Linux 2.6.39-rc2
[pohmelfs.git] / arch / blackfin / kernel / process.c
blobb407bc8ad9186f05fee0f657ffec48e7aab87efe
1 /*
2 * Blackfin architecture-dependent process handling
4 * Copyright 2004-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later
7 */
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
23 asmlinkage void ret_from_fork(void);
25 /* Points to the SDRAM backup memory for the stack that is currently in
26 * L1 scratchpad memory.
28 void *current_l1_stack_save;
30 /* The number of tasks currently using a L1 stack area. The SRAM is
31 * allocated/deallocated whenever this changes from/to zero.
33 int nr_l1stack_tasks;
35 /* Start and length of the area in L1 scratchpad memory which we've allocated
36 * for process stacks.
38 void *l1_stack_base;
39 unsigned long l1_stack_len;
42 * Powermanagement idle function, if any..
44 void (*pm_idle)(void) = NULL;
45 EXPORT_SYMBOL(pm_idle);
47 void (*pm_power_off)(void) = NULL;
48 EXPORT_SYMBOL(pm_power_off);
51 * The idle loop on BFIN
53 #ifdef CONFIG_IDLE_L1
54 static void default_idle(void)__attribute__((l1_text));
55 void cpu_idle(void)__attribute__((l1_text));
56 #endif
59 * This is our default idle handler. We need to disable
60 * interrupts here to ensure we don't miss a wakeup call.
62 static void default_idle(void)
64 #ifdef CONFIG_IPIPE
65 ipipe_suspend_domain();
66 #endif
67 hard_local_irq_disable();
68 if (!need_resched())
69 idle_with_irq_disabled();
71 hard_local_irq_enable();
75 * The idle thread. We try to conserve power, while trying to keep
76 * overall latency low. The architecture specific idle is passed
77 * a value to indicate the level of "idleness" of the system.
79 void cpu_idle(void)
81 /* endless idle loop with no priority at all */
82 while (1) {
83 void (*idle)(void) = pm_idle;
85 #ifdef CONFIG_HOTPLUG_CPU
86 if (cpu_is_offline(smp_processor_id()))
87 cpu_die();
88 #endif
89 if (!idle)
90 idle = default_idle;
91 tick_nohz_stop_sched_tick(1);
92 while (!need_resched())
93 idle();
94 tick_nohz_restart_sched_tick();
95 preempt_enable_no_resched();
96 schedule();
97 preempt_disable();
102 * This gets run with P1 containing the
103 * function to call, and R1 containing
104 * the "args". Note P0 is clobbered on the way here.
106 void kernel_thread_helper(void);
107 __asm__(".section .text\n"
108 ".align 4\n"
109 "_kernel_thread_helper:\n\t"
110 "\tsp += -12;\n\t"
111 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
114 * Create a kernel thread.
116 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
118 struct pt_regs regs;
120 memset(&regs, 0, sizeof(regs));
122 regs.r1 = (unsigned long)arg;
123 regs.p1 = (unsigned long)fn;
124 regs.pc = (unsigned long)kernel_thread_helper;
125 regs.orig_p0 = -1;
126 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
127 mode. */
128 regs.ipend = 0x8002;
129 __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
130 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
131 NULL);
133 EXPORT_SYMBOL(kernel_thread);
136 * Do necessary setup to start up a newly executed thread.
138 * pass the data segment into user programs if it exists,
139 * it can't hurt anything as far as I can tell
141 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
143 set_fs(USER_DS);
144 regs->pc = new_ip;
145 if (current->mm)
146 regs->p5 = current->mm->start_data;
147 #ifndef CONFIG_SMP
148 task_thread_info(current)->l1_task_info.stack_start =
149 (void *)current->mm->context.stack_start;
150 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
151 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
152 sizeof(*L1_SCRATCH_TASK_INFO));
153 #endif
154 wrusp(new_sp);
156 EXPORT_SYMBOL_GPL(start_thread);
158 void flush_thread(void)
162 asmlinkage int bfin_vfork(struct pt_regs *regs)
164 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
165 NULL);
168 asmlinkage int bfin_clone(struct pt_regs *regs)
170 unsigned long clone_flags;
171 unsigned long newsp;
173 #ifdef __ARCH_SYNC_CORE_DCACHE
174 if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
175 current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
176 current->rt.nr_cpus_allowed = 1;
178 #endif
180 /* syscall2 puts clone_flags in r0 and usp in r1 */
181 clone_flags = regs->r0;
182 newsp = regs->r1;
183 if (!newsp)
184 newsp = rdusp();
185 else
186 newsp -= 12;
187 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
191 copy_thread(unsigned long clone_flags,
192 unsigned long usp, unsigned long topstk,
193 struct task_struct *p, struct pt_regs *regs)
195 struct pt_regs *childregs;
197 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
198 *childregs = *regs;
199 childregs->r0 = 0;
201 p->thread.usp = usp;
202 p->thread.ksp = (unsigned long)childregs;
203 p->thread.pc = (unsigned long)ret_from_fork;
205 return 0;
209 * sys_execve() executes a new program.
211 asmlinkage int sys_execve(const char __user *name,
212 const char __user *const __user *argv,
213 const char __user *const __user *envp)
215 int error;
216 char *filename;
217 struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
219 filename = getname(name);
220 error = PTR_ERR(filename);
221 if (IS_ERR(filename))
222 return error;
223 error = do_execve(filename, argv, envp, regs);
224 putname(filename);
225 return error;
228 unsigned long get_wchan(struct task_struct *p)
230 unsigned long fp, pc;
231 unsigned long stack_page;
232 int count = 0;
233 if (!p || p == current || p->state == TASK_RUNNING)
234 return 0;
236 stack_page = (unsigned long)p;
237 fp = p->thread.usp;
238 do {
239 if (fp < stack_page + sizeof(struct thread_info) ||
240 fp >= 8184 + stack_page)
241 return 0;
242 pc = ((unsigned long *)fp)[1];
243 if (!in_sched_functions(pc))
244 return pc;
245 fp = *(unsigned long *)fp;
247 while (count++ < 16);
248 return 0;
251 void finish_atomic_sections (struct pt_regs *regs)
253 int __user *up0 = (int __user *)regs->p0;
255 switch (regs->pc) {
256 default:
257 /* not in middle of an atomic step, so resume like normal */
258 return;
260 case ATOMIC_XCHG32 + 2:
261 put_user(regs->r1, up0);
262 break;
264 case ATOMIC_CAS32 + 2:
265 case ATOMIC_CAS32 + 4:
266 if (regs->r0 == regs->r1)
267 case ATOMIC_CAS32 + 6:
268 put_user(regs->r2, up0);
269 break;
271 case ATOMIC_ADD32 + 2:
272 regs->r0 = regs->r1 + regs->r0;
273 /* fall through */
274 case ATOMIC_ADD32 + 4:
275 put_user(regs->r0, up0);
276 break;
278 case ATOMIC_SUB32 + 2:
279 regs->r0 = regs->r1 - regs->r0;
280 /* fall through */
281 case ATOMIC_SUB32 + 4:
282 put_user(regs->r0, up0);
283 break;
285 case ATOMIC_IOR32 + 2:
286 regs->r0 = regs->r1 | regs->r0;
287 /* fall through */
288 case ATOMIC_IOR32 + 4:
289 put_user(regs->r0, up0);
290 break;
292 case ATOMIC_AND32 + 2:
293 regs->r0 = regs->r1 & regs->r0;
294 /* fall through */
295 case ATOMIC_AND32 + 4:
296 put_user(regs->r0, up0);
297 break;
299 case ATOMIC_XOR32 + 2:
300 regs->r0 = regs->r1 ^ regs->r0;
301 /* fall through */
302 case ATOMIC_XOR32 + 4:
303 put_user(regs->r0, up0);
304 break;
308 * We've finished the atomic section, and the only thing left for
309 * userspace is to do a RTS, so we might as well handle that too
310 * since we need to update the PC anyways.
312 regs->pc = regs->rets;
315 static inline
316 int in_mem(unsigned long addr, unsigned long size,
317 unsigned long start, unsigned long end)
319 return addr >= start && addr + size <= end;
321 static inline
322 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
323 unsigned long const_addr, unsigned long const_size)
325 return const_size &&
326 in_mem(addr, size, const_addr + off, const_addr + const_size);
328 static inline
329 int in_mem_const(unsigned long addr, unsigned long size,
330 unsigned long const_addr, unsigned long const_size)
332 return in_mem_const_off(addr, size, 0, const_addr, const_size);
334 #define ASYNC_ENABLED(bnum, bctlnum) \
335 ({ \
336 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
337 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
338 1; \
341 * We can't read EBIU banks that aren't enabled or we end up hanging
342 * on the access to the async space. Make sure we validate accesses
343 * that cross async banks too.
344 * 0 - found, but unusable
345 * 1 - found & usable
346 * 2 - not found
348 static
349 int in_async(unsigned long addr, unsigned long size)
351 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
352 if (!ASYNC_ENABLED(0, 0))
353 return 0;
354 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
355 return 1;
356 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
357 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
359 if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
360 if (!ASYNC_ENABLED(1, 0))
361 return 0;
362 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
363 return 1;
364 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
365 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
367 if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
368 if (!ASYNC_ENABLED(2, 1))
369 return 0;
370 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
371 return 1;
372 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
373 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
375 if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
376 if (ASYNC_ENABLED(3, 1))
377 return 0;
378 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
379 return 1;
380 return 0;
383 /* not within async bounds */
384 return 2;
387 int bfin_mem_access_type(unsigned long addr, unsigned long size)
389 int cpu = raw_smp_processor_id();
391 /* Check that things do not wrap around */
392 if (addr > ULONG_MAX - size)
393 return -EFAULT;
395 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
396 return BFIN_MEM_ACCESS_CORE;
398 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
399 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
400 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
401 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
402 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
403 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
404 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
405 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
406 #ifdef COREB_L1_CODE_START
407 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
408 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
409 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
410 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
411 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
412 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
413 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
414 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
415 #endif
416 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
417 return BFIN_MEM_ACCESS_CORE;
419 if (addr >= SYSMMR_BASE)
420 return BFIN_MEM_ACCESS_CORE_ONLY;
422 switch (in_async(addr, size)) {
423 case 0: return -EFAULT;
424 case 1: return BFIN_MEM_ACCESS_CORE;
425 case 2: /* fall through */;
428 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
429 return BFIN_MEM_ACCESS_CORE;
430 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
431 return BFIN_MEM_ACCESS_DMA;
433 return -EFAULT;
436 #if defined(CONFIG_ACCESS_CHECK)
437 #ifdef CONFIG_ACCESS_OK_L1
438 __attribute__((l1_text))
439 #endif
440 /* Return 1 if access to memory range is OK, 0 otherwise */
441 int _access_ok(unsigned long addr, unsigned long size)
443 int aret;
445 if (size == 0)
446 return 1;
447 /* Check that things do not wrap around */
448 if (addr > ULONG_MAX - size)
449 return 0;
450 if (segment_eq(get_fs(), KERNEL_DS))
451 return 1;
452 #ifdef CONFIG_MTD_UCLINUX
453 if (1)
454 #else
455 if (0)
456 #endif
458 if (in_mem(addr, size, memory_start, memory_end))
459 return 1;
460 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
461 return 1;
462 # ifndef CONFIG_ROMFS_ON_MTD
463 if (0)
464 # endif
465 /* For XIP, allow user space to use pointers within the ROMFS. */
466 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
467 return 1;
468 } else {
469 if (in_mem(addr, size, memory_start, physical_mem_end))
470 return 1;
473 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
474 return 1;
476 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
477 return 1;
478 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
479 return 1;
480 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
481 return 1;
482 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
483 return 1;
484 #ifdef COREB_L1_CODE_START
485 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
486 return 1;
487 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
488 return 1;
489 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
490 return 1;
491 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
492 return 1;
493 #endif
495 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
496 if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
497 return 1;
498 #endif
500 aret = in_async(addr, size);
501 if (aret < 2)
502 return aret;
504 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
505 return 1;
507 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
508 return 1;
509 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
510 return 1;
512 return 0;
514 EXPORT_SYMBOL(_access_ok);
515 #endif /* CONFIG_ACCESS_CHECK */