Linux v2.6.18-rc5
[pohmelfs.git] / net / sctp / socket.c
blobfde3f55bfd4b43da353202ca25a552ad54a70940
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel reference Implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 extern kmem_cache_t *sctp_bucket_cachep;
112 /* Get the sndbuf space available at the time on the association. */
113 static inline int sctp_wspace(struct sctp_association *asoc)
115 struct sock *sk = asoc->base.sk;
116 int amt = 0;
118 if (asoc->ep->sndbuf_policy) {
119 /* make sure that no association uses more than sk_sndbuf */
120 amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 } else {
122 /* do socket level accounting */
123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
126 if (amt < 0)
127 amt = 0;
129 return amt;
132 /* Increment the used sndbuf space count of the corresponding association by
133 * the size of the outgoing data chunk.
134 * Also, set the skb destructor for sndbuf accounting later.
136 * Since it is always 1-1 between chunk and skb, and also a new skb is always
137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138 * destructor in the data chunk skb for the purpose of the sndbuf space
139 * tracking.
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
143 struct sctp_association *asoc = chunk->asoc;
144 struct sock *sk = asoc->base.sk;
146 /* The sndbuf space is tracked per association. */
147 sctp_association_hold(asoc);
149 skb_set_owner_w(chunk->skb, sk);
151 chunk->skb->destructor = sctp_wfree;
152 /* Save the chunk pointer in skb for sctp_wfree to use later. */
153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 sizeof(struct sk_buff) +
157 sizeof(struct sctp_chunk);
159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 int len)
166 struct sctp_af *af;
168 /* Verify basic sockaddr. */
169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 if (!af)
171 return -EINVAL;
173 /* Is this a valid SCTP address? */
174 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 return -EINVAL;
177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 return -EINVAL;
180 return 0;
183 /* Look up the association by its id. If this is not a UDP-style
184 * socket, the ID field is always ignored.
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
188 struct sctp_association *asoc = NULL;
190 /* If this is not a UDP-style socket, assoc id should be ignored. */
191 if (!sctp_style(sk, UDP)) {
192 /* Return NULL if the socket state is not ESTABLISHED. It
193 * could be a TCP-style listening socket or a socket which
194 * hasn't yet called connect() to establish an association.
196 if (!sctp_sstate(sk, ESTABLISHED))
197 return NULL;
199 /* Get the first and the only association from the list. */
200 if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 struct sctp_association, asocs);
203 return asoc;
206 /* Otherwise this is a UDP-style socket. */
207 if (!id || (id == (sctp_assoc_t)-1))
208 return NULL;
210 spin_lock_bh(&sctp_assocs_id_lock);
211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 spin_unlock_bh(&sctp_assocs_id_lock);
214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 return NULL;
217 return asoc;
220 /* Look up the transport from an address and an assoc id. If both address and
221 * id are specified, the associations matching the address and the id should be
222 * the same.
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 struct sockaddr_storage *addr,
226 sctp_assoc_t id)
228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 struct sctp_transport *transport;
230 union sctp_addr *laddr = (union sctp_addr *)addr;
232 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 (union sctp_addr *)addr,
235 &transport);
236 laddr->v4.sin_port = htons(laddr->v4.sin_port);
238 if (!addr_asoc)
239 return NULL;
241 id_asoc = sctp_id2assoc(sk, id);
242 if (id_asoc && (id_asoc != addr_asoc))
243 return NULL;
245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 (union sctp_addr *)addr);
248 return transport;
251 /* API 3.1.2 bind() - UDP Style Syntax
252 * The syntax of bind() is,
254 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
256 * sd - the socket descriptor returned by socket().
257 * addr - the address structure (struct sockaddr_in or struct
258 * sockaddr_in6 [RFC 2553]),
259 * addr_len - the size of the address structure.
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
263 int retval = 0;
265 sctp_lock_sock(sk);
267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 sk, addr, addr_len);
270 /* Disallow binding twice. */
271 if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 addr_len);
274 else
275 retval = -EINVAL;
277 sctp_release_sock(sk);
279 return retval;
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 union sctp_addr *addr, int len)
288 struct sctp_af *af;
290 /* Check minimum size. */
291 if (len < sizeof (struct sockaddr))
292 return NULL;
294 /* Does this PF support this AF? */
295 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 return NULL;
298 /* If we get this far, af is valid. */
299 af = sctp_get_af_specific(addr->sa.sa_family);
301 if (len < af->sockaddr_len)
302 return NULL;
304 return af;
307 /* Bind a local address either to an endpoint or to an association. */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
310 struct sctp_sock *sp = sctp_sk(sk);
311 struct sctp_endpoint *ep = sp->ep;
312 struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 struct sctp_af *af;
314 unsigned short snum;
315 int ret = 0;
317 /* Common sockaddr verification. */
318 af = sctp_sockaddr_af(sp, addr, len);
319 if (!af) {
320 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 sk, addr, len);
322 return -EINVAL;
325 snum = ntohs(addr->v4.sin_port);
327 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 ", port: %d, new port: %d, len: %d)\n",
330 addr,
331 bp->port, snum,
332 len);
334 /* PF specific bind() address verification. */
335 if (!sp->pf->bind_verify(sp, addr))
336 return -EADDRNOTAVAIL;
338 /* We must either be unbound, or bind to the same port. */
339 if (bp->port && (snum != bp->port)) {
340 SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 " New port %d does not match existing port "
342 "%d.\n", snum, bp->port);
343 return -EINVAL;
346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 return -EACCES;
349 /* Make sure we are allowed to bind here.
350 * The function sctp_get_port_local() does duplicate address
351 * detection.
353 if ((ret = sctp_get_port_local(sk, addr))) {
354 if (ret == (long) sk) {
355 /* This endpoint has a conflicting address. */
356 return -EINVAL;
357 } else {
358 return -EADDRINUSE;
362 /* Refresh ephemeral port. */
363 if (!bp->port)
364 bp->port = inet_sk(sk)->num;
366 /* Add the address to the bind address list. */
367 sctp_local_bh_disable();
368 sctp_write_lock(&ep->base.addr_lock);
370 /* Use GFP_ATOMIC since BHs are disabled. */
371 addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
373 addr->v4.sin_port = htons(addr->v4.sin_port);
374 sctp_write_unlock(&ep->base.addr_lock);
375 sctp_local_bh_enable();
377 /* Copy back into socket for getsockname() use. */
378 if (!ret) {
379 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 af->to_sk_saddr(addr, sk);
383 return ret;
386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389 * at any one time. If a sender, after sending an ASCONF chunk, decides
390 * it needs to transfer another ASCONF Chunk, it MUST wait until the
391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392 * subsequent ASCONF. Note this restriction binds each side, so at any
393 * time two ASCONF may be in-transit on any given association (one sent
394 * from each endpoint).
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 struct sctp_chunk *chunk)
399 int retval = 0;
401 /* If there is an outstanding ASCONF chunk, queue it for later
402 * transmission.
404 if (asoc->addip_last_asconf) {
405 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 goto out;
409 /* Hold the chunk until an ASCONF_ACK is received. */
410 sctp_chunk_hold(chunk);
411 retval = sctp_primitive_ASCONF(asoc, chunk);
412 if (retval)
413 sctp_chunk_free(chunk);
414 else
415 asoc->addip_last_asconf = chunk;
417 out:
418 return retval;
421 /* Add a list of addresses as bind addresses to local endpoint or
422 * association.
424 * Basically run through each address specified in the addrs/addrcnt
425 * array/length pair, determine if it is IPv6 or IPv4 and call
426 * sctp_do_bind() on it.
428 * If any of them fails, then the operation will be reversed and the
429 * ones that were added will be removed.
431 * Only sctp_setsockopt_bindx() is supposed to call this function.
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 int cnt;
436 int retval = 0;
437 void *addr_buf;
438 struct sockaddr *sa_addr;
439 struct sctp_af *af;
441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 sk, addrs, addrcnt);
444 addr_buf = addrs;
445 for (cnt = 0; cnt < addrcnt; cnt++) {
446 /* The list may contain either IPv4 or IPv6 address;
447 * determine the address length for walking thru the list.
449 sa_addr = (struct sockaddr *)addr_buf;
450 af = sctp_get_af_specific(sa_addr->sa_family);
451 if (!af) {
452 retval = -EINVAL;
453 goto err_bindx_add;
456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 af->sockaddr_len);
459 addr_buf += af->sockaddr_len;
461 err_bindx_add:
462 if (retval < 0) {
463 /* Failed. Cleanup the ones that have been added */
464 if (cnt > 0)
465 sctp_bindx_rem(sk, addrs, cnt);
466 return retval;
470 return retval;
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474 * associations that are part of the endpoint indicating that a list of local
475 * addresses are added to the endpoint.
477 * If any of the addresses is already in the bind address list of the
478 * association, we do not send the chunk for that association. But it will not
479 * affect other associations.
481 * Only sctp_setsockopt_bindx() is supposed to call this function.
483 static int sctp_send_asconf_add_ip(struct sock *sk,
484 struct sockaddr *addrs,
485 int addrcnt)
487 struct sctp_sock *sp;
488 struct sctp_endpoint *ep;
489 struct sctp_association *asoc;
490 struct sctp_bind_addr *bp;
491 struct sctp_chunk *chunk;
492 struct sctp_sockaddr_entry *laddr;
493 union sctp_addr *addr;
494 union sctp_addr saveaddr;
495 void *addr_buf;
496 struct sctp_af *af;
497 struct list_head *pos;
498 struct list_head *p;
499 int i;
500 int retval = 0;
502 if (!sctp_addip_enable)
503 return retval;
505 sp = sctp_sk(sk);
506 ep = sp->ep;
508 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 __FUNCTION__, sk, addrs, addrcnt);
511 list_for_each(pos, &ep->asocs) {
512 asoc = list_entry(pos, struct sctp_association, asocs);
514 if (!asoc->peer.asconf_capable)
515 continue;
517 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 continue;
520 if (!sctp_state(asoc, ESTABLISHED))
521 continue;
523 /* Check if any address in the packed array of addresses is
524 * in the bind address list of the association. If so,
525 * do not send the asconf chunk to its peer, but continue with
526 * other associations.
528 addr_buf = addrs;
529 for (i = 0; i < addrcnt; i++) {
530 addr = (union sctp_addr *)addr_buf;
531 af = sctp_get_af_specific(addr->v4.sin_family);
532 if (!af) {
533 retval = -EINVAL;
534 goto out;
537 if (sctp_assoc_lookup_laddr(asoc, addr))
538 break;
540 addr_buf += af->sockaddr_len;
542 if (i < addrcnt)
543 continue;
545 /* Use the first address in bind addr list of association as
546 * Address Parameter of ASCONF CHUNK.
548 sctp_read_lock(&asoc->base.addr_lock);
549 bp = &asoc->base.bind_addr;
550 p = bp->address_list.next;
551 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 sctp_read_unlock(&asoc->base.addr_lock);
554 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 addrcnt, SCTP_PARAM_ADD_IP);
556 if (!chunk) {
557 retval = -ENOMEM;
558 goto out;
561 retval = sctp_send_asconf(asoc, chunk);
562 if (retval)
563 goto out;
565 /* Add the new addresses to the bind address list with
566 * use_as_src set to 0.
568 sctp_local_bh_disable();
569 sctp_write_lock(&asoc->base.addr_lock);
570 addr_buf = addrs;
571 for (i = 0; i < addrcnt; i++) {
572 addr = (union sctp_addr *)addr_buf;
573 af = sctp_get_af_specific(addr->v4.sin_family);
574 memcpy(&saveaddr, addr, af->sockaddr_len);
575 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
576 retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 GFP_ATOMIC);
578 addr_buf += af->sockaddr_len;
580 sctp_write_unlock(&asoc->base.addr_lock);
581 sctp_local_bh_enable();
584 out:
585 return retval;
588 /* Remove a list of addresses from bind addresses list. Do not remove the
589 * last address.
591 * Basically run through each address specified in the addrs/addrcnt
592 * array/length pair, determine if it is IPv6 or IPv4 and call
593 * sctp_del_bind() on it.
595 * If any of them fails, then the operation will be reversed and the
596 * ones that were removed will be added back.
598 * At least one address has to be left; if only one address is
599 * available, the operation will return -EBUSY.
601 * Only sctp_setsockopt_bindx() is supposed to call this function.
603 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
605 struct sctp_sock *sp = sctp_sk(sk);
606 struct sctp_endpoint *ep = sp->ep;
607 int cnt;
608 struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 int retval = 0;
610 union sctp_addr saveaddr;
611 void *addr_buf;
612 struct sockaddr *sa_addr;
613 struct sctp_af *af;
615 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
616 sk, addrs, addrcnt);
618 addr_buf = addrs;
619 for (cnt = 0; cnt < addrcnt; cnt++) {
620 /* If the bind address list is empty or if there is only one
621 * bind address, there is nothing more to be removed (we need
622 * at least one address here).
624 if (list_empty(&bp->address_list) ||
625 (sctp_list_single_entry(&bp->address_list))) {
626 retval = -EBUSY;
627 goto err_bindx_rem;
630 /* The list may contain either IPv4 or IPv6 address;
631 * determine the address length to copy the address to
632 * saveaddr.
634 sa_addr = (struct sockaddr *)addr_buf;
635 af = sctp_get_af_specific(sa_addr->sa_family);
636 if (!af) {
637 retval = -EINVAL;
638 goto err_bindx_rem;
640 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
641 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
642 if (saveaddr.v4.sin_port != bp->port) {
643 retval = -EINVAL;
644 goto err_bindx_rem;
647 /* FIXME - There is probably a need to check if sk->sk_saddr and
648 * sk->sk_rcv_addr are currently set to one of the addresses to
649 * be removed. This is something which needs to be looked into
650 * when we are fixing the outstanding issues with multi-homing
651 * socket routing and failover schemes. Refer to comments in
652 * sctp_do_bind(). -daisy
654 sctp_local_bh_disable();
655 sctp_write_lock(&ep->base.addr_lock);
657 retval = sctp_del_bind_addr(bp, &saveaddr);
659 sctp_write_unlock(&ep->base.addr_lock);
660 sctp_local_bh_enable();
662 addr_buf += af->sockaddr_len;
663 err_bindx_rem:
664 if (retval < 0) {
665 /* Failed. Add the ones that has been removed back */
666 if (cnt > 0)
667 sctp_bindx_add(sk, addrs, cnt);
668 return retval;
672 return retval;
675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
676 * the associations that are part of the endpoint indicating that a list of
677 * local addresses are removed from the endpoint.
679 * If any of the addresses is already in the bind address list of the
680 * association, we do not send the chunk for that association. But it will not
681 * affect other associations.
683 * Only sctp_setsockopt_bindx() is supposed to call this function.
685 static int sctp_send_asconf_del_ip(struct sock *sk,
686 struct sockaddr *addrs,
687 int addrcnt)
689 struct sctp_sock *sp;
690 struct sctp_endpoint *ep;
691 struct sctp_association *asoc;
692 struct sctp_transport *transport;
693 struct sctp_bind_addr *bp;
694 struct sctp_chunk *chunk;
695 union sctp_addr *laddr;
696 union sctp_addr saveaddr;
697 void *addr_buf;
698 struct sctp_af *af;
699 struct list_head *pos, *pos1;
700 struct sctp_sockaddr_entry *saddr;
701 int i;
702 int retval = 0;
704 if (!sctp_addip_enable)
705 return retval;
707 sp = sctp_sk(sk);
708 ep = sp->ep;
710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 __FUNCTION__, sk, addrs, addrcnt);
713 list_for_each(pos, &ep->asocs) {
714 asoc = list_entry(pos, struct sctp_association, asocs);
716 if (!asoc->peer.asconf_capable)
717 continue;
719 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
720 continue;
722 if (!sctp_state(asoc, ESTABLISHED))
723 continue;
725 /* Check if any address in the packed array of addresses is
726 * not present in the bind address list of the association.
727 * If so, do not send the asconf chunk to its peer, but
728 * continue with other associations.
730 addr_buf = addrs;
731 for (i = 0; i < addrcnt; i++) {
732 laddr = (union sctp_addr *)addr_buf;
733 af = sctp_get_af_specific(laddr->v4.sin_family);
734 if (!af) {
735 retval = -EINVAL;
736 goto out;
739 if (!sctp_assoc_lookup_laddr(asoc, laddr))
740 break;
742 addr_buf += af->sockaddr_len;
744 if (i < addrcnt)
745 continue;
747 /* Find one address in the association's bind address list
748 * that is not in the packed array of addresses. This is to
749 * make sure that we do not delete all the addresses in the
750 * association.
752 sctp_read_lock(&asoc->base.addr_lock);
753 bp = &asoc->base.bind_addr;
754 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
755 addrcnt, sp);
756 sctp_read_unlock(&asoc->base.addr_lock);
757 if (!laddr)
758 continue;
760 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
761 SCTP_PARAM_DEL_IP);
762 if (!chunk) {
763 retval = -ENOMEM;
764 goto out;
767 /* Reset use_as_src flag for the addresses in the bind address
768 * list that are to be deleted.
770 sctp_local_bh_disable();
771 sctp_write_lock(&asoc->base.addr_lock);
772 addr_buf = addrs;
773 for (i = 0; i < addrcnt; i++) {
774 laddr = (union sctp_addr *)addr_buf;
775 af = sctp_get_af_specific(laddr->v4.sin_family);
776 memcpy(&saveaddr, laddr, af->sockaddr_len);
777 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
778 list_for_each(pos1, &bp->address_list) {
779 saddr = list_entry(pos1,
780 struct sctp_sockaddr_entry,
781 list);
782 if (sctp_cmp_addr_exact(&saddr->a, &saveaddr))
783 saddr->use_as_src = 0;
785 addr_buf += af->sockaddr_len;
787 sctp_write_unlock(&asoc->base.addr_lock);
788 sctp_local_bh_enable();
790 /* Update the route and saddr entries for all the transports
791 * as some of the addresses in the bind address list are
792 * about to be deleted and cannot be used as source addresses.
794 list_for_each(pos1, &asoc->peer.transport_addr_list) {
795 transport = list_entry(pos1, struct sctp_transport,
796 transports);
797 dst_release(transport->dst);
798 sctp_transport_route(transport, NULL,
799 sctp_sk(asoc->base.sk));
802 retval = sctp_send_asconf(asoc, chunk);
804 out:
805 return retval;
808 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
810 * API 8.1
811 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
812 * int flags);
814 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
815 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
816 * or IPv6 addresses.
818 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
819 * Section 3.1.2 for this usage.
821 * addrs is a pointer to an array of one or more socket addresses. Each
822 * address is contained in its appropriate structure (i.e. struct
823 * sockaddr_in or struct sockaddr_in6) the family of the address type
824 * must be used to distengish the address length (note that this
825 * representation is termed a "packed array" of addresses). The caller
826 * specifies the number of addresses in the array with addrcnt.
828 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
829 * -1, and sets errno to the appropriate error code.
831 * For SCTP, the port given in each socket address must be the same, or
832 * sctp_bindx() will fail, setting errno to EINVAL.
834 * The flags parameter is formed from the bitwise OR of zero or more of
835 * the following currently defined flags:
837 * SCTP_BINDX_ADD_ADDR
839 * SCTP_BINDX_REM_ADDR
841 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
842 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
843 * addresses from the association. The two flags are mutually exclusive;
844 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
845 * not remove all addresses from an association; sctp_bindx() will
846 * reject such an attempt with EINVAL.
848 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
849 * additional addresses with an endpoint after calling bind(). Or use
850 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
851 * socket is associated with so that no new association accepted will be
852 * associated with those addresses. If the endpoint supports dynamic
853 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
854 * endpoint to send the appropriate message to the peer to change the
855 * peers address lists.
857 * Adding and removing addresses from a connected association is
858 * optional functionality. Implementations that do not support this
859 * functionality should return EOPNOTSUPP.
861 * Basically do nothing but copying the addresses from user to kernel
862 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
863 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
864 * from userspace.
866 * We don't use copy_from_user() for optimization: we first do the
867 * sanity checks (buffer size -fast- and access check-healthy
868 * pointer); if all of those succeed, then we can alloc the memory
869 * (expensive operation) needed to copy the data to kernel. Then we do
870 * the copying without checking the user space area
871 * (__copy_from_user()).
873 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
874 * it.
876 * sk The sk of the socket
877 * addrs The pointer to the addresses in user land
878 * addrssize Size of the addrs buffer
879 * op Operation to perform (add or remove, see the flags of
880 * sctp_bindx)
882 * Returns 0 if ok, <0 errno code on error.
884 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
885 struct sockaddr __user *addrs,
886 int addrs_size, int op)
888 struct sockaddr *kaddrs;
889 int err;
890 int addrcnt = 0;
891 int walk_size = 0;
892 struct sockaddr *sa_addr;
893 void *addr_buf;
894 struct sctp_af *af;
896 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
897 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
899 if (unlikely(addrs_size <= 0))
900 return -EINVAL;
902 /* Check the user passed a healthy pointer. */
903 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
904 return -EFAULT;
906 /* Alloc space for the address array in kernel memory. */
907 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
908 if (unlikely(!kaddrs))
909 return -ENOMEM;
911 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
912 kfree(kaddrs);
913 return -EFAULT;
916 /* Walk through the addrs buffer and count the number of addresses. */
917 addr_buf = kaddrs;
918 while (walk_size < addrs_size) {
919 sa_addr = (struct sockaddr *)addr_buf;
920 af = sctp_get_af_specific(sa_addr->sa_family);
922 /* If the address family is not supported or if this address
923 * causes the address buffer to overflow return EINVAL.
925 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
926 kfree(kaddrs);
927 return -EINVAL;
929 addrcnt++;
930 addr_buf += af->sockaddr_len;
931 walk_size += af->sockaddr_len;
934 /* Do the work. */
935 switch (op) {
936 case SCTP_BINDX_ADD_ADDR:
937 err = sctp_bindx_add(sk, kaddrs, addrcnt);
938 if (err)
939 goto out;
940 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
941 break;
943 case SCTP_BINDX_REM_ADDR:
944 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
945 if (err)
946 goto out;
947 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
948 break;
950 default:
951 err = -EINVAL;
952 break;
955 out:
956 kfree(kaddrs);
958 return err;
961 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
963 * Common routine for handling connect() and sctp_connectx().
964 * Connect will come in with just a single address.
966 static int __sctp_connect(struct sock* sk,
967 struct sockaddr *kaddrs,
968 int addrs_size)
970 struct sctp_sock *sp;
971 struct sctp_endpoint *ep;
972 struct sctp_association *asoc = NULL;
973 struct sctp_association *asoc2;
974 struct sctp_transport *transport;
975 union sctp_addr to;
976 struct sctp_af *af;
977 sctp_scope_t scope;
978 long timeo;
979 int err = 0;
980 int addrcnt = 0;
981 int walk_size = 0;
982 struct sockaddr *sa_addr;
983 void *addr_buf;
985 sp = sctp_sk(sk);
986 ep = sp->ep;
988 /* connect() cannot be done on a socket that is already in ESTABLISHED
989 * state - UDP-style peeled off socket or a TCP-style socket that
990 * is already connected.
991 * It cannot be done even on a TCP-style listening socket.
993 if (sctp_sstate(sk, ESTABLISHED) ||
994 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
995 err = -EISCONN;
996 goto out_free;
999 /* Walk through the addrs buffer and count the number of addresses. */
1000 addr_buf = kaddrs;
1001 while (walk_size < addrs_size) {
1002 sa_addr = (struct sockaddr *)addr_buf;
1003 af = sctp_get_af_specific(sa_addr->sa_family);
1005 /* If the address family is not supported or if this address
1006 * causes the address buffer to overflow return EINVAL.
1008 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1009 err = -EINVAL;
1010 goto out_free;
1013 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
1014 af->sockaddr_len);
1015 if (err)
1016 goto out_free;
1018 memcpy(&to, sa_addr, af->sockaddr_len);
1019 to.v4.sin_port = ntohs(to.v4.sin_port);
1021 /* Check if there already is a matching association on the
1022 * endpoint (other than the one created here).
1024 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1025 if (asoc2 && asoc2 != asoc) {
1026 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1027 err = -EISCONN;
1028 else
1029 err = -EALREADY;
1030 goto out_free;
1033 /* If we could not find a matching association on the endpoint,
1034 * make sure that there is no peeled-off association matching
1035 * the peer address even on another socket.
1037 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1038 err = -EADDRNOTAVAIL;
1039 goto out_free;
1042 if (!asoc) {
1043 /* If a bind() or sctp_bindx() is not called prior to
1044 * an sctp_connectx() call, the system picks an
1045 * ephemeral port and will choose an address set
1046 * equivalent to binding with a wildcard address.
1048 if (!ep->base.bind_addr.port) {
1049 if (sctp_autobind(sk)) {
1050 err = -EAGAIN;
1051 goto out_free;
1053 } else {
1055 * If an unprivileged user inherits a 1-many
1056 * style socket with open associations on a
1057 * privileged port, it MAY be permitted to
1058 * accept new associations, but it SHOULD NOT
1059 * be permitted to open new associations.
1061 if (ep->base.bind_addr.port < PROT_SOCK &&
1062 !capable(CAP_NET_BIND_SERVICE)) {
1063 err = -EACCES;
1064 goto out_free;
1068 scope = sctp_scope(&to);
1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1070 if (!asoc) {
1071 err = -ENOMEM;
1072 goto out_free;
1076 /* Prime the peer's transport structures. */
1077 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1078 SCTP_UNKNOWN);
1079 if (!transport) {
1080 err = -ENOMEM;
1081 goto out_free;
1084 addrcnt++;
1085 addr_buf += af->sockaddr_len;
1086 walk_size += af->sockaddr_len;
1089 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1090 if (err < 0) {
1091 goto out_free;
1094 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1095 if (err < 0) {
1096 goto out_free;
1099 /* Initialize sk's dport and daddr for getpeername() */
1100 inet_sk(sk)->dport = htons(asoc->peer.port);
1101 af = sctp_get_af_specific(to.sa.sa_family);
1102 af->to_sk_daddr(&to, sk);
1103 sk->sk_err = 0;
1105 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1106 err = sctp_wait_for_connect(asoc, &timeo);
1108 /* Don't free association on exit. */
1109 asoc = NULL;
1111 out_free:
1113 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1114 " kaddrs: %p err: %d\n",
1115 asoc, kaddrs, err);
1116 if (asoc)
1117 sctp_association_free(asoc);
1118 return err;
1121 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1123 * API 8.9
1124 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1126 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1127 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1128 * or IPv6 addresses.
1130 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1131 * Section 3.1.2 for this usage.
1133 * addrs is a pointer to an array of one or more socket addresses. Each
1134 * address is contained in its appropriate structure (i.e. struct
1135 * sockaddr_in or struct sockaddr_in6) the family of the address type
1136 * must be used to distengish the address length (note that this
1137 * representation is termed a "packed array" of addresses). The caller
1138 * specifies the number of addresses in the array with addrcnt.
1140 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1141 * -1, and sets errno to the appropriate error code.
1143 * For SCTP, the port given in each socket address must be the same, or
1144 * sctp_connectx() will fail, setting errno to EINVAL.
1146 * An application can use sctp_connectx to initiate an association with
1147 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1148 * allows a caller to specify multiple addresses at which a peer can be
1149 * reached. The way the SCTP stack uses the list of addresses to set up
1150 * the association is implementation dependant. This function only
1151 * specifies that the stack will try to make use of all the addresses in
1152 * the list when needed.
1154 * Note that the list of addresses passed in is only used for setting up
1155 * the association. It does not necessarily equal the set of addresses
1156 * the peer uses for the resulting association. If the caller wants to
1157 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1158 * retrieve them after the association has been set up.
1160 * Basically do nothing but copying the addresses from user to kernel
1161 * land and invoking either sctp_connectx(). This is used for tunneling
1162 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1164 * We don't use copy_from_user() for optimization: we first do the
1165 * sanity checks (buffer size -fast- and access check-healthy
1166 * pointer); if all of those succeed, then we can alloc the memory
1167 * (expensive operation) needed to copy the data to kernel. Then we do
1168 * the copying without checking the user space area
1169 * (__copy_from_user()).
1171 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1172 * it.
1174 * sk The sk of the socket
1175 * addrs The pointer to the addresses in user land
1176 * addrssize Size of the addrs buffer
1178 * Returns 0 if ok, <0 errno code on error.
1180 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1181 struct sockaddr __user *addrs,
1182 int addrs_size)
1184 int err = 0;
1185 struct sockaddr *kaddrs;
1187 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1188 __FUNCTION__, sk, addrs, addrs_size);
1190 if (unlikely(addrs_size <= 0))
1191 return -EINVAL;
1193 /* Check the user passed a healthy pointer. */
1194 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1195 return -EFAULT;
1197 /* Alloc space for the address array in kernel memory. */
1198 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1199 if (unlikely(!kaddrs))
1200 return -ENOMEM;
1202 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1203 err = -EFAULT;
1204 } else {
1205 err = __sctp_connect(sk, kaddrs, addrs_size);
1208 kfree(kaddrs);
1209 return err;
1212 /* API 3.1.4 close() - UDP Style Syntax
1213 * Applications use close() to perform graceful shutdown (as described in
1214 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1215 * by a UDP-style socket.
1217 * The syntax is
1219 * ret = close(int sd);
1221 * sd - the socket descriptor of the associations to be closed.
1223 * To gracefully shutdown a specific association represented by the
1224 * UDP-style socket, an application should use the sendmsg() call,
1225 * passing no user data, but including the appropriate flag in the
1226 * ancillary data (see Section xxxx).
1228 * If sd in the close() call is a branched-off socket representing only
1229 * one association, the shutdown is performed on that association only.
1231 * 4.1.6 close() - TCP Style Syntax
1233 * Applications use close() to gracefully close down an association.
1235 * The syntax is:
1237 * int close(int sd);
1239 * sd - the socket descriptor of the association to be closed.
1241 * After an application calls close() on a socket descriptor, no further
1242 * socket operations will succeed on that descriptor.
1244 * API 7.1.4 SO_LINGER
1246 * An application using the TCP-style socket can use this option to
1247 * perform the SCTP ABORT primitive. The linger option structure is:
1249 * struct linger {
1250 * int l_onoff; // option on/off
1251 * int l_linger; // linger time
1252 * };
1254 * To enable the option, set l_onoff to 1. If the l_linger value is set
1255 * to 0, calling close() is the same as the ABORT primitive. If the
1256 * value is set to a negative value, the setsockopt() call will return
1257 * an error. If the value is set to a positive value linger_time, the
1258 * close() can be blocked for at most linger_time ms. If the graceful
1259 * shutdown phase does not finish during this period, close() will
1260 * return but the graceful shutdown phase continues in the system.
1262 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1264 struct sctp_endpoint *ep;
1265 struct sctp_association *asoc;
1266 struct list_head *pos, *temp;
1268 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1270 sctp_lock_sock(sk);
1271 sk->sk_shutdown = SHUTDOWN_MASK;
1273 ep = sctp_sk(sk)->ep;
1275 /* Walk all associations on an endpoint. */
1276 list_for_each_safe(pos, temp, &ep->asocs) {
1277 asoc = list_entry(pos, struct sctp_association, asocs);
1279 if (sctp_style(sk, TCP)) {
1280 /* A closed association can still be in the list if
1281 * it belongs to a TCP-style listening socket that is
1282 * not yet accepted. If so, free it. If not, send an
1283 * ABORT or SHUTDOWN based on the linger options.
1285 if (sctp_state(asoc, CLOSED)) {
1286 sctp_unhash_established(asoc);
1287 sctp_association_free(asoc);
1288 continue;
1292 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)
1293 sctp_primitive_ABORT(asoc, NULL);
1294 else
1295 sctp_primitive_SHUTDOWN(asoc, NULL);
1298 /* Clean up any skbs sitting on the receive queue. */
1299 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1300 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1302 /* On a TCP-style socket, block for at most linger_time if set. */
1303 if (sctp_style(sk, TCP) && timeout)
1304 sctp_wait_for_close(sk, timeout);
1306 /* This will run the backlog queue. */
1307 sctp_release_sock(sk);
1309 /* Supposedly, no process has access to the socket, but
1310 * the net layers still may.
1312 sctp_local_bh_disable();
1313 sctp_bh_lock_sock(sk);
1315 /* Hold the sock, since sk_common_release() will put sock_put()
1316 * and we have just a little more cleanup.
1318 sock_hold(sk);
1319 sk_common_release(sk);
1321 sctp_bh_unlock_sock(sk);
1322 sctp_local_bh_enable();
1324 sock_put(sk);
1326 SCTP_DBG_OBJCNT_DEC(sock);
1329 /* Handle EPIPE error. */
1330 static int sctp_error(struct sock *sk, int flags, int err)
1332 if (err == -EPIPE)
1333 err = sock_error(sk) ? : -EPIPE;
1334 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1335 send_sig(SIGPIPE, current, 0);
1336 return err;
1339 /* API 3.1.3 sendmsg() - UDP Style Syntax
1341 * An application uses sendmsg() and recvmsg() calls to transmit data to
1342 * and receive data from its peer.
1344 * ssize_t sendmsg(int socket, const struct msghdr *message,
1345 * int flags);
1347 * socket - the socket descriptor of the endpoint.
1348 * message - pointer to the msghdr structure which contains a single
1349 * user message and possibly some ancillary data.
1351 * See Section 5 for complete description of the data
1352 * structures.
1354 * flags - flags sent or received with the user message, see Section
1355 * 5 for complete description of the flags.
1357 * Note: This function could use a rewrite especially when explicit
1358 * connect support comes in.
1360 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1362 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1364 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1365 struct msghdr *msg, size_t msg_len)
1367 struct sctp_sock *sp;
1368 struct sctp_endpoint *ep;
1369 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1370 struct sctp_transport *transport, *chunk_tp;
1371 struct sctp_chunk *chunk;
1372 union sctp_addr to;
1373 struct sockaddr *msg_name = NULL;
1374 struct sctp_sndrcvinfo default_sinfo = { 0 };
1375 struct sctp_sndrcvinfo *sinfo;
1376 struct sctp_initmsg *sinit;
1377 sctp_assoc_t associd = 0;
1378 sctp_cmsgs_t cmsgs = { NULL };
1379 int err;
1380 sctp_scope_t scope;
1381 long timeo;
1382 __u16 sinfo_flags = 0;
1383 struct sctp_datamsg *datamsg;
1384 struct list_head *pos;
1385 int msg_flags = msg->msg_flags;
1387 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1388 sk, msg, msg_len);
1390 err = 0;
1391 sp = sctp_sk(sk);
1392 ep = sp->ep;
1394 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1396 /* We cannot send a message over a TCP-style listening socket. */
1397 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1398 err = -EPIPE;
1399 goto out_nounlock;
1402 /* Parse out the SCTP CMSGs. */
1403 err = sctp_msghdr_parse(msg, &cmsgs);
1405 if (err) {
1406 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1407 goto out_nounlock;
1410 /* Fetch the destination address for this packet. This
1411 * address only selects the association--it is not necessarily
1412 * the address we will send to.
1413 * For a peeled-off socket, msg_name is ignored.
1415 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1416 int msg_namelen = msg->msg_namelen;
1418 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1419 msg_namelen);
1420 if (err)
1421 return err;
1423 if (msg_namelen > sizeof(to))
1424 msg_namelen = sizeof(to);
1425 memcpy(&to, msg->msg_name, msg_namelen);
1426 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1427 "0x%x:%u.\n",
1428 to.v4.sin_addr.s_addr, to.v4.sin_port);
1430 to.v4.sin_port = ntohs(to.v4.sin_port);
1431 msg_name = msg->msg_name;
1434 sinfo = cmsgs.info;
1435 sinit = cmsgs.init;
1437 /* Did the user specify SNDRCVINFO? */
1438 if (sinfo) {
1439 sinfo_flags = sinfo->sinfo_flags;
1440 associd = sinfo->sinfo_assoc_id;
1443 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1444 msg_len, sinfo_flags);
1446 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1447 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1448 err = -EINVAL;
1449 goto out_nounlock;
1452 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1453 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1454 * If SCTP_ABORT is set, the message length could be non zero with
1455 * the msg_iov set to the user abort reason.
1457 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1458 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1459 err = -EINVAL;
1460 goto out_nounlock;
1463 /* If SCTP_ADDR_OVER is set, there must be an address
1464 * specified in msg_name.
1466 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1467 err = -EINVAL;
1468 goto out_nounlock;
1471 transport = NULL;
1473 SCTP_DEBUG_PRINTK("About to look up association.\n");
1475 sctp_lock_sock(sk);
1477 /* If a msg_name has been specified, assume this is to be used. */
1478 if (msg_name) {
1479 /* Look for a matching association on the endpoint. */
1480 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1481 if (!asoc) {
1482 /* If we could not find a matching association on the
1483 * endpoint, make sure that it is not a TCP-style
1484 * socket that already has an association or there is
1485 * no peeled-off association on another socket.
1487 if ((sctp_style(sk, TCP) &&
1488 sctp_sstate(sk, ESTABLISHED)) ||
1489 sctp_endpoint_is_peeled_off(ep, &to)) {
1490 err = -EADDRNOTAVAIL;
1491 goto out_unlock;
1494 } else {
1495 asoc = sctp_id2assoc(sk, associd);
1496 if (!asoc) {
1497 err = -EPIPE;
1498 goto out_unlock;
1502 if (asoc) {
1503 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1505 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1506 * socket that has an association in CLOSED state. This can
1507 * happen when an accepted socket has an association that is
1508 * already CLOSED.
1510 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1511 err = -EPIPE;
1512 goto out_unlock;
1515 if (sinfo_flags & SCTP_EOF) {
1516 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1517 asoc);
1518 sctp_primitive_SHUTDOWN(asoc, NULL);
1519 err = 0;
1520 goto out_unlock;
1522 if (sinfo_flags & SCTP_ABORT) {
1523 struct sctp_chunk *chunk;
1525 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1526 if (!chunk) {
1527 err = -ENOMEM;
1528 goto out_unlock;
1531 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1532 sctp_primitive_ABORT(asoc, chunk);
1533 err = 0;
1534 goto out_unlock;
1538 /* Do we need to create the association? */
1539 if (!asoc) {
1540 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1542 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1543 err = -EINVAL;
1544 goto out_unlock;
1547 /* Check for invalid stream against the stream counts,
1548 * either the default or the user specified stream counts.
1550 if (sinfo) {
1551 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1552 /* Check against the defaults. */
1553 if (sinfo->sinfo_stream >=
1554 sp->initmsg.sinit_num_ostreams) {
1555 err = -EINVAL;
1556 goto out_unlock;
1558 } else {
1559 /* Check against the requested. */
1560 if (sinfo->sinfo_stream >=
1561 sinit->sinit_num_ostreams) {
1562 err = -EINVAL;
1563 goto out_unlock;
1569 * API 3.1.2 bind() - UDP Style Syntax
1570 * If a bind() or sctp_bindx() is not called prior to a
1571 * sendmsg() call that initiates a new association, the
1572 * system picks an ephemeral port and will choose an address
1573 * set equivalent to binding with a wildcard address.
1575 if (!ep->base.bind_addr.port) {
1576 if (sctp_autobind(sk)) {
1577 err = -EAGAIN;
1578 goto out_unlock;
1580 } else {
1582 * If an unprivileged user inherits a one-to-many
1583 * style socket with open associations on a privileged
1584 * port, it MAY be permitted to accept new associations,
1585 * but it SHOULD NOT be permitted to open new
1586 * associations.
1588 if (ep->base.bind_addr.port < PROT_SOCK &&
1589 !capable(CAP_NET_BIND_SERVICE)) {
1590 err = -EACCES;
1591 goto out_unlock;
1595 scope = sctp_scope(&to);
1596 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1597 if (!new_asoc) {
1598 err = -ENOMEM;
1599 goto out_unlock;
1601 asoc = new_asoc;
1603 /* If the SCTP_INIT ancillary data is specified, set all
1604 * the association init values accordingly.
1606 if (sinit) {
1607 if (sinit->sinit_num_ostreams) {
1608 asoc->c.sinit_num_ostreams =
1609 sinit->sinit_num_ostreams;
1611 if (sinit->sinit_max_instreams) {
1612 asoc->c.sinit_max_instreams =
1613 sinit->sinit_max_instreams;
1615 if (sinit->sinit_max_attempts) {
1616 asoc->max_init_attempts
1617 = sinit->sinit_max_attempts;
1619 if (sinit->sinit_max_init_timeo) {
1620 asoc->max_init_timeo =
1621 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1625 /* Prime the peer's transport structures. */
1626 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1627 if (!transport) {
1628 err = -ENOMEM;
1629 goto out_free;
1631 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1632 if (err < 0) {
1633 err = -ENOMEM;
1634 goto out_free;
1638 /* ASSERT: we have a valid association at this point. */
1639 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1641 if (!sinfo) {
1642 /* If the user didn't specify SNDRCVINFO, make up one with
1643 * some defaults.
1645 default_sinfo.sinfo_stream = asoc->default_stream;
1646 default_sinfo.sinfo_flags = asoc->default_flags;
1647 default_sinfo.sinfo_ppid = asoc->default_ppid;
1648 default_sinfo.sinfo_context = asoc->default_context;
1649 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1650 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1651 sinfo = &default_sinfo;
1654 /* API 7.1.7, the sndbuf size per association bounds the
1655 * maximum size of data that can be sent in a single send call.
1657 if (msg_len > sk->sk_sndbuf) {
1658 err = -EMSGSIZE;
1659 goto out_free;
1662 /* If fragmentation is disabled and the message length exceeds the
1663 * association fragmentation point, return EMSGSIZE. The I-D
1664 * does not specify what this error is, but this looks like
1665 * a great fit.
1667 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1668 err = -EMSGSIZE;
1669 goto out_free;
1672 if (sinfo) {
1673 /* Check for invalid stream. */
1674 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1675 err = -EINVAL;
1676 goto out_free;
1680 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1681 if (!sctp_wspace(asoc)) {
1682 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1683 if (err)
1684 goto out_free;
1687 /* If an address is passed with the sendto/sendmsg call, it is used
1688 * to override the primary destination address in the TCP model, or
1689 * when SCTP_ADDR_OVER flag is set in the UDP model.
1691 if ((sctp_style(sk, TCP) && msg_name) ||
1692 (sinfo_flags & SCTP_ADDR_OVER)) {
1693 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1694 if (!chunk_tp) {
1695 err = -EINVAL;
1696 goto out_free;
1698 } else
1699 chunk_tp = NULL;
1701 /* Auto-connect, if we aren't connected already. */
1702 if (sctp_state(asoc, CLOSED)) {
1703 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1704 if (err < 0)
1705 goto out_free;
1706 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1709 /* Break the message into multiple chunks of maximum size. */
1710 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1711 if (!datamsg) {
1712 err = -ENOMEM;
1713 goto out_free;
1716 /* Now send the (possibly) fragmented message. */
1717 list_for_each(pos, &datamsg->chunks) {
1718 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1719 sctp_datamsg_track(chunk);
1721 /* Do accounting for the write space. */
1722 sctp_set_owner_w(chunk);
1724 chunk->transport = chunk_tp;
1726 /* Send it to the lower layers. Note: all chunks
1727 * must either fail or succeed. The lower layer
1728 * works that way today. Keep it that way or this
1729 * breaks.
1731 err = sctp_primitive_SEND(asoc, chunk);
1732 /* Did the lower layer accept the chunk? */
1733 if (err)
1734 sctp_chunk_free(chunk);
1735 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1738 sctp_datamsg_free(datamsg);
1739 if (err)
1740 goto out_free;
1741 else
1742 err = msg_len;
1744 /* If we are already past ASSOCIATE, the lower
1745 * layers are responsible for association cleanup.
1747 goto out_unlock;
1749 out_free:
1750 if (new_asoc)
1751 sctp_association_free(asoc);
1752 out_unlock:
1753 sctp_release_sock(sk);
1755 out_nounlock:
1756 return sctp_error(sk, msg_flags, err);
1758 #if 0
1759 do_sock_err:
1760 if (msg_len)
1761 err = msg_len;
1762 else
1763 err = sock_error(sk);
1764 goto out;
1766 do_interrupted:
1767 if (msg_len)
1768 err = msg_len;
1769 goto out;
1770 #endif /* 0 */
1773 /* This is an extended version of skb_pull() that removes the data from the
1774 * start of a skb even when data is spread across the list of skb's in the
1775 * frag_list. len specifies the total amount of data that needs to be removed.
1776 * when 'len' bytes could be removed from the skb, it returns 0.
1777 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1778 * could not be removed.
1780 static int sctp_skb_pull(struct sk_buff *skb, int len)
1782 struct sk_buff *list;
1783 int skb_len = skb_headlen(skb);
1784 int rlen;
1786 if (len <= skb_len) {
1787 __skb_pull(skb, len);
1788 return 0;
1790 len -= skb_len;
1791 __skb_pull(skb, skb_len);
1793 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1794 rlen = sctp_skb_pull(list, len);
1795 skb->len -= (len-rlen);
1796 skb->data_len -= (len-rlen);
1798 if (!rlen)
1799 return 0;
1801 len = rlen;
1804 return len;
1807 /* API 3.1.3 recvmsg() - UDP Style Syntax
1809 * ssize_t recvmsg(int socket, struct msghdr *message,
1810 * int flags);
1812 * socket - the socket descriptor of the endpoint.
1813 * message - pointer to the msghdr structure which contains a single
1814 * user message and possibly some ancillary data.
1816 * See Section 5 for complete description of the data
1817 * structures.
1819 * flags - flags sent or received with the user message, see Section
1820 * 5 for complete description of the flags.
1822 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1824 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1825 struct msghdr *msg, size_t len, int noblock,
1826 int flags, int *addr_len)
1828 struct sctp_ulpevent *event = NULL;
1829 struct sctp_sock *sp = sctp_sk(sk);
1830 struct sk_buff *skb;
1831 int copied;
1832 int err = 0;
1833 int skb_len;
1835 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1836 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1837 "len", len, "knoblauch", noblock,
1838 "flags", flags, "addr_len", addr_len);
1840 sctp_lock_sock(sk);
1842 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1843 err = -ENOTCONN;
1844 goto out;
1847 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1848 if (!skb)
1849 goto out;
1851 /* Get the total length of the skb including any skb's in the
1852 * frag_list.
1854 skb_len = skb->len;
1856 copied = skb_len;
1857 if (copied > len)
1858 copied = len;
1860 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1862 event = sctp_skb2event(skb);
1864 if (err)
1865 goto out_free;
1867 sock_recv_timestamp(msg, sk, skb);
1868 if (sctp_ulpevent_is_notification(event)) {
1869 msg->msg_flags |= MSG_NOTIFICATION;
1870 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1871 } else {
1872 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1875 /* Check if we allow SCTP_SNDRCVINFO. */
1876 if (sp->subscribe.sctp_data_io_event)
1877 sctp_ulpevent_read_sndrcvinfo(event, msg);
1878 #if 0
1879 /* FIXME: we should be calling IP/IPv6 layers. */
1880 if (sk->sk_protinfo.af_inet.cmsg_flags)
1881 ip_cmsg_recv(msg, skb);
1882 #endif
1884 err = copied;
1886 /* If skb's length exceeds the user's buffer, update the skb and
1887 * push it back to the receive_queue so that the next call to
1888 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1890 if (skb_len > copied) {
1891 msg->msg_flags &= ~MSG_EOR;
1892 if (flags & MSG_PEEK)
1893 goto out_free;
1894 sctp_skb_pull(skb, copied);
1895 skb_queue_head(&sk->sk_receive_queue, skb);
1897 /* When only partial message is copied to the user, increase
1898 * rwnd by that amount. If all the data in the skb is read,
1899 * rwnd is updated when the event is freed.
1901 sctp_assoc_rwnd_increase(event->asoc, copied);
1902 goto out;
1903 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1904 (event->msg_flags & MSG_EOR))
1905 msg->msg_flags |= MSG_EOR;
1906 else
1907 msg->msg_flags &= ~MSG_EOR;
1909 out_free:
1910 if (flags & MSG_PEEK) {
1911 /* Release the skb reference acquired after peeking the skb in
1912 * sctp_skb_recv_datagram().
1914 kfree_skb(skb);
1915 } else {
1916 /* Free the event which includes releasing the reference to
1917 * the owner of the skb, freeing the skb and updating the
1918 * rwnd.
1920 sctp_ulpevent_free(event);
1922 out:
1923 sctp_release_sock(sk);
1924 return err;
1927 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1929 * This option is a on/off flag. If enabled no SCTP message
1930 * fragmentation will be performed. Instead if a message being sent
1931 * exceeds the current PMTU size, the message will NOT be sent and
1932 * instead a error will be indicated to the user.
1934 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1935 char __user *optval, int optlen)
1937 int val;
1939 if (optlen < sizeof(int))
1940 return -EINVAL;
1942 if (get_user(val, (int __user *)optval))
1943 return -EFAULT;
1945 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1947 return 0;
1950 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1951 int optlen)
1953 if (optlen != sizeof(struct sctp_event_subscribe))
1954 return -EINVAL;
1955 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1956 return -EFAULT;
1957 return 0;
1960 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1962 * This socket option is applicable to the UDP-style socket only. When
1963 * set it will cause associations that are idle for more than the
1964 * specified number of seconds to automatically close. An association
1965 * being idle is defined an association that has NOT sent or received
1966 * user data. The special value of '0' indicates that no automatic
1967 * close of any associations should be performed. The option expects an
1968 * integer defining the number of seconds of idle time before an
1969 * association is closed.
1971 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1972 int optlen)
1974 struct sctp_sock *sp = sctp_sk(sk);
1976 /* Applicable to UDP-style socket only */
1977 if (sctp_style(sk, TCP))
1978 return -EOPNOTSUPP;
1979 if (optlen != sizeof(int))
1980 return -EINVAL;
1981 if (copy_from_user(&sp->autoclose, optval, optlen))
1982 return -EFAULT;
1984 return 0;
1987 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1989 * Applications can enable or disable heartbeats for any peer address of
1990 * an association, modify an address's heartbeat interval, force a
1991 * heartbeat to be sent immediately, and adjust the address's maximum
1992 * number of retransmissions sent before an address is considered
1993 * unreachable. The following structure is used to access and modify an
1994 * address's parameters:
1996 * struct sctp_paddrparams {
1997 * sctp_assoc_t spp_assoc_id;
1998 * struct sockaddr_storage spp_address;
1999 * uint32_t spp_hbinterval;
2000 * uint16_t spp_pathmaxrxt;
2001 * uint32_t spp_pathmtu;
2002 * uint32_t spp_sackdelay;
2003 * uint32_t spp_flags;
2004 * };
2006 * spp_assoc_id - (one-to-many style socket) This is filled in the
2007 * application, and identifies the association for
2008 * this query.
2009 * spp_address - This specifies which address is of interest.
2010 * spp_hbinterval - This contains the value of the heartbeat interval,
2011 * in milliseconds. If a value of zero
2012 * is present in this field then no changes are to
2013 * be made to this parameter.
2014 * spp_pathmaxrxt - This contains the maximum number of
2015 * retransmissions before this address shall be
2016 * considered unreachable. If a value of zero
2017 * is present in this field then no changes are to
2018 * be made to this parameter.
2019 * spp_pathmtu - When Path MTU discovery is disabled the value
2020 * specified here will be the "fixed" path mtu.
2021 * Note that if the spp_address field is empty
2022 * then all associations on this address will
2023 * have this fixed path mtu set upon them.
2025 * spp_sackdelay - When delayed sack is enabled, this value specifies
2026 * the number of milliseconds that sacks will be delayed
2027 * for. This value will apply to all addresses of an
2028 * association if the spp_address field is empty. Note
2029 * also, that if delayed sack is enabled and this
2030 * value is set to 0, no change is made to the last
2031 * recorded delayed sack timer value.
2033 * spp_flags - These flags are used to control various features
2034 * on an association. The flag field may contain
2035 * zero or more of the following options.
2037 * SPP_HB_ENABLE - Enable heartbeats on the
2038 * specified address. Note that if the address
2039 * field is empty all addresses for the association
2040 * have heartbeats enabled upon them.
2042 * SPP_HB_DISABLE - Disable heartbeats on the
2043 * speicifed address. Note that if the address
2044 * field is empty all addresses for the association
2045 * will have their heartbeats disabled. Note also
2046 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2047 * mutually exclusive, only one of these two should
2048 * be specified. Enabling both fields will have
2049 * undetermined results.
2051 * SPP_HB_DEMAND - Request a user initiated heartbeat
2052 * to be made immediately.
2054 * SPP_PMTUD_ENABLE - This field will enable PMTU
2055 * discovery upon the specified address. Note that
2056 * if the address feild is empty then all addresses
2057 * on the association are effected.
2059 * SPP_PMTUD_DISABLE - This field will disable PMTU
2060 * discovery upon the specified address. Note that
2061 * if the address feild is empty then all addresses
2062 * on the association are effected. Not also that
2063 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2064 * exclusive. Enabling both will have undetermined
2065 * results.
2067 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2068 * on delayed sack. The time specified in spp_sackdelay
2069 * is used to specify the sack delay for this address. Note
2070 * that if spp_address is empty then all addresses will
2071 * enable delayed sack and take on the sack delay
2072 * value specified in spp_sackdelay.
2073 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2074 * off delayed sack. If the spp_address field is blank then
2075 * delayed sack is disabled for the entire association. Note
2076 * also that this field is mutually exclusive to
2077 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2078 * results.
2080 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2081 struct sctp_transport *trans,
2082 struct sctp_association *asoc,
2083 struct sctp_sock *sp,
2084 int hb_change,
2085 int pmtud_change,
2086 int sackdelay_change)
2088 int error;
2090 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2091 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2092 if (error)
2093 return error;
2096 if (params->spp_hbinterval) {
2097 if (trans) {
2098 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2099 } else if (asoc) {
2100 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2101 } else {
2102 sp->hbinterval = params->spp_hbinterval;
2106 if (hb_change) {
2107 if (trans) {
2108 trans->param_flags =
2109 (trans->param_flags & ~SPP_HB) | hb_change;
2110 } else if (asoc) {
2111 asoc->param_flags =
2112 (asoc->param_flags & ~SPP_HB) | hb_change;
2113 } else {
2114 sp->param_flags =
2115 (sp->param_flags & ~SPP_HB) | hb_change;
2119 if (params->spp_pathmtu) {
2120 if (trans) {
2121 trans->pathmtu = params->spp_pathmtu;
2122 sctp_assoc_sync_pmtu(asoc);
2123 } else if (asoc) {
2124 asoc->pathmtu = params->spp_pathmtu;
2125 sctp_frag_point(sp, params->spp_pathmtu);
2126 } else {
2127 sp->pathmtu = params->spp_pathmtu;
2131 if (pmtud_change) {
2132 if (trans) {
2133 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2134 (params->spp_flags & SPP_PMTUD_ENABLE);
2135 trans->param_flags =
2136 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2137 if (update) {
2138 sctp_transport_pmtu(trans);
2139 sctp_assoc_sync_pmtu(asoc);
2141 } else if (asoc) {
2142 asoc->param_flags =
2143 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2144 } else {
2145 sp->param_flags =
2146 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2150 if (params->spp_sackdelay) {
2151 if (trans) {
2152 trans->sackdelay =
2153 msecs_to_jiffies(params->spp_sackdelay);
2154 } else if (asoc) {
2155 asoc->sackdelay =
2156 msecs_to_jiffies(params->spp_sackdelay);
2157 } else {
2158 sp->sackdelay = params->spp_sackdelay;
2162 if (sackdelay_change) {
2163 if (trans) {
2164 trans->param_flags =
2165 (trans->param_flags & ~SPP_SACKDELAY) |
2166 sackdelay_change;
2167 } else if (asoc) {
2168 asoc->param_flags =
2169 (asoc->param_flags & ~SPP_SACKDELAY) |
2170 sackdelay_change;
2171 } else {
2172 sp->param_flags =
2173 (sp->param_flags & ~SPP_SACKDELAY) |
2174 sackdelay_change;
2178 if (params->spp_pathmaxrxt) {
2179 if (trans) {
2180 trans->pathmaxrxt = params->spp_pathmaxrxt;
2181 } else if (asoc) {
2182 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2183 } else {
2184 sp->pathmaxrxt = params->spp_pathmaxrxt;
2188 return 0;
2191 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2192 char __user *optval, int optlen)
2194 struct sctp_paddrparams params;
2195 struct sctp_transport *trans = NULL;
2196 struct sctp_association *asoc = NULL;
2197 struct sctp_sock *sp = sctp_sk(sk);
2198 int error;
2199 int hb_change, pmtud_change, sackdelay_change;
2201 if (optlen != sizeof(struct sctp_paddrparams))
2202 return - EINVAL;
2204 if (copy_from_user(&params, optval, optlen))
2205 return -EFAULT;
2207 /* Validate flags and value parameters. */
2208 hb_change = params.spp_flags & SPP_HB;
2209 pmtud_change = params.spp_flags & SPP_PMTUD;
2210 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2212 if (hb_change == SPP_HB ||
2213 pmtud_change == SPP_PMTUD ||
2214 sackdelay_change == SPP_SACKDELAY ||
2215 params.spp_sackdelay > 500 ||
2216 (params.spp_pathmtu
2217 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2218 return -EINVAL;
2220 /* If an address other than INADDR_ANY is specified, and
2221 * no transport is found, then the request is invalid.
2223 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2224 trans = sctp_addr_id2transport(sk, &params.spp_address,
2225 params.spp_assoc_id);
2226 if (!trans)
2227 return -EINVAL;
2230 /* Get association, if assoc_id != 0 and the socket is a one
2231 * to many style socket, and an association was not found, then
2232 * the id was invalid.
2234 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2235 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2236 return -EINVAL;
2238 /* Heartbeat demand can only be sent on a transport or
2239 * association, but not a socket.
2241 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2242 return -EINVAL;
2244 /* Process parameters. */
2245 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2246 hb_change, pmtud_change,
2247 sackdelay_change);
2249 if (error)
2250 return error;
2252 /* If changes are for association, also apply parameters to each
2253 * transport.
2255 if (!trans && asoc) {
2256 struct list_head *pos;
2258 list_for_each(pos, &asoc->peer.transport_addr_list) {
2259 trans = list_entry(pos, struct sctp_transport,
2260 transports);
2261 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2262 hb_change, pmtud_change,
2263 sackdelay_change);
2267 return 0;
2270 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2272 * This options will get or set the delayed ack timer. The time is set
2273 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2274 * endpoints default delayed ack timer value. If the assoc_id field is
2275 * non-zero, then the set or get effects the specified association.
2277 * struct sctp_assoc_value {
2278 * sctp_assoc_t assoc_id;
2279 * uint32_t assoc_value;
2280 * };
2282 * assoc_id - This parameter, indicates which association the
2283 * user is preforming an action upon. Note that if
2284 * this field's value is zero then the endpoints
2285 * default value is changed (effecting future
2286 * associations only).
2288 * assoc_value - This parameter contains the number of milliseconds
2289 * that the user is requesting the delayed ACK timer
2290 * be set to. Note that this value is defined in
2291 * the standard to be between 200 and 500 milliseconds.
2293 * Note: a value of zero will leave the value alone,
2294 * but disable SACK delay. A non-zero value will also
2295 * enable SACK delay.
2298 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2299 char __user *optval, int optlen)
2301 struct sctp_assoc_value params;
2302 struct sctp_transport *trans = NULL;
2303 struct sctp_association *asoc = NULL;
2304 struct sctp_sock *sp = sctp_sk(sk);
2306 if (optlen != sizeof(struct sctp_assoc_value))
2307 return - EINVAL;
2309 if (copy_from_user(&params, optval, optlen))
2310 return -EFAULT;
2312 /* Validate value parameter. */
2313 if (params.assoc_value > 500)
2314 return -EINVAL;
2316 /* Get association, if assoc_id != 0 and the socket is a one
2317 * to many style socket, and an association was not found, then
2318 * the id was invalid.
2320 asoc = sctp_id2assoc(sk, params.assoc_id);
2321 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2322 return -EINVAL;
2324 if (params.assoc_value) {
2325 if (asoc) {
2326 asoc->sackdelay =
2327 msecs_to_jiffies(params.assoc_value);
2328 asoc->param_flags =
2329 (asoc->param_flags & ~SPP_SACKDELAY) |
2330 SPP_SACKDELAY_ENABLE;
2331 } else {
2332 sp->sackdelay = params.assoc_value;
2333 sp->param_flags =
2334 (sp->param_flags & ~SPP_SACKDELAY) |
2335 SPP_SACKDELAY_ENABLE;
2337 } else {
2338 if (asoc) {
2339 asoc->param_flags =
2340 (asoc->param_flags & ~SPP_SACKDELAY) |
2341 SPP_SACKDELAY_DISABLE;
2342 } else {
2343 sp->param_flags =
2344 (sp->param_flags & ~SPP_SACKDELAY) |
2345 SPP_SACKDELAY_DISABLE;
2349 /* If change is for association, also apply to each transport. */
2350 if (asoc) {
2351 struct list_head *pos;
2353 list_for_each(pos, &asoc->peer.transport_addr_list) {
2354 trans = list_entry(pos, struct sctp_transport,
2355 transports);
2356 if (params.assoc_value) {
2357 trans->sackdelay =
2358 msecs_to_jiffies(params.assoc_value);
2359 trans->param_flags =
2360 (trans->param_flags & ~SPP_SACKDELAY) |
2361 SPP_SACKDELAY_ENABLE;
2362 } else {
2363 trans->param_flags =
2364 (trans->param_flags & ~SPP_SACKDELAY) |
2365 SPP_SACKDELAY_DISABLE;
2370 return 0;
2373 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2375 * Applications can specify protocol parameters for the default association
2376 * initialization. The option name argument to setsockopt() and getsockopt()
2377 * is SCTP_INITMSG.
2379 * Setting initialization parameters is effective only on an unconnected
2380 * socket (for UDP-style sockets only future associations are effected
2381 * by the change). With TCP-style sockets, this option is inherited by
2382 * sockets derived from a listener socket.
2384 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2386 struct sctp_initmsg sinit;
2387 struct sctp_sock *sp = sctp_sk(sk);
2389 if (optlen != sizeof(struct sctp_initmsg))
2390 return -EINVAL;
2391 if (copy_from_user(&sinit, optval, optlen))
2392 return -EFAULT;
2394 if (sinit.sinit_num_ostreams)
2395 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2396 if (sinit.sinit_max_instreams)
2397 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2398 if (sinit.sinit_max_attempts)
2399 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2400 if (sinit.sinit_max_init_timeo)
2401 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2403 return 0;
2407 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2409 * Applications that wish to use the sendto() system call may wish to
2410 * specify a default set of parameters that would normally be supplied
2411 * through the inclusion of ancillary data. This socket option allows
2412 * such an application to set the default sctp_sndrcvinfo structure.
2413 * The application that wishes to use this socket option simply passes
2414 * in to this call the sctp_sndrcvinfo structure defined in Section
2415 * 5.2.2) The input parameters accepted by this call include
2416 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2417 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2418 * to this call if the caller is using the UDP model.
2420 static int sctp_setsockopt_default_send_param(struct sock *sk,
2421 char __user *optval, int optlen)
2423 struct sctp_sndrcvinfo info;
2424 struct sctp_association *asoc;
2425 struct sctp_sock *sp = sctp_sk(sk);
2427 if (optlen != sizeof(struct sctp_sndrcvinfo))
2428 return -EINVAL;
2429 if (copy_from_user(&info, optval, optlen))
2430 return -EFAULT;
2432 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2433 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2434 return -EINVAL;
2436 if (asoc) {
2437 asoc->default_stream = info.sinfo_stream;
2438 asoc->default_flags = info.sinfo_flags;
2439 asoc->default_ppid = info.sinfo_ppid;
2440 asoc->default_context = info.sinfo_context;
2441 asoc->default_timetolive = info.sinfo_timetolive;
2442 } else {
2443 sp->default_stream = info.sinfo_stream;
2444 sp->default_flags = info.sinfo_flags;
2445 sp->default_ppid = info.sinfo_ppid;
2446 sp->default_context = info.sinfo_context;
2447 sp->default_timetolive = info.sinfo_timetolive;
2450 return 0;
2453 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2455 * Requests that the local SCTP stack use the enclosed peer address as
2456 * the association primary. The enclosed address must be one of the
2457 * association peer's addresses.
2459 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2460 int optlen)
2462 struct sctp_prim prim;
2463 struct sctp_transport *trans;
2465 if (optlen != sizeof(struct sctp_prim))
2466 return -EINVAL;
2468 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2469 return -EFAULT;
2471 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2472 if (!trans)
2473 return -EINVAL;
2475 sctp_assoc_set_primary(trans->asoc, trans);
2477 return 0;
2481 * 7.1.5 SCTP_NODELAY
2483 * Turn on/off any Nagle-like algorithm. This means that packets are
2484 * generally sent as soon as possible and no unnecessary delays are
2485 * introduced, at the cost of more packets in the network. Expects an
2486 * integer boolean flag.
2488 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2489 int optlen)
2491 int val;
2493 if (optlen < sizeof(int))
2494 return -EINVAL;
2495 if (get_user(val, (int __user *)optval))
2496 return -EFAULT;
2498 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2499 return 0;
2504 * 7.1.1 SCTP_RTOINFO
2506 * The protocol parameters used to initialize and bound retransmission
2507 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2508 * and modify these parameters.
2509 * All parameters are time values, in milliseconds. A value of 0, when
2510 * modifying the parameters, indicates that the current value should not
2511 * be changed.
2514 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2515 struct sctp_rtoinfo rtoinfo;
2516 struct sctp_association *asoc;
2518 if (optlen != sizeof (struct sctp_rtoinfo))
2519 return -EINVAL;
2521 if (copy_from_user(&rtoinfo, optval, optlen))
2522 return -EFAULT;
2524 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2526 /* Set the values to the specific association */
2527 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2528 return -EINVAL;
2530 if (asoc) {
2531 if (rtoinfo.srto_initial != 0)
2532 asoc->rto_initial =
2533 msecs_to_jiffies(rtoinfo.srto_initial);
2534 if (rtoinfo.srto_max != 0)
2535 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2536 if (rtoinfo.srto_min != 0)
2537 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2538 } else {
2539 /* If there is no association or the association-id = 0
2540 * set the values to the endpoint.
2542 struct sctp_sock *sp = sctp_sk(sk);
2544 if (rtoinfo.srto_initial != 0)
2545 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2546 if (rtoinfo.srto_max != 0)
2547 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2548 if (rtoinfo.srto_min != 0)
2549 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2552 return 0;
2557 * 7.1.2 SCTP_ASSOCINFO
2559 * This option is used to tune the the maximum retransmission attempts
2560 * of the association.
2561 * Returns an error if the new association retransmission value is
2562 * greater than the sum of the retransmission value of the peer.
2563 * See [SCTP] for more information.
2566 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2569 struct sctp_assocparams assocparams;
2570 struct sctp_association *asoc;
2572 if (optlen != sizeof(struct sctp_assocparams))
2573 return -EINVAL;
2574 if (copy_from_user(&assocparams, optval, optlen))
2575 return -EFAULT;
2577 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2579 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2580 return -EINVAL;
2582 /* Set the values to the specific association */
2583 if (asoc) {
2584 if (assocparams.sasoc_asocmaxrxt != 0) {
2585 __u32 path_sum = 0;
2586 int paths = 0;
2587 struct list_head *pos;
2588 struct sctp_transport *peer_addr;
2590 list_for_each(pos, &asoc->peer.transport_addr_list) {
2591 peer_addr = list_entry(pos,
2592 struct sctp_transport,
2593 transports);
2594 path_sum += peer_addr->pathmaxrxt;
2595 paths++;
2598 /* Only validate asocmaxrxt if we have more then
2599 * one path/transport. We do this because path
2600 * retransmissions are only counted when we have more
2601 * then one path.
2603 if (paths > 1 &&
2604 assocparams.sasoc_asocmaxrxt > path_sum)
2605 return -EINVAL;
2607 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2610 if (assocparams.sasoc_cookie_life != 0) {
2611 asoc->cookie_life.tv_sec =
2612 assocparams.sasoc_cookie_life / 1000;
2613 asoc->cookie_life.tv_usec =
2614 (assocparams.sasoc_cookie_life % 1000)
2615 * 1000;
2617 } else {
2618 /* Set the values to the endpoint */
2619 struct sctp_sock *sp = sctp_sk(sk);
2621 if (assocparams.sasoc_asocmaxrxt != 0)
2622 sp->assocparams.sasoc_asocmaxrxt =
2623 assocparams.sasoc_asocmaxrxt;
2624 if (assocparams.sasoc_cookie_life != 0)
2625 sp->assocparams.sasoc_cookie_life =
2626 assocparams.sasoc_cookie_life;
2628 return 0;
2632 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2634 * This socket option is a boolean flag which turns on or off mapped V4
2635 * addresses. If this option is turned on and the socket is type
2636 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2637 * If this option is turned off, then no mapping will be done of V4
2638 * addresses and a user will receive both PF_INET6 and PF_INET type
2639 * addresses on the socket.
2641 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2643 int val;
2644 struct sctp_sock *sp = sctp_sk(sk);
2646 if (optlen < sizeof(int))
2647 return -EINVAL;
2648 if (get_user(val, (int __user *)optval))
2649 return -EFAULT;
2650 if (val)
2651 sp->v4mapped = 1;
2652 else
2653 sp->v4mapped = 0;
2655 return 0;
2659 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2661 * This socket option specifies the maximum size to put in any outgoing
2662 * SCTP chunk. If a message is larger than this size it will be
2663 * fragmented by SCTP into the specified size. Note that the underlying
2664 * SCTP implementation may fragment into smaller sized chunks when the
2665 * PMTU of the underlying association is smaller than the value set by
2666 * the user.
2668 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2670 struct sctp_association *asoc;
2671 struct list_head *pos;
2672 struct sctp_sock *sp = sctp_sk(sk);
2673 int val;
2675 if (optlen < sizeof(int))
2676 return -EINVAL;
2677 if (get_user(val, (int __user *)optval))
2678 return -EFAULT;
2679 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2680 return -EINVAL;
2681 sp->user_frag = val;
2683 /* Update the frag_point of the existing associations. */
2684 list_for_each(pos, &(sp->ep->asocs)) {
2685 asoc = list_entry(pos, struct sctp_association, asocs);
2686 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2689 return 0;
2694 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2696 * Requests that the peer mark the enclosed address as the association
2697 * primary. The enclosed address must be one of the association's
2698 * locally bound addresses. The following structure is used to make a
2699 * set primary request:
2701 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2702 int optlen)
2704 struct sctp_sock *sp;
2705 struct sctp_endpoint *ep;
2706 struct sctp_association *asoc = NULL;
2707 struct sctp_setpeerprim prim;
2708 struct sctp_chunk *chunk;
2709 int err;
2711 sp = sctp_sk(sk);
2712 ep = sp->ep;
2714 if (!sctp_addip_enable)
2715 return -EPERM;
2717 if (optlen != sizeof(struct sctp_setpeerprim))
2718 return -EINVAL;
2720 if (copy_from_user(&prim, optval, optlen))
2721 return -EFAULT;
2723 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2724 if (!asoc)
2725 return -EINVAL;
2727 if (!asoc->peer.asconf_capable)
2728 return -EPERM;
2730 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2731 return -EPERM;
2733 if (!sctp_state(asoc, ESTABLISHED))
2734 return -ENOTCONN;
2736 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2737 return -EADDRNOTAVAIL;
2739 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2740 chunk = sctp_make_asconf_set_prim(asoc,
2741 (union sctp_addr *)&prim.sspp_addr);
2742 if (!chunk)
2743 return -ENOMEM;
2745 err = sctp_send_asconf(asoc, chunk);
2747 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2749 return err;
2752 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2753 int optlen)
2755 struct sctp_setadaption adaption;
2757 if (optlen != sizeof(struct sctp_setadaption))
2758 return -EINVAL;
2759 if (copy_from_user(&adaption, optval, optlen))
2760 return -EFAULT;
2762 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2764 return 0;
2767 /* API 6.2 setsockopt(), getsockopt()
2769 * Applications use setsockopt() and getsockopt() to set or retrieve
2770 * socket options. Socket options are used to change the default
2771 * behavior of sockets calls. They are described in Section 7.
2773 * The syntax is:
2775 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2776 * int __user *optlen);
2777 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2778 * int optlen);
2780 * sd - the socket descript.
2781 * level - set to IPPROTO_SCTP for all SCTP options.
2782 * optname - the option name.
2783 * optval - the buffer to store the value of the option.
2784 * optlen - the size of the buffer.
2786 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2787 char __user *optval, int optlen)
2789 int retval = 0;
2791 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2792 sk, optname);
2794 /* I can hardly begin to describe how wrong this is. This is
2795 * so broken as to be worse than useless. The API draft
2796 * REALLY is NOT helpful here... I am not convinced that the
2797 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2798 * are at all well-founded.
2800 if (level != SOL_SCTP) {
2801 struct sctp_af *af = sctp_sk(sk)->pf->af;
2802 retval = af->setsockopt(sk, level, optname, optval, optlen);
2803 goto out_nounlock;
2806 sctp_lock_sock(sk);
2808 switch (optname) {
2809 case SCTP_SOCKOPT_BINDX_ADD:
2810 /* 'optlen' is the size of the addresses buffer. */
2811 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2812 optlen, SCTP_BINDX_ADD_ADDR);
2813 break;
2815 case SCTP_SOCKOPT_BINDX_REM:
2816 /* 'optlen' is the size of the addresses buffer. */
2817 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2818 optlen, SCTP_BINDX_REM_ADDR);
2819 break;
2821 case SCTP_SOCKOPT_CONNECTX:
2822 /* 'optlen' is the size of the addresses buffer. */
2823 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2824 optlen);
2825 break;
2827 case SCTP_DISABLE_FRAGMENTS:
2828 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2829 break;
2831 case SCTP_EVENTS:
2832 retval = sctp_setsockopt_events(sk, optval, optlen);
2833 break;
2835 case SCTP_AUTOCLOSE:
2836 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2837 break;
2839 case SCTP_PEER_ADDR_PARAMS:
2840 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2841 break;
2843 case SCTP_DELAYED_ACK_TIME:
2844 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2845 break;
2847 case SCTP_INITMSG:
2848 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2849 break;
2850 case SCTP_DEFAULT_SEND_PARAM:
2851 retval = sctp_setsockopt_default_send_param(sk, optval,
2852 optlen);
2853 break;
2854 case SCTP_PRIMARY_ADDR:
2855 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2856 break;
2857 case SCTP_SET_PEER_PRIMARY_ADDR:
2858 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2859 break;
2860 case SCTP_NODELAY:
2861 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2862 break;
2863 case SCTP_RTOINFO:
2864 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2865 break;
2866 case SCTP_ASSOCINFO:
2867 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2868 break;
2869 case SCTP_I_WANT_MAPPED_V4_ADDR:
2870 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2871 break;
2872 case SCTP_MAXSEG:
2873 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2874 break;
2875 case SCTP_ADAPTION_LAYER:
2876 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2877 break;
2879 default:
2880 retval = -ENOPROTOOPT;
2881 break;
2884 sctp_release_sock(sk);
2886 out_nounlock:
2887 return retval;
2890 /* API 3.1.6 connect() - UDP Style Syntax
2892 * An application may use the connect() call in the UDP model to initiate an
2893 * association without sending data.
2895 * The syntax is:
2897 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2899 * sd: the socket descriptor to have a new association added to.
2901 * nam: the address structure (either struct sockaddr_in or struct
2902 * sockaddr_in6 defined in RFC2553 [7]).
2904 * len: the size of the address.
2906 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2907 int addr_len)
2909 int err = 0;
2910 struct sctp_af *af;
2912 sctp_lock_sock(sk);
2914 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2915 __FUNCTION__, sk, addr, addr_len);
2917 /* Validate addr_len before calling common connect/connectx routine. */
2918 af = sctp_get_af_specific(addr->sa_family);
2919 if (!af || addr_len < af->sockaddr_len) {
2920 err = -EINVAL;
2921 } else {
2922 /* Pass correct addr len to common routine (so it knows there
2923 * is only one address being passed.
2925 err = __sctp_connect(sk, addr, af->sockaddr_len);
2928 sctp_release_sock(sk);
2929 return err;
2932 /* FIXME: Write comments. */
2933 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2935 return -EOPNOTSUPP; /* STUB */
2938 /* 4.1.4 accept() - TCP Style Syntax
2940 * Applications use accept() call to remove an established SCTP
2941 * association from the accept queue of the endpoint. A new socket
2942 * descriptor will be returned from accept() to represent the newly
2943 * formed association.
2945 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2947 struct sctp_sock *sp;
2948 struct sctp_endpoint *ep;
2949 struct sock *newsk = NULL;
2950 struct sctp_association *asoc;
2951 long timeo;
2952 int error = 0;
2954 sctp_lock_sock(sk);
2956 sp = sctp_sk(sk);
2957 ep = sp->ep;
2959 if (!sctp_style(sk, TCP)) {
2960 error = -EOPNOTSUPP;
2961 goto out;
2964 if (!sctp_sstate(sk, LISTENING)) {
2965 error = -EINVAL;
2966 goto out;
2969 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2971 error = sctp_wait_for_accept(sk, timeo);
2972 if (error)
2973 goto out;
2975 /* We treat the list of associations on the endpoint as the accept
2976 * queue and pick the first association on the list.
2978 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2980 newsk = sp->pf->create_accept_sk(sk, asoc);
2981 if (!newsk) {
2982 error = -ENOMEM;
2983 goto out;
2986 /* Populate the fields of the newsk from the oldsk and migrate the
2987 * asoc to the newsk.
2989 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2991 out:
2992 sctp_release_sock(sk);
2993 *err = error;
2994 return newsk;
2997 /* The SCTP ioctl handler. */
2998 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3000 return -ENOIOCTLCMD;
3003 /* This is the function which gets called during socket creation to
3004 * initialized the SCTP-specific portion of the sock.
3005 * The sock structure should already be zero-filled memory.
3007 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3009 struct sctp_endpoint *ep;
3010 struct sctp_sock *sp;
3012 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3014 sp = sctp_sk(sk);
3016 /* Initialize the SCTP per socket area. */
3017 switch (sk->sk_type) {
3018 case SOCK_SEQPACKET:
3019 sp->type = SCTP_SOCKET_UDP;
3020 break;
3021 case SOCK_STREAM:
3022 sp->type = SCTP_SOCKET_TCP;
3023 break;
3024 default:
3025 return -ESOCKTNOSUPPORT;
3028 /* Initialize default send parameters. These parameters can be
3029 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3031 sp->default_stream = 0;
3032 sp->default_ppid = 0;
3033 sp->default_flags = 0;
3034 sp->default_context = 0;
3035 sp->default_timetolive = 0;
3037 /* Initialize default setup parameters. These parameters
3038 * can be modified with the SCTP_INITMSG socket option or
3039 * overridden by the SCTP_INIT CMSG.
3041 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3042 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3043 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3044 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
3046 /* Initialize default RTO related parameters. These parameters can
3047 * be modified for with the SCTP_RTOINFO socket option.
3049 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
3050 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
3051 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
3053 /* Initialize default association related parameters. These parameters
3054 * can be modified with the SCTP_ASSOCINFO socket option.
3056 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3057 sp->assocparams.sasoc_number_peer_destinations = 0;
3058 sp->assocparams.sasoc_peer_rwnd = 0;
3059 sp->assocparams.sasoc_local_rwnd = 0;
3060 sp->assocparams.sasoc_cookie_life =
3061 jiffies_to_msecs(sctp_valid_cookie_life);
3063 /* Initialize default event subscriptions. By default, all the
3064 * options are off.
3066 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3068 /* Default Peer Address Parameters. These defaults can
3069 * be modified via SCTP_PEER_ADDR_PARAMS
3071 sp->hbinterval = jiffies_to_msecs(sctp_hb_interval);
3072 sp->pathmaxrxt = sctp_max_retrans_path;
3073 sp->pathmtu = 0; // allow default discovery
3074 sp->sackdelay = jiffies_to_msecs(sctp_sack_timeout);
3075 sp->param_flags = SPP_HB_ENABLE |
3076 SPP_PMTUD_ENABLE |
3077 SPP_SACKDELAY_ENABLE;
3079 /* If enabled no SCTP message fragmentation will be performed.
3080 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3082 sp->disable_fragments = 0;
3084 /* Turn on/off any Nagle-like algorithm. */
3085 sp->nodelay = 1;
3087 /* Enable by default. */
3088 sp->v4mapped = 1;
3090 /* Auto-close idle associations after the configured
3091 * number of seconds. A value of 0 disables this
3092 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3093 * for UDP-style sockets only.
3095 sp->autoclose = 0;
3097 /* User specified fragmentation limit. */
3098 sp->user_frag = 0;
3100 sp->adaption_ind = 0;
3102 sp->pf = sctp_get_pf_specific(sk->sk_family);
3104 /* Control variables for partial data delivery. */
3105 sp->pd_mode = 0;
3106 skb_queue_head_init(&sp->pd_lobby);
3108 /* Create a per socket endpoint structure. Even if we
3109 * change the data structure relationships, this may still
3110 * be useful for storing pre-connect address information.
3112 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3113 if (!ep)
3114 return -ENOMEM;
3116 sp->ep = ep;
3117 sp->hmac = NULL;
3119 SCTP_DBG_OBJCNT_INC(sock);
3120 return 0;
3123 /* Cleanup any SCTP per socket resources. */
3124 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3126 struct sctp_endpoint *ep;
3128 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3130 /* Release our hold on the endpoint. */
3131 ep = sctp_sk(sk)->ep;
3132 sctp_endpoint_free(ep);
3134 return 0;
3137 /* API 4.1.7 shutdown() - TCP Style Syntax
3138 * int shutdown(int socket, int how);
3140 * sd - the socket descriptor of the association to be closed.
3141 * how - Specifies the type of shutdown. The values are
3142 * as follows:
3143 * SHUT_RD
3144 * Disables further receive operations. No SCTP
3145 * protocol action is taken.
3146 * SHUT_WR
3147 * Disables further send operations, and initiates
3148 * the SCTP shutdown sequence.
3149 * SHUT_RDWR
3150 * Disables further send and receive operations
3151 * and initiates the SCTP shutdown sequence.
3153 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3155 struct sctp_endpoint *ep;
3156 struct sctp_association *asoc;
3158 if (!sctp_style(sk, TCP))
3159 return;
3161 if (how & SEND_SHUTDOWN) {
3162 ep = sctp_sk(sk)->ep;
3163 if (!list_empty(&ep->asocs)) {
3164 asoc = list_entry(ep->asocs.next,
3165 struct sctp_association, asocs);
3166 sctp_primitive_SHUTDOWN(asoc, NULL);
3171 /* 7.2.1 Association Status (SCTP_STATUS)
3173 * Applications can retrieve current status information about an
3174 * association, including association state, peer receiver window size,
3175 * number of unacked data chunks, and number of data chunks pending
3176 * receipt. This information is read-only.
3178 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3179 char __user *optval,
3180 int __user *optlen)
3182 struct sctp_status status;
3183 struct sctp_association *asoc = NULL;
3184 struct sctp_transport *transport;
3185 sctp_assoc_t associd;
3186 int retval = 0;
3188 if (len != sizeof(status)) {
3189 retval = -EINVAL;
3190 goto out;
3193 if (copy_from_user(&status, optval, sizeof(status))) {
3194 retval = -EFAULT;
3195 goto out;
3198 associd = status.sstat_assoc_id;
3199 asoc = sctp_id2assoc(sk, associd);
3200 if (!asoc) {
3201 retval = -EINVAL;
3202 goto out;
3205 transport = asoc->peer.primary_path;
3207 status.sstat_assoc_id = sctp_assoc2id(asoc);
3208 status.sstat_state = asoc->state;
3209 status.sstat_rwnd = asoc->peer.rwnd;
3210 status.sstat_unackdata = asoc->unack_data;
3212 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3213 status.sstat_instrms = asoc->c.sinit_max_instreams;
3214 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3215 status.sstat_fragmentation_point = asoc->frag_point;
3216 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3217 memcpy(&status.sstat_primary.spinfo_address,
3218 &(transport->ipaddr), sizeof(union sctp_addr));
3219 /* Map ipv4 address into v4-mapped-on-v6 address. */
3220 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3221 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3222 status.sstat_primary.spinfo_state = transport->state;
3223 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3224 status.sstat_primary.spinfo_srtt = transport->srtt;
3225 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3226 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3228 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3229 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3231 if (put_user(len, optlen)) {
3232 retval = -EFAULT;
3233 goto out;
3236 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3237 len, status.sstat_state, status.sstat_rwnd,
3238 status.sstat_assoc_id);
3240 if (copy_to_user(optval, &status, len)) {
3241 retval = -EFAULT;
3242 goto out;
3245 out:
3246 return (retval);
3250 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3252 * Applications can retrieve information about a specific peer address
3253 * of an association, including its reachability state, congestion
3254 * window, and retransmission timer values. This information is
3255 * read-only.
3257 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3258 char __user *optval,
3259 int __user *optlen)
3261 struct sctp_paddrinfo pinfo;
3262 struct sctp_transport *transport;
3263 int retval = 0;
3265 if (len != sizeof(pinfo)) {
3266 retval = -EINVAL;
3267 goto out;
3270 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3271 retval = -EFAULT;
3272 goto out;
3275 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3276 pinfo.spinfo_assoc_id);
3277 if (!transport)
3278 return -EINVAL;
3280 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3281 pinfo.spinfo_state = transport->state;
3282 pinfo.spinfo_cwnd = transport->cwnd;
3283 pinfo.spinfo_srtt = transport->srtt;
3284 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3285 pinfo.spinfo_mtu = transport->pathmtu;
3287 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3288 pinfo.spinfo_state = SCTP_ACTIVE;
3290 if (put_user(len, optlen)) {
3291 retval = -EFAULT;
3292 goto out;
3295 if (copy_to_user(optval, &pinfo, len)) {
3296 retval = -EFAULT;
3297 goto out;
3300 out:
3301 return (retval);
3304 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3306 * This option is a on/off flag. If enabled no SCTP message
3307 * fragmentation will be performed. Instead if a message being sent
3308 * exceeds the current PMTU size, the message will NOT be sent and
3309 * instead a error will be indicated to the user.
3311 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3312 char __user *optval, int __user *optlen)
3314 int val;
3316 if (len < sizeof(int))
3317 return -EINVAL;
3319 len = sizeof(int);
3320 val = (sctp_sk(sk)->disable_fragments == 1);
3321 if (put_user(len, optlen))
3322 return -EFAULT;
3323 if (copy_to_user(optval, &val, len))
3324 return -EFAULT;
3325 return 0;
3328 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3330 * This socket option is used to specify various notifications and
3331 * ancillary data the user wishes to receive.
3333 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3334 int __user *optlen)
3336 if (len != sizeof(struct sctp_event_subscribe))
3337 return -EINVAL;
3338 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3339 return -EFAULT;
3340 return 0;
3343 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3345 * This socket option is applicable to the UDP-style socket only. When
3346 * set it will cause associations that are idle for more than the
3347 * specified number of seconds to automatically close. An association
3348 * being idle is defined an association that has NOT sent or received
3349 * user data. The special value of '0' indicates that no automatic
3350 * close of any associations should be performed. The option expects an
3351 * integer defining the number of seconds of idle time before an
3352 * association is closed.
3354 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3356 /* Applicable to UDP-style socket only */
3357 if (sctp_style(sk, TCP))
3358 return -EOPNOTSUPP;
3359 if (len != sizeof(int))
3360 return -EINVAL;
3361 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3362 return -EFAULT;
3363 return 0;
3366 /* Helper routine to branch off an association to a new socket. */
3367 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3368 struct socket **sockp)
3370 struct sock *sk = asoc->base.sk;
3371 struct socket *sock;
3372 int err = 0;
3374 /* An association cannot be branched off from an already peeled-off
3375 * socket, nor is this supported for tcp style sockets.
3377 if (!sctp_style(sk, UDP))
3378 return -EINVAL;
3380 /* Create a new socket. */
3381 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3382 if (err < 0)
3383 return err;
3385 /* Populate the fields of the newsk from the oldsk and migrate the
3386 * asoc to the newsk.
3388 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3389 *sockp = sock;
3391 return err;
3394 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3396 sctp_peeloff_arg_t peeloff;
3397 struct socket *newsock;
3398 int retval = 0;
3399 struct sctp_association *asoc;
3401 if (len != sizeof(sctp_peeloff_arg_t))
3402 return -EINVAL;
3403 if (copy_from_user(&peeloff, optval, len))
3404 return -EFAULT;
3406 asoc = sctp_id2assoc(sk, peeloff.associd);
3407 if (!asoc) {
3408 retval = -EINVAL;
3409 goto out;
3412 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3414 retval = sctp_do_peeloff(asoc, &newsock);
3415 if (retval < 0)
3416 goto out;
3418 /* Map the socket to an unused fd that can be returned to the user. */
3419 retval = sock_map_fd(newsock);
3420 if (retval < 0) {
3421 sock_release(newsock);
3422 goto out;
3425 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3426 __FUNCTION__, sk, asoc, newsock->sk, retval);
3428 /* Return the fd mapped to the new socket. */
3429 peeloff.sd = retval;
3430 if (copy_to_user(optval, &peeloff, len))
3431 retval = -EFAULT;
3433 out:
3434 return retval;
3437 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3439 * Applications can enable or disable heartbeats for any peer address of
3440 * an association, modify an address's heartbeat interval, force a
3441 * heartbeat to be sent immediately, and adjust the address's maximum
3442 * number of retransmissions sent before an address is considered
3443 * unreachable. The following structure is used to access and modify an
3444 * address's parameters:
3446 * struct sctp_paddrparams {
3447 * sctp_assoc_t spp_assoc_id;
3448 * struct sockaddr_storage spp_address;
3449 * uint32_t spp_hbinterval;
3450 * uint16_t spp_pathmaxrxt;
3451 * uint32_t spp_pathmtu;
3452 * uint32_t spp_sackdelay;
3453 * uint32_t spp_flags;
3454 * };
3456 * spp_assoc_id - (one-to-many style socket) This is filled in the
3457 * application, and identifies the association for
3458 * this query.
3459 * spp_address - This specifies which address is of interest.
3460 * spp_hbinterval - This contains the value of the heartbeat interval,
3461 * in milliseconds. If a value of zero
3462 * is present in this field then no changes are to
3463 * be made to this parameter.
3464 * spp_pathmaxrxt - This contains the maximum number of
3465 * retransmissions before this address shall be
3466 * considered unreachable. If a value of zero
3467 * is present in this field then no changes are to
3468 * be made to this parameter.
3469 * spp_pathmtu - When Path MTU discovery is disabled the value
3470 * specified here will be the "fixed" path mtu.
3471 * Note that if the spp_address field is empty
3472 * then all associations on this address will
3473 * have this fixed path mtu set upon them.
3475 * spp_sackdelay - When delayed sack is enabled, this value specifies
3476 * the number of milliseconds that sacks will be delayed
3477 * for. This value will apply to all addresses of an
3478 * association if the spp_address field is empty. Note
3479 * also, that if delayed sack is enabled and this
3480 * value is set to 0, no change is made to the last
3481 * recorded delayed sack timer value.
3483 * spp_flags - These flags are used to control various features
3484 * on an association. The flag field may contain
3485 * zero or more of the following options.
3487 * SPP_HB_ENABLE - Enable heartbeats on the
3488 * specified address. Note that if the address
3489 * field is empty all addresses for the association
3490 * have heartbeats enabled upon them.
3492 * SPP_HB_DISABLE - Disable heartbeats on the
3493 * speicifed address. Note that if the address
3494 * field is empty all addresses for the association
3495 * will have their heartbeats disabled. Note also
3496 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3497 * mutually exclusive, only one of these two should
3498 * be specified. Enabling both fields will have
3499 * undetermined results.
3501 * SPP_HB_DEMAND - Request a user initiated heartbeat
3502 * to be made immediately.
3504 * SPP_PMTUD_ENABLE - This field will enable PMTU
3505 * discovery upon the specified address. Note that
3506 * if the address feild is empty then all addresses
3507 * on the association are effected.
3509 * SPP_PMTUD_DISABLE - This field will disable PMTU
3510 * discovery upon the specified address. Note that
3511 * if the address feild is empty then all addresses
3512 * on the association are effected. Not also that
3513 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3514 * exclusive. Enabling both will have undetermined
3515 * results.
3517 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3518 * on delayed sack. The time specified in spp_sackdelay
3519 * is used to specify the sack delay for this address. Note
3520 * that if spp_address is empty then all addresses will
3521 * enable delayed sack and take on the sack delay
3522 * value specified in spp_sackdelay.
3523 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3524 * off delayed sack. If the spp_address field is blank then
3525 * delayed sack is disabled for the entire association. Note
3526 * also that this field is mutually exclusive to
3527 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3528 * results.
3530 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3531 char __user *optval, int __user *optlen)
3533 struct sctp_paddrparams params;
3534 struct sctp_transport *trans = NULL;
3535 struct sctp_association *asoc = NULL;
3536 struct sctp_sock *sp = sctp_sk(sk);
3538 if (len != sizeof(struct sctp_paddrparams))
3539 return -EINVAL;
3541 if (copy_from_user(&params, optval, len))
3542 return -EFAULT;
3544 /* If an address other than INADDR_ANY is specified, and
3545 * no transport is found, then the request is invalid.
3547 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3548 trans = sctp_addr_id2transport(sk, &params.spp_address,
3549 params.spp_assoc_id);
3550 if (!trans) {
3551 SCTP_DEBUG_PRINTK("Failed no transport\n");
3552 return -EINVAL;
3556 /* Get association, if assoc_id != 0 and the socket is a one
3557 * to many style socket, and an association was not found, then
3558 * the id was invalid.
3560 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3561 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3562 SCTP_DEBUG_PRINTK("Failed no association\n");
3563 return -EINVAL;
3566 if (trans) {
3567 /* Fetch transport values. */
3568 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3569 params.spp_pathmtu = trans->pathmtu;
3570 params.spp_pathmaxrxt = trans->pathmaxrxt;
3571 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3573 /*draft-11 doesn't say what to return in spp_flags*/
3574 params.spp_flags = trans->param_flags;
3575 } else if (asoc) {
3576 /* Fetch association values. */
3577 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3578 params.spp_pathmtu = asoc->pathmtu;
3579 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3580 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3582 /*draft-11 doesn't say what to return in spp_flags*/
3583 params.spp_flags = asoc->param_flags;
3584 } else {
3585 /* Fetch socket values. */
3586 params.spp_hbinterval = sp->hbinterval;
3587 params.spp_pathmtu = sp->pathmtu;
3588 params.spp_sackdelay = sp->sackdelay;
3589 params.spp_pathmaxrxt = sp->pathmaxrxt;
3591 /*draft-11 doesn't say what to return in spp_flags*/
3592 params.spp_flags = sp->param_flags;
3595 if (copy_to_user(optval, &params, len))
3596 return -EFAULT;
3598 if (put_user(len, optlen))
3599 return -EFAULT;
3601 return 0;
3604 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3606 * This options will get or set the delayed ack timer. The time is set
3607 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3608 * endpoints default delayed ack timer value. If the assoc_id field is
3609 * non-zero, then the set or get effects the specified association.
3611 * struct sctp_assoc_value {
3612 * sctp_assoc_t assoc_id;
3613 * uint32_t assoc_value;
3614 * };
3616 * assoc_id - This parameter, indicates which association the
3617 * user is preforming an action upon. Note that if
3618 * this field's value is zero then the endpoints
3619 * default value is changed (effecting future
3620 * associations only).
3622 * assoc_value - This parameter contains the number of milliseconds
3623 * that the user is requesting the delayed ACK timer
3624 * be set to. Note that this value is defined in
3625 * the standard to be between 200 and 500 milliseconds.
3627 * Note: a value of zero will leave the value alone,
3628 * but disable SACK delay. A non-zero value will also
3629 * enable SACK delay.
3631 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3632 char __user *optval,
3633 int __user *optlen)
3635 struct sctp_assoc_value params;
3636 struct sctp_association *asoc = NULL;
3637 struct sctp_sock *sp = sctp_sk(sk);
3639 if (len != sizeof(struct sctp_assoc_value))
3640 return - EINVAL;
3642 if (copy_from_user(&params, optval, len))
3643 return -EFAULT;
3645 /* Get association, if assoc_id != 0 and the socket is a one
3646 * to many style socket, and an association was not found, then
3647 * the id was invalid.
3649 asoc = sctp_id2assoc(sk, params.assoc_id);
3650 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3651 return -EINVAL;
3653 if (asoc) {
3654 /* Fetch association values. */
3655 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3656 params.assoc_value = jiffies_to_msecs(
3657 asoc->sackdelay);
3658 else
3659 params.assoc_value = 0;
3660 } else {
3661 /* Fetch socket values. */
3662 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3663 params.assoc_value = sp->sackdelay;
3664 else
3665 params.assoc_value = 0;
3668 if (copy_to_user(optval, &params, len))
3669 return -EFAULT;
3671 if (put_user(len, optlen))
3672 return -EFAULT;
3674 return 0;
3677 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3679 * Applications can specify protocol parameters for the default association
3680 * initialization. The option name argument to setsockopt() and getsockopt()
3681 * is SCTP_INITMSG.
3683 * Setting initialization parameters is effective only on an unconnected
3684 * socket (for UDP-style sockets only future associations are effected
3685 * by the change). With TCP-style sockets, this option is inherited by
3686 * sockets derived from a listener socket.
3688 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3690 if (len != sizeof(struct sctp_initmsg))
3691 return -EINVAL;
3692 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3693 return -EFAULT;
3694 return 0;
3697 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3698 char __user *optval,
3699 int __user *optlen)
3701 sctp_assoc_t id;
3702 struct sctp_association *asoc;
3703 struct list_head *pos;
3704 int cnt = 0;
3706 if (len != sizeof(sctp_assoc_t))
3707 return -EINVAL;
3709 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3710 return -EFAULT;
3712 /* For UDP-style sockets, id specifies the association to query. */
3713 asoc = sctp_id2assoc(sk, id);
3714 if (!asoc)
3715 return -EINVAL;
3717 list_for_each(pos, &asoc->peer.transport_addr_list) {
3718 cnt ++;
3721 return cnt;
3725 * Old API for getting list of peer addresses. Does not work for 32-bit
3726 * programs running on a 64-bit kernel
3728 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3729 char __user *optval,
3730 int __user *optlen)
3732 struct sctp_association *asoc;
3733 struct list_head *pos;
3734 int cnt = 0;
3735 struct sctp_getaddrs_old getaddrs;
3736 struct sctp_transport *from;
3737 void __user *to;
3738 union sctp_addr temp;
3739 struct sctp_sock *sp = sctp_sk(sk);
3740 int addrlen;
3742 if (len != sizeof(struct sctp_getaddrs_old))
3743 return -EINVAL;
3745 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3746 return -EFAULT;
3748 if (getaddrs.addr_num <= 0) return -EINVAL;
3750 /* For UDP-style sockets, id specifies the association to query. */
3751 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3752 if (!asoc)
3753 return -EINVAL;
3755 to = (void __user *)getaddrs.addrs;
3756 list_for_each(pos, &asoc->peer.transport_addr_list) {
3757 from = list_entry(pos, struct sctp_transport, transports);
3758 memcpy(&temp, &from->ipaddr, sizeof(temp));
3759 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3760 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3761 temp.v4.sin_port = htons(temp.v4.sin_port);
3762 if (copy_to_user(to, &temp, addrlen))
3763 return -EFAULT;
3764 to += addrlen ;
3765 cnt ++;
3766 if (cnt >= getaddrs.addr_num) break;
3768 getaddrs.addr_num = cnt;
3769 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3770 return -EFAULT;
3772 return 0;
3775 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3776 char __user *optval, int __user *optlen)
3778 struct sctp_association *asoc;
3779 struct list_head *pos;
3780 int cnt = 0;
3781 struct sctp_getaddrs getaddrs;
3782 struct sctp_transport *from;
3783 void __user *to;
3784 union sctp_addr temp;
3785 struct sctp_sock *sp = sctp_sk(sk);
3786 int addrlen;
3787 size_t space_left;
3788 int bytes_copied;
3790 if (len < sizeof(struct sctp_getaddrs))
3791 return -EINVAL;
3793 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3794 return -EFAULT;
3796 /* For UDP-style sockets, id specifies the association to query. */
3797 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3798 if (!asoc)
3799 return -EINVAL;
3801 to = optval + offsetof(struct sctp_getaddrs,addrs);
3802 space_left = len - sizeof(struct sctp_getaddrs) -
3803 offsetof(struct sctp_getaddrs,addrs);
3805 list_for_each(pos, &asoc->peer.transport_addr_list) {
3806 from = list_entry(pos, struct sctp_transport, transports);
3807 memcpy(&temp, &from->ipaddr, sizeof(temp));
3808 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3809 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3810 if(space_left < addrlen)
3811 return -ENOMEM;
3812 temp.v4.sin_port = htons(temp.v4.sin_port);
3813 if (copy_to_user(to, &temp, addrlen))
3814 return -EFAULT;
3815 to += addrlen;
3816 cnt++;
3817 space_left -= addrlen;
3820 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3821 return -EFAULT;
3822 bytes_copied = ((char __user *)to) - optval;
3823 if (put_user(bytes_copied, optlen))
3824 return -EFAULT;
3826 return 0;
3829 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3830 char __user *optval,
3831 int __user *optlen)
3833 sctp_assoc_t id;
3834 struct sctp_bind_addr *bp;
3835 struct sctp_association *asoc;
3836 struct list_head *pos;
3837 struct sctp_sockaddr_entry *addr;
3838 rwlock_t *addr_lock;
3839 unsigned long flags;
3840 int cnt = 0;
3842 if (len != sizeof(sctp_assoc_t))
3843 return -EINVAL;
3845 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3846 return -EFAULT;
3849 * For UDP-style sockets, id specifies the association to query.
3850 * If the id field is set to the value '0' then the locally bound
3851 * addresses are returned without regard to any particular
3852 * association.
3854 if (0 == id) {
3855 bp = &sctp_sk(sk)->ep->base.bind_addr;
3856 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3857 } else {
3858 asoc = sctp_id2assoc(sk, id);
3859 if (!asoc)
3860 return -EINVAL;
3861 bp = &asoc->base.bind_addr;
3862 addr_lock = &asoc->base.addr_lock;
3865 sctp_read_lock(addr_lock);
3867 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3868 * addresses from the global local address list.
3870 if (sctp_list_single_entry(&bp->address_list)) {
3871 addr = list_entry(bp->address_list.next,
3872 struct sctp_sockaddr_entry, list);
3873 if (sctp_is_any(&addr->a)) {
3874 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3875 list_for_each(pos, &sctp_local_addr_list) {
3876 addr = list_entry(pos,
3877 struct sctp_sockaddr_entry,
3878 list);
3879 if ((PF_INET == sk->sk_family) &&
3880 (AF_INET6 == addr->a.sa.sa_family))
3881 continue;
3882 cnt++;
3884 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3885 flags);
3886 } else {
3887 cnt = 1;
3889 goto done;
3892 list_for_each(pos, &bp->address_list) {
3893 cnt ++;
3896 done:
3897 sctp_read_unlock(addr_lock);
3898 return cnt;
3901 /* Helper function that copies local addresses to user and returns the number
3902 * of addresses copied.
3904 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3905 void __user *to)
3907 struct list_head *pos;
3908 struct sctp_sockaddr_entry *addr;
3909 unsigned long flags;
3910 union sctp_addr temp;
3911 int cnt = 0;
3912 int addrlen;
3914 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3915 list_for_each(pos, &sctp_local_addr_list) {
3916 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3917 if ((PF_INET == sk->sk_family) &&
3918 (AF_INET6 == addr->a.sa.sa_family))
3919 continue;
3920 memcpy(&temp, &addr->a, sizeof(temp));
3921 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3922 &temp);
3923 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3924 temp.v4.sin_port = htons(port);
3925 if (copy_to_user(to, &temp, addrlen)) {
3926 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3927 flags);
3928 return -EFAULT;
3930 to += addrlen;
3931 cnt ++;
3932 if (cnt >= max_addrs) break;
3934 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3936 return cnt;
3939 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3940 void __user **to, size_t space_left)
3942 struct list_head *pos;
3943 struct sctp_sockaddr_entry *addr;
3944 unsigned long flags;
3945 union sctp_addr temp;
3946 int cnt = 0;
3947 int addrlen;
3949 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3950 list_for_each(pos, &sctp_local_addr_list) {
3951 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3952 if ((PF_INET == sk->sk_family) &&
3953 (AF_INET6 == addr->a.sa.sa_family))
3954 continue;
3955 memcpy(&temp, &addr->a, sizeof(temp));
3956 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3957 &temp);
3958 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3959 if(space_left<addrlen)
3960 return -ENOMEM;
3961 temp.v4.sin_port = htons(port);
3962 if (copy_to_user(*to, &temp, addrlen)) {
3963 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3964 flags);
3965 return -EFAULT;
3967 *to += addrlen;
3968 cnt ++;
3969 space_left -= addrlen;
3971 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3973 return cnt;
3976 /* Old API for getting list of local addresses. Does not work for 32-bit
3977 * programs running on a 64-bit kernel
3979 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3980 char __user *optval, int __user *optlen)
3982 struct sctp_bind_addr *bp;
3983 struct sctp_association *asoc;
3984 struct list_head *pos;
3985 int cnt = 0;
3986 struct sctp_getaddrs_old getaddrs;
3987 struct sctp_sockaddr_entry *addr;
3988 void __user *to;
3989 union sctp_addr temp;
3990 struct sctp_sock *sp = sctp_sk(sk);
3991 int addrlen;
3992 rwlock_t *addr_lock;
3993 int err = 0;
3995 if (len != sizeof(struct sctp_getaddrs_old))
3996 return -EINVAL;
3998 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3999 return -EFAULT;
4001 if (getaddrs.addr_num <= 0) return -EINVAL;
4003 * For UDP-style sockets, id specifies the association to query.
4004 * If the id field is set to the value '0' then the locally bound
4005 * addresses are returned without regard to any particular
4006 * association.
4008 if (0 == getaddrs.assoc_id) {
4009 bp = &sctp_sk(sk)->ep->base.bind_addr;
4010 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4011 } else {
4012 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4013 if (!asoc)
4014 return -EINVAL;
4015 bp = &asoc->base.bind_addr;
4016 addr_lock = &asoc->base.addr_lock;
4019 to = getaddrs.addrs;
4021 sctp_read_lock(addr_lock);
4023 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4024 * addresses from the global local address list.
4026 if (sctp_list_single_entry(&bp->address_list)) {
4027 addr = list_entry(bp->address_list.next,
4028 struct sctp_sockaddr_entry, list);
4029 if (sctp_is_any(&addr->a)) {
4030 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4031 getaddrs.addr_num,
4032 to);
4033 if (cnt < 0) {
4034 err = cnt;
4035 goto unlock;
4037 goto copy_getaddrs;
4041 list_for_each(pos, &bp->address_list) {
4042 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4043 memcpy(&temp, &addr->a, sizeof(temp));
4044 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4045 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4046 temp.v4.sin_port = htons(temp.v4.sin_port);
4047 if (copy_to_user(to, &temp, addrlen)) {
4048 err = -EFAULT;
4049 goto unlock;
4051 to += addrlen;
4052 cnt ++;
4053 if (cnt >= getaddrs.addr_num) break;
4056 copy_getaddrs:
4057 getaddrs.addr_num = cnt;
4058 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4059 err = -EFAULT;
4061 unlock:
4062 sctp_read_unlock(addr_lock);
4063 return err;
4066 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4067 char __user *optval, int __user *optlen)
4069 struct sctp_bind_addr *bp;
4070 struct sctp_association *asoc;
4071 struct list_head *pos;
4072 int cnt = 0;
4073 struct sctp_getaddrs getaddrs;
4074 struct sctp_sockaddr_entry *addr;
4075 void __user *to;
4076 union sctp_addr temp;
4077 struct sctp_sock *sp = sctp_sk(sk);
4078 int addrlen;
4079 rwlock_t *addr_lock;
4080 int err = 0;
4081 size_t space_left;
4082 int bytes_copied;
4084 if (len <= sizeof(struct sctp_getaddrs))
4085 return -EINVAL;
4087 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4088 return -EFAULT;
4091 * For UDP-style sockets, id specifies the association to query.
4092 * If the id field is set to the value '0' then the locally bound
4093 * addresses are returned without regard to any particular
4094 * association.
4096 if (0 == getaddrs.assoc_id) {
4097 bp = &sctp_sk(sk)->ep->base.bind_addr;
4098 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4099 } else {
4100 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4101 if (!asoc)
4102 return -EINVAL;
4103 bp = &asoc->base.bind_addr;
4104 addr_lock = &asoc->base.addr_lock;
4107 to = optval + offsetof(struct sctp_getaddrs,addrs);
4108 space_left = len - sizeof(struct sctp_getaddrs) -
4109 offsetof(struct sctp_getaddrs,addrs);
4111 sctp_read_lock(addr_lock);
4113 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4114 * addresses from the global local address list.
4116 if (sctp_list_single_entry(&bp->address_list)) {
4117 addr = list_entry(bp->address_list.next,
4118 struct sctp_sockaddr_entry, list);
4119 if (sctp_is_any(&addr->a)) {
4120 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4121 &to, space_left);
4122 if (cnt < 0) {
4123 err = cnt;
4124 goto unlock;
4126 goto copy_getaddrs;
4130 list_for_each(pos, &bp->address_list) {
4131 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4132 memcpy(&temp, &addr->a, sizeof(temp));
4133 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4134 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4135 if(space_left < addrlen)
4136 return -ENOMEM; /*fixme: right error?*/
4137 temp.v4.sin_port = htons(temp.v4.sin_port);
4138 if (copy_to_user(to, &temp, addrlen)) {
4139 err = -EFAULT;
4140 goto unlock;
4142 to += addrlen;
4143 cnt ++;
4144 space_left -= addrlen;
4147 copy_getaddrs:
4148 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4149 return -EFAULT;
4150 bytes_copied = ((char __user *)to) - optval;
4151 if (put_user(bytes_copied, optlen))
4152 return -EFAULT;
4154 unlock:
4155 sctp_read_unlock(addr_lock);
4156 return err;
4159 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4161 * Requests that the local SCTP stack use the enclosed peer address as
4162 * the association primary. The enclosed address must be one of the
4163 * association peer's addresses.
4165 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4166 char __user *optval, int __user *optlen)
4168 struct sctp_prim prim;
4169 struct sctp_association *asoc;
4170 struct sctp_sock *sp = sctp_sk(sk);
4172 if (len != sizeof(struct sctp_prim))
4173 return -EINVAL;
4175 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4176 return -EFAULT;
4178 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4179 if (!asoc)
4180 return -EINVAL;
4182 if (!asoc->peer.primary_path)
4183 return -ENOTCONN;
4185 asoc->peer.primary_path->ipaddr.v4.sin_port =
4186 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4187 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4188 sizeof(union sctp_addr));
4189 asoc->peer.primary_path->ipaddr.v4.sin_port =
4190 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4192 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4193 (union sctp_addr *)&prim.ssp_addr);
4195 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4196 return -EFAULT;
4198 return 0;
4202 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4204 * Requests that the local endpoint set the specified Adaption Layer
4205 * Indication parameter for all future INIT and INIT-ACK exchanges.
4207 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4208 char __user *optval, int __user *optlen)
4210 struct sctp_setadaption adaption;
4212 if (len != sizeof(struct sctp_setadaption))
4213 return -EINVAL;
4215 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4216 if (copy_to_user(optval, &adaption, len))
4217 return -EFAULT;
4219 return 0;
4224 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4226 * Applications that wish to use the sendto() system call may wish to
4227 * specify a default set of parameters that would normally be supplied
4228 * through the inclusion of ancillary data. This socket option allows
4229 * such an application to set the default sctp_sndrcvinfo structure.
4232 * The application that wishes to use this socket option simply passes
4233 * in to this call the sctp_sndrcvinfo structure defined in Section
4234 * 5.2.2) The input parameters accepted by this call include
4235 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4236 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4237 * to this call if the caller is using the UDP model.
4239 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4241 static int sctp_getsockopt_default_send_param(struct sock *sk,
4242 int len, char __user *optval,
4243 int __user *optlen)
4245 struct sctp_sndrcvinfo info;
4246 struct sctp_association *asoc;
4247 struct sctp_sock *sp = sctp_sk(sk);
4249 if (len != sizeof(struct sctp_sndrcvinfo))
4250 return -EINVAL;
4251 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4252 return -EFAULT;
4254 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4255 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4256 return -EINVAL;
4258 if (asoc) {
4259 info.sinfo_stream = asoc->default_stream;
4260 info.sinfo_flags = asoc->default_flags;
4261 info.sinfo_ppid = asoc->default_ppid;
4262 info.sinfo_context = asoc->default_context;
4263 info.sinfo_timetolive = asoc->default_timetolive;
4264 } else {
4265 info.sinfo_stream = sp->default_stream;
4266 info.sinfo_flags = sp->default_flags;
4267 info.sinfo_ppid = sp->default_ppid;
4268 info.sinfo_context = sp->default_context;
4269 info.sinfo_timetolive = sp->default_timetolive;
4272 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4273 return -EFAULT;
4275 return 0;
4280 * 7.1.5 SCTP_NODELAY
4282 * Turn on/off any Nagle-like algorithm. This means that packets are
4283 * generally sent as soon as possible and no unnecessary delays are
4284 * introduced, at the cost of more packets in the network. Expects an
4285 * integer boolean flag.
4288 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4289 char __user *optval, int __user *optlen)
4291 int val;
4293 if (len < sizeof(int))
4294 return -EINVAL;
4296 len = sizeof(int);
4297 val = (sctp_sk(sk)->nodelay == 1);
4298 if (put_user(len, optlen))
4299 return -EFAULT;
4300 if (copy_to_user(optval, &val, len))
4301 return -EFAULT;
4302 return 0;
4307 * 7.1.1 SCTP_RTOINFO
4309 * The protocol parameters used to initialize and bound retransmission
4310 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4311 * and modify these parameters.
4312 * All parameters are time values, in milliseconds. A value of 0, when
4313 * modifying the parameters, indicates that the current value should not
4314 * be changed.
4317 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4318 char __user *optval,
4319 int __user *optlen) {
4320 struct sctp_rtoinfo rtoinfo;
4321 struct sctp_association *asoc;
4323 if (len != sizeof (struct sctp_rtoinfo))
4324 return -EINVAL;
4326 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4327 return -EFAULT;
4329 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4331 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4332 return -EINVAL;
4334 /* Values corresponding to the specific association. */
4335 if (asoc) {
4336 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4337 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4338 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4339 } else {
4340 /* Values corresponding to the endpoint. */
4341 struct sctp_sock *sp = sctp_sk(sk);
4343 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4344 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4345 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4348 if (put_user(len, optlen))
4349 return -EFAULT;
4351 if (copy_to_user(optval, &rtoinfo, len))
4352 return -EFAULT;
4354 return 0;
4359 * 7.1.2 SCTP_ASSOCINFO
4361 * This option is used to tune the the maximum retransmission attempts
4362 * of the association.
4363 * Returns an error if the new association retransmission value is
4364 * greater than the sum of the retransmission value of the peer.
4365 * See [SCTP] for more information.
4368 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4369 char __user *optval,
4370 int __user *optlen)
4373 struct sctp_assocparams assocparams;
4374 struct sctp_association *asoc;
4375 struct list_head *pos;
4376 int cnt = 0;
4378 if (len != sizeof (struct sctp_assocparams))
4379 return -EINVAL;
4381 if (copy_from_user(&assocparams, optval,
4382 sizeof (struct sctp_assocparams)))
4383 return -EFAULT;
4385 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4387 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4388 return -EINVAL;
4390 /* Values correspoinding to the specific association */
4391 if (asoc) {
4392 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4393 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4394 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4395 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4396 * 1000) +
4397 (asoc->cookie_life.tv_usec
4398 / 1000);
4400 list_for_each(pos, &asoc->peer.transport_addr_list) {
4401 cnt ++;
4404 assocparams.sasoc_number_peer_destinations = cnt;
4405 } else {
4406 /* Values corresponding to the endpoint */
4407 struct sctp_sock *sp = sctp_sk(sk);
4409 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4410 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4411 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4412 assocparams.sasoc_cookie_life =
4413 sp->assocparams.sasoc_cookie_life;
4414 assocparams.sasoc_number_peer_destinations =
4415 sp->assocparams.
4416 sasoc_number_peer_destinations;
4419 if (put_user(len, optlen))
4420 return -EFAULT;
4422 if (copy_to_user(optval, &assocparams, len))
4423 return -EFAULT;
4425 return 0;
4429 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4431 * This socket option is a boolean flag which turns on or off mapped V4
4432 * addresses. If this option is turned on and the socket is type
4433 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4434 * If this option is turned off, then no mapping will be done of V4
4435 * addresses and a user will receive both PF_INET6 and PF_INET type
4436 * addresses on the socket.
4438 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4439 char __user *optval, int __user *optlen)
4441 int val;
4442 struct sctp_sock *sp = sctp_sk(sk);
4444 if (len < sizeof(int))
4445 return -EINVAL;
4447 len = sizeof(int);
4448 val = sp->v4mapped;
4449 if (put_user(len, optlen))
4450 return -EFAULT;
4451 if (copy_to_user(optval, &val, len))
4452 return -EFAULT;
4454 return 0;
4458 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4460 * This socket option specifies the maximum size to put in any outgoing
4461 * SCTP chunk. If a message is larger than this size it will be
4462 * fragmented by SCTP into the specified size. Note that the underlying
4463 * SCTP implementation may fragment into smaller sized chunks when the
4464 * PMTU of the underlying association is smaller than the value set by
4465 * the user.
4467 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4468 char __user *optval, int __user *optlen)
4470 int val;
4472 if (len < sizeof(int))
4473 return -EINVAL;
4475 len = sizeof(int);
4477 val = sctp_sk(sk)->user_frag;
4478 if (put_user(len, optlen))
4479 return -EFAULT;
4480 if (copy_to_user(optval, &val, len))
4481 return -EFAULT;
4483 return 0;
4486 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4487 char __user *optval, int __user *optlen)
4489 int retval = 0;
4490 int len;
4492 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4493 sk, optname);
4495 /* I can hardly begin to describe how wrong this is. This is
4496 * so broken as to be worse than useless. The API draft
4497 * REALLY is NOT helpful here... I am not convinced that the
4498 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4499 * are at all well-founded.
4501 if (level != SOL_SCTP) {
4502 struct sctp_af *af = sctp_sk(sk)->pf->af;
4504 retval = af->getsockopt(sk, level, optname, optval, optlen);
4505 return retval;
4508 if (get_user(len, optlen))
4509 return -EFAULT;
4511 sctp_lock_sock(sk);
4513 switch (optname) {
4514 case SCTP_STATUS:
4515 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4516 break;
4517 case SCTP_DISABLE_FRAGMENTS:
4518 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4519 optlen);
4520 break;
4521 case SCTP_EVENTS:
4522 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4523 break;
4524 case SCTP_AUTOCLOSE:
4525 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4526 break;
4527 case SCTP_SOCKOPT_PEELOFF:
4528 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4529 break;
4530 case SCTP_PEER_ADDR_PARAMS:
4531 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4532 optlen);
4533 break;
4534 case SCTP_DELAYED_ACK_TIME:
4535 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4536 optlen);
4537 break;
4538 case SCTP_INITMSG:
4539 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4540 break;
4541 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4542 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4543 optlen);
4544 break;
4545 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4546 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4547 optlen);
4548 break;
4549 case SCTP_GET_PEER_ADDRS_OLD:
4550 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4551 optlen);
4552 break;
4553 case SCTP_GET_LOCAL_ADDRS_OLD:
4554 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4555 optlen);
4556 break;
4557 case SCTP_GET_PEER_ADDRS:
4558 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4559 optlen);
4560 break;
4561 case SCTP_GET_LOCAL_ADDRS:
4562 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4563 optlen);
4564 break;
4565 case SCTP_DEFAULT_SEND_PARAM:
4566 retval = sctp_getsockopt_default_send_param(sk, len,
4567 optval, optlen);
4568 break;
4569 case SCTP_PRIMARY_ADDR:
4570 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4571 break;
4572 case SCTP_NODELAY:
4573 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4574 break;
4575 case SCTP_RTOINFO:
4576 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4577 break;
4578 case SCTP_ASSOCINFO:
4579 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4580 break;
4581 case SCTP_I_WANT_MAPPED_V4_ADDR:
4582 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4583 break;
4584 case SCTP_MAXSEG:
4585 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4586 break;
4587 case SCTP_GET_PEER_ADDR_INFO:
4588 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4589 optlen);
4590 break;
4591 case SCTP_ADAPTION_LAYER:
4592 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4593 optlen);
4594 break;
4595 default:
4596 retval = -ENOPROTOOPT;
4597 break;
4600 sctp_release_sock(sk);
4601 return retval;
4604 static void sctp_hash(struct sock *sk)
4606 /* STUB */
4609 static void sctp_unhash(struct sock *sk)
4611 /* STUB */
4614 /* Check if port is acceptable. Possibly find first available port.
4616 * The port hash table (contained in the 'global' SCTP protocol storage
4617 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4618 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4619 * list (the list number is the port number hashed out, so as you
4620 * would expect from a hash function, all the ports in a given list have
4621 * such a number that hashes out to the same list number; you were
4622 * expecting that, right?); so each list has a set of ports, with a
4623 * link to the socket (struct sock) that uses it, the port number and
4624 * a fastreuse flag (FIXME: NPI ipg).
4626 static struct sctp_bind_bucket *sctp_bucket_create(
4627 struct sctp_bind_hashbucket *head, unsigned short snum);
4629 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4631 struct sctp_bind_hashbucket *head; /* hash list */
4632 struct sctp_bind_bucket *pp; /* hash list port iterator */
4633 unsigned short snum;
4634 int ret;
4636 /* NOTE: Remember to put this back to net order. */
4637 addr->v4.sin_port = ntohs(addr->v4.sin_port);
4638 snum = addr->v4.sin_port;
4640 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4641 sctp_local_bh_disable();
4643 if (snum == 0) {
4644 /* Search for an available port.
4646 * 'sctp_port_rover' was the last port assigned, so
4647 * we start to search from 'sctp_port_rover +
4648 * 1'. What we do is first check if port 'rover' is
4649 * already in the hash table; if not, we use that; if
4650 * it is, we try next.
4652 int low = sysctl_local_port_range[0];
4653 int high = sysctl_local_port_range[1];
4654 int remaining = (high - low) + 1;
4655 int rover;
4656 int index;
4658 sctp_spin_lock(&sctp_port_alloc_lock);
4659 rover = sctp_port_rover;
4660 do {
4661 rover++;
4662 if ((rover < low) || (rover > high))
4663 rover = low;
4664 index = sctp_phashfn(rover);
4665 head = &sctp_port_hashtable[index];
4666 sctp_spin_lock(&head->lock);
4667 for (pp = head->chain; pp; pp = pp->next)
4668 if (pp->port == rover)
4669 goto next;
4670 break;
4671 next:
4672 sctp_spin_unlock(&head->lock);
4673 } while (--remaining > 0);
4674 sctp_port_rover = rover;
4675 sctp_spin_unlock(&sctp_port_alloc_lock);
4677 /* Exhausted local port range during search? */
4678 ret = 1;
4679 if (remaining <= 0)
4680 goto fail;
4682 /* OK, here is the one we will use. HEAD (the port
4683 * hash table list entry) is non-NULL and we hold it's
4684 * mutex.
4686 snum = rover;
4687 } else {
4688 /* We are given an specific port number; we verify
4689 * that it is not being used. If it is used, we will
4690 * exahust the search in the hash list corresponding
4691 * to the port number (snum) - we detect that with the
4692 * port iterator, pp being NULL.
4694 head = &sctp_port_hashtable[sctp_phashfn(snum)];
4695 sctp_spin_lock(&head->lock);
4696 for (pp = head->chain; pp; pp = pp->next) {
4697 if (pp->port == snum)
4698 goto pp_found;
4701 pp = NULL;
4702 goto pp_not_found;
4703 pp_found:
4704 if (!hlist_empty(&pp->owner)) {
4705 /* We had a port hash table hit - there is an
4706 * available port (pp != NULL) and it is being
4707 * used by other socket (pp->owner not empty); that other
4708 * socket is going to be sk2.
4710 int reuse = sk->sk_reuse;
4711 struct sock *sk2;
4712 struct hlist_node *node;
4714 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4715 if (pp->fastreuse && sk->sk_reuse)
4716 goto success;
4718 /* Run through the list of sockets bound to the port
4719 * (pp->port) [via the pointers bind_next and
4720 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4721 * we get the endpoint they describe and run through
4722 * the endpoint's list of IP (v4 or v6) addresses,
4723 * comparing each of the addresses with the address of
4724 * the socket sk. If we find a match, then that means
4725 * that this port/socket (sk) combination are already
4726 * in an endpoint.
4728 sk_for_each_bound(sk2, node, &pp->owner) {
4729 struct sctp_endpoint *ep2;
4730 ep2 = sctp_sk(sk2)->ep;
4732 if (reuse && sk2->sk_reuse)
4733 continue;
4735 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4736 sctp_sk(sk))) {
4737 ret = (long)sk2;
4738 goto fail_unlock;
4741 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4743 pp_not_found:
4744 /* If there was a hash table miss, create a new port. */
4745 ret = 1;
4746 if (!pp && !(pp = sctp_bucket_create(head, snum)))
4747 goto fail_unlock;
4749 /* In either case (hit or miss), make sure fastreuse is 1 only
4750 * if sk->sk_reuse is too (that is, if the caller requested
4751 * SO_REUSEADDR on this socket -sk-).
4753 if (hlist_empty(&pp->owner))
4754 pp->fastreuse = sk->sk_reuse ? 1 : 0;
4755 else if (pp->fastreuse && !sk->sk_reuse)
4756 pp->fastreuse = 0;
4758 /* We are set, so fill up all the data in the hash table
4759 * entry, tie the socket list information with the rest of the
4760 * sockets FIXME: Blurry, NPI (ipg).
4762 success:
4763 inet_sk(sk)->num = snum;
4764 if (!sctp_sk(sk)->bind_hash) {
4765 sk_add_bind_node(sk, &pp->owner);
4766 sctp_sk(sk)->bind_hash = pp;
4768 ret = 0;
4770 fail_unlock:
4771 sctp_spin_unlock(&head->lock);
4773 fail:
4774 sctp_local_bh_enable();
4775 addr->v4.sin_port = htons(addr->v4.sin_port);
4776 return ret;
4779 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
4780 * port is requested.
4782 static int sctp_get_port(struct sock *sk, unsigned short snum)
4784 long ret;
4785 union sctp_addr addr;
4786 struct sctp_af *af = sctp_sk(sk)->pf->af;
4788 /* Set up a dummy address struct from the sk. */
4789 af->from_sk(&addr, sk);
4790 addr.v4.sin_port = htons(snum);
4792 /* Note: sk->sk_num gets filled in if ephemeral port request. */
4793 ret = sctp_get_port_local(sk, &addr);
4795 return (ret ? 1 : 0);
4799 * 3.1.3 listen() - UDP Style Syntax
4801 * By default, new associations are not accepted for UDP style sockets.
4802 * An application uses listen() to mark a socket as being able to
4803 * accept new associations.
4805 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4807 struct sctp_sock *sp = sctp_sk(sk);
4808 struct sctp_endpoint *ep = sp->ep;
4810 /* Only UDP style sockets that are not peeled off are allowed to
4811 * listen().
4813 if (!sctp_style(sk, UDP))
4814 return -EINVAL;
4816 /* If backlog is zero, disable listening. */
4817 if (!backlog) {
4818 if (sctp_sstate(sk, CLOSED))
4819 return 0;
4821 sctp_unhash_endpoint(ep);
4822 sk->sk_state = SCTP_SS_CLOSED;
4825 /* Return if we are already listening. */
4826 if (sctp_sstate(sk, LISTENING))
4827 return 0;
4830 * If a bind() or sctp_bindx() is not called prior to a listen()
4831 * call that allows new associations to be accepted, the system
4832 * picks an ephemeral port and will choose an address set equivalent
4833 * to binding with a wildcard address.
4835 * This is not currently spelled out in the SCTP sockets
4836 * extensions draft, but follows the practice as seen in TCP
4837 * sockets.
4839 if (!ep->base.bind_addr.port) {
4840 if (sctp_autobind(sk))
4841 return -EAGAIN;
4843 sk->sk_state = SCTP_SS_LISTENING;
4844 sctp_hash_endpoint(ep);
4845 return 0;
4849 * 4.1.3 listen() - TCP Style Syntax
4851 * Applications uses listen() to ready the SCTP endpoint for accepting
4852 * inbound associations.
4854 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4856 struct sctp_sock *sp = sctp_sk(sk);
4857 struct sctp_endpoint *ep = sp->ep;
4859 /* If backlog is zero, disable listening. */
4860 if (!backlog) {
4861 if (sctp_sstate(sk, CLOSED))
4862 return 0;
4864 sctp_unhash_endpoint(ep);
4865 sk->sk_state = SCTP_SS_CLOSED;
4868 if (sctp_sstate(sk, LISTENING))
4869 return 0;
4872 * If a bind() or sctp_bindx() is not called prior to a listen()
4873 * call that allows new associations to be accepted, the system
4874 * picks an ephemeral port and will choose an address set equivalent
4875 * to binding with a wildcard address.
4877 * This is not currently spelled out in the SCTP sockets
4878 * extensions draft, but follows the practice as seen in TCP
4879 * sockets.
4881 if (!ep->base.bind_addr.port) {
4882 if (sctp_autobind(sk))
4883 return -EAGAIN;
4885 sk->sk_state = SCTP_SS_LISTENING;
4886 sk->sk_max_ack_backlog = backlog;
4887 sctp_hash_endpoint(ep);
4888 return 0;
4892 * Move a socket to LISTENING state.
4894 int sctp_inet_listen(struct socket *sock, int backlog)
4896 struct sock *sk = sock->sk;
4897 struct crypto_tfm *tfm=NULL;
4898 int err = -EINVAL;
4900 if (unlikely(backlog < 0))
4901 goto out;
4903 sctp_lock_sock(sk);
4905 if (sock->state != SS_UNCONNECTED)
4906 goto out;
4908 /* Allocate HMAC for generating cookie. */
4909 if (sctp_hmac_alg) {
4910 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4911 if (!tfm) {
4912 err = -ENOSYS;
4913 goto out;
4917 switch (sock->type) {
4918 case SOCK_SEQPACKET:
4919 err = sctp_seqpacket_listen(sk, backlog);
4920 break;
4921 case SOCK_STREAM:
4922 err = sctp_stream_listen(sk, backlog);
4923 break;
4924 default:
4925 break;
4927 if (err)
4928 goto cleanup;
4930 /* Store away the transform reference. */
4931 sctp_sk(sk)->hmac = tfm;
4932 out:
4933 sctp_release_sock(sk);
4934 return err;
4935 cleanup:
4936 sctp_crypto_free_tfm(tfm);
4937 goto out;
4941 * This function is done by modeling the current datagram_poll() and the
4942 * tcp_poll(). Note that, based on these implementations, we don't
4943 * lock the socket in this function, even though it seems that,
4944 * ideally, locking or some other mechanisms can be used to ensure
4945 * the integrity of the counters (sndbuf and wmem_alloc) used
4946 * in this place. We assume that we don't need locks either until proven
4947 * otherwise.
4949 * Another thing to note is that we include the Async I/O support
4950 * here, again, by modeling the current TCP/UDP code. We don't have
4951 * a good way to test with it yet.
4953 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4955 struct sock *sk = sock->sk;
4956 struct sctp_sock *sp = sctp_sk(sk);
4957 unsigned int mask;
4959 poll_wait(file, sk->sk_sleep, wait);
4961 /* A TCP-style listening socket becomes readable when the accept queue
4962 * is not empty.
4964 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4965 return (!list_empty(&sp->ep->asocs)) ?
4966 (POLLIN | POLLRDNORM) : 0;
4968 mask = 0;
4970 /* Is there any exceptional events? */
4971 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4972 mask |= POLLERR;
4973 if (sk->sk_shutdown & RCV_SHUTDOWN)
4974 mask |= POLLRDHUP;
4975 if (sk->sk_shutdown == SHUTDOWN_MASK)
4976 mask |= POLLHUP;
4978 /* Is it readable? Reconsider this code with TCP-style support. */
4979 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4980 (sk->sk_shutdown & RCV_SHUTDOWN))
4981 mask |= POLLIN | POLLRDNORM;
4983 /* The association is either gone or not ready. */
4984 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4985 return mask;
4987 /* Is it writable? */
4988 if (sctp_writeable(sk)) {
4989 mask |= POLLOUT | POLLWRNORM;
4990 } else {
4991 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4993 * Since the socket is not locked, the buffer
4994 * might be made available after the writeable check and
4995 * before the bit is set. This could cause a lost I/O
4996 * signal. tcp_poll() has a race breaker for this race
4997 * condition. Based on their implementation, we put
4998 * in the following code to cover it as well.
5000 if (sctp_writeable(sk))
5001 mask |= POLLOUT | POLLWRNORM;
5003 return mask;
5006 /********************************************************************
5007 * 2nd Level Abstractions
5008 ********************************************************************/
5010 static struct sctp_bind_bucket *sctp_bucket_create(
5011 struct sctp_bind_hashbucket *head, unsigned short snum)
5013 struct sctp_bind_bucket *pp;
5015 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
5016 SCTP_DBG_OBJCNT_INC(bind_bucket);
5017 if (pp) {
5018 pp->port = snum;
5019 pp->fastreuse = 0;
5020 INIT_HLIST_HEAD(&pp->owner);
5021 if ((pp->next = head->chain) != NULL)
5022 pp->next->pprev = &pp->next;
5023 head->chain = pp;
5024 pp->pprev = &head->chain;
5026 return pp;
5029 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5030 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5032 if (pp && hlist_empty(&pp->owner)) {
5033 if (pp->next)
5034 pp->next->pprev = pp->pprev;
5035 *(pp->pprev) = pp->next;
5036 kmem_cache_free(sctp_bucket_cachep, pp);
5037 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5041 /* Release this socket's reference to a local port. */
5042 static inline void __sctp_put_port(struct sock *sk)
5044 struct sctp_bind_hashbucket *head =
5045 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5046 struct sctp_bind_bucket *pp;
5048 sctp_spin_lock(&head->lock);
5049 pp = sctp_sk(sk)->bind_hash;
5050 __sk_del_bind_node(sk);
5051 sctp_sk(sk)->bind_hash = NULL;
5052 inet_sk(sk)->num = 0;
5053 sctp_bucket_destroy(pp);
5054 sctp_spin_unlock(&head->lock);
5057 void sctp_put_port(struct sock *sk)
5059 sctp_local_bh_disable();
5060 __sctp_put_port(sk);
5061 sctp_local_bh_enable();
5065 * The system picks an ephemeral port and choose an address set equivalent
5066 * to binding with a wildcard address.
5067 * One of those addresses will be the primary address for the association.
5068 * This automatically enables the multihoming capability of SCTP.
5070 static int sctp_autobind(struct sock *sk)
5072 union sctp_addr autoaddr;
5073 struct sctp_af *af;
5074 unsigned short port;
5076 /* Initialize a local sockaddr structure to INADDR_ANY. */
5077 af = sctp_sk(sk)->pf->af;
5079 port = htons(inet_sk(sk)->num);
5080 af->inaddr_any(&autoaddr, port);
5082 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5085 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5087 * From RFC 2292
5088 * 4.2 The cmsghdr Structure *
5090 * When ancillary data is sent or received, any number of ancillary data
5091 * objects can be specified by the msg_control and msg_controllen members of
5092 * the msghdr structure, because each object is preceded by
5093 * a cmsghdr structure defining the object's length (the cmsg_len member).
5094 * Historically Berkeley-derived implementations have passed only one object
5095 * at a time, but this API allows multiple objects to be
5096 * passed in a single call to sendmsg() or recvmsg(). The following example
5097 * shows two ancillary data objects in a control buffer.
5099 * |<--------------------------- msg_controllen -------------------------->|
5100 * | |
5102 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5104 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5105 * | | |
5107 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5109 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5110 * | | | | |
5112 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5113 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5115 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5117 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5121 * msg_control
5122 * points here
5124 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5125 sctp_cmsgs_t *cmsgs)
5127 struct cmsghdr *cmsg;
5129 for (cmsg = CMSG_FIRSTHDR(msg);
5130 cmsg != NULL;
5131 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5132 if (!CMSG_OK(msg, cmsg))
5133 return -EINVAL;
5135 /* Should we parse this header or ignore? */
5136 if (cmsg->cmsg_level != IPPROTO_SCTP)
5137 continue;
5139 /* Strictly check lengths following example in SCM code. */
5140 switch (cmsg->cmsg_type) {
5141 case SCTP_INIT:
5142 /* SCTP Socket API Extension
5143 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5145 * This cmsghdr structure provides information for
5146 * initializing new SCTP associations with sendmsg().
5147 * The SCTP_INITMSG socket option uses this same data
5148 * structure. This structure is not used for
5149 * recvmsg().
5151 * cmsg_level cmsg_type cmsg_data[]
5152 * ------------ ------------ ----------------------
5153 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5155 if (cmsg->cmsg_len !=
5156 CMSG_LEN(sizeof(struct sctp_initmsg)))
5157 return -EINVAL;
5158 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5159 break;
5161 case SCTP_SNDRCV:
5162 /* SCTP Socket API Extension
5163 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5165 * This cmsghdr structure specifies SCTP options for
5166 * sendmsg() and describes SCTP header information
5167 * about a received message through recvmsg().
5169 * cmsg_level cmsg_type cmsg_data[]
5170 * ------------ ------------ ----------------------
5171 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5173 if (cmsg->cmsg_len !=
5174 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5175 return -EINVAL;
5177 cmsgs->info =
5178 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5180 /* Minimally, validate the sinfo_flags. */
5181 if (cmsgs->info->sinfo_flags &
5182 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5183 SCTP_ABORT | SCTP_EOF))
5184 return -EINVAL;
5185 break;
5187 default:
5188 return -EINVAL;
5191 return 0;
5195 * Wait for a packet..
5196 * Note: This function is the same function as in core/datagram.c
5197 * with a few modifications to make lksctp work.
5199 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5201 int error;
5202 DEFINE_WAIT(wait);
5204 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5206 /* Socket errors? */
5207 error = sock_error(sk);
5208 if (error)
5209 goto out;
5211 if (!skb_queue_empty(&sk->sk_receive_queue))
5212 goto ready;
5214 /* Socket shut down? */
5215 if (sk->sk_shutdown & RCV_SHUTDOWN)
5216 goto out;
5218 /* Sequenced packets can come disconnected. If so we report the
5219 * problem.
5221 error = -ENOTCONN;
5223 /* Is there a good reason to think that we may receive some data? */
5224 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5225 goto out;
5227 /* Handle signals. */
5228 if (signal_pending(current))
5229 goto interrupted;
5231 /* Let another process have a go. Since we are going to sleep
5232 * anyway. Note: This may cause odd behaviors if the message
5233 * does not fit in the user's buffer, but this seems to be the
5234 * only way to honor MSG_DONTWAIT realistically.
5236 sctp_release_sock(sk);
5237 *timeo_p = schedule_timeout(*timeo_p);
5238 sctp_lock_sock(sk);
5240 ready:
5241 finish_wait(sk->sk_sleep, &wait);
5242 return 0;
5244 interrupted:
5245 error = sock_intr_errno(*timeo_p);
5247 out:
5248 finish_wait(sk->sk_sleep, &wait);
5249 *err = error;
5250 return error;
5253 /* Receive a datagram.
5254 * Note: This is pretty much the same routine as in core/datagram.c
5255 * with a few changes to make lksctp work.
5257 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5258 int noblock, int *err)
5260 int error;
5261 struct sk_buff *skb;
5262 long timeo;
5264 timeo = sock_rcvtimeo(sk, noblock);
5266 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5267 timeo, MAX_SCHEDULE_TIMEOUT);
5269 do {
5270 /* Again only user level code calls this function,
5271 * so nothing interrupt level
5272 * will suddenly eat the receive_queue.
5274 * Look at current nfs client by the way...
5275 * However, this function was corrent in any case. 8)
5277 if (flags & MSG_PEEK) {
5278 spin_lock_bh(&sk->sk_receive_queue.lock);
5279 skb = skb_peek(&sk->sk_receive_queue);
5280 if (skb)
5281 atomic_inc(&skb->users);
5282 spin_unlock_bh(&sk->sk_receive_queue.lock);
5283 } else {
5284 skb = skb_dequeue(&sk->sk_receive_queue);
5287 if (skb)
5288 return skb;
5290 /* Caller is allowed not to check sk->sk_err before calling. */
5291 error = sock_error(sk);
5292 if (error)
5293 goto no_packet;
5295 if (sk->sk_shutdown & RCV_SHUTDOWN)
5296 break;
5298 /* User doesn't want to wait. */
5299 error = -EAGAIN;
5300 if (!timeo)
5301 goto no_packet;
5302 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5304 return NULL;
5306 no_packet:
5307 *err = error;
5308 return NULL;
5311 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5312 static void __sctp_write_space(struct sctp_association *asoc)
5314 struct sock *sk = asoc->base.sk;
5315 struct socket *sock = sk->sk_socket;
5317 if ((sctp_wspace(asoc) > 0) && sock) {
5318 if (waitqueue_active(&asoc->wait))
5319 wake_up_interruptible(&asoc->wait);
5321 if (sctp_writeable(sk)) {
5322 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5323 wake_up_interruptible(sk->sk_sleep);
5325 /* Note that we try to include the Async I/O support
5326 * here by modeling from the current TCP/UDP code.
5327 * We have not tested with it yet.
5329 if (sock->fasync_list &&
5330 !(sk->sk_shutdown & SEND_SHUTDOWN))
5331 sock_wake_async(sock, 2, POLL_OUT);
5336 /* Do accounting for the sndbuf space.
5337 * Decrement the used sndbuf space of the corresponding association by the
5338 * data size which was just transmitted(freed).
5340 static void sctp_wfree(struct sk_buff *skb)
5342 struct sctp_association *asoc;
5343 struct sctp_chunk *chunk;
5344 struct sock *sk;
5346 /* Get the saved chunk pointer. */
5347 chunk = *((struct sctp_chunk **)(skb->cb));
5348 asoc = chunk->asoc;
5349 sk = asoc->base.sk;
5350 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5351 sizeof(struct sk_buff) +
5352 sizeof(struct sctp_chunk);
5354 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5356 sock_wfree(skb);
5357 __sctp_write_space(asoc);
5359 sctp_association_put(asoc);
5362 /* Helper function to wait for space in the sndbuf. */
5363 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5364 size_t msg_len)
5366 struct sock *sk = asoc->base.sk;
5367 int err = 0;
5368 long current_timeo = *timeo_p;
5369 DEFINE_WAIT(wait);
5371 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5372 asoc, (long)(*timeo_p), msg_len);
5374 /* Increment the association's refcnt. */
5375 sctp_association_hold(asoc);
5377 /* Wait on the association specific sndbuf space. */
5378 for (;;) {
5379 prepare_to_wait_exclusive(&asoc->wait, &wait,
5380 TASK_INTERRUPTIBLE);
5381 if (!*timeo_p)
5382 goto do_nonblock;
5383 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5384 asoc->base.dead)
5385 goto do_error;
5386 if (signal_pending(current))
5387 goto do_interrupted;
5388 if (msg_len <= sctp_wspace(asoc))
5389 break;
5391 /* Let another process have a go. Since we are going
5392 * to sleep anyway.
5394 sctp_release_sock(sk);
5395 current_timeo = schedule_timeout(current_timeo);
5396 BUG_ON(sk != asoc->base.sk);
5397 sctp_lock_sock(sk);
5399 *timeo_p = current_timeo;
5402 out:
5403 finish_wait(&asoc->wait, &wait);
5405 /* Release the association's refcnt. */
5406 sctp_association_put(asoc);
5408 return err;
5410 do_error:
5411 err = -EPIPE;
5412 goto out;
5414 do_interrupted:
5415 err = sock_intr_errno(*timeo_p);
5416 goto out;
5418 do_nonblock:
5419 err = -EAGAIN;
5420 goto out;
5423 /* If socket sndbuf has changed, wake up all per association waiters. */
5424 void sctp_write_space(struct sock *sk)
5426 struct sctp_association *asoc;
5427 struct list_head *pos;
5429 /* Wake up the tasks in each wait queue. */
5430 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5431 asoc = list_entry(pos, struct sctp_association, asocs);
5432 __sctp_write_space(asoc);
5436 /* Is there any sndbuf space available on the socket?
5438 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5439 * associations on the same socket. For a UDP-style socket with
5440 * multiple associations, it is possible for it to be "unwriteable"
5441 * prematurely. I assume that this is acceptable because
5442 * a premature "unwriteable" is better than an accidental "writeable" which
5443 * would cause an unwanted block under certain circumstances. For the 1-1
5444 * UDP-style sockets or TCP-style sockets, this code should work.
5445 * - Daisy
5447 static int sctp_writeable(struct sock *sk)
5449 int amt = 0;
5451 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5452 if (amt < 0)
5453 amt = 0;
5454 return amt;
5457 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5458 * returns immediately with EINPROGRESS.
5460 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5462 struct sock *sk = asoc->base.sk;
5463 int err = 0;
5464 long current_timeo = *timeo_p;
5465 DEFINE_WAIT(wait);
5467 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5468 (long)(*timeo_p));
5470 /* Increment the association's refcnt. */
5471 sctp_association_hold(asoc);
5473 for (;;) {
5474 prepare_to_wait_exclusive(&asoc->wait, &wait,
5475 TASK_INTERRUPTIBLE);
5476 if (!*timeo_p)
5477 goto do_nonblock;
5478 if (sk->sk_shutdown & RCV_SHUTDOWN)
5479 break;
5480 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5481 asoc->base.dead)
5482 goto do_error;
5483 if (signal_pending(current))
5484 goto do_interrupted;
5486 if (sctp_state(asoc, ESTABLISHED))
5487 break;
5489 /* Let another process have a go. Since we are going
5490 * to sleep anyway.
5492 sctp_release_sock(sk);
5493 current_timeo = schedule_timeout(current_timeo);
5494 sctp_lock_sock(sk);
5496 *timeo_p = current_timeo;
5499 out:
5500 finish_wait(&asoc->wait, &wait);
5502 /* Release the association's refcnt. */
5503 sctp_association_put(asoc);
5505 return err;
5507 do_error:
5508 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5509 err = -ETIMEDOUT;
5510 else
5511 err = -ECONNREFUSED;
5512 goto out;
5514 do_interrupted:
5515 err = sock_intr_errno(*timeo_p);
5516 goto out;
5518 do_nonblock:
5519 err = -EINPROGRESS;
5520 goto out;
5523 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5525 struct sctp_endpoint *ep;
5526 int err = 0;
5527 DEFINE_WAIT(wait);
5529 ep = sctp_sk(sk)->ep;
5532 for (;;) {
5533 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5534 TASK_INTERRUPTIBLE);
5536 if (list_empty(&ep->asocs)) {
5537 sctp_release_sock(sk);
5538 timeo = schedule_timeout(timeo);
5539 sctp_lock_sock(sk);
5542 err = -EINVAL;
5543 if (!sctp_sstate(sk, LISTENING))
5544 break;
5546 err = 0;
5547 if (!list_empty(&ep->asocs))
5548 break;
5550 err = sock_intr_errno(timeo);
5551 if (signal_pending(current))
5552 break;
5554 err = -EAGAIN;
5555 if (!timeo)
5556 break;
5559 finish_wait(sk->sk_sleep, &wait);
5561 return err;
5564 void sctp_wait_for_close(struct sock *sk, long timeout)
5566 DEFINE_WAIT(wait);
5568 do {
5569 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5570 if (list_empty(&sctp_sk(sk)->ep->asocs))
5571 break;
5572 sctp_release_sock(sk);
5573 timeout = schedule_timeout(timeout);
5574 sctp_lock_sock(sk);
5575 } while (!signal_pending(current) && timeout);
5577 finish_wait(sk->sk_sleep, &wait);
5580 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5581 * and its messages to the newsk.
5583 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5584 struct sctp_association *assoc,
5585 sctp_socket_type_t type)
5587 struct sctp_sock *oldsp = sctp_sk(oldsk);
5588 struct sctp_sock *newsp = sctp_sk(newsk);
5589 struct sctp_bind_bucket *pp; /* hash list port iterator */
5590 struct sctp_endpoint *newep = newsp->ep;
5591 struct sk_buff *skb, *tmp;
5592 struct sctp_ulpevent *event;
5593 int flags = 0;
5595 /* Migrate socket buffer sizes and all the socket level options to the
5596 * new socket.
5598 newsk->sk_sndbuf = oldsk->sk_sndbuf;
5599 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5600 /* Brute force copy old sctp opt. */
5601 inet_sk_copy_descendant(newsk, oldsk);
5603 /* Restore the ep value that was overwritten with the above structure
5604 * copy.
5606 newsp->ep = newep;
5607 newsp->hmac = NULL;
5609 /* Hook this new socket in to the bind_hash list. */
5610 pp = sctp_sk(oldsk)->bind_hash;
5611 sk_add_bind_node(newsk, &pp->owner);
5612 sctp_sk(newsk)->bind_hash = pp;
5613 inet_sk(newsk)->num = inet_sk(oldsk)->num;
5615 /* Copy the bind_addr list from the original endpoint to the new
5616 * endpoint so that we can handle restarts properly
5618 if (assoc->peer.ipv4_address)
5619 flags |= SCTP_ADDR4_PEERSUPP;
5620 if (assoc->peer.ipv6_address)
5621 flags |= SCTP_ADDR6_PEERSUPP;
5622 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5623 &oldsp->ep->base.bind_addr,
5624 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5626 /* Move any messages in the old socket's receive queue that are for the
5627 * peeled off association to the new socket's receive queue.
5629 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5630 event = sctp_skb2event(skb);
5631 if (event->asoc == assoc) {
5632 sock_rfree(skb);
5633 __skb_unlink(skb, &oldsk->sk_receive_queue);
5634 __skb_queue_tail(&newsk->sk_receive_queue, skb);
5635 skb_set_owner_r(skb, newsk);
5639 /* Clean up any messages pending delivery due to partial
5640 * delivery. Three cases:
5641 * 1) No partial deliver; no work.
5642 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5643 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5645 skb_queue_head_init(&newsp->pd_lobby);
5646 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5648 if (sctp_sk(oldsk)->pd_mode) {
5649 struct sk_buff_head *queue;
5651 /* Decide which queue to move pd_lobby skbs to. */
5652 if (assoc->ulpq.pd_mode) {
5653 queue = &newsp->pd_lobby;
5654 } else
5655 queue = &newsk->sk_receive_queue;
5657 /* Walk through the pd_lobby, looking for skbs that
5658 * need moved to the new socket.
5660 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5661 event = sctp_skb2event(skb);
5662 if (event->asoc == assoc) {
5663 sock_rfree(skb);
5664 __skb_unlink(skb, &oldsp->pd_lobby);
5665 __skb_queue_tail(queue, skb);
5666 skb_set_owner_r(skb, newsk);
5670 /* Clear up any skbs waiting for the partial
5671 * delivery to finish.
5673 if (assoc->ulpq.pd_mode)
5674 sctp_clear_pd(oldsk);
5678 /* Set the type of socket to indicate that it is peeled off from the
5679 * original UDP-style socket or created with the accept() call on a
5680 * TCP-style socket..
5682 newsp->type = type;
5684 /* Mark the new socket "in-use" by the user so that any packets
5685 * that may arrive on the association after we've moved it are
5686 * queued to the backlog. This prevents a potential race between
5687 * backlog processing on the old socket and new-packet processing
5688 * on the new socket.
5690 sctp_lock_sock(newsk);
5691 sctp_assoc_migrate(assoc, newsk);
5693 /* If the association on the newsk is already closed before accept()
5694 * is called, set RCV_SHUTDOWN flag.
5696 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5697 newsk->sk_shutdown |= RCV_SHUTDOWN;
5699 newsk->sk_state = SCTP_SS_ESTABLISHED;
5700 sctp_release_sock(newsk);
5703 /* This proto struct describes the ULP interface for SCTP. */
5704 struct proto sctp_prot = {
5705 .name = "SCTP",
5706 .owner = THIS_MODULE,
5707 .close = sctp_close,
5708 .connect = sctp_connect,
5709 .disconnect = sctp_disconnect,
5710 .accept = sctp_accept,
5711 .ioctl = sctp_ioctl,
5712 .init = sctp_init_sock,
5713 .destroy = sctp_destroy_sock,
5714 .shutdown = sctp_shutdown,
5715 .setsockopt = sctp_setsockopt,
5716 .getsockopt = sctp_getsockopt,
5717 .sendmsg = sctp_sendmsg,
5718 .recvmsg = sctp_recvmsg,
5719 .bind = sctp_bind,
5720 .backlog_rcv = sctp_backlog_rcv,
5721 .hash = sctp_hash,
5722 .unhash = sctp_unhash,
5723 .get_port = sctp_get_port,
5724 .obj_size = sizeof(struct sctp_sock),
5727 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5728 struct proto sctpv6_prot = {
5729 .name = "SCTPv6",
5730 .owner = THIS_MODULE,
5731 .close = sctp_close,
5732 .connect = sctp_connect,
5733 .disconnect = sctp_disconnect,
5734 .accept = sctp_accept,
5735 .ioctl = sctp_ioctl,
5736 .init = sctp_init_sock,
5737 .destroy = sctp_destroy_sock,
5738 .shutdown = sctp_shutdown,
5739 .setsockopt = sctp_setsockopt,
5740 .getsockopt = sctp_getsockopt,
5741 .sendmsg = sctp_sendmsg,
5742 .recvmsg = sctp_recvmsg,
5743 .bind = sctp_bind,
5744 .backlog_rcv = sctp_backlog_rcv,
5745 .hash = sctp_hash,
5746 .unhash = sctp_unhash,
5747 .get_port = sctp_get_port,
5748 .obj_size = sizeof(struct sctp6_sock),
5750 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */