
8160 np
->flags
|= NIU_FLAGS_VPD_VALID
;
8163 /* ESPC_PIO_EN_ENABLE must be set */
8164 static int __devinit
niu_pci_vpd_scan_props(struct niu
*np
,
8167 unsigned int found_mask
= 0;
8168 #define FOUND_MASK_MODEL 0x00000001
8169 #define FOUND_MASK_BMODEL 0x00000002
8170 #define FOUND_MASK_VERS 0x00000004
8171 #define FOUND_MASK_MAC 0x00000008
8172 #define FOUND_MASK_NMAC 0x00000010
8173 #define FOUND_MASK_PHY 0x00000020
8174 #define FOUND_MASK_ALL 0x0000003f
8176 niudbg(PROBE
, "VPD_SCAN: start[%x] end[%x]\n",
8178 while (start
< end
) {
8179 int len
, err
, instance
, type
, prop_len
;
8184 if (found_mask
== FOUND_MASK_ALL
) {
8185 niu_vpd_parse_version(np
);
8189 err
= niu_pci_eeprom_read(np
, start
+ 2);
8195 instance
= niu_pci_eeprom_read(np
, start
);
8196 type
= niu_pci_eeprom_read(np
, start
+ 3);
8197 prop_len
= niu_pci_eeprom_read(np
, start
+ 4);
8198 err
= niu_pci_vpd_get_propname(np
, start
+ 5, namebuf
, 64);
8204 if (!strcmp(namebuf
, "model")) {
8205 prop_buf
= np
->vpd
.model
;
8206 max_len
= NIU_VPD_MODEL_MAX
;
8207 found_mask
|= FOUND_MASK_MODEL
;
8208 } else if (!strcmp(namebuf
, "board-model")) {
8209 prop_buf
= np
->vpd
.board_model
;
8210 max_len
= NIU_VPD_BD_MODEL_MAX
;
8211 found_mask
|= FOUND_MASK_BMODEL
;
8212 } else if (!strcmp(namebuf
, "version")) {
8213 prop_buf
= np
->vpd
.version
;
8214 max_len
= NIU_VPD_VERSION_MAX
;
8215 found_mask
|= FOUND_MASK_VERS
;
8216 } else if (!strcmp(namebuf
, "local-mac-address")) {
8217 prop_buf
= np
->vpd
.local_mac
;
8219 found_mask
|= FOUND_MASK_MAC
;
8220 } else if (!strcmp(namebuf
, "num-mac-addresses")) {
8221 prop_buf
= &np
->vpd
.mac_num
;
8223 found_mask
|= FOUND_MASK_NMAC
;
8224 } else if (!strcmp(namebuf
, "phy-type")) {
8225 prop_buf
= np
->vpd
.phy_type
;
8226 max_len
= NIU_VPD_PHY_TYPE_MAX
;
8227 found_mask
|= FOUND_MASK_PHY
;
8230 if (max_len
&& prop_len
> max_len
) {
8231 dev_err(np
->device
, PFX
"Property '%s' length (%d) is "
8232 "too long.\n", namebuf
, prop_len
);
8237 u32 off
= start
+ 5 + err
;
8240 niudbg(PROBE
, "VPD_SCAN: Reading in property [%s] "
8241 "len[%d]\n", namebuf
, prop_len
);
8242 for (i
= 0; i
< prop_len
; i
++)
8243 *prop_buf
++ = niu_pci_eeprom_read(np
, off
+ i
);
8252 /* ESPC_PIO_EN_ENABLE must be set */
8253 static void __devinit
niu_pci_vpd_fetch(struct niu
*np
, u32 start
)
8258 err
= niu_pci_eeprom_read16_swp(np
, start
+ 1);
8264 while (start
+ offset
< ESPC_EEPROM_SIZE
) {
8265 u32 here
= start
+ offset
;
8268 err
= niu_pci_eeprom_read(np
, here
);
8272 err
= niu_pci_eeprom_read16_swp(np
, here
+ 1);
8276 here
= start
+ offset
+ 3;
8277 end
= start
+ offset
+ err
;
8281 err
= niu_pci_vpd_scan_props(np
, here
, end
);
8282 if (err
< 0 || err
== 1)
8287 /* ESPC_PIO_EN_ENABLE must be set */
8288 static u32 __devinit
niu_pci_vpd_offset(struct niu
*np
)
8290 u32 start
= 0, end
= ESPC_EEPROM_SIZE
, ret
;
8293 while (start
< end
) {
8296 /* ROM header signature? */
8297 err
= niu_pci_eeprom_read16(np
, start
+ 0);
8301 /* Apply offset to PCI data structure. */
8302 err
= niu_pci_eeprom_read16(np
, start
+ 23);
8307 /* Check for "PCIR" signature. */
8308 err
= niu_pci_eeprom_read16(np
, start
+ 0);
8311 err
= niu_pci_eeprom_read16(np
, start
+ 2);
8315 /* Check for OBP image type. */
8316 err
= niu_pci_eeprom_read(np
, start
+ 20);
8320 err
= niu_pci_eeprom_read(np
, ret
+ 2);
8324 start
= ret
+ (err
* 512);
8328 err
= niu_pci_eeprom_read16_swp(np
, start
+ 8);
8333 err
= niu_pci_eeprom_read(np
, ret
+ 0);
8343 static int __devinit
niu_phy_type_prop_decode(struct niu
*np
,
8344 const char *phy_prop
)
8346 if (!strcmp(phy_prop
, "mif")) {
8347 /* 1G copper, MII */
8348 np
->flags
&= ~(NIU_FLAGS_FIBER
|
8350 np
->mac_xcvr
= MAC_XCVR_MII
;
8351 } else if (!strcmp(phy_prop
, "xgf")) {
8352 /* 10G fiber, XPCS */
8353 np
->flags
|= (NIU_FLAGS_10G
|
8355 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8356 } else if (!strcmp(phy_prop
, "pcs")) {
8358 np
->flags
&= ~NIU_FLAGS_10G
;
8359 np
->flags
|= NIU_FLAGS_FIBER
;
8360 np
->mac_xcvr
= MAC_XCVR_PCS
;
8361 } else if (!strcmp(phy_prop
, "xgc")) {
8362 /* 10G copper, XPCS */
8363 np
->flags
|= NIU_FLAGS_10G
;
8364 np
->flags
&= ~NIU_FLAGS_FIBER
;
8365 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8366 } else if (!strcmp(phy_prop
, "xgsd") || !strcmp(phy_prop
, "gsd")) {
8367 /* 10G Serdes or 1G Serdes, default to 10G */
8368 np
->flags
|= NIU_FLAGS_10G
;
8369 np
->flags
&= ~NIU_FLAGS_FIBER
;
8370 np
->flags
|= NIU_FLAGS_XCVR_SERDES
;
8371 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8378 static int niu_pci_vpd_get_nports(struct niu
*np
)
8382 if ((!strcmp(np
->vpd
.model
, NIU_QGC_LP_MDL_STR
)) ||
8383 (!strcmp(np
->vpd
.model
, NIU_QGC_PEM_MDL_STR
)) ||
8384 (!strcmp(np
->vpd
.model
, NIU_MARAMBA_MDL_STR
)) ||
8385 (!strcmp(np
->vpd
.model
, NIU_KIMI_MDL_STR
)) ||
8386 (!strcmp(np
->vpd
.model
, NIU_ALONSO_MDL_STR
))) {
8388 } else if ((!strcmp(np
->vpd
.model
, NIU_2XGF_LP_MDL_STR
)) ||
8389 (!strcmp(np
->vpd
.model
, NIU_2XGF_PEM_MDL_STR
)) ||
8390 (!strcmp(np
->vpd
.model
, NIU_FOXXY_MDL_STR
)) ||
8391 (!strcmp(np
->vpd
.model
, NIU_2XGF_MRVL_MDL_STR
))) {
8398 static void __devinit
niu_pci_vpd_validate(struct niu
*np
)
8400 struct net_device
*dev
= np
->dev
;
8401 struct niu_vpd
*vpd
= &np
->vpd
;
8404 if (!is_valid_ether_addr(&vpd
->local_mac
[0])) {
8405 dev_err(np
->device
, PFX
"VPD MAC invalid, "
8406 "falling back to SPROM.\n");
8408 np
->flags
&= ~NIU_FLAGS_VPD_VALID
;
8412 if (!strcmp(np
->vpd
.model
, NIU_ALONSO_MDL_STR
) ||
8413 !strcmp(np
->vpd
.model
, NIU_KIMI_MDL_STR
)) {
8414 np
->flags
|= NIU_FLAGS_10G
;
8415 np
->flags
&= ~NIU_FLAGS_FIBER
;
8416 np
->flags
|= NIU_FLAGS_XCVR_SERDES
;
8417 np
->mac_xcvr
= MAC_XCVR_PCS
;
8419 np
->flags
|= NIU_FLAGS_FIBER
;
8420 np
->flags
&= ~NIU_FLAGS_10G
;
8422 if (np
->flags
& NIU_FLAGS_10G
)
8423 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8424 } else if (!strcmp(np
->vpd
.model
, NIU_FOXXY_MDL_STR
)) {
8425 np
->flags
|= (NIU_FLAGS_10G
| NIU_FLAGS_FIBER
|
8426 NIU_FLAGS_HOTPLUG_PHY
);
8427 } else if (niu_phy_type_prop_decode(np
, np
->vpd
.phy_type
)) {
8428 dev_err(np
->device
, PFX
"Illegal phy string [%s].\n",
8430 dev_err(np
->device
, PFX
"Falling back to SPROM.\n");
8431 np
->flags
&= ~NIU_FLAGS_VPD_VALID
;
8435 memcpy(dev
->perm_addr
, vpd
->local_mac
, ETH_ALEN
);
8437 val8
= dev
->perm_addr
[5];
8438 dev
->perm_addr
[5] += np
->port
;
8439 if (dev
->perm_addr
[5] < val8
)
8440 dev
->perm_addr
[4]++;
8442 memcpy(dev
->dev_addr
, dev
->perm_addr
, dev
->addr_len
);
8445 static int __devinit
niu_pci_probe_sprom(struct niu
*np
)
8447 struct net_device
*dev
= np
->dev
;
8452 val
= (nr64(ESPC_VER_IMGSZ
) & ESPC_VER_IMGSZ_IMGSZ
);
8453 val
>>= ESPC_VER_IMGSZ_IMGSZ_SHIFT
;
8456 np
->eeprom_len
= len
;
8458 niudbg(PROBE
, "SPROM: Image size %llu\n", (unsigned long long) val
);
8461 for (i
= 0; i
< len
; i
++) {
8462 val
= nr64(ESPC_NCR(i
));
8463 sum
+= (val
>> 0) & 0xff;
8464 sum
+= (val
>> 8) & 0xff;
8465 sum
+= (val
>> 16) & 0xff;
8466 sum
+= (val
>> 24) & 0xff;
8468 niudbg(PROBE
, "SPROM: Checksum %x\n", (int)(sum
& 0xff));
8469 if ((sum
& 0xff) != 0xab) {
8470 dev_err(np
->device
, PFX
"Bad SPROM checksum "
8471 "(%x, should be 0xab)\n", (int) (sum
& 0xff));
8475 val
= nr64(ESPC_PHY_TYPE
);
8478 val8
= (val
& ESPC_PHY_TYPE_PORT0
) >>
8479 ESPC_PHY_TYPE_PORT0_SHIFT
;
8482 val8
= (val
& ESPC_PHY_TYPE_PORT1
) >>
8483 ESPC_PHY_TYPE_PORT1_SHIFT
;
8486 val8
= (val
& ESPC_PHY_TYPE_PORT2
) >>
8487 ESPC_PHY_TYPE_PORT2_SHIFT
;
8490 val8
= (val
& ESPC_PHY_TYPE_PORT3
) >>
8491 ESPC_PHY_TYPE_PORT3_SHIFT
;
8494 dev_err(np
->device
, PFX
"Bogus port number %u\n",
8498 niudbg(PROBE
, "SPROM: PHY type %x\n", val8
);
8501 case ESPC_PHY_TYPE_1G_COPPER
:
8502 /* 1G copper, MII */
8503 np
->flags
&= ~(NIU_FLAGS_FIBER
|
8505 np
->mac_xcvr
= MAC_XCVR_MII
;
8508 case ESPC_PHY_TYPE_1G_FIBER
:
8510 np
->flags
&= ~NIU_FLAGS_10G
;
8511 np
->flags
|= NIU_FLAGS_FIBER
;
8512 np
->mac_xcvr
= MAC_XCVR_PCS
;
8515 case ESPC_PHY_TYPE_10G_COPPER
:
8516 /* 10G copper, XPCS */
8517 np
->flags
|= NIU_FLAGS_10G
;
8518 np
->flags
&= ~NIU_FLAGS_FIBER
;
8519 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8522 case ESPC_PHY_TYPE_10G_FIBER
:
8523 /* 10G fiber, XPCS */
8524 np
->flags
|= (NIU_FLAGS_10G
|
8526 np
->mac_xcvr
= MAC_XCVR_XPCS
;
8530 dev_err(np
->device
, PFX
"Bogus SPROM phy type %u\n", val8
);
8534 val
= nr64(ESPC_MAC_ADDR0
);
8535 niudbg(PROBE
, "SPROM: MAC_ADDR0[%08llx]\n",
8536 (unsigned long long) val
);
8537 dev
->perm_addr
[0] = (val
>> 0) & 0xff;
8538 dev
->perm_addr
[1] = (val
>> 8) & 0xff;
8539 dev
->perm_addr
[2] = (val
>> 16) & 0xff;
8540 dev
->perm_addr
[3] = (val
>> 24) & 0xff;
8542 val
= nr64(ESPC_MAC_ADDR1
);
8543 niudbg(PROBE
, "SPROM: MAC_ADDR1[%08llx]\n",
8544 (unsigned long long) val
);
8545 dev
->perm_addr
[4] = (val
>> 0) & 0xff;
8546 dev
->perm_addr
[5] = (val
>> 8) & 0xff;
8548 if (!is_valid_ether_addr(&dev
->perm_addr
[0])) {
8549 dev_err(np
->device
, PFX
"SPROM MAC address invalid\n");
8550 dev_err(np
->device
, PFX
"[ \n");
8551 for (i
= 0; i
< 6; i
++)
8552 printk("%02x ", dev
->perm_addr
[i
]);
8557 val8
= dev
->perm_addr
[5];
8558 dev
->perm_addr
[5] += np
->port
;
8559 if (dev
->perm_addr
[5] < val8
)
8560 dev
->perm_addr
[4]++;
8562 memcpy(dev
->dev_addr
, dev
->perm_addr
, dev
->addr_len
);
8564 val
= nr64(ESPC_MOD_STR_LEN
);
8565 niudbg(PROBE
, "SPROM: MOD_STR_LEN[%llu]\n",
8566 (unsigned long long) val
);
8570 for (i
= 0; i
< val
; i
+= 4) {
8571 u64 tmp
= nr64(ESPC_NCR(5 + (i
/ 4)));
8573 np
->vpd
.model
[i
+ 3] = (tmp
>> 0) & 0xff;
8574 np
->vpd
.model
[i
+ 2] = (tmp
>> 8) & 0xff;
8575 np
->vpd
.model
[i
+ 1] = (tmp
>> 16) & 0xff;
8576 np
->vpd
.model
[i
+ 0] = (tmp
>> 24) & 0xff;
8578 np
->vpd
.model
[val
] = '\0';
8580 val
= nr64(ESPC_BD_MOD_STR_LEN
);
8581 niudbg(PROBE
, "SPROM: BD_MOD_STR_LEN[%llu]\n",
8582 (unsigned long long) val
);
8586 for (i
= 0; i
< val
; i
+= 4) {
8587 u64 tmp
= nr64(ESPC_NCR(14 + (i
/ 4)));
8589 np
->vpd
.board_model
[i
+ 3] = (tmp
>> 0) & 0xff;
8590 np
->vpd
.board_model
[i
+ 2] = (tmp
>> 8) & 0xff;
8591 np
->vpd
.board_model
[i
+ 1] = (tmp
>> 16) & 0xff;
8592 np
->vpd
.board_model
[i
+ 0] = (tmp
>> 24) & 0xff;
8594 np
->vpd
.board_model
[val
] = '\0';
8597 nr64(ESPC_NUM_PORTS_MACS
) & ESPC_NUM_PORTS_MACS_VAL
;
8598 niudbg(PROBE
, "SPROM: NUM_PORTS_MACS[%d]\n",
8604 static int __devinit
niu_get_and_validate_port(struct niu
*np
)
8606 struct niu_parent
*parent
= np
->parent
;
8609 np
->flags
|= NIU_FLAGS_XMAC
;
8611 if (!parent
->num_ports
) {
8612 if (parent
->plat_type
== PLAT_TYPE_NIU
) {
8613 parent
->num_ports
= 2;
8615 parent
->num_ports
= niu_pci_vpd_get_nports(np
);
8616 if (!parent
->num_ports
) {
8617 /* Fall back to SPROM as last resort.
8618 * This will fail on most cards.
8620 parent
->num_ports
= nr64(ESPC_NUM_PORTS_MACS
) &
8621 ESPC_NUM_PORTS_MACS_VAL
;
8623 /* All of the current probing methods fail on
8624 * Maramba on-board parts.
8626 if (!parent
->num_ports
)
8627 parent
->num_ports
= 4;
8632 niudbg(PROBE
, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
8633 np
->port
, parent
->num_ports
);
8634 if (np
->port
>= parent
->num_ports
)
8640 static int __devinit
phy_record(struct niu_parent
*parent
,
8641 struct phy_probe_info
*p
,
8642 int dev_id_1
, int dev_id_2
, u8 phy_port
,
8645 u32 id
= (dev_id_1
<< 16) | dev_id_2
;
8648 if (dev_id_1
< 0 || dev_id_2
< 0)
8650 if (type
== PHY_TYPE_PMA_PMD
|| type
== PHY_TYPE_PCS
) {
8651 if (((id
& NIU_PHY_ID_MASK
) != NIU_PHY_ID_BCM8704
) &&
8652 ((id
& NIU_PHY_ID_MASK
) != NIU_PHY_ID_MRVL88X2011
) &&
8653 ((id
& NIU_PHY_ID_MASK
) != NIU_PHY_ID_BCM8706
))
8656 if ((id
& NIU_PHY_ID_MASK
) != NIU_PHY_ID_BCM5464R
)
8660 pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
8662 (type
== PHY_TYPE_PMA_PMD
?
8664 (type
== PHY_TYPE_PCS
?
8668 if (p
->cur
[type
] >= NIU_MAX_PORTS
) {
8669 printk(KERN_ERR PFX
"Too many PHY ports.\n");
8673 p
->phy_id
[type
][idx
] = id
;
8674 p
->phy_port
[type
][idx
] = phy_port
;
8675 p
->cur
[type
] = idx
+ 1;
8679 static int __devinit
port_has_10g(struct phy_probe_info
*p
, int port
)
8683 for (i
= 0; i
< p
->cur
[PHY_TYPE_PMA_PMD
]; i
++) {
8684 if (p
->phy_port
[PHY_TYPE_PMA_PMD
][i
] == port
)
8687 for (i
= 0; i
< p
->cur
[PHY_TYPE_PCS
]; i
++) {
8688 if (p
->phy_port
[PHY_TYPE_PCS
][i
] == port
)
8695 static int __devinit
count_10g_ports(struct phy_probe_info
*p
, int *lowest
)
8701 for (port
= 8; port
< 32; port
++) {
8702 if (port_has_10g(p
, port
)) {
8712 static int __devinit
count_1g_ports(struct phy_probe_info
*p
, int *lowest
)
8715 if (p
->cur
[PHY_TYPE_MII
])
8716 *lowest
= p
->phy_port
[PHY_TYPE_MII
][0];
8718 return p
->cur
[PHY_TYPE_MII
];
8721 static void __devinit
niu_n2_divide_channels(struct niu_parent
*parent
)
8723 int num_ports
= parent
->num_ports
;
8726 for (i
= 0; i
< num_ports
; i
++) {
8727 parent
->rxchan_per_port
[i
] = (16 / num_ports
);
8728 parent
->txchan_per_port
[i
] = (16 / num_ports
);
8730 pr_info(PFX
"niu%d: Port %u [%u RX chans] "
8733 parent
->rxchan_per_port
[i
],
8734 parent
->txchan_per_port
[i
]);
8738 static void __devinit
niu_divide_channels(struct niu_parent
*parent
,
8739 int num_10g
, int num_1g
)
8741 int num_ports
= parent
->num_ports
;
8742 int rx_chans_per_10g
, rx_chans_per_1g
;
8743 int tx_chans_per_10g
, tx_chans_per_1g
;
8744 int i
, tot_rx
, tot_tx
;
8746 if (!num_10g
|| !num_1g
) {
8747 rx_chans_per_10g
= rx_chans_per_1g
=
8748 (NIU_NUM_RXCHAN
/ num_ports
);
8749 tx_chans_per_10g
= tx_chans_per_1g
=
8750 (NIU_NUM_TXCHAN
/ num_ports
);
8752 rx_chans_per_1g
= NIU_NUM_RXCHAN
/ 8;
8753 rx_chans_per_10g
= (NIU_NUM_RXCHAN
-
8754 (rx_chans_per_1g
* num_1g
)) /
8757 tx_chans_per_1g
= NIU_NUM_TXCHAN
/ 6;
8758 tx_chans_per_10g
= (NIU_NUM_TXCHAN
-
8759 (tx_chans_per_1g
* num_1g
)) /
8763 tot_rx
= tot_tx
= 0;
8764 for (i
= 0; i
< num_ports
; i
++) {
8765 int type
= phy_decode(parent
->port_phy
, i
);
8767 if (type
== PORT_TYPE_10G
) {
8768 parent
->rxchan_per_port
[i
] = rx_chans_per_10g
;
8769 parent
->txchan_per_port
[i
] = tx_chans_per_10g
;
8771 parent
->rxchan_per_port
[i
] = rx_chans_per_1g
;
8772 parent
->txchan_per_port
[i
] = tx_chans_per_1g
;
8774 pr_info(PFX
"niu%d: Port %u [%u RX chans] "
8777 parent
->rxchan_per_port
[i
],
8778 parent
->txchan_per_port
[i
]);
8779 tot_rx
+= parent
->rxchan_per_port
[i
];
8780 tot_tx
+= parent
->txchan_per_port
[i
];
8783 if (tot_rx
> NIU_NUM_RXCHAN
) {
8784 printk(KERN_ERR PFX
"niu%d: Too many RX channels (%d), "
8785 "resetting to one per port.\n",
8786 parent
->index
, tot_rx
);
8787 for (i
= 0; i
< num_ports
; i
++)
8788 parent
->rxchan_per_port
[i
] = 1;
8790 if (tot_tx
> NIU_NUM_TXCHAN
) {
8791 printk(KERN_ERR PFX
"niu%d: Too many TX channels (%d), "
8792 "resetting to one per port.\n",
8793 parent
->index
, tot_tx
);
8794 for (i
= 0; i
< num_ports
; i
++)
8795 parent
->txchan_per_port
[i
] = 1;
8797 if (tot_rx
< NIU_NUM_RXCHAN
|| tot_tx
< NIU_NUM_TXCHAN
) {
8798 printk(KERN_WARNING PFX
"niu%d: Driver bug, wasted channels, "
8800 parent
->index
, tot_rx
, tot_tx
);
8804 static void __devinit
niu_divide_rdc_groups(struct niu_parent
*parent
,
8805 int num_10g
, int num_1g
)
8807 int i
, num_ports
= parent
->num_ports
;
8808 int rdc_group
, rdc_groups_per_port
;
8809 int rdc_channel_base
;
8812 rdc_groups_per_port
= NIU_NUM_RDC_TABLES
/ num_ports
;
8814 rdc_channel_base
= 0;
8816 for (i
= 0; i
< num_ports
; i
++) {
8817 struct niu_rdc_tables
*tp
= &parent
->rdc_group_cfg
[i
];
8818 int grp
, num_channels
= parent
->rxchan_per_port
[i
];
8819 int this_channel_offset
;
8821 tp
->first_table_num
= rdc_group
;
8822 tp
->num_tables
= rdc_groups_per_port
;
8823 this_channel_offset
= 0;
8824 for (grp
= 0; grp
< tp
->num_tables
; grp
++) {
8825 struct rdc_table
*rt
= &tp
->tables
[grp
];
8828 pr_info(PFX
"niu%d: Port %d RDC tbl(%d) [ ",
8829 parent
->index
, i
, tp
->first_table_num
+ grp
);
8830 for (slot
= 0; slot
< NIU_RDC_TABLE_SLOTS
; slot
++) {
8831 rt
->rxdma_channel
[slot
] =
8832 rdc_channel_base
+ this_channel_offset
;
8834 printk("%d ", rt
->rxdma_channel
[slot
]);
8836 if (++this_channel_offset
== num_channels
)
8837 this_channel_offset
= 0;
8842 parent
->rdc_default
[i
] = rdc_channel_base
;
8844 rdc_channel_base
+= num_channels
;
8845 rdc_group
+= rdc_groups_per_port
;
8849 static int __devinit
fill_phy_probe_info(struct niu
*np
,
8850 struct niu_parent
*parent
,
8851 struct phy_probe_info
*info
)
8853 unsigned long flags
;
8856 memset(info
, 0, sizeof(*info
));
8858 /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
8859 niu_lock_parent(np
, flags
);
8861 for (port
= 8; port
< 32; port
++) {
8862 int dev_id_1
, dev_id_2
;
8864 dev_id_1
= mdio_read(np
, port
,
8865 NIU_PMA_PMD_DEV_ADDR
, MII_PHYSID1
);
8866 dev_id_2
= mdio_read(np
, port
,
8867 NIU_PMA_PMD_DEV_ADDR
, MII_PHYSID2
);
8868 err
= phy_record(parent
, info
, dev_id_1
, dev_id_2
, port
,
8872 dev_id_1
= mdio_read(np
, port
,
8873 NIU_PCS_DEV_ADDR
, MII_PHYSID1
);
8874 dev_id_2
= mdio_read(np
, port
,
8875 NIU_PCS_DEV_ADDR
, MII_PHYSID2
);
8876 err
= phy_record(parent
, info
, dev_id_1
, dev_id_2
, port
,
8880 dev_id_1
= mii_read(np
, port
, MII_PHYSID1
);
8881 dev_id_2
= mii_read(np
, port
, MII_PHYSID2
);
8882 err
= phy_record(parent
, info
, dev_id_1
, dev_id_2
, port
,
8887 niu_unlock_parent(np
, flags
);
8892 static int __devinit
walk_phys(struct niu
*np
, struct niu_parent
*parent
)
8894 struct phy_probe_info
*info
= &parent
->phy_probe_info
;
8895 int lowest_10g
, lowest_1g
;
8896 int num_10g
, num_1g
;
8900 num_10g
= num_1g
= 0;
8902 if (!strcmp(np
->vpd
.model
, NIU_ALONSO_MDL_STR
) ||
8903 !strcmp(np
->vpd
.model
, NIU_KIMI_MDL_STR
)) {
8906 parent
->plat_type
= PLAT_TYPE_ATCA_CP3220
;
8907 parent
->num_ports
= 4;
8908 val
= (phy_encode(PORT_TYPE_1G
, 0) |
8909 phy_encode(PORT_TYPE_1G
, 1) |
8910 phy_encode(PORT_TYPE_1G
, 2) |
8911 phy_encode(PORT_TYPE_1G
, 3));
8912 } else if (!strcmp(np
->vpd
.model
, NIU_FOXXY_MDL_STR
)) {
8915 parent
->num_ports
= 2;
8916 val
= (phy_encode(PORT_TYPE_10G
, 0) |
8917 phy_encode(PORT_TYPE_10G
, 1));
8918 } else if ((np
->flags
& NIU_FLAGS_XCVR_SERDES
) &&
8919 (parent
->plat_type
== PLAT_TYPE_NIU
)) {
8920 /* this is the Monza case */
8921 if (np
->flags
& NIU_FLAGS_10G
) {
8922 val
= (phy_encode(PORT_TYPE_10G
, 0) |
8923 phy_encode(PORT_TYPE_10G
, 1));
8925 val
= (phy_encode(PORT_TYPE_1G
, 0) |
8926 phy_encode(PORT_TYPE_1G
, 1));
8929 err
= fill_phy_probe_info(np
, parent
, info
);
8933 num_10g
= count_10g_ports(info
, &lowest_10g
);
8934 num_1g
= count_1g_ports(info
, &lowest_1g
);
8936 switch ((num_10g
<< 4) | num_1g
) {
8938 if (lowest_1g
== 10)
8939 parent
->plat_type
= PLAT_TYPE_VF_P0
;
8940 else if (lowest_1g
== 26)
8941 parent
->plat_type
= PLAT_TYPE_VF_P1
;
8943 goto unknown_vg_1g_port
;
8947 val
= (phy_encode(PORT_TYPE_10G
, 0) |
8948 phy_encode(PORT_TYPE_10G
, 1) |
8949 phy_encode(PORT_TYPE_1G
, 2) |
8950 phy_encode(PORT_TYPE_1G
, 3));
8954 val
= (phy_encode(PORT_TYPE_10G
, 0) |
8955 phy_encode(PORT_TYPE_10G
, 1));
8959 val
= phy_encode(PORT_TYPE_10G
, np
->port
);
8963 if (lowest_1g
== 10)
8964 parent
->plat_type
= PLAT_TYPE_VF_P0
;
8965 else if (lowest_1g
== 26)
8966 parent
->plat_type
= PLAT_TYPE_VF_P1
;
8968 goto unknown_vg_1g_port
;
8972 if ((lowest_10g
& 0x7) == 0)
8973 val
= (phy_encode(PORT_TYPE_10G
, 0) |
8974 phy_encode(PORT_TYPE_1G
, 1) |
8975 phy_encode(PORT_TYPE_1G
, 2) |
8976 phy_encode(PORT_TYPE_1G
, 3));
8978 val
= (phy_encode(PORT_TYPE_1G
, 0) |
8979 phy_encode(PORT_TYPE_10G
, 1) |
8980 phy_encode(PORT_TYPE_1G
, 2) |
8981 phy_encode(PORT_TYPE_1G
, 3));
8985 if (lowest_1g
== 10)
8986 parent
->plat_type
= PLAT_TYPE_VF_P0
;
8987 else if (lowest_1g
== 26)
8988 parent
->plat_type
= PLAT_TYPE_VF_P1
;
8990 goto unknown_vg_1g_port
;
8992 val
= (phy_encode(PORT_TYPE_1G
, 0) |
8993 phy_encode(PORT_TYPE_1G
, 1) |
8994 phy_encode(PORT_TYPE_1G
, 2) |
8995 phy_encode(PORT_TYPE_1G
, 3));
8999 printk(KERN_ERR PFX
"Unsupported port config "
9006 parent
->port_phy
= val
;
9008 if (parent
->plat_type
== PLAT_TYPE_NIU
)
9009 niu_n2_divide_channels(parent
);
9011 niu_divide_channels(parent
, num_10g
, num_1g
);
9013 niu_divide_rdc_groups(parent
, num_10g
, num_1g
);
9018 printk(KERN_ERR PFX
"Cannot identify platform type, 1gport=%d\n",
9023 static int __devinit
niu_probe_ports(struct niu
*np
)
9025 struct niu_parent
*parent
= np
->parent
;
9028 niudbg(PROBE
, "niu_probe_ports(): port_phy[%08x]\n",
9031 if (parent
->port_phy
== PORT_PHY_UNKNOWN
) {
9032 err
= walk_phys(np
, parent
);
9036 niu_set_ldg_timer_res(np
, 2);
9037 for (i
= 0; i
<= LDN_MAX
; i
++)
9038 niu_ldn_irq_enable(np
, i
, 0);
9041 if (parent
->port_phy
== PORT_PHY_INVALID
)
9047 static int __devinit
niu_classifier_swstate_init(struct niu
*np
)
9049 struct niu_classifier
*cp
= &np
->clas
;
9051 niudbg(PROBE
, "niu_classifier_swstate_init: num_tcam(%d)\n",
9052 np
->parent
->tcam_num_entries
);
9054 cp
->tcam_top
= (u16
) np
->port
;
9055 cp
->tcam_sz
= np
->parent
->tcam_num_entries
/ np
->parent
->num_ports
;
9056 cp
->h1_init
= 0xffffffff;
9057 cp
->h2_init
= 0xffff;
9059 return fflp_early_init(np
);
9062 static void __devinit
niu_link_config_init(struct niu
*np
)
9064 struct niu_link_config
*lp
= &np
->link_config
;
9066 lp
->advertising
= (ADVERTISED_10baseT_Half
|
9067 ADVERTISED_10baseT_Full
|
9068 ADVERTISED_100baseT_Half
|
9069 ADVERTISED_100baseT_Full
|
9070 ADVERTISED_1000baseT_Half
|
9071 ADVERTISED_1000baseT_Full
|
9072 ADVERTISED_10000baseT_Full
|
9073 ADVERTISED_Autoneg
);
9074 lp
->speed
= lp
->active_speed
= SPEED_INVALID
;
9075 lp
->duplex
= DUPLEX_FULL
;
9076 lp
->active_duplex
= DUPLEX_INVALID
;
9079 lp
->loopback_mode
= LOOPBACK_MAC
;
9080 lp
->active_speed
= SPEED_10000
;
9081 lp
->active_duplex
= DUPLEX_FULL
;
9083 lp
->loopback_mode
= LOOPBACK_DISABLED
;
9087 static int __devinit
niu_init_mac_ipp_pcs_base(struct niu
*np
)
9091 np
->mac_regs
= np
->regs
+ XMAC_PORT0_OFF
;
9092 np
->ipp_off
= 0x00000;
9093 np
->pcs_off
= 0x04000;
9094 np
->xpcs_off
= 0x02000;
9098 np
->mac_regs
= np
->regs
+ XMAC_PORT1_OFF
;
9099 np
->ipp_off
= 0x08000;
9100 np
->pcs_off
= 0x0a000;
9101 np
->xpcs_off
= 0x08000;
9105 np
->mac_regs
= np
->regs
+ BMAC_PORT2_OFF
;
9106 np
->ipp_off
= 0x04000;
9107 np
->pcs_off
= 0x0e000;
9108 np
->xpcs_off
= ~0UL;
9112 np
->mac_regs
= np
->regs
+ BMAC_PORT3_OFF
;
9113 np
->ipp_off
= 0x0c000;
9114 np
->pcs_off
= 0x12000;
9115 np
->xpcs_off
= ~0UL;
9119 dev_err(np
->device
, PFX
"Port %u is invalid, cannot "
9120 "compute MAC block offset.\n", np
->port
);
9127 static void __devinit
niu_try_msix(struct niu
*np
, u8
*ldg_num_map
)
9129 struct msix_entry msi_vec
[NIU_NUM_LDG
];
9130 struct niu_parent
*parent
= np
->parent
;
9131 struct pci_dev
*pdev
= np
->pdev
;
9132 int i
, num_irqs
, err
;
9135 first_ldg
= (NIU_NUM_LDG
/ parent
->num_ports
) * np
->port
;
9136 for (i
= 0; i
< (NIU_NUM_LDG
/ parent
->num_ports
); i
++)
9137 ldg_num_map
[i
] = first_ldg
+ i
;
9139 num_irqs
= (parent
->rxchan_per_port
[np
->port
] +
9140 parent
->txchan_per_port
[np
->port
] +
9141 (np
->port
== 0 ? 3 : 1));
9142 BUG_ON(num_irqs
> (NIU_NUM_LDG
/ parent
->num_ports
));
9145 for (i
= 0; i
< num_irqs
; i
++) {
9146 msi_vec
[i
].vector
= 0;
9147 msi_vec
[i
].entry
= i
;
9150 err
= pci_enable_msix(pdev
, msi_vec
, num_irqs
);
9152 np
->flags
&= ~NIU_FLAGS_MSIX
;
9160 np
->flags
|= NIU_FLAGS_MSIX
;
9161 for (i
= 0; i
< num_irqs
; i
++)
9162 np
->ldg
[i
].irq
= msi_vec
[i
].vector
;
9163 np
->num_ldg
= num_irqs
;
9166 static int __devinit
niu_n2_irq_init(struct niu
*np
, u8
*ldg_num_map
)
9168 #ifdef CONFIG_SPARC64
9169 struct of_device
*op
= np
->op
;
9170 const u32
*int_prop
;
9173 int_prop
= of_get_property(op
->node
, "interrupts", NULL
);
9177 for (i
= 0; i
< op
->num_irqs
; i
++) {
9178 ldg_num_map
[i
] = int_prop
[i
];
9179 np
->ldg
[i
].irq
= op
->irqs
[i
];
9182 np
->num_ldg
= op
->num_irqs
;
9190 static int __devinit
niu_ldg_init(struct niu
*np
)
9192 struct niu_parent
*parent
= np
->parent
;
9193 u8 ldg_num_map
[NIU_NUM_LDG
];
9194 int first_chan
, num_chan
;
9195 int i
, err
, ldg_rotor
;
9199 np
->ldg
[0].irq
= np
->dev
->irq
;
9200 if (parent
->plat_type
== PLAT_TYPE_NIU
) {
9201 err
= niu_n2_irq_init(np
, ldg_num_map
);
9205 niu_try_msix(np
, ldg_num_map
);
9208 for (i
= 0; i
< np
->num_ldg
; i
++) {
9209 struct niu_ldg
*lp
= &np
->ldg
[i
];
9211 netif_napi_add(np
->dev
, &lp
->napi
, niu_poll
, 64);
9214 lp
->ldg_num
= ldg_num_map
[i
];
9215 lp
->timer
= 2; /* XXX */
9217 /* On N2 NIU the firmware has setup the SID mappings so they go
9218 * to the correct values that will route the LDG to the proper
9219 * interrupt in the NCU interrupt table.
9221 if (np
->parent
->plat_type
!= PLAT_TYPE_NIU
) {
9222 err
= niu_set_ldg_sid(np
, lp
->ldg_num
, port
, i
);
9228 /* We adopt the LDG assignment ordering used by the N2 NIU
9229 * 'interrupt' properties because that simplifies a lot of
9230 * things. This ordering is:
9233 * MIF (if port zero)
9234 * SYSERR (if port zero)
9241 err
= niu_ldg_assign_ldn(np
, parent
, ldg_num_map
[ldg_rotor
],
9247 if (ldg_rotor
== np
->num_ldg
)
9251 err
= niu_ldg_assign_ldn(np
, parent
,
9252 ldg_num_map
[ldg_rotor
],
9258 if (ldg_rotor
== np
->num_ldg
)
9261 err
= niu_ldg_assign_ldn(np
, parent
,
9262 ldg_num_map
[ldg_rotor
],
9268 if (ldg_rotor
== np
->num_ldg
)
9274 for (i
= 0; i
< port
; i
++)
9275 first_chan
+= parent
->rxchan_per_port
[port
];
9276 num_chan
= parent
->rxchan_per_port
[port
];
9278 for (i
= first_chan
; i
< (first_chan
+ num_chan
); i
++) {
9279 err
= niu_ldg_assign_ldn(np
, parent
,
9280 ldg_num_map
[ldg_rotor
],
9285 if (ldg_rotor
== np
->num_ldg
)
9290 for (i
= 0; i
< port
; i
++)
9291 first_chan
+= parent
->txchan_per_port
[port
];
9292 num_chan
= parent
->txchan_per_port
[port
];
9293 for (i
= first_chan
; i
< (first_chan
+ num_chan
); i
++) {
9294 err
= niu_ldg_assign_ldn(np
, parent
,
9295 ldg_num_map
[ldg_rotor
],
9300 if (ldg_rotor
== np
->num_ldg
)
9307 static void __devexit
niu_ldg_free(struct niu
*np
)
9309 if (np
->flags
& NIU_FLAGS_MSIX
)
9310 pci_disable_msix(np
->pdev
);
9313 static int __devinit
niu_get_of_props(struct niu
*np
)
9315 #ifdef CONFIG_SPARC64
9316 struct net_device
*dev
= np
->dev
;
9317 struct device_node
*dp
;
9318 const char *phy_type
;
9323 if (np
->parent
->plat_type
== PLAT_TYPE_NIU
)
9326 dp
= pci_device_to_OF_node(np
->pdev
);
9328 phy_type
= of_get_property(dp
, "phy-type", &prop_len
);
9330 dev_err(np
->device
, PFX
"%s: OF node lacks "
9331 "phy-type property\n",
9336 if (!strcmp(phy_type
, "none"))
9339 strcpy(np
->vpd
.phy_type
, phy_type
);
9341 if (niu_phy_type_prop_decode(np
, np
->vpd
.phy_type
)) {
9342 dev_err(np
->device
, PFX
"%s: Illegal phy string [%s].\n",
9343 dp
->full_name
, np
->vpd
.phy_type
);
9347 mac_addr
= of_get_property(dp
, "local-mac-address", &prop_len
);
9349 dev_err(np
->device
, PFX
"%s: OF node lacks "
9350 "local-mac-address property\n",
9354 if (prop_len
!= dev
->addr_len
) {
9355 dev_err(np
->device
, PFX
"%s: OF MAC address prop len (%d) "
9357 dp
->full_name
, prop_len
);
9359 memcpy(dev
->perm_addr
, mac_addr
, dev
->addr_len
);
9360 if (!is_valid_ether_addr(&dev
->perm_addr
[0])) {
9363 dev_err(np
->device
, PFX
"%s: OF MAC address is invalid\n",
9365 dev_err(np
->device
, PFX
"%s: [ \n",
9367 for (i
= 0; i
< 6; i
++)
9368 printk("%02x ", dev
->perm_addr
[i
]);
9373 memcpy(dev
->dev_addr
, dev
->perm_addr
, dev
->addr_len
);
9375 model
= of_get_property(dp
, "model", &prop_len
);
9378 strcpy(np
->vpd
.model
, model
);
9380 if (of_find_property(dp
, "hot-swappable-phy", &prop_len
)) {
9381 np
->flags
|= (NIU_FLAGS_10G
| NIU_FLAGS_FIBER
|
9382 NIU_FLAGS_HOTPLUG_PHY
);
9391 static int __devinit
niu_get_invariants(struct niu
*np
)
9393 int err
, have_props
;
9396 err
= niu_get_of_props(np
);
9402 err
= niu_init_mac_ipp_pcs_base(np
);
9407 err
= niu_get_and_validate_port(np
);
9412 if (np
->parent
->plat_type
== PLAT_TYPE_NIU
)
9415 nw64(ESPC_PIO_EN
, ESPC_PIO_EN_ENABLE
);
9416 offset
= niu_pci_vpd_offset(np
);
9417 niudbg(PROBE
, "niu_get_invariants: VPD offset [%08x]\n",
9420 niu_pci_vpd_fetch(np
, offset
);
9421 nw64(ESPC_PIO_EN
, 0);
9423 if (np
->flags
& NIU_FLAGS_VPD_VALID
) {
9424 niu_pci_vpd_validate(np
);
9425 err
= niu_get_and_validate_port(np
);
9430 if (!(np
->flags
& NIU_FLAGS_VPD_VALID
)) {
9431 err
= niu_get_and_validate_port(np
);
9434 err
= niu_pci_probe_sprom(np
);
9440 err
= niu_probe_ports(np
);
9446 niu_classifier_swstate_init(np
);
9447 niu_link_config_init(np
);
9449 err
= niu_determine_phy_disposition(np
);
9451 err
= niu_init_link(np
);
9456 static LIST_HEAD(niu_parent_list
);
9457 static DEFINE_MUTEX(niu_parent_lock
);
9458 static int niu_parent_index
;
9460 static ssize_t
show_port_phy(struct device
*dev
,
9461 struct device_attribute
*attr
, char *buf
)
9463 struct platform_device
*plat_dev
= to_platform_device(dev
);
9464 struct niu_parent
*p
= plat_dev
->dev
.platform_data
;
9465 u32 port_phy
= p
->port_phy
;
9466 char *orig_buf
= buf
;
9469 if (port_phy
== PORT_PHY_UNKNOWN
||
9470 port_phy
== PORT_PHY_INVALID
)
9473 for (i
= 0; i
< p
->num_ports
; i
++) {
9474 const char *type_str
;
9477 type
= phy_decode(port_phy
, i
);
9478 if (type
== PORT_TYPE_10G
)
9483 (i
== 0) ? "%s" : " %s",
9486 buf
+= sprintf(buf
, "\n");
9487 return buf
- orig_buf
;
9490 static ssize_t
show_plat_type(struct device
*dev
,
9491 struct device_attribute
*attr
, char *buf
)
9493 struct platform_device
*plat_dev
= to_platform_device(dev
);
9494 struct niu_parent
*p
= plat_dev
->dev
.platform_data
;
9495 const char *type_str
;
9497 switch (p
->plat_type
) {
9498 case PLAT_TYPE_ATLAS
:
9504 case PLAT_TYPE_VF_P0
:
9507 case PLAT_TYPE_VF_P1
:
9511 type_str
= "unknown";
9515 return sprintf(buf
, "%s\n", type_str
);
9518 static ssize_t
__show_chan_per_port(struct device
*dev
,
9519 struct device_attribute
*attr
, char *buf
,
9522 struct platform_device
*plat_dev
= to_platform_device(dev
);
9523 struct niu_parent
*p
= plat_dev
->dev
.platform_data
;
9524 char *orig_buf
= buf
;
9528 arr
= (rx
? p
->rxchan_per_port
: p
->txchan_per_port
);
9530 for (i
= 0; i
< p
->num_ports
; i
++) {
9532 (i
== 0) ? "%d" : " %d",
9535 buf
+= sprintf(buf
, "\n");
9537 return buf
- orig_buf
;
9540 static ssize_t
show_rxchan_per_port(struct device
*dev
,
9541 struct device_attribute
*attr
, char *buf
)
9543 return __show_chan_per_port(dev
, attr
, buf
, 1);
9546 static ssize_t
show_txchan_per_port(struct device
*dev
,
9547 struct device_attribute
*attr
, char *buf
)
9549 return __show_chan_per_port(dev
, attr
, buf
, 1);
9552 static ssize_t
show_num_ports(struct device
*dev
,
9553 struct device_attribute
*attr
, char *buf
)
9555 struct platform_device
*plat_dev
= to_platform_device(dev
);
9556 struct niu_parent
*p
= plat_dev
->dev
.platform_data
;
9558 return sprintf(buf
, "%d\n", p
->num_ports
);
9561 static struct device_attribute niu_parent_attributes
[] = {
9562 __ATTR(port_phy
, S_IRUGO
, show_port_phy
, NULL
),
9563 __ATTR(plat_type
, S_IRUGO
, show_plat_type
, NULL
),
9564 __ATTR(rxchan_per_port
, S_IRUGO
, show_rxchan_per_port
, NULL
),
9565 __ATTR(txchan_per_port
, S_IRUGO
, show_txchan_per_port
, NULL
),
9566 __ATTR(num_ports
, S_IRUGO
, show_num_ports
, NULL
),
9570 static struct niu_parent
* __devinit
niu_new_parent(struct niu
*np
,
9571 union niu_parent_id
*id
,
9574 struct platform_device
*plat_dev
;
9575 struct niu_parent
*p
;
9578 niudbg(PROBE
, "niu_new_parent: Creating new parent.\n");
9580 plat_dev
= platform_device_register_simple("niu", niu_parent_index
,
9582 if (IS_ERR(plat_dev
))
9585 for (i
= 0; attr_name(niu_parent_attributes
[i
]); i
++) {
9586 int err
= device_create_file(&plat_dev
->dev
,
9587 &niu_parent_attributes
[i
]);
9589 goto fail_unregister
;
9592 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
9594 goto fail_unregister
;
9596 p
->index
= niu_parent_index
++;
9598 plat_dev
->dev
.platform_data
= p
;
9599 p
->plat_dev
= plat_dev
;
9601 memcpy(&p
->id
, id
, sizeof(*id
));
9602 p
->plat_type
= ptype
;
9603 INIT_LIST_HEAD(&p
->list
);
9604 atomic_set(&p
->refcnt
, 0);
9605 list_add(&p
->list
, &niu_parent_list
);
9606 spin_lock_init(&p
->lock
);
9608 p
->rxdma_clock_divider
= 7500;
9610 p
->tcam_num_entries
= NIU_PCI_TCAM_ENTRIES
;
9611 if (p
->plat_type
== PLAT_TYPE_NIU
)
9612 p
->tcam_num_entries
= NIU_NONPCI_TCAM_ENTRIES
;
9614 for (i
= CLASS_CODE_USER_PROG1
; i
<= CLASS_CODE_SCTP_IPV6
; i
++) {
9615 int index
= i
- CLASS_CODE_USER_PROG1
;
9617 p
->tcam_key
[index
] = TCAM_KEY_TSEL
;
9618 p
->flow_key
[index
] = (FLOW_KEY_IPSA
|
9621 (FLOW_KEY_L4_BYTE12
<<
9622 FLOW_KEY_L4_0_SHIFT
) |
9623 (FLOW_KEY_L4_BYTE12
<<
9624 FLOW_KEY_L4_1_SHIFT
));
9627 for (i
= 0; i
< LDN_MAX
+ 1; i
++)
9628 p
->ldg_map
[i
] = LDG_INVALID
;
9633 platform_device_unregister(plat_dev
);
9637 static struct niu_parent
* __devinit
niu_get_parent(struct niu
*np
,
9638 union niu_parent_id
*id
,
9641 struct niu_parent
*p
, *tmp
;
9642 int port
= np
->port
;
9644 niudbg(PROBE
, "niu_get_parent: platform_type[%u] port[%u]\n",
9647 mutex_lock(&niu_parent_lock
);
9649 list_for_each_entry(tmp
, &niu_parent_list
, list
) {
9650 if (!memcmp(id
, &tmp
->id
, sizeof(*id
))) {
9656 p
= niu_new_parent(np
, id
, ptype
);
9662 sprintf(port_name
, "port%d", port
);
9663 err
= sysfs_create_link(&p
->plat_dev
->dev
.kobj
,
9667 p
->ports
[port
] = np
;
9668 atomic_inc(&p
->refcnt
);
9671 mutex_unlock(&niu_parent_lock
);
9676 static void niu_put_parent(struct niu
*np
)
9678 struct niu_parent
*p
= np
->parent
;
9682 BUG_ON(!p
|| p
->ports
[port
] != np
);
9684 niudbg(PROBE
, "niu_put_parent: port[%u]\n", port
);
9686 sprintf(port_name
, "port%d", port
);
9688 mutex_lock(&niu_parent_lock
);
9690 sysfs_remove_link(&p
->plat_dev
->dev
.kobj
, port_name
);
9692 p
->ports
[port
] = NULL
;
9695 if (atomic_dec_and_test(&p
->refcnt
)) {
9697 platform_device_unregister(p
->plat_dev
);
9700 mutex_unlock(&niu_parent_lock
);
9703 static void *niu_pci_alloc_coherent(struct device
*dev
, size_t size
,
9704 u64
*handle
, gfp_t flag
)
9709 ret
= dma_alloc_coherent(dev
, size
, &dh
, flag
);
9715 static void niu_pci_free_coherent(struct device
*dev
, size_t size
,
9716 void *cpu_addr
, u64 handle
)
9718 dma_free_coherent(dev
, size
, cpu_addr
, handle
);
9721 static u64
niu_pci_map_page(struct device
*dev
, struct page
*page
,
9722 unsigned long offset
, size_t size
,
9723 enum dma_data_direction direction
)
9725 return dma_map_page(dev
, page
, offset
, size
, direction
);
9728 static void niu_pci_unmap_page(struct device
*dev
, u64 dma_address
,
9729 size_t size
, enum dma_data_direction direction
)
9731 dma_unmap_page(dev
, dma_address
, size
, direction
);
9734 static u64
niu_pci_map_single(struct device
*dev
, void *cpu_addr
,
9736 enum dma_data_direction direction
)
9738 return dma_map_single(dev
, cpu_addr
, size
, direction
);
9741 static void niu_pci_unmap_single(struct device
*dev
, u64 dma_address
,
9743 enum dma_data_direction direction
)
9745 dma_unmap_single(dev
, dma_address
, size
, direction
);
9748 static const struct niu_ops niu_pci_ops
= {
9749 .alloc_coherent
= niu_pci_alloc_coherent
,
9750 .free_coherent
= niu_pci_free_coherent
,
9751 .map_page
= niu_pci_map_page
,
9752 .unmap_page
= niu_pci_unmap_page
,
9753 .map_single
= niu_pci_map_single
,
9754 .unmap_single
= niu_pci_unmap_single
,
9757 static void __devinit
niu_driver_version(void)
9759 static int niu_version_printed
;
9761 if (niu_version_printed
++ == 0)
9762 pr_info("%s", version
);
9765 static struct net_device
* __devinit
niu_alloc_and_init(
9766 struct device
*gen_dev
, struct pci_dev
*pdev
,
9767 struct of_device
*op
, const struct niu_ops
*ops
,
9770 struct net_device
*dev
;
9773 dev
= alloc_etherdev_mq(sizeof(struct niu
), NIU_NUM_TXCHAN
);
9775 dev_err(gen_dev
, PFX
"Etherdev alloc failed, aborting.\n");
9779 SET_NETDEV_DEV(dev
, gen_dev
);
9781 np
= netdev_priv(dev
);
9785 np
->device
= gen_dev
;
9788 np
->msg_enable
= niu_debug
;
9790 spin_lock_init(&np
->lock
);
9791 INIT_WORK(&np
->reset_task
, niu_reset_task
);
9798 static const struct net_device_ops niu_netdev_ops
= {
9799 .ndo_open
= niu_open
,
9800 .ndo_stop
= niu_close
,
9801 .ndo_start_xmit
= niu_start_xmit
,
9802 .ndo_get_stats
= niu_get_stats
,
9803 .ndo_set_multicast_list
= niu_set_rx_mode
,
9804 .ndo_validate_addr
= eth_validate_addr
,
9805 .ndo_set_mac_address
= niu_set_mac_addr
,
9806 .ndo_do_ioctl
= niu_ioctl
,
9807 .ndo_tx_timeout
= niu_tx_timeout
,
9808 .ndo_change_mtu
= niu_change_mtu
,
9811 static void __devinit
niu_assign_netdev_ops(struct net_device
*dev
)
9813 dev
->netdev_ops
= &niu_netdev_ops
;
9814 dev
->ethtool_ops
= &niu_ethtool_ops
;
9815 dev
->watchdog_timeo
= NIU_TX_TIMEOUT
;
9818 static void __devinit
niu_device_announce(struct niu
*np
)
9820 struct net_device
*dev
= np
->dev
;
9822 pr_info("%s: NIU Ethernet %pM\n", dev
->name
, dev
->dev_addr
);
9824 if (np
->parent
->plat_type
== PLAT_TYPE_ATCA_CP3220
) {
9825 pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
9827 (np
->flags
& NIU_FLAGS_XMAC
? "XMAC" : "BMAC"),
9828 (np
->flags
& NIU_FLAGS_10G
? "10G" : "1G"),
9829 (np
->flags
& NIU_FLAGS_FIBER
? "RGMII FIBER" : "SERDES"),
9830 (np
->mac_xcvr
== MAC_XCVR_MII
? "MII" :
9831 (np
->mac_xcvr
== MAC_XCVR_PCS
? "PCS" : "XPCS")),
9834 pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
9836 (np
->flags
& NIU_FLAGS_XMAC
? "XMAC" : "BMAC"),
9837 (np
->flags
& NIU_FLAGS_10G
? "10G" : "1G"),
9838 (np
->flags
& NIU_FLAGS_FIBER
? "FIBER" :
9839 (np
->flags
& NIU_FLAGS_XCVR_SERDES
? "SERDES" :
9841 (np
->mac_xcvr
== MAC_XCVR_MII
? "MII" :
9842 (np
->mac_xcvr
== MAC_XCVR_PCS
? "PCS" : "XPCS")),
9847 static int __devinit
niu_pci_init_one(struct pci_dev
*pdev
,
9848 const struct pci_device_id
*ent
)
9850 union niu_parent_id parent_id
;
9851 struct net_device
*dev
;
9857 niu_driver_version();
9859 err
= pci_enable_device(pdev
);
9861 dev_err(&pdev
->dev
, PFX
"Cannot enable PCI device, "
9866 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
) ||
9867 !(pci_resource_flags(pdev
, 2) & IORESOURCE_MEM
)) {
9868 dev_err(&pdev
->dev
, PFX
"Cannot find proper PCI device "
9869 "base addresses, aborting.\n");
9871 goto err_out_disable_pdev
;
9874 err
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
9876 dev_err(&pdev
->dev
, PFX
"Cannot obtain PCI resources, "
9878 goto err_out_disable_pdev
;
9881 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
9883 dev_err(&pdev
->dev
, PFX
"Cannot find PCI Express capability, "
9885 goto err_out_free_res
;
9888 dev
= niu_alloc_and_init(&pdev
->dev
, pdev
, NULL
,
9889 &niu_pci_ops
, PCI_FUNC(pdev
->devfn
));
9892 goto err_out_free_res
;
9894 np
= netdev_priv(dev
);
9896 memset(&parent_id
, 0, sizeof(parent_id
));
9897 parent_id
.pci
.domain
= pci_domain_nr(pdev
->bus
);
9898 parent_id
.pci
.bus
= pdev
->bus
->number
;
9899 parent_id
.pci
.device
= PCI_SLOT(pdev
->devfn
);
9901 np
->parent
= niu_get_parent(np
, &parent_id
,
9905 goto err_out_free_dev
;
9908 pci_read_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, &val16
);
9909 val16
&= ~PCI_EXP_DEVCTL_NOSNOOP_EN
;
9910 val16
|= (PCI_EXP_DEVCTL_CERE
|
9911 PCI_EXP_DEVCTL_NFERE
|
9912 PCI_EXP_DEVCTL_FERE
|
9913 PCI_EXP_DEVCTL_URRE
|
9914 PCI_EXP_DEVCTL_RELAX_EN
);
9915 pci_write_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, val16
);
9917 dma_mask
= DMA_BIT_MASK(44);
9918 err
= pci_set_dma_mask(pdev
, dma_mask
);
9920 dev
->features
|= NETIF_F_HIGHDMA
;
9921 err
= pci_set_consistent_dma_mask(pdev
, dma_mask
);
9923 dev_err(&pdev
->dev
, PFX
"Unable to obtain 44 bit "
9924 "DMA for consistent allocations, "
9926 goto err_out_release_parent
;
9929 if (err
|| dma_mask
== DMA_BIT_MASK(32)) {
9930 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
9932 dev_err(&pdev
->dev
, PFX
"No usable DMA configuration, "
9934 goto err_out_release_parent
;
9938 dev
->features
|= (NETIF_F_SG
| NETIF_F_HW_CSUM
);
9940 np
->regs
= pci_ioremap_bar(pdev
, 0);
9942 dev_err(&pdev
->dev
, PFX
"Cannot map device registers, "
9945 goto err_out_release_parent
;
9948 pci_set_master(pdev
);
9949 pci_save_state(pdev
);
9951 dev
->irq
= pdev
->irq
;
9953 niu_assign_netdev_ops(dev
);
9955 err
= niu_get_invariants(np
);
9958 dev_err(&pdev
->dev
, PFX
"Problem fetching invariants "
9959 "of chip, aborting.\n");
9960 goto err_out_iounmap
;
9963 err
= register_netdev(dev
);
9965 dev_err(&pdev
->dev
, PFX
"Cannot register net device, "
9967 goto err_out_iounmap
;
9970 pci_set_drvdata(pdev
, dev
);
9972 niu_device_announce(np
);
9982 err_out_release_parent
:
9989 pci_release_regions(pdev
);
9991 err_out_disable_pdev
:
9992 pci_disable_device(pdev
);
9993 pci_set_drvdata(pdev
, NULL
);
9998 static void __devexit
niu_pci_remove_one(struct pci_dev
*pdev
)
10000 struct net_device
*dev
= pci_get_drvdata(pdev
);
10003 struct niu
*np
= netdev_priv(dev
);
10005 unregister_netdev(dev
);
10013 niu_put_parent(np
);
10016 pci_release_regions(pdev
);
10017 pci_disable_device(pdev
);
10018 pci_set_drvdata(pdev
, NULL
);
10022 static int niu_suspend(struct pci_dev
*pdev
, pm_message_t state
)
10024 struct net_device
*dev
= pci_get_drvdata(pdev
);
10025 struct niu
*np
= netdev_priv(dev
);
10026 unsigned long flags
;
10028 if (!netif_running(dev
))
10031 flush_scheduled_work();
10032 niu_netif_stop(np
);
10034 del_timer_sync(&np
->timer
);
10036 spin_lock_irqsave(&np
->lock
, flags
);
10037 niu_enable_interrupts(np
, 0);
10038 spin_unlock_irqrestore(&np
->lock
, flags
);
10040 netif_device_detach(dev
);
10042 spin_lock_irqsave(&np
->lock
, flags
);
10044 spin_unlock_irqrestore(&np
->lock
, flags
);
10046 pci_save_state(pdev
);
10051 static int niu_resume(struct pci_dev
*pdev
)
10053 struct net_device
*dev
= pci_get_drvdata(pdev
);
10054 struct niu
*np
= netdev_priv(dev
);
10055 unsigned long flags
;
10058 if (!netif_running(dev
))
10061 pci_restore_state(pdev
);
10063 netif_device_attach(dev
);
10065 spin_lock_irqsave(&np
->lock
, flags
);
10067 err
= niu_init_hw(np
);
10069 np
->timer
.expires
= jiffies
+ HZ
;
10070 add_timer(&np
->timer
);
10071 niu_netif_start(np
);
10074 spin_unlock_irqrestore(&np
->lock
, flags
);
10079 static struct pci_driver niu_pci_driver
= {
10080 .name
= DRV_MODULE_NAME
,
10081 .id_table
= niu_pci_tbl
,
10082 .probe
= niu_pci_init_one
,
10083 .remove
= __devexit_p(niu_pci_remove_one
),
10084 .suspend
= niu_suspend
,
10085 .resume
= niu_resume
,
10088 #ifdef CONFIG_SPARC64
10089 static void *niu_phys_alloc_coherent(struct device
*dev
, size_t size
,
10090 u64
*dma_addr
, gfp_t flag
)
10092 unsigned long order
= get_order(size
);
10093 unsigned long page
= __get_free_pages(flag
, order
);
10097 memset((char *)page
, 0, PAGE_SIZE
<< order
);
10098 *dma_addr
= __pa(page
);
10100 return (void *) page
;
10103 static void niu_phys_free_coherent(struct device
*dev
, size_t size
,
10104 void *cpu_addr
, u64 handle
)
10106 unsigned long order
= get_order(size
);
10108 free_pages((unsigned long) cpu_addr
, order
);
10111 static u64
niu_phys_map_page(struct device
*dev
, struct page
*page
,
10112 unsigned long offset
, size_t size
,
10113 enum dma_data_direction direction
)
10115 return page_to_phys(page
) + offset
;
10118 static void niu_phys_unmap_page(struct device
*dev
, u64 dma_address
,
10119 size_t size
, enum dma_data_direction direction
)
10121 /* Nothing to do. */
10124 static u64
niu_phys_map_single(struct device
*dev
, void *cpu_addr
,
10126 enum dma_data_direction direction
)
10128 return __pa(cpu_addr
);
10131 static void niu_phys_unmap_single(struct device
*dev
, u64 dma_address
,
10133 enum dma_data_direction direction
)
10135 /* Nothing to do. */
10138 static const struct niu_ops niu_phys_ops
= {
10139 .alloc_coherent
= niu_phys_alloc_coherent
,
10140 .free_coherent
= niu_phys_free_coherent
,
10141 .map_page
= niu_phys_map_page
,
10142 .unmap_page
= niu_phys_unmap_page
,
10143 .map_single
= niu_phys_map_single
,
10144 .unmap_single
= niu_phys_unmap_single
,
10147 static int __devinit
niu_of_probe(struct of_device
*op
,
10148 const struct of_device_id
*match
)
10150 union niu_parent_id parent_id
;
10151 struct net_device
*dev
;
10156 niu_driver_version();
10158 reg
= of_get_property(op
->node
, "reg", NULL
);
10160 dev_err(&op
->dev
, PFX
"%s: No 'reg' property, aborting.\n",
10161 op
->node
->full_name
);
10165 dev
= niu_alloc_and_init(&op
->dev
, NULL
, op
,
10166 &niu_phys_ops
, reg
[0] & 0x1);
10171 np
= netdev_priv(dev
);
10173 memset(&parent_id
, 0, sizeof(parent_id
));
10174 parent_id
.of
= of_get_parent(op
->node
);
10176 np
->parent
= niu_get_parent(np
, &parent_id
,
10180 goto err_out_free_dev
;
10183 dev
->features
|= (NETIF_F_SG
| NETIF_F_HW_CSUM
);
10185 np
->regs
= of_ioremap(&op
->resource
[1], 0,
10186 resource_size(&op
->resource
[1]),
10189 dev_err(&op
->dev
, PFX
"Cannot map device registers, "
10192 goto err_out_release_parent
;
10195 np
->vir_regs_1
= of_ioremap(&op
->resource
[2], 0,
10196 resource_size(&op
->resource
[2]),
10198 if (!np
->vir_regs_1
) {
10199 dev_err(&op
->dev
, PFX
"Cannot map device vir registers 1, "
10202 goto err_out_iounmap
;
10205 np
->vir_regs_2
= of_ioremap(&op
->resource
[3], 0,
10206 resource_size(&op
->resource
[3]),
10208 if (!np
->vir_regs_2
) {
10209 dev_err(&op
->dev
, PFX
"Cannot map device vir registers 2, "
10212 goto err_out_iounmap
;
10215 niu_assign_netdev_ops(dev
);
10217 err
= niu_get_invariants(np
);
10219 if (err
!= -ENODEV
)
10220 dev_err(&op
->dev
, PFX
"Problem fetching invariants "
10221 "of chip, aborting.\n");
10222 goto err_out_iounmap
;
10225 err
= register_netdev(dev
);
10227 dev_err(&op
->dev
, PFX
"Cannot register net device, "
10229 goto err_out_iounmap
;
10232 dev_set_drvdata(&op
->dev
, dev
);
10234 niu_device_announce(np
);
10239 if (np
->vir_regs_1
) {
10240 of_iounmap(&op
->resource
[2], np
->vir_regs_1
,
10241 resource_size(&op
->resource
[2]));
10242 np
->vir_regs_1
= NULL
;
10245 if (np
->vir_regs_2
) {
10246 of_iounmap(&op
->resource
[3], np
->vir_regs_2
,
10247 resource_size(&op
->resource
[3]));
10248 np
->vir_regs_2
= NULL
;
10252 of_iounmap(&op
->resource
[1], np
->regs
,
10253 resource_size(&op
->resource
[1]));
10257 err_out_release_parent
:
10258 niu_put_parent(np
);
10267 static int __devexit
niu_of_remove(struct of_device
*op
)
10269 struct net_device
*dev
= dev_get_drvdata(&op
->dev
);
10272 struct niu
*np
= netdev_priv(dev
);
10274 unregister_netdev(dev
);
10276 if (np
->vir_regs_1
) {
10277 of_iounmap(&op
->resource
[2], np
->vir_regs_1
,
10278 resource_size(&op
->resource
[2]));
10279 np
->vir_regs_1
= NULL
;
10282 if (np
->vir_regs_2
) {
10283 of_iounmap(&op
->resource
[3], np
->vir_regs_2
,
10284 resource_size(&op
->resource
[3]));
10285 np
->vir_regs_2
= NULL
;
10289 of_iounmap(&op
->resource
[1], np
->regs
,
10290 resource_size(&op
->resource
[1]));
10296 niu_put_parent(np
);
10299 dev_set_drvdata(&op
->dev
, NULL
);
10304 static const struct of_device_id niu_match
[] = {
10307 .compatible
= "SUNW,niusl",
10311 MODULE_DEVICE_TABLE(of
, niu_match
);
10313 static struct of_platform_driver niu_of_driver
= {
10315 .match_table
= niu_match
,
10316 .probe
= niu_of_probe
,
10317 .remove
= __devexit_p(niu_of_remove
),
10320 #endif /* CONFIG_SPARC64 */
10322 static int __init
niu_init(void)
10326 BUILD_BUG_ON(PAGE_SIZE
< 4 * 1024);
10328 niu_debug
= netif_msg_init(debug
, NIU_MSG_DEFAULT
);
10330 #ifdef CONFIG_SPARC64
10331 err
= of_register_driver(&niu_of_driver
, &of_bus_type
);
10335 err
= pci_register_driver(&niu_pci_driver
);
10336 #ifdef CONFIG_SPARC64
10338 of_unregister_driver(&niu_of_driver
);
10345 static void __exit
niu_exit(void)
10347 pci_unregister_driver(&niu_pci_driver
);
10348 #ifdef CONFIG_SPARC64
10349 of_unregister_driver(&niu_of_driver
);
10353 module_init(niu_init
);
10354 module_exit(niu_exit
);