Linux 2.6.39-rc2
[pohmelfs.git] / arch / mips / kernel / vpe.c
blobab52b7cf3b6bcc007cfda63bce5c028be665bbfa
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 * VPE support module
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
30 #include <linux/kernel.h>
31 #include <linux/device.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/mips_mt.h>
52 #include <asm/processor.h>
53 #include <asm/system.h>
54 #include <asm/vpe.h>
55 #include <asm/kspd.h>
57 typedef void *vpe_handle;
59 #ifndef ARCH_SHF_SMALL
60 #define ARCH_SHF_SMALL 0
61 #endif
63 /* If this is set, the section belongs in the init part of the module */
64 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
67 * The number of TCs and VPEs physically available on the core
69 static int hw_tcs, hw_vpes;
70 static char module_name[] = "vpe";
71 static int major;
72 static const int minor = 1; /* fixed for now */
74 #ifdef CONFIG_MIPS_APSP_KSPD
75 static struct kspd_notifications kspd_events;
76 static int kspd_events_reqd;
77 #endif
79 /* grab the likely amount of memory we will need. */
80 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
81 #define P_SIZE (2 * 1024 * 1024)
82 #else
83 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
84 #define P_SIZE (256 * 1024)
85 #endif
87 extern unsigned long physical_memsize;
89 #define MAX_VPES 16
90 #define VPE_PATH_MAX 256
92 enum vpe_state {
93 VPE_STATE_UNUSED = 0,
94 VPE_STATE_INUSE,
95 VPE_STATE_RUNNING
98 enum tc_state {
99 TC_STATE_UNUSED = 0,
100 TC_STATE_INUSE,
101 TC_STATE_RUNNING,
102 TC_STATE_DYNAMIC
105 struct vpe {
106 enum vpe_state state;
108 /* (device) minor associated with this vpe */
109 int minor;
111 /* elfloader stuff */
112 void *load_addr;
113 unsigned long len;
114 char *pbuffer;
115 unsigned long plen;
116 unsigned int uid, gid;
117 char cwd[VPE_PATH_MAX];
119 unsigned long __start;
121 /* tc's associated with this vpe */
122 struct list_head tc;
124 /* The list of vpe's */
125 struct list_head list;
127 /* shared symbol address */
128 void *shared_ptr;
130 /* the list of who wants to know when something major happens */
131 struct list_head notify;
133 unsigned int ntcs;
136 struct tc {
137 enum tc_state state;
138 int index;
140 struct vpe *pvpe; /* parent VPE */
141 struct list_head tc; /* The list of TC's with this VPE */
142 struct list_head list; /* The global list of tc's */
145 struct {
146 spinlock_t vpe_list_lock;
147 struct list_head vpe_list; /* Virtual processing elements */
148 spinlock_t tc_list_lock;
149 struct list_head tc_list; /* Thread contexts */
150 } vpecontrol = {
151 .vpe_list_lock = __SPIN_LOCK_UNLOCKED(vpe_list_lock),
152 .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
153 .tc_list_lock = __SPIN_LOCK_UNLOCKED(tc_list_lock),
154 .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
157 static void release_progmem(void *ptr);
159 /* get the vpe associated with this minor */
160 static struct vpe *get_vpe(int minor)
162 struct vpe *res, *v;
164 if (!cpu_has_mipsmt)
165 return NULL;
167 res = NULL;
168 spin_lock(&vpecontrol.vpe_list_lock);
169 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
170 if (v->minor == minor) {
171 res = v;
172 break;
175 spin_unlock(&vpecontrol.vpe_list_lock);
177 return res;
180 /* get the vpe associated with this minor */
181 static struct tc *get_tc(int index)
183 struct tc *res, *t;
185 res = NULL;
186 spin_lock(&vpecontrol.tc_list_lock);
187 list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 if (t->index == index) {
189 res = t;
190 break;
193 spin_unlock(&vpecontrol.tc_list_lock);
195 return NULL;
198 /* allocate a vpe and associate it with this minor (or index) */
199 static struct vpe *alloc_vpe(int minor)
201 struct vpe *v;
203 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
204 return NULL;
206 INIT_LIST_HEAD(&v->tc);
207 spin_lock(&vpecontrol.vpe_list_lock);
208 list_add_tail(&v->list, &vpecontrol.vpe_list);
209 spin_unlock(&vpecontrol.vpe_list_lock);
211 INIT_LIST_HEAD(&v->notify);
212 v->minor = minor;
214 return v;
217 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
218 static struct tc *alloc_tc(int index)
220 struct tc *tc;
222 if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
223 goto out;
225 INIT_LIST_HEAD(&tc->tc);
226 tc->index = index;
228 spin_lock(&vpecontrol.tc_list_lock);
229 list_add_tail(&tc->list, &vpecontrol.tc_list);
230 spin_unlock(&vpecontrol.tc_list_lock);
232 out:
233 return tc;
236 /* clean up and free everything */
237 static void release_vpe(struct vpe *v)
239 list_del(&v->list);
240 if (v->load_addr)
241 release_progmem(v);
242 kfree(v);
245 static void __maybe_unused dump_mtregs(void)
247 unsigned long val;
249 val = read_c0_config3();
250 printk("config3 0x%lx MT %ld\n", val,
251 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
253 val = read_c0_mvpcontrol();
254 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
255 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
256 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
257 (val & MVPCONTROL_EVP));
259 val = read_c0_mvpconf0();
260 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
261 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
262 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
265 /* Find some VPE program space */
266 static void *alloc_progmem(unsigned long len)
268 void *addr;
270 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
272 * This means you must tell Linux to use less memory than you
273 * physically have, for example by passing a mem= boot argument.
275 addr = pfn_to_kaddr(max_low_pfn);
276 memset(addr, 0, len);
277 #else
278 /* simple grab some mem for now */
279 addr = kzalloc(len, GFP_KERNEL);
280 #endif
282 return addr;
285 static void release_progmem(void *ptr)
287 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
288 kfree(ptr);
289 #endif
292 /* Update size with this section: return offset. */
293 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
295 long ret;
297 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
298 *size = ret + sechdr->sh_size;
299 return ret;
302 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
303 might -- code, read-only data, read-write data, small data. Tally
304 sizes, and place the offsets into sh_entsize fields: high bit means it
305 belongs in init. */
306 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
307 Elf_Shdr * sechdrs, const char *secstrings)
309 static unsigned long const masks[][2] = {
310 /* NOTE: all executable code must be the first section
311 * in this array; otherwise modify the text_size
312 * finder in the two loops below */
313 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
314 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
315 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
316 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
318 unsigned int m, i;
320 for (i = 0; i < hdr->e_shnum; i++)
321 sechdrs[i].sh_entsize = ~0UL;
323 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
324 for (i = 0; i < hdr->e_shnum; ++i) {
325 Elf_Shdr *s = &sechdrs[i];
327 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
328 if ((s->sh_flags & masks[m][0]) != masks[m][0]
329 || (s->sh_flags & masks[m][1])
330 || s->sh_entsize != ~0UL)
331 continue;
332 s->sh_entsize =
333 get_offset((unsigned long *)&mod->core_size, s);
336 if (m == 0)
337 mod->core_text_size = mod->core_size;
343 /* from module-elf32.c, but subverted a little */
345 struct mips_hi16 {
346 struct mips_hi16 *next;
347 Elf32_Addr *addr;
348 Elf32_Addr value;
351 static struct mips_hi16 *mips_hi16_list;
352 static unsigned int gp_offs, gp_addr;
354 static int apply_r_mips_none(struct module *me, uint32_t *location,
355 Elf32_Addr v)
357 return 0;
360 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
361 Elf32_Addr v)
363 int rel;
365 if( !(*location & 0xffff) ) {
366 rel = (int)v - gp_addr;
368 else {
369 /* .sbss + gp(relative) + offset */
370 /* kludge! */
371 rel = (int)(short)((int)v + gp_offs +
372 (int)(short)(*location & 0xffff) - gp_addr);
375 if( (rel > 32768) || (rel < -32768) ) {
376 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
377 "relative address 0x%x out of range of gp register\n",
378 rel);
379 return -ENOEXEC;
382 *location = (*location & 0xffff0000) | (rel & 0xffff);
384 return 0;
387 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
388 Elf32_Addr v)
390 int rel;
391 rel = (((unsigned int)v - (unsigned int)location));
392 rel >>= 2; // because the offset is in _instructions_ not bytes.
393 rel -= 1; // and one instruction less due to the branch delay slot.
395 if( (rel > 32768) || (rel < -32768) ) {
396 printk(KERN_DEBUG "VPE loader: "
397 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
398 return -ENOEXEC;
401 *location = (*location & 0xffff0000) | (rel & 0xffff);
403 return 0;
406 static int apply_r_mips_32(struct module *me, uint32_t *location,
407 Elf32_Addr v)
409 *location += v;
411 return 0;
414 static int apply_r_mips_26(struct module *me, uint32_t *location,
415 Elf32_Addr v)
417 if (v % 4) {
418 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
419 " unaligned relocation\n");
420 return -ENOEXEC;
424 * Not desperately convinced this is a good check of an overflow condition
425 * anyway. But it gets in the way of handling undefined weak symbols which
426 * we want to set to zero.
427 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
428 * printk(KERN_ERR
429 * "module %s: relocation overflow\n",
430 * me->name);
431 * return -ENOEXEC;
435 *location = (*location & ~0x03ffffff) |
436 ((*location + (v >> 2)) & 0x03ffffff);
437 return 0;
440 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
441 Elf32_Addr v)
443 struct mips_hi16 *n;
446 * We cannot relocate this one now because we don't know the value of
447 * the carry we need to add. Save the information, and let LO16 do the
448 * actual relocation.
450 n = kmalloc(sizeof *n, GFP_KERNEL);
451 if (!n)
452 return -ENOMEM;
454 n->addr = location;
455 n->value = v;
456 n->next = mips_hi16_list;
457 mips_hi16_list = n;
459 return 0;
462 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
463 Elf32_Addr v)
465 unsigned long insnlo = *location;
466 Elf32_Addr val, vallo;
467 struct mips_hi16 *l, *next;
469 /* Sign extend the addend we extract from the lo insn. */
470 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
472 if (mips_hi16_list != NULL) {
474 l = mips_hi16_list;
475 while (l != NULL) {
476 unsigned long insn;
479 * The value for the HI16 had best be the same.
481 if (v != l->value) {
482 printk(KERN_DEBUG "VPE loader: "
483 "apply_r_mips_lo16/hi16: \t"
484 "inconsistent value information\n");
485 goto out_free;
489 * Do the HI16 relocation. Note that we actually don't
490 * need to know anything about the LO16 itself, except
491 * where to find the low 16 bits of the addend needed
492 * by the LO16.
494 insn = *l->addr;
495 val = ((insn & 0xffff) << 16) + vallo;
496 val += v;
499 * Account for the sign extension that will happen in
500 * the low bits.
502 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
504 insn = (insn & ~0xffff) | val;
505 *l->addr = insn;
507 next = l->next;
508 kfree(l);
509 l = next;
512 mips_hi16_list = NULL;
516 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
518 val = v + vallo;
519 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
520 *location = insnlo;
522 return 0;
524 out_free:
525 while (l != NULL) {
526 next = l->next;
527 kfree(l);
528 l = next;
530 mips_hi16_list = NULL;
532 return -ENOEXEC;
535 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
536 Elf32_Addr v) = {
537 [R_MIPS_NONE] = apply_r_mips_none,
538 [R_MIPS_32] = apply_r_mips_32,
539 [R_MIPS_26] = apply_r_mips_26,
540 [R_MIPS_HI16] = apply_r_mips_hi16,
541 [R_MIPS_LO16] = apply_r_mips_lo16,
542 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
543 [R_MIPS_PC16] = apply_r_mips_pc16
546 static char *rstrs[] = {
547 [R_MIPS_NONE] = "MIPS_NONE",
548 [R_MIPS_32] = "MIPS_32",
549 [R_MIPS_26] = "MIPS_26",
550 [R_MIPS_HI16] = "MIPS_HI16",
551 [R_MIPS_LO16] = "MIPS_LO16",
552 [R_MIPS_GPREL16] = "MIPS_GPREL16",
553 [R_MIPS_PC16] = "MIPS_PC16"
556 static int apply_relocations(Elf32_Shdr *sechdrs,
557 const char *strtab,
558 unsigned int symindex,
559 unsigned int relsec,
560 struct module *me)
562 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
563 Elf32_Sym *sym;
564 uint32_t *location;
565 unsigned int i;
566 Elf32_Addr v;
567 int res;
569 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
570 Elf32_Word r_info = rel[i].r_info;
572 /* This is where to make the change */
573 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
574 + rel[i].r_offset;
575 /* This is the symbol it is referring to */
576 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
577 + ELF32_R_SYM(r_info);
579 if (!sym->st_value) {
580 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
581 me->name, strtab + sym->st_name);
582 /* just print the warning, dont barf */
585 v = sym->st_value;
587 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
588 if( res ) {
589 char *r = rstrs[ELF32_R_TYPE(r_info)];
590 printk(KERN_WARNING "VPE loader: .text+0x%x "
591 "relocation type %s for symbol \"%s\" failed\n",
592 rel[i].r_offset, r ? r : "UNKNOWN",
593 strtab + sym->st_name);
594 return res;
598 return 0;
601 static inline void save_gp_address(unsigned int secbase, unsigned int rel)
603 gp_addr = secbase + rel;
604 gp_offs = gp_addr - (secbase & 0xffff0000);
606 /* end module-elf32.c */
610 /* Change all symbols so that sh_value encodes the pointer directly. */
611 static void simplify_symbols(Elf_Shdr * sechdrs,
612 unsigned int symindex,
613 const char *strtab,
614 const char *secstrings,
615 unsigned int nsecs, struct module *mod)
617 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
618 unsigned long secbase, bssbase = 0;
619 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
620 int size;
622 /* find the .bss section for COMMON symbols */
623 for (i = 0; i < nsecs; i++) {
624 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
625 bssbase = sechdrs[i].sh_addr;
626 break;
630 for (i = 1; i < n; i++) {
631 switch (sym[i].st_shndx) {
632 case SHN_COMMON:
633 /* Allocate space for the symbol in the .bss section.
634 st_value is currently size.
635 We want it to have the address of the symbol. */
637 size = sym[i].st_value;
638 sym[i].st_value = bssbase;
640 bssbase += size;
641 break;
643 case SHN_ABS:
644 /* Don't need to do anything */
645 break;
647 case SHN_UNDEF:
648 /* ret = -ENOENT; */
649 break;
651 case SHN_MIPS_SCOMMON:
652 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
653 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
654 sym[i].st_shndx);
655 // .sbss section
656 break;
658 default:
659 secbase = sechdrs[sym[i].st_shndx].sh_addr;
661 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
662 save_gp_address(secbase, sym[i].st_value);
665 sym[i].st_value += secbase;
666 break;
671 #ifdef DEBUG_ELFLOADER
672 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
673 const char *strtab, struct module *mod)
675 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
676 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
678 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
679 for (i = 1; i < n; i++) {
680 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
681 strtab + sym[i].st_name, sym[i].st_value);
684 #endif
686 /* We are prepared so configure and start the VPE... */
687 static int vpe_run(struct vpe * v)
689 unsigned long flags, val, dmt_flag;
690 struct vpe_notifications *n;
691 unsigned int vpeflags;
692 struct tc *t;
694 /* check we are the Master VPE */
695 local_irq_save(flags);
696 val = read_c0_vpeconf0();
697 if (!(val & VPECONF0_MVP)) {
698 printk(KERN_WARNING
699 "VPE loader: only Master VPE's are allowed to configure MT\n");
700 local_irq_restore(flags);
702 return -1;
705 dmt_flag = dmt();
706 vpeflags = dvpe();
708 if (!list_empty(&v->tc)) {
709 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
710 evpe(vpeflags);
711 emt(dmt_flag);
712 local_irq_restore(flags);
714 printk(KERN_WARNING
715 "VPE loader: TC %d is already in use.\n",
716 t->index);
717 return -ENOEXEC;
719 } else {
720 evpe(vpeflags);
721 emt(dmt_flag);
722 local_irq_restore(flags);
724 printk(KERN_WARNING
725 "VPE loader: No TC's associated with VPE %d\n",
726 v->minor);
728 return -ENOEXEC;
731 /* Put MVPE's into 'configuration state' */
732 set_c0_mvpcontrol(MVPCONTROL_VPC);
734 settc(t->index);
736 /* should check it is halted, and not activated */
737 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
738 evpe(vpeflags);
739 emt(dmt_flag);
740 local_irq_restore(flags);
742 printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
743 t->index);
745 return -ENOEXEC;
748 /* Write the address we want it to start running from in the TCPC register. */
749 write_tc_c0_tcrestart((unsigned long)v->__start);
750 write_tc_c0_tccontext((unsigned long)0);
753 * Mark the TC as activated, not interrupt exempt and not dynamically
754 * allocatable
756 val = read_tc_c0_tcstatus();
757 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
758 write_tc_c0_tcstatus(val);
760 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
763 * The sde-kit passes 'memsize' to __start in $a3, so set something
764 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
765 * DFLT_HEAP_SIZE when you compile your program
767 mttgpr(6, v->ntcs);
768 mttgpr(7, physical_memsize);
770 /* set up VPE1 */
772 * bind the TC to VPE 1 as late as possible so we only have the final
773 * VPE registers to set up, and so an EJTAG probe can trigger on it
775 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
777 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
779 back_to_back_c0_hazard();
781 /* Set up the XTC bit in vpeconf0 to point at our tc */
782 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
783 | (t->index << VPECONF0_XTC_SHIFT));
785 back_to_back_c0_hazard();
787 /* enable this VPE */
788 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
790 /* clear out any left overs from a previous program */
791 write_vpe_c0_status(0);
792 write_vpe_c0_cause(0);
794 /* take system out of configuration state */
795 clear_c0_mvpcontrol(MVPCONTROL_VPC);
798 * SMTC/SMVP kernels manage VPE enable independently,
799 * but uniprocessor kernels need to turn it on, even
800 * if that wasn't the pre-dvpe() state.
802 #ifdef CONFIG_SMP
803 evpe(vpeflags);
804 #else
805 evpe(EVPE_ENABLE);
806 #endif
807 emt(dmt_flag);
808 local_irq_restore(flags);
810 list_for_each_entry(n, &v->notify, list)
811 n->start(minor);
813 return 0;
816 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
817 unsigned int symindex, const char *strtab,
818 struct module *mod)
820 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
821 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
823 for (i = 1; i < n; i++) {
824 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
825 v->__start = sym[i].st_value;
828 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
829 v->shared_ptr = (void *)sym[i].st_value;
833 if ( (v->__start == 0) || (v->shared_ptr == NULL))
834 return -1;
836 return 0;
840 * Allocates a VPE with some program code space(the load address), copies the
841 * contents of the program (p)buffer performing relocatations/etc, free's it
842 * when finished.
844 static int vpe_elfload(struct vpe * v)
846 Elf_Ehdr *hdr;
847 Elf_Shdr *sechdrs;
848 long err = 0;
849 char *secstrings, *strtab = NULL;
850 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
851 struct module mod; // so we can re-use the relocations code
853 memset(&mod, 0, sizeof(struct module));
854 strcpy(mod.name, "VPE loader");
856 hdr = (Elf_Ehdr *) v->pbuffer;
857 len = v->plen;
859 /* Sanity checks against insmoding binaries or wrong arch,
860 weird elf version */
861 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
862 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
863 || !elf_check_arch(hdr)
864 || hdr->e_shentsize != sizeof(*sechdrs)) {
865 printk(KERN_WARNING
866 "VPE loader: program wrong arch or weird elf version\n");
868 return -ENOEXEC;
871 if (hdr->e_type == ET_REL)
872 relocate = 1;
874 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
875 printk(KERN_ERR "VPE loader: program length %u truncated\n",
876 len);
878 return -ENOEXEC;
881 /* Convenience variables */
882 sechdrs = (void *)hdr + hdr->e_shoff;
883 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
884 sechdrs[0].sh_addr = 0;
886 /* And these should exist, but gcc whinges if we don't init them */
887 symindex = strindex = 0;
889 if (relocate) {
890 for (i = 1; i < hdr->e_shnum; i++) {
891 if (sechdrs[i].sh_type != SHT_NOBITS
892 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
893 printk(KERN_ERR "VPE program length %u truncated\n",
894 len);
895 return -ENOEXEC;
898 /* Mark all sections sh_addr with their address in the
899 temporary image. */
900 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
902 /* Internal symbols and strings. */
903 if (sechdrs[i].sh_type == SHT_SYMTAB) {
904 symindex = i;
905 strindex = sechdrs[i].sh_link;
906 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
909 layout_sections(&mod, hdr, sechdrs, secstrings);
912 v->load_addr = alloc_progmem(mod.core_size);
913 if (!v->load_addr)
914 return -ENOMEM;
916 pr_info("VPE loader: loading to %p\n", v->load_addr);
918 if (relocate) {
919 for (i = 0; i < hdr->e_shnum; i++) {
920 void *dest;
922 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
923 continue;
925 dest = v->load_addr + sechdrs[i].sh_entsize;
927 if (sechdrs[i].sh_type != SHT_NOBITS)
928 memcpy(dest, (void *)sechdrs[i].sh_addr,
929 sechdrs[i].sh_size);
930 /* Update sh_addr to point to copy in image. */
931 sechdrs[i].sh_addr = (unsigned long)dest;
933 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
934 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
937 /* Fix up syms, so that st_value is a pointer to location. */
938 simplify_symbols(sechdrs, symindex, strtab, secstrings,
939 hdr->e_shnum, &mod);
941 /* Now do relocations. */
942 for (i = 1; i < hdr->e_shnum; i++) {
943 const char *strtab = (char *)sechdrs[strindex].sh_addr;
944 unsigned int info = sechdrs[i].sh_info;
946 /* Not a valid relocation section? */
947 if (info >= hdr->e_shnum)
948 continue;
950 /* Don't bother with non-allocated sections */
951 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
952 continue;
954 if (sechdrs[i].sh_type == SHT_REL)
955 err = apply_relocations(sechdrs, strtab, symindex, i,
956 &mod);
957 else if (sechdrs[i].sh_type == SHT_RELA)
958 err = apply_relocate_add(sechdrs, strtab, symindex, i,
959 &mod);
960 if (err < 0)
961 return err;
964 } else {
965 struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
967 for (i = 0; i < hdr->e_phnum; i++) {
968 if (phdr->p_type == PT_LOAD) {
969 memcpy((void *)phdr->p_paddr,
970 (char *)hdr + phdr->p_offset,
971 phdr->p_filesz);
972 memset((void *)phdr->p_paddr + phdr->p_filesz,
973 0, phdr->p_memsz - phdr->p_filesz);
975 phdr++;
978 for (i = 0; i < hdr->e_shnum; i++) {
979 /* Internal symbols and strings. */
980 if (sechdrs[i].sh_type == SHT_SYMTAB) {
981 symindex = i;
982 strindex = sechdrs[i].sh_link;
983 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
985 /* mark the symtab's address for when we try to find the
986 magic symbols */
987 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
992 /* make sure it's physically written out */
993 flush_icache_range((unsigned long)v->load_addr,
994 (unsigned long)v->load_addr + v->len);
996 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
997 if (v->__start == 0) {
998 printk(KERN_WARNING "VPE loader: program does not contain "
999 "a __start symbol\n");
1000 return -ENOEXEC;
1003 if (v->shared_ptr == NULL)
1004 printk(KERN_WARNING "VPE loader: "
1005 "program does not contain vpe_shared symbol.\n"
1006 " Unable to use AMVP (AP/SP) facilities.\n");
1009 printk(" elf loaded\n");
1010 return 0;
1013 static void cleanup_tc(struct tc *tc)
1015 unsigned long flags;
1016 unsigned int mtflags, vpflags;
1017 int tmp;
1019 local_irq_save(flags);
1020 mtflags = dmt();
1021 vpflags = dvpe();
1022 /* Put MVPE's into 'configuration state' */
1023 set_c0_mvpcontrol(MVPCONTROL_VPC);
1025 settc(tc->index);
1026 tmp = read_tc_c0_tcstatus();
1028 /* mark not allocated and not dynamically allocatable */
1029 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1030 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1031 write_tc_c0_tcstatus(tmp);
1033 write_tc_c0_tchalt(TCHALT_H);
1034 mips_ihb();
1036 /* bind it to anything other than VPE1 */
1037 // write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1039 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1040 evpe(vpflags);
1041 emt(mtflags);
1042 local_irq_restore(flags);
1045 static int getcwd(char *buff, int size)
1047 mm_segment_t old_fs;
1048 int ret;
1050 old_fs = get_fs();
1051 set_fs(KERNEL_DS);
1053 ret = sys_getcwd(buff, size);
1055 set_fs(old_fs);
1057 return ret;
1060 /* checks VPE is unused and gets ready to load program */
1061 static int vpe_open(struct inode *inode, struct file *filp)
1063 enum vpe_state state;
1064 struct vpe_notifications *not;
1065 struct vpe *v;
1066 int ret;
1068 if (minor != iminor(inode)) {
1069 /* assume only 1 device at the moment. */
1070 pr_warning("VPE loader: only vpe1 is supported\n");
1072 return -ENODEV;
1075 if ((v = get_vpe(tclimit)) == NULL) {
1076 pr_warning("VPE loader: unable to get vpe\n");
1078 return -ENODEV;
1081 state = xchg(&v->state, VPE_STATE_INUSE);
1082 if (state != VPE_STATE_UNUSED) {
1083 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1085 list_for_each_entry(not, &v->notify, list) {
1086 not->stop(tclimit);
1089 release_progmem(v->load_addr);
1090 cleanup_tc(get_tc(tclimit));
1093 /* this of-course trashes what was there before... */
1094 v->pbuffer = vmalloc(P_SIZE);
1095 if (!v->pbuffer) {
1096 pr_warning("VPE loader: unable to allocate memory\n");
1097 return -ENOMEM;
1099 v->plen = P_SIZE;
1100 v->load_addr = NULL;
1101 v->len = 0;
1103 v->uid = filp->f_cred->fsuid;
1104 v->gid = filp->f_cred->fsgid;
1106 #ifdef CONFIG_MIPS_APSP_KSPD
1107 /* get kspd to tell us when a syscall_exit happens */
1108 if (!kspd_events_reqd) {
1109 kspd_notify(&kspd_events);
1110 kspd_events_reqd++;
1112 #endif
1114 v->cwd[0] = 0;
1115 ret = getcwd(v->cwd, VPE_PATH_MAX);
1116 if (ret < 0)
1117 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1119 v->shared_ptr = NULL;
1120 v->__start = 0;
1122 return 0;
1125 static int vpe_release(struct inode *inode, struct file *filp)
1127 struct vpe *v;
1128 Elf_Ehdr *hdr;
1129 int ret = 0;
1131 v = get_vpe(tclimit);
1132 if (v == NULL)
1133 return -ENODEV;
1135 hdr = (Elf_Ehdr *) v->pbuffer;
1136 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1137 if (vpe_elfload(v) >= 0) {
1138 vpe_run(v);
1139 } else {
1140 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1141 ret = -ENOEXEC;
1143 } else {
1144 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1145 ret = -ENOEXEC;
1148 /* It's good to be able to run the SP and if it chokes have a look at
1149 the /dev/rt?. But if we reset the pointer to the shared struct we
1150 lose what has happened. So perhaps if garbage is sent to the vpe
1151 device, use it as a trigger for the reset. Hopefully a nice
1152 executable will be along shortly. */
1153 if (ret < 0)
1154 v->shared_ptr = NULL;
1156 vfree(v->pbuffer);
1157 v->plen = 0;
1159 return ret;
1162 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1163 size_t count, loff_t * ppos)
1165 size_t ret = count;
1166 struct vpe *v;
1168 if (iminor(file->f_path.dentry->d_inode) != minor)
1169 return -ENODEV;
1171 v = get_vpe(tclimit);
1172 if (v == NULL)
1173 return -ENODEV;
1175 if ((count + v->len) > v->plen) {
1176 printk(KERN_WARNING
1177 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1178 return -ENOMEM;
1181 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1182 if (!count)
1183 return -EFAULT;
1185 v->len += count;
1186 return ret;
1189 static const struct file_operations vpe_fops = {
1190 .owner = THIS_MODULE,
1191 .open = vpe_open,
1192 .release = vpe_release,
1193 .write = vpe_write,
1194 .llseek = noop_llseek,
1197 /* module wrapper entry points */
1198 /* give me a vpe */
1199 vpe_handle vpe_alloc(void)
1201 int i;
1202 struct vpe *v;
1204 /* find a vpe */
1205 for (i = 1; i < MAX_VPES; i++) {
1206 if ((v = get_vpe(i)) != NULL) {
1207 v->state = VPE_STATE_INUSE;
1208 return v;
1211 return NULL;
1214 EXPORT_SYMBOL(vpe_alloc);
1216 /* start running from here */
1217 int vpe_start(vpe_handle vpe, unsigned long start)
1219 struct vpe *v = vpe;
1221 v->__start = start;
1222 return vpe_run(v);
1225 EXPORT_SYMBOL(vpe_start);
1227 /* halt it for now */
1228 int vpe_stop(vpe_handle vpe)
1230 struct vpe *v = vpe;
1231 struct tc *t;
1232 unsigned int evpe_flags;
1234 evpe_flags = dvpe();
1236 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1238 settc(t->index);
1239 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1242 evpe(evpe_flags);
1244 return 0;
1247 EXPORT_SYMBOL(vpe_stop);
1249 /* I've done with it thank you */
1250 int vpe_free(vpe_handle vpe)
1252 struct vpe *v = vpe;
1253 struct tc *t;
1254 unsigned int evpe_flags;
1256 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1257 return -ENOEXEC;
1260 evpe_flags = dvpe();
1262 /* Put MVPE's into 'configuration state' */
1263 set_c0_mvpcontrol(MVPCONTROL_VPC);
1265 settc(t->index);
1266 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1268 /* halt the TC */
1269 write_tc_c0_tchalt(TCHALT_H);
1270 mips_ihb();
1272 /* mark the TC unallocated */
1273 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1275 v->state = VPE_STATE_UNUSED;
1277 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1278 evpe(evpe_flags);
1280 return 0;
1283 EXPORT_SYMBOL(vpe_free);
1285 void *vpe_get_shared(int index)
1287 struct vpe *v;
1289 if ((v = get_vpe(index)) == NULL)
1290 return NULL;
1292 return v->shared_ptr;
1295 EXPORT_SYMBOL(vpe_get_shared);
1297 int vpe_getuid(int index)
1299 struct vpe *v;
1301 if ((v = get_vpe(index)) == NULL)
1302 return -1;
1304 return v->uid;
1307 EXPORT_SYMBOL(vpe_getuid);
1309 int vpe_getgid(int index)
1311 struct vpe *v;
1313 if ((v = get_vpe(index)) == NULL)
1314 return -1;
1316 return v->gid;
1319 EXPORT_SYMBOL(vpe_getgid);
1321 int vpe_notify(int index, struct vpe_notifications *notify)
1323 struct vpe *v;
1325 if ((v = get_vpe(index)) == NULL)
1326 return -1;
1328 list_add(&notify->list, &v->notify);
1329 return 0;
1332 EXPORT_SYMBOL(vpe_notify);
1334 char *vpe_getcwd(int index)
1336 struct vpe *v;
1338 if ((v = get_vpe(index)) == NULL)
1339 return NULL;
1341 return v->cwd;
1344 EXPORT_SYMBOL(vpe_getcwd);
1346 #ifdef CONFIG_MIPS_APSP_KSPD
1347 static void kspd_sp_exit( int sp_id)
1349 cleanup_tc(get_tc(sp_id));
1351 #endif
1353 static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1354 const char *buf, size_t len)
1356 struct vpe *vpe = get_vpe(tclimit);
1357 struct vpe_notifications *not;
1359 list_for_each_entry(not, &vpe->notify, list) {
1360 not->stop(tclimit);
1363 release_progmem(vpe->load_addr);
1364 cleanup_tc(get_tc(tclimit));
1365 vpe_stop(vpe);
1366 vpe_free(vpe);
1368 return len;
1371 static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1372 char *buf)
1374 struct vpe *vpe = get_vpe(tclimit);
1376 return sprintf(buf, "%d\n", vpe->ntcs);
1379 static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1380 const char *buf, size_t len)
1382 struct vpe *vpe = get_vpe(tclimit);
1383 unsigned long new;
1384 char *endp;
1386 new = simple_strtoul(buf, &endp, 0);
1387 if (endp == buf)
1388 goto out_einval;
1390 if (new == 0 || new > (hw_tcs - tclimit))
1391 goto out_einval;
1393 vpe->ntcs = new;
1395 return len;
1397 out_einval:
1398 return -EINVAL;
1401 static struct device_attribute vpe_class_attributes[] = {
1402 __ATTR(kill, S_IWUSR, NULL, store_kill),
1403 __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1407 static void vpe_device_release(struct device *cd)
1409 kfree(cd);
1412 struct class vpe_class = {
1413 .name = "vpe",
1414 .owner = THIS_MODULE,
1415 .dev_release = vpe_device_release,
1416 .dev_attrs = vpe_class_attributes,
1419 struct device vpe_device;
1421 static int __init vpe_module_init(void)
1423 unsigned int mtflags, vpflags;
1424 unsigned long flags, val;
1425 struct vpe *v = NULL;
1426 struct tc *t;
1427 int tc, err;
1429 if (!cpu_has_mipsmt) {
1430 printk("VPE loader: not a MIPS MT capable processor\n");
1431 return -ENODEV;
1434 if (vpelimit == 0) {
1435 printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1436 "initializing VPE loader.\nPass maxvpes=<n> argument as "
1437 "kernel argument\n");
1439 return -ENODEV;
1442 if (tclimit == 0) {
1443 printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1444 "initializing VPE loader.\nPass maxtcs=<n> argument as "
1445 "kernel argument\n");
1447 return -ENODEV;
1450 major = register_chrdev(0, module_name, &vpe_fops);
1451 if (major < 0) {
1452 printk("VPE loader: unable to register character device\n");
1453 return major;
1456 err = class_register(&vpe_class);
1457 if (err) {
1458 printk(KERN_ERR "vpe_class registration failed\n");
1459 goto out_chrdev;
1462 device_initialize(&vpe_device);
1463 vpe_device.class = &vpe_class,
1464 vpe_device.parent = NULL,
1465 dev_set_name(&vpe_device, "vpe1");
1466 vpe_device.devt = MKDEV(major, minor);
1467 err = device_add(&vpe_device);
1468 if (err) {
1469 printk(KERN_ERR "Adding vpe_device failed\n");
1470 goto out_class;
1473 local_irq_save(flags);
1474 mtflags = dmt();
1475 vpflags = dvpe();
1477 /* Put MVPE's into 'configuration state' */
1478 set_c0_mvpcontrol(MVPCONTROL_VPC);
1480 /* dump_mtregs(); */
1482 val = read_c0_mvpconf0();
1483 hw_tcs = (val & MVPCONF0_PTC) + 1;
1484 hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1486 for (tc = tclimit; tc < hw_tcs; tc++) {
1488 * Must re-enable multithreading temporarily or in case we
1489 * reschedule send IPIs or similar we might hang.
1491 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1492 evpe(vpflags);
1493 emt(mtflags);
1494 local_irq_restore(flags);
1495 t = alloc_tc(tc);
1496 if (!t) {
1497 err = -ENOMEM;
1498 goto out;
1501 local_irq_save(flags);
1502 mtflags = dmt();
1503 vpflags = dvpe();
1504 set_c0_mvpcontrol(MVPCONTROL_VPC);
1506 /* VPE's */
1507 if (tc < hw_tcs) {
1508 settc(tc);
1510 if ((v = alloc_vpe(tc)) == NULL) {
1511 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1513 goto out_reenable;
1516 v->ntcs = hw_tcs - tclimit;
1518 /* add the tc to the list of this vpe's tc's. */
1519 list_add(&t->tc, &v->tc);
1521 /* deactivate all but vpe0 */
1522 if (tc >= tclimit) {
1523 unsigned long tmp = read_vpe_c0_vpeconf0();
1525 tmp &= ~VPECONF0_VPA;
1527 /* master VPE */
1528 tmp |= VPECONF0_MVP;
1529 write_vpe_c0_vpeconf0(tmp);
1532 /* disable multi-threading with TC's */
1533 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1535 if (tc >= vpelimit) {
1537 * Set config to be the same as vpe0,
1538 * particularly kseg0 coherency alg
1540 write_vpe_c0_config(read_c0_config());
1544 /* TC's */
1545 t->pvpe = v; /* set the parent vpe */
1547 if (tc >= tclimit) {
1548 unsigned long tmp;
1550 settc(tc);
1552 /* Any TC that is bound to VPE0 gets left as is - in case
1553 we are running SMTC on VPE0. A TC that is bound to any
1554 other VPE gets bound to VPE0, ideally I'd like to make
1555 it homeless but it doesn't appear to let me bind a TC
1556 to a non-existent VPE. Which is perfectly reasonable.
1558 The (un)bound state is visible to an EJTAG probe so may
1559 notify GDB...
1562 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1563 /* tc is bound >vpe0 */
1564 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1566 t->pvpe = get_vpe(0); /* set the parent vpe */
1569 /* halt the TC */
1570 write_tc_c0_tchalt(TCHALT_H);
1571 mips_ihb();
1573 tmp = read_tc_c0_tcstatus();
1575 /* mark not activated and not dynamically allocatable */
1576 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1577 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1578 write_tc_c0_tcstatus(tmp);
1582 out_reenable:
1583 /* release config state */
1584 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1586 evpe(vpflags);
1587 emt(mtflags);
1588 local_irq_restore(flags);
1590 #ifdef CONFIG_MIPS_APSP_KSPD
1591 kspd_events.kspd_sp_exit = kspd_sp_exit;
1592 #endif
1593 return 0;
1595 out_class:
1596 class_unregister(&vpe_class);
1597 out_chrdev:
1598 unregister_chrdev(major, module_name);
1600 out:
1601 return err;
1604 static void __exit vpe_module_exit(void)
1606 struct vpe *v, *n;
1608 device_del(&vpe_device);
1609 unregister_chrdev(major, module_name);
1611 /* No locking needed here */
1612 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1613 if (v->state != VPE_STATE_UNUSED)
1614 release_vpe(v);
1618 module_init(vpe_module_init);
1619 module_exit(vpe_module_exit);
1620 MODULE_DESCRIPTION("MIPS VPE Loader");
1621 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1622 MODULE_LICENSE("GPL");