Linux v2.6.18-rc5
[pohmelfs.git] / drivers / md / dm-crypt.c
blob6022ed12a795d61ce41ff9245a0665a8f5c0838b
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * This file is released under the GPL.
6 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/mempool.h>
14 #include <linux/slab.h>
15 #include <linux/crypto.h>
16 #include <linux/workqueue.h>
17 #include <asm/atomic.h>
18 #include <linux/scatterlist.h>
19 #include <asm/page.h>
21 #include "dm.h"
23 #define DM_MSG_PREFIX "crypt"
26 * per bio private data
28 struct crypt_io {
29 struct dm_target *target;
30 struct bio *bio;
31 struct bio *first_clone;
32 struct work_struct work;
33 atomic_t pending;
34 int error;
38 * context holding the current state of a multi-part conversion
40 struct convert_context {
41 struct bio *bio_in;
42 struct bio *bio_out;
43 unsigned int offset_in;
44 unsigned int offset_out;
45 unsigned int idx_in;
46 unsigned int idx_out;
47 sector_t sector;
48 int write;
51 struct crypt_config;
53 struct crypt_iv_operations {
54 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
55 const char *opts);
56 void (*dtr)(struct crypt_config *cc);
57 const char *(*status)(struct crypt_config *cc);
58 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
62 * Crypt: maps a linear range of a block device
63 * and encrypts / decrypts at the same time.
65 struct crypt_config {
66 struct dm_dev *dev;
67 sector_t start;
70 * pool for per bio private data and
71 * for encryption buffer pages
73 mempool_t *io_pool;
74 mempool_t *page_pool;
77 * crypto related data
79 struct crypt_iv_operations *iv_gen_ops;
80 char *iv_mode;
81 void *iv_gen_private;
82 sector_t iv_offset;
83 unsigned int iv_size;
85 struct crypto_tfm *tfm;
86 unsigned int key_size;
87 u8 key[0];
90 #define MIN_IOS 256
91 #define MIN_POOL_PAGES 32
92 #define MIN_BIO_PAGES 8
94 static kmem_cache_t *_crypt_io_pool;
97 * Different IV generation algorithms:
99 * plain: the initial vector is the 32-bit low-endian version of the sector
100 * number, padded with zeros if neccessary.
102 * ess_iv: "encrypted sector|salt initial vector", the sector number is
103 * encrypted with the bulk cipher using a salt as key. The salt
104 * should be derived from the bulk cipher's key via hashing.
106 * plumb: unimplemented, see:
107 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
110 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
112 memset(iv, 0, cc->iv_size);
113 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
115 return 0;
118 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
119 const char *opts)
121 struct crypto_tfm *essiv_tfm;
122 struct crypto_tfm *hash_tfm;
123 struct scatterlist sg;
124 unsigned int saltsize;
125 u8 *salt;
127 if (opts == NULL) {
128 ti->error = "Digest algorithm missing for ESSIV mode";
129 return -EINVAL;
132 /* Hash the cipher key with the given hash algorithm */
133 hash_tfm = crypto_alloc_tfm(opts, CRYPTO_TFM_REQ_MAY_SLEEP);
134 if (hash_tfm == NULL) {
135 ti->error = "Error initializing ESSIV hash";
136 return -EINVAL;
139 if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
140 ti->error = "Expected digest algorithm for ESSIV hash";
141 crypto_free_tfm(hash_tfm);
142 return -EINVAL;
145 saltsize = crypto_tfm_alg_digestsize(hash_tfm);
146 salt = kmalloc(saltsize, GFP_KERNEL);
147 if (salt == NULL) {
148 ti->error = "Error kmallocing salt storage in ESSIV";
149 crypto_free_tfm(hash_tfm);
150 return -ENOMEM;
153 sg_set_buf(&sg, cc->key, cc->key_size);
154 crypto_digest_digest(hash_tfm, &sg, 1, salt);
155 crypto_free_tfm(hash_tfm);
157 /* Setup the essiv_tfm with the given salt */
158 essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
159 CRYPTO_TFM_MODE_ECB |
160 CRYPTO_TFM_REQ_MAY_SLEEP);
161 if (essiv_tfm == NULL) {
162 ti->error = "Error allocating crypto tfm for ESSIV";
163 kfree(salt);
164 return -EINVAL;
166 if (crypto_tfm_alg_blocksize(essiv_tfm)
167 != crypto_tfm_alg_ivsize(cc->tfm)) {
168 ti->error = "Block size of ESSIV cipher does "
169 "not match IV size of block cipher";
170 crypto_free_tfm(essiv_tfm);
171 kfree(salt);
172 return -EINVAL;
174 if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
175 ti->error = "Failed to set key for ESSIV cipher";
176 crypto_free_tfm(essiv_tfm);
177 kfree(salt);
178 return -EINVAL;
180 kfree(salt);
182 cc->iv_gen_private = (void *)essiv_tfm;
183 return 0;
186 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
188 crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
189 cc->iv_gen_private = NULL;
192 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
194 struct scatterlist sg;
196 memset(iv, 0, cc->iv_size);
197 *(u64 *)iv = cpu_to_le64(sector);
199 sg_set_buf(&sg, iv, cc->iv_size);
200 crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
201 &sg, &sg, cc->iv_size);
203 return 0;
206 static struct crypt_iv_operations crypt_iv_plain_ops = {
207 .generator = crypt_iv_plain_gen
210 static struct crypt_iv_operations crypt_iv_essiv_ops = {
211 .ctr = crypt_iv_essiv_ctr,
212 .dtr = crypt_iv_essiv_dtr,
213 .generator = crypt_iv_essiv_gen
217 static int
218 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
219 struct scatterlist *in, unsigned int length,
220 int write, sector_t sector)
222 u8 iv[cc->iv_size];
223 int r;
225 if (cc->iv_gen_ops) {
226 r = cc->iv_gen_ops->generator(cc, iv, sector);
227 if (r < 0)
228 return r;
230 if (write)
231 r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
232 else
233 r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
234 } else {
235 if (write)
236 r = crypto_cipher_encrypt(cc->tfm, out, in, length);
237 else
238 r = crypto_cipher_decrypt(cc->tfm, out, in, length);
241 return r;
244 static void
245 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
246 struct bio *bio_out, struct bio *bio_in,
247 sector_t sector, int write)
249 ctx->bio_in = bio_in;
250 ctx->bio_out = bio_out;
251 ctx->offset_in = 0;
252 ctx->offset_out = 0;
253 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
254 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
255 ctx->sector = sector + cc->iv_offset;
256 ctx->write = write;
260 * Encrypt / decrypt data from one bio to another one (can be the same one)
262 static int crypt_convert(struct crypt_config *cc,
263 struct convert_context *ctx)
265 int r = 0;
267 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
268 ctx->idx_out < ctx->bio_out->bi_vcnt) {
269 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
270 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
271 struct scatterlist sg_in = {
272 .page = bv_in->bv_page,
273 .offset = bv_in->bv_offset + ctx->offset_in,
274 .length = 1 << SECTOR_SHIFT
276 struct scatterlist sg_out = {
277 .page = bv_out->bv_page,
278 .offset = bv_out->bv_offset + ctx->offset_out,
279 .length = 1 << SECTOR_SHIFT
282 ctx->offset_in += sg_in.length;
283 if (ctx->offset_in >= bv_in->bv_len) {
284 ctx->offset_in = 0;
285 ctx->idx_in++;
288 ctx->offset_out += sg_out.length;
289 if (ctx->offset_out >= bv_out->bv_len) {
290 ctx->offset_out = 0;
291 ctx->idx_out++;
294 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
295 ctx->write, ctx->sector);
296 if (r < 0)
297 break;
299 ctx->sector++;
302 return r;
306 * Generate a new unfragmented bio with the given size
307 * This should never violate the device limitations
308 * May return a smaller bio when running out of pages
310 static struct bio *
311 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
312 struct bio *base_bio, unsigned int *bio_vec_idx)
314 struct bio *bio;
315 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
316 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
317 unsigned int i;
320 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
321 * to fail earlier. This is not necessary but increases throughput.
322 * FIXME: Is this really intelligent?
324 if (base_bio)
325 bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
326 else
327 bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
328 if (!bio)
329 return NULL;
331 /* if the last bio was not complete, continue where that one ended */
332 bio->bi_idx = *bio_vec_idx;
333 bio->bi_vcnt = *bio_vec_idx;
334 bio->bi_size = 0;
335 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
337 /* bio->bi_idx pages have already been allocated */
338 size -= bio->bi_idx * PAGE_SIZE;
340 for(i = bio->bi_idx; i < nr_iovecs; i++) {
341 struct bio_vec *bv = bio_iovec_idx(bio, i);
343 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
344 if (!bv->bv_page)
345 break;
348 * if additional pages cannot be allocated without waiting,
349 * return a partially allocated bio, the caller will then try
350 * to allocate additional bios while submitting this partial bio
352 if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
353 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
355 bv->bv_offset = 0;
356 if (size > PAGE_SIZE)
357 bv->bv_len = PAGE_SIZE;
358 else
359 bv->bv_len = size;
361 bio->bi_size += bv->bv_len;
362 bio->bi_vcnt++;
363 size -= bv->bv_len;
366 if (!bio->bi_size) {
367 bio_put(bio);
368 return NULL;
372 * Remember the last bio_vec allocated to be able
373 * to correctly continue after the splitting.
375 *bio_vec_idx = bio->bi_vcnt;
377 return bio;
380 static void crypt_free_buffer_pages(struct crypt_config *cc,
381 struct bio *bio, unsigned int bytes)
383 unsigned int i, start, end;
384 struct bio_vec *bv;
387 * This is ugly, but Jens Axboe thinks that using bi_idx in the
388 * endio function is too dangerous at the moment, so I calculate the
389 * correct position using bi_vcnt and bi_size.
390 * The bv_offset and bv_len fields might already be modified but we
391 * know that we always allocated whole pages.
392 * A fix to the bi_idx issue in the kernel is in the works, so
393 * we will hopefully be able to revert to the cleaner solution soon.
395 i = bio->bi_vcnt - 1;
396 bv = bio_iovec_idx(bio, i);
397 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
398 start = end - bytes;
400 start >>= PAGE_SHIFT;
401 if (!bio->bi_size)
402 end = bio->bi_vcnt;
403 else
404 end >>= PAGE_SHIFT;
406 for(i = start; i < end; i++) {
407 bv = bio_iovec_idx(bio, i);
408 BUG_ON(!bv->bv_page);
409 mempool_free(bv->bv_page, cc->page_pool);
410 bv->bv_page = NULL;
415 * One of the bios was finished. Check for completion of
416 * the whole request and correctly clean up the buffer.
418 static void dec_pending(struct crypt_io *io, int error)
420 struct crypt_config *cc = (struct crypt_config *) io->target->private;
422 if (error < 0)
423 io->error = error;
425 if (!atomic_dec_and_test(&io->pending))
426 return;
428 if (io->first_clone)
429 bio_put(io->first_clone);
431 bio_endio(io->bio, io->bio->bi_size, io->error);
433 mempool_free(io, cc->io_pool);
437 * kcryptd:
439 * Needed because it would be very unwise to do decryption in an
440 * interrupt context, so bios returning from read requests get
441 * queued here.
443 static struct workqueue_struct *_kcryptd_workqueue;
445 static void kcryptd_do_work(void *data)
447 struct crypt_io *io = (struct crypt_io *) data;
448 struct crypt_config *cc = (struct crypt_config *) io->target->private;
449 struct convert_context ctx;
450 int r;
452 crypt_convert_init(cc, &ctx, io->bio, io->bio,
453 io->bio->bi_sector - io->target->begin, 0);
454 r = crypt_convert(cc, &ctx);
456 dec_pending(io, r);
459 static void kcryptd_queue_io(struct crypt_io *io)
461 INIT_WORK(&io->work, kcryptd_do_work, io);
462 queue_work(_kcryptd_workqueue, &io->work);
466 * Decode key from its hex representation
468 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
470 char buffer[3];
471 char *endp;
472 unsigned int i;
474 buffer[2] = '\0';
476 for(i = 0; i < size; i++) {
477 buffer[0] = *hex++;
478 buffer[1] = *hex++;
480 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
482 if (endp != &buffer[2])
483 return -EINVAL;
486 if (*hex != '\0')
487 return -EINVAL;
489 return 0;
493 * Encode key into its hex representation
495 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
497 unsigned int i;
499 for(i = 0; i < size; i++) {
500 sprintf(hex, "%02x", *key);
501 hex += 2;
502 key++;
507 * Construct an encryption mapping:
508 * <cipher> <key> <iv_offset> <dev_path> <start>
510 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
512 struct crypt_config *cc;
513 struct crypto_tfm *tfm;
514 char *tmp;
515 char *cipher;
516 char *chainmode;
517 char *ivmode;
518 char *ivopts;
519 unsigned int crypto_flags;
520 unsigned int key_size;
521 unsigned long long tmpll;
523 if (argc != 5) {
524 ti->error = "Not enough arguments";
525 return -EINVAL;
528 tmp = argv[0];
529 cipher = strsep(&tmp, "-");
530 chainmode = strsep(&tmp, "-");
531 ivopts = strsep(&tmp, "-");
532 ivmode = strsep(&ivopts, ":");
534 if (tmp)
535 DMWARN("Unexpected additional cipher options");
537 key_size = strlen(argv[1]) >> 1;
539 cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
540 if (cc == NULL) {
541 ti->error =
542 "Cannot allocate transparent encryption context";
543 return -ENOMEM;
546 cc->key_size = key_size;
547 if ((!key_size && strcmp(argv[1], "-") != 0) ||
548 (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
549 ti->error = "Error decoding key";
550 goto bad1;
553 /* Compatiblity mode for old dm-crypt cipher strings */
554 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
555 chainmode = "cbc";
556 ivmode = "plain";
559 /* Choose crypto_flags according to chainmode */
560 if (strcmp(chainmode, "cbc") == 0)
561 crypto_flags = CRYPTO_TFM_MODE_CBC;
562 else if (strcmp(chainmode, "ecb") == 0)
563 crypto_flags = CRYPTO_TFM_MODE_ECB;
564 else {
565 ti->error = "Unknown chaining mode";
566 goto bad1;
569 if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
570 ti->error = "This chaining mode requires an IV mechanism";
571 goto bad1;
574 tfm = crypto_alloc_tfm(cipher, crypto_flags | CRYPTO_TFM_REQ_MAY_SLEEP);
575 if (!tfm) {
576 ti->error = "Error allocating crypto tfm";
577 goto bad1;
579 if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
580 ti->error = "Expected cipher algorithm";
581 goto bad2;
584 cc->tfm = tfm;
587 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
588 * See comments at iv code
591 if (ivmode == NULL)
592 cc->iv_gen_ops = NULL;
593 else if (strcmp(ivmode, "plain") == 0)
594 cc->iv_gen_ops = &crypt_iv_plain_ops;
595 else if (strcmp(ivmode, "essiv") == 0)
596 cc->iv_gen_ops = &crypt_iv_essiv_ops;
597 else {
598 ti->error = "Invalid IV mode";
599 goto bad2;
602 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
603 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
604 goto bad2;
606 if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
607 /* at least a 64 bit sector number should fit in our buffer */
608 cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
609 (unsigned int)(sizeof(u64) / sizeof(u8)));
610 else {
611 cc->iv_size = 0;
612 if (cc->iv_gen_ops) {
613 DMWARN("Selected cipher does not support IVs");
614 if (cc->iv_gen_ops->dtr)
615 cc->iv_gen_ops->dtr(cc);
616 cc->iv_gen_ops = NULL;
620 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
621 if (!cc->io_pool) {
622 ti->error = "Cannot allocate crypt io mempool";
623 goto bad3;
626 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
627 if (!cc->page_pool) {
628 ti->error = "Cannot allocate page mempool";
629 goto bad4;
632 if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
633 ti->error = "Error setting key";
634 goto bad5;
637 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
638 ti->error = "Invalid iv_offset sector";
639 goto bad5;
641 cc->iv_offset = tmpll;
643 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
644 ti->error = "Invalid device sector";
645 goto bad5;
647 cc->start = tmpll;
649 if (dm_get_device(ti, argv[3], cc->start, ti->len,
650 dm_table_get_mode(ti->table), &cc->dev)) {
651 ti->error = "Device lookup failed";
652 goto bad5;
655 if (ivmode && cc->iv_gen_ops) {
656 if (ivopts)
657 *(ivopts - 1) = ':';
658 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
659 if (!cc->iv_mode) {
660 ti->error = "Error kmallocing iv_mode string";
661 goto bad5;
663 strcpy(cc->iv_mode, ivmode);
664 } else
665 cc->iv_mode = NULL;
667 ti->private = cc;
668 return 0;
670 bad5:
671 mempool_destroy(cc->page_pool);
672 bad4:
673 mempool_destroy(cc->io_pool);
674 bad3:
675 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
676 cc->iv_gen_ops->dtr(cc);
677 bad2:
678 crypto_free_tfm(tfm);
679 bad1:
680 /* Must zero key material before freeing */
681 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
682 kfree(cc);
683 return -EINVAL;
686 static void crypt_dtr(struct dm_target *ti)
688 struct crypt_config *cc = (struct crypt_config *) ti->private;
690 mempool_destroy(cc->page_pool);
691 mempool_destroy(cc->io_pool);
693 kfree(cc->iv_mode);
694 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
695 cc->iv_gen_ops->dtr(cc);
696 crypto_free_tfm(cc->tfm);
697 dm_put_device(ti, cc->dev);
699 /* Must zero key material before freeing */
700 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
701 kfree(cc);
704 static int crypt_endio(struct bio *bio, unsigned int done, int error)
706 struct crypt_io *io = (struct crypt_io *) bio->bi_private;
707 struct crypt_config *cc = (struct crypt_config *) io->target->private;
709 if (bio_data_dir(bio) == WRITE) {
711 * free the processed pages, even if
712 * it's only a partially completed write
714 crypt_free_buffer_pages(cc, bio, done);
717 if (bio->bi_size)
718 return 1;
720 bio_put(bio);
723 * successful reads are decrypted by the worker thread
725 if ((bio_data_dir(bio) == READ)
726 && bio_flagged(bio, BIO_UPTODATE)) {
727 kcryptd_queue_io(io);
728 return 0;
731 dec_pending(io, error);
732 return error;
735 static inline struct bio *
736 crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
737 sector_t sector, unsigned int *bvec_idx,
738 struct convert_context *ctx)
740 struct bio *clone;
742 if (bio_data_dir(bio) == WRITE) {
743 clone = crypt_alloc_buffer(cc, bio->bi_size,
744 io->first_clone, bvec_idx);
745 if (clone) {
746 ctx->bio_out = clone;
747 if (crypt_convert(cc, ctx) < 0) {
748 crypt_free_buffer_pages(cc, clone,
749 clone->bi_size);
750 bio_put(clone);
751 return NULL;
754 } else {
756 * The block layer might modify the bvec array, so always
757 * copy the required bvecs because we need the original
758 * one in order to decrypt the whole bio data *afterwards*.
760 clone = bio_alloc(GFP_NOIO, bio_segments(bio));
761 if (clone) {
762 clone->bi_idx = 0;
763 clone->bi_vcnt = bio_segments(bio);
764 clone->bi_size = bio->bi_size;
765 memcpy(clone->bi_io_vec, bio_iovec(bio),
766 sizeof(struct bio_vec) * clone->bi_vcnt);
770 if (!clone)
771 return NULL;
773 clone->bi_private = io;
774 clone->bi_end_io = crypt_endio;
775 clone->bi_bdev = cc->dev->bdev;
776 clone->bi_sector = cc->start + sector;
777 clone->bi_rw = bio->bi_rw;
779 return clone;
782 static int crypt_map(struct dm_target *ti, struct bio *bio,
783 union map_info *map_context)
785 struct crypt_config *cc = (struct crypt_config *) ti->private;
786 struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
787 struct convert_context ctx;
788 struct bio *clone;
789 unsigned int remaining = bio->bi_size;
790 sector_t sector = bio->bi_sector - ti->begin;
791 unsigned int bvec_idx = 0;
793 io->target = ti;
794 io->bio = bio;
795 io->first_clone = NULL;
796 io->error = 0;
797 atomic_set(&io->pending, 1); /* hold a reference */
799 if (bio_data_dir(bio) == WRITE)
800 crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
803 * The allocated buffers can be smaller than the whole bio,
804 * so repeat the whole process until all the data can be handled.
806 while (remaining) {
807 clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
808 if (!clone)
809 goto cleanup;
811 if (!io->first_clone) {
813 * hold a reference to the first clone, because it
814 * holds the bio_vec array and that can't be freed
815 * before all other clones are released
817 bio_get(clone);
818 io->first_clone = clone;
820 atomic_inc(&io->pending);
822 remaining -= clone->bi_size;
823 sector += bio_sectors(clone);
825 generic_make_request(clone);
827 /* out of memory -> run queues */
828 if (remaining)
829 blk_congestion_wait(bio_data_dir(clone), HZ/100);
832 /* drop reference, clones could have returned before we reach this */
833 dec_pending(io, 0);
834 return 0;
836 cleanup:
837 if (io->first_clone) {
838 dec_pending(io, -ENOMEM);
839 return 0;
842 /* if no bio has been dispatched yet, we can directly return the error */
843 mempool_free(io, cc->io_pool);
844 return -ENOMEM;
847 static int crypt_status(struct dm_target *ti, status_type_t type,
848 char *result, unsigned int maxlen)
850 struct crypt_config *cc = (struct crypt_config *) ti->private;
851 const char *cipher;
852 const char *chainmode = NULL;
853 unsigned int sz = 0;
855 switch (type) {
856 case STATUSTYPE_INFO:
857 result[0] = '\0';
858 break;
860 case STATUSTYPE_TABLE:
861 cipher = crypto_tfm_alg_name(cc->tfm);
863 switch(cc->tfm->crt_cipher.cit_mode) {
864 case CRYPTO_TFM_MODE_CBC:
865 chainmode = "cbc";
866 break;
867 case CRYPTO_TFM_MODE_ECB:
868 chainmode = "ecb";
869 break;
870 default:
871 BUG();
874 if (cc->iv_mode)
875 DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
876 else
877 DMEMIT("%s-%s ", cipher, chainmode);
879 if (cc->key_size > 0) {
880 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
881 return -ENOMEM;
883 crypt_encode_key(result + sz, cc->key, cc->key_size);
884 sz += cc->key_size << 1;
885 } else {
886 if (sz >= maxlen)
887 return -ENOMEM;
888 result[sz++] = '-';
891 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
892 cc->dev->name, (unsigned long long)cc->start);
893 break;
895 return 0;
898 static struct target_type crypt_target = {
899 .name = "crypt",
900 .version= {1, 1, 0},
901 .module = THIS_MODULE,
902 .ctr = crypt_ctr,
903 .dtr = crypt_dtr,
904 .map = crypt_map,
905 .status = crypt_status,
908 static int __init dm_crypt_init(void)
910 int r;
912 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
913 sizeof(struct crypt_io),
914 0, 0, NULL, NULL);
915 if (!_crypt_io_pool)
916 return -ENOMEM;
918 _kcryptd_workqueue = create_workqueue("kcryptd");
919 if (!_kcryptd_workqueue) {
920 r = -ENOMEM;
921 DMERR("couldn't create kcryptd");
922 goto bad1;
925 r = dm_register_target(&crypt_target);
926 if (r < 0) {
927 DMERR("register failed %d", r);
928 goto bad2;
931 return 0;
933 bad2:
934 destroy_workqueue(_kcryptd_workqueue);
935 bad1:
936 kmem_cache_destroy(_crypt_io_pool);
937 return r;
940 static void __exit dm_crypt_exit(void)
942 int r = dm_unregister_target(&crypt_target);
944 if (r < 0)
945 DMERR("unregister failed %d", r);
947 destroy_workqueue(_kcryptd_workqueue);
948 kmem_cache_destroy(_crypt_io_pool);
951 module_init(dm_crypt_init);
952 module_exit(dm_crypt_exit);
954 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
955 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
956 MODULE_LICENSE("GPL");