2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
68 #include <asm/div64.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t
rtc_read(struct clocksource
*);
84 static struct clocksource clocksource_rtc
= {
87 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
88 .mask
= CLOCKSOURCE_MASK(64),
90 .mult
= 0, /* To be filled in */
94 static cycle_t
timebase_read(struct clocksource
*);
95 static struct clocksource clocksource_timebase
= {
98 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
99 .mask
= CLOCKSOURCE_MASK(64),
101 .mult
= 0, /* To be filled in */
102 .read
= timebase_read
,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt
,
108 struct clock_event_device
*dev
);
109 static void decrementer_set_mode(enum clock_event_mode mode
,
110 struct clock_event_device
*dev
);
112 static struct clock_event_device decrementer_clockevent
= {
113 .name
= "decrementer",
115 .shift
= 0, /* To be filled in */
116 .mult
= 0, /* To be filled in */
118 .set_next_event
= decrementer_set_next_event
,
119 .set_mode
= decrementer_set_mode
,
120 .features
= CLOCK_EVT_FEAT_ONESHOT
,
123 struct decrementer_clock
{
124 struct clock_event_device event
;
128 static DEFINE_PER_CPU(struct decrementer_clock
, decrementers
);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan
;
132 static signed long __initdata iSeries_recal_tb
;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init
clocksource_init(void);
138 #define XSEC_PER_SEC (1024*1024)
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
147 unsigned long tb_ticks_per_jiffy
;
148 unsigned long tb_ticks_per_usec
= 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec
);
150 unsigned long tb_ticks_per_sec
;
151 EXPORT_SYMBOL(tb_ticks_per_sec
); /* for cputime_t conversions */
153 DEFINE_SPINLOCK(rtc_lock
);
154 EXPORT_SYMBOL_GPL(rtc_lock
);
156 static u64 tb_to_ns_scale __read_mostly
;
157 static unsigned tb_to_ns_shift __read_mostly
;
158 static u64 boot_tb __read_mostly
;
160 extern struct timezone sys_tz
;
161 static long timezone_offset
;
163 unsigned long ppc_proc_freq
;
164 EXPORT_SYMBOL_GPL(ppc_proc_freq
);
165 unsigned long ppc_tb_freq
;
166 EXPORT_SYMBOL_GPL(ppc_tb_freq
);
168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
170 * Factors for converting from cputime_t (timebase ticks) to
171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
172 * These are all stored as 0.64 fixed-point binary fractions.
174 u64 __cputime_jiffies_factor
;
175 EXPORT_SYMBOL(__cputime_jiffies_factor
);
176 u64 __cputime_msec_factor
;
177 EXPORT_SYMBOL(__cputime_msec_factor
);
178 u64 __cputime_sec_factor
;
179 EXPORT_SYMBOL(__cputime_sec_factor
);
180 u64 __cputime_clockt_factor
;
181 EXPORT_SYMBOL(__cputime_clockt_factor
);
182 DEFINE_PER_CPU(unsigned long, cputime_last_delta
);
183 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta
);
185 cputime_t cputime_one_jiffy
;
187 void (*dtl_consumer
)(struct dtl_entry
*, u64
);
189 static void calc_cputime_factors(void)
191 struct div_result res
;
193 div128_by_32(HZ
, 0, tb_ticks_per_sec
, &res
);
194 __cputime_jiffies_factor
= res
.result_low
;
195 div128_by_32(1000, 0, tb_ticks_per_sec
, &res
);
196 __cputime_msec_factor
= res
.result_low
;
197 div128_by_32(1, 0, tb_ticks_per_sec
, &res
);
198 __cputime_sec_factor
= res
.result_low
;
199 div128_by_32(USER_HZ
, 0, tb_ticks_per_sec
, &res
);
200 __cputime_clockt_factor
= res
.result_low
;
204 * Read the SPURR on systems that have it, otherwise the PURR,
205 * or if that doesn't exist return the timebase value passed in.
207 static u64
read_spurr(u64 tb
)
209 if (cpu_has_feature(CPU_FTR_SPURR
))
210 return mfspr(SPRN_SPURR
);
211 if (cpu_has_feature(CPU_FTR_PURR
))
212 return mfspr(SPRN_PURR
);
216 #ifdef CONFIG_PPC_SPLPAR
219 * Scan the dispatch trace log and count up the stolen time.
220 * Should be called with interrupts disabled.
222 static u64
scan_dispatch_log(u64 stop_tb
)
224 u64 i
= local_paca
->dtl_ridx
;
225 struct dtl_entry
*dtl
= local_paca
->dtl_curr
;
226 struct dtl_entry
*dtl_end
= local_paca
->dispatch_log_end
;
227 struct lppaca
*vpa
= local_paca
->lppaca_ptr
;
232 if (i
== vpa
->dtl_idx
)
234 while (i
< vpa
->dtl_idx
) {
236 dtl_consumer(dtl
, i
);
238 tb_delta
= dtl
->enqueue_to_dispatch_time
+
239 dtl
->ready_to_enqueue_time
;
241 if (i
+ N_DISPATCH_LOG
< vpa
->dtl_idx
) {
242 /* buffer has overflowed */
243 i
= vpa
->dtl_idx
- N_DISPATCH_LOG
;
244 dtl
= local_paca
->dispatch_log
+ (i
% N_DISPATCH_LOG
);
253 dtl
= local_paca
->dispatch_log
;
255 local_paca
->dtl_ridx
= i
;
256 local_paca
->dtl_curr
= dtl
;
261 * Accumulate stolen time by scanning the dispatch trace log.
262 * Called on entry from user mode.
264 void accumulate_stolen_time(void)
268 u8 save_soft_enabled
= local_paca
->soft_enabled
;
269 u8 save_hard_enabled
= local_paca
->hard_enabled
;
271 /* We are called early in the exception entry, before
272 * soft/hard_enabled are sync'ed to the expected state
273 * for the exception. We are hard disabled but the PACA
274 * needs to reflect that so various debug stuff doesn't
277 local_paca
->soft_enabled
= 0;
278 local_paca
->hard_enabled
= 0;
280 sst
= scan_dispatch_log(local_paca
->starttime_user
);
281 ust
= scan_dispatch_log(local_paca
->starttime
);
282 local_paca
->system_time
-= sst
;
283 local_paca
->user_time
-= ust
;
284 local_paca
->stolen_time
+= ust
+ sst
;
286 local_paca
->soft_enabled
= save_soft_enabled
;
287 local_paca
->hard_enabled
= save_hard_enabled
;
290 static inline u64
calculate_stolen_time(u64 stop_tb
)
294 if (get_paca()->dtl_ridx
!= get_paca()->lppaca_ptr
->dtl_idx
) {
295 stolen
= scan_dispatch_log(stop_tb
);
296 get_paca()->system_time
-= stolen
;
299 stolen
+= get_paca()->stolen_time
;
300 get_paca()->stolen_time
= 0;
304 #else /* CONFIG_PPC_SPLPAR */
305 static inline u64
calculate_stolen_time(u64 stop_tb
)
310 #endif /* CONFIG_PPC_SPLPAR */
313 * Account time for a transition between system, hard irq
316 void account_system_vtime(struct task_struct
*tsk
)
318 u64 now
, nowscaled
, delta
, deltascaled
;
320 u64 stolen
, udelta
, sys_scaled
, user_scaled
;
322 local_irq_save(flags
);
324 nowscaled
= read_spurr(now
);
325 get_paca()->system_time
+= now
- get_paca()->starttime
;
326 get_paca()->starttime
= now
;
327 deltascaled
= nowscaled
- get_paca()->startspurr
;
328 get_paca()->startspurr
= nowscaled
;
330 stolen
= calculate_stolen_time(now
);
332 delta
= get_paca()->system_time
;
333 get_paca()->system_time
= 0;
334 udelta
= get_paca()->user_time
- get_paca()->utime_sspurr
;
335 get_paca()->utime_sspurr
= get_paca()->user_time
;
338 * Because we don't read the SPURR on every kernel entry/exit,
339 * deltascaled includes both user and system SPURR ticks.
340 * Apportion these ticks to system SPURR ticks and user
341 * SPURR ticks in the same ratio as the system time (delta)
342 * and user time (udelta) values obtained from the timebase
343 * over the same interval. The system ticks get accounted here;
344 * the user ticks get saved up in paca->user_time_scaled to be
345 * used by account_process_tick.
348 user_scaled
= udelta
;
349 if (deltascaled
!= delta
+ udelta
) {
351 sys_scaled
= deltascaled
* delta
/ (delta
+ udelta
);
352 user_scaled
= deltascaled
- sys_scaled
;
354 sys_scaled
= deltascaled
;
357 get_paca()->user_time_scaled
+= user_scaled
;
359 if (in_interrupt() || idle_task(smp_processor_id()) != tsk
) {
360 account_system_time(tsk
, 0, delta
, sys_scaled
);
362 account_steal_time(stolen
);
364 account_idle_time(delta
+ stolen
);
366 local_irq_restore(flags
);
368 EXPORT_SYMBOL_GPL(account_system_vtime
);
371 * Transfer the user and system times accumulated in the paca
372 * by the exception entry and exit code to the generic process
373 * user and system time records.
374 * Must be called with interrupts disabled.
375 * Assumes that account_system_vtime() has been called recently
376 * (i.e. since the last entry from usermode) so that
377 * get_paca()->user_time_scaled is up to date.
379 void account_process_tick(struct task_struct
*tsk
, int user_tick
)
381 cputime_t utime
, utimescaled
;
383 utime
= get_paca()->user_time
;
384 utimescaled
= get_paca()->user_time_scaled
;
385 get_paca()->user_time
= 0;
386 get_paca()->user_time_scaled
= 0;
387 get_paca()->utime_sspurr
= 0;
388 account_user_time(tsk
, utime
, utimescaled
);
391 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
392 #define calc_cputime_factors()
395 void __delay(unsigned long loops
)
403 /* the RTCL register wraps at 1000000000 */
404 diff
= get_rtcl() - start
;
407 } while (diff
< loops
);
410 while (get_tbl() - start
< loops
)
415 EXPORT_SYMBOL(__delay
);
417 void udelay(unsigned long usecs
)
419 __delay(tb_ticks_per_usec
* usecs
);
421 EXPORT_SYMBOL(udelay
);
424 unsigned long profile_pc(struct pt_regs
*regs
)
426 unsigned long pc
= instruction_pointer(regs
);
428 if (in_lock_functions(pc
))
433 EXPORT_SYMBOL(profile_pc
);
436 #ifdef CONFIG_PPC_ISERIES
439 * This function recalibrates the timebase based on the 49-bit time-of-day
440 * value in the Titan chip. The Titan is much more accurate than the value
441 * returned by the service processor for the timebase frequency.
444 static int __init
iSeries_tb_recal(void)
446 unsigned long titan
, tb
;
448 /* Make sure we only run on iSeries */
449 if (!firmware_has_feature(FW_FEATURE_ISERIES
))
453 titan
= HvCallXm_loadTod();
454 if ( iSeries_recal_titan
) {
455 unsigned long tb_ticks
= tb
- iSeries_recal_tb
;
456 unsigned long titan_usec
= (titan
- iSeries_recal_titan
) >> 12;
457 unsigned long new_tb_ticks_per_sec
= (tb_ticks
* USEC_PER_SEC
)/titan_usec
;
458 unsigned long new_tb_ticks_per_jiffy
=
459 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec
, HZ
);
460 long tick_diff
= new_tb_ticks_per_jiffy
- tb_ticks_per_jiffy
;
462 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
463 new_tb_ticks_per_sec
= new_tb_ticks_per_jiffy
* HZ
;
465 if ( tick_diff
< 0 ) {
466 tick_diff
= -tick_diff
;
470 if ( tick_diff
< tb_ticks_per_jiffy
/25 ) {
471 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
472 new_tb_ticks_per_jiffy
, sign
, tick_diff
);
473 tb_ticks_per_jiffy
= new_tb_ticks_per_jiffy
;
474 tb_ticks_per_sec
= new_tb_ticks_per_sec
;
475 calc_cputime_factors();
476 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
477 setup_cputime_one_jiffy();
480 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
481 " new tb_ticks_per_jiffy = %lu\n"
482 " old tb_ticks_per_jiffy = %lu\n",
483 new_tb_ticks_per_jiffy
, tb_ticks_per_jiffy
);
487 iSeries_recal_titan
= titan
;
488 iSeries_recal_tb
= tb
;
490 /* Called here as now we know accurate values for the timebase */
494 late_initcall(iSeries_tb_recal
);
496 /* Called from platform early init */
497 void __init
iSeries_time_init_early(void)
499 iSeries_recal_tb
= get_tb();
500 iSeries_recal_titan
= HvCallXm_loadTod();
502 #endif /* CONFIG_PPC_ISERIES */
504 #ifdef CONFIG_IRQ_WORK
507 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
510 static inline unsigned long test_irq_work_pending(void)
514 asm volatile("lbz %0,%1(13)"
516 : "i" (offsetof(struct paca_struct
, irq_work_pending
)));
520 static inline void set_irq_work_pending_flag(void)
522 asm volatile("stb %0,%1(13)" : :
524 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
527 static inline void clear_irq_work_pending(void)
529 asm volatile("stb %0,%1(13)" : :
531 "i" (offsetof(struct paca_struct
, irq_work_pending
)));
536 DEFINE_PER_CPU(u8
, irq_work_pending
);
538 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
539 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
540 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
542 #endif /* 32 vs 64 bit */
544 void set_irq_work_pending(void)
547 set_irq_work_pending_flag();
552 #else /* CONFIG_IRQ_WORK */
554 #define test_irq_work_pending() 0
555 #define clear_irq_work_pending()
557 #endif /* CONFIG_IRQ_WORK */
560 * For iSeries shared processors, we have to let the hypervisor
561 * set the hardware decrementer. We set a virtual decrementer
562 * in the lppaca and call the hypervisor if the virtual
563 * decrementer is less than the current value in the hardware
564 * decrementer. (almost always the new decrementer value will
565 * be greater than the current hardware decementer so the hypervisor
566 * call will not be needed)
570 * timer_interrupt - gets called when the decrementer overflows,
571 * with interrupts disabled.
573 void timer_interrupt(struct pt_regs
* regs
)
575 struct pt_regs
*old_regs
;
576 struct decrementer_clock
*decrementer
= &__get_cpu_var(decrementers
);
577 struct clock_event_device
*evt
= &decrementer
->event
;
580 /* Ensure a positive value is written to the decrementer, or else
581 * some CPUs will continue to take decrementer exceptions.
583 set_dec(DECREMENTER_MAX
);
585 /* Some implementations of hotplug will get timer interrupts while
586 * offline, just ignore these
588 if (!cpu_online(smp_processor_id()))
591 trace_timer_interrupt_entry(regs
);
593 __get_cpu_var(irq_stat
).timer_irqs
++;
595 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
596 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
600 old_regs
= set_irq_regs(regs
);
603 if (test_irq_work_pending()) {
604 clear_irq_work_pending();
608 #ifdef CONFIG_PPC_ISERIES
609 if (firmware_has_feature(FW_FEATURE_ISERIES
))
610 get_lppaca()->int_dword
.fields
.decr_int
= 0;
613 now
= get_tb_or_rtc();
614 if (now
>= decrementer
->next_tb
) {
615 decrementer
->next_tb
= ~(u64
)0;
616 if (evt
->event_handler
)
617 evt
->event_handler(evt
);
619 now
= decrementer
->next_tb
- now
;
620 if (now
<= DECREMENTER_MAX
)
624 #ifdef CONFIG_PPC_ISERIES
625 if (firmware_has_feature(FW_FEATURE_ISERIES
) && hvlpevent_is_pending())
626 process_hvlpevents();
630 /* collect purr register values often, for accurate calculations */
631 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
632 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
633 cu
->current_tb
= mfspr(SPRN_PURR
);
638 set_irq_regs(old_regs
);
640 trace_timer_interrupt_exit(regs
);
643 #ifdef CONFIG_SUSPEND
644 static void generic_suspend_disable_irqs(void)
646 /* Disable the decrementer, so that it doesn't interfere
655 static void generic_suspend_enable_irqs(void)
660 /* Overrides the weak version in kernel/power/main.c */
661 void arch_suspend_disable_irqs(void)
663 if (ppc_md
.suspend_disable_irqs
)
664 ppc_md
.suspend_disable_irqs();
665 generic_suspend_disable_irqs();
668 /* Overrides the weak version in kernel/power/main.c */
669 void arch_suspend_enable_irqs(void)
671 generic_suspend_enable_irqs();
672 if (ppc_md
.suspend_enable_irqs
)
673 ppc_md
.suspend_enable_irqs();
678 * Scheduler clock - returns current time in nanosec units.
680 * Note: mulhdu(a, b) (multiply high double unsigned) returns
681 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
682 * are 64-bit unsigned numbers.
684 unsigned long long sched_clock(void)
688 return mulhdu(get_tb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
691 static int __init
get_freq(char *name
, int cells
, unsigned long *val
)
693 struct device_node
*cpu
;
694 const unsigned int *fp
;
697 /* The cpu node should have timebase and clock frequency properties */
698 cpu
= of_find_node_by_type(NULL
, "cpu");
701 fp
= of_get_property(cpu
, name
, NULL
);
704 *val
= of_read_ulong(fp
, cells
);
713 /* should become __cpuinit when secondary_cpu_time_init also is */
714 void start_cpu_decrementer(void)
716 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
717 /* Clear any pending timer interrupts */
718 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
720 /* Enable decrementer interrupt */
721 mtspr(SPRN_TCR
, TCR_DIE
);
722 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
725 void __init
generic_calibrate_decr(void)
727 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
729 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq
) &&
730 !get_freq("timebase-frequency", 1, &ppc_tb_freq
)) {
732 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
736 ppc_proc_freq
= DEFAULT_PROC_FREQ
; /* hardcoded default */
738 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq
) &&
739 !get_freq("clock-frequency", 1, &ppc_proc_freq
)) {
741 printk(KERN_ERR
"WARNING: Estimating processor frequency "
746 int update_persistent_clock(struct timespec now
)
750 if (!ppc_md
.set_rtc_time
)
753 to_tm(now
.tv_sec
+ 1 + timezone_offset
, &tm
);
757 return ppc_md
.set_rtc_time(&tm
);
760 static void __read_persistent_clock(struct timespec
*ts
)
763 static int first
= 1;
766 /* XXX this is a litle fragile but will work okay in the short term */
769 if (ppc_md
.time_init
)
770 timezone_offset
= ppc_md
.time_init();
772 /* get_boot_time() isn't guaranteed to be safe to call late */
773 if (ppc_md
.get_boot_time
) {
774 ts
->tv_sec
= ppc_md
.get_boot_time() - timezone_offset
;
778 if (!ppc_md
.get_rtc_time
) {
782 ppc_md
.get_rtc_time(&tm
);
784 ts
->tv_sec
= mktime(tm
.tm_year
+1900, tm
.tm_mon
+1, tm
.tm_mday
,
785 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);
788 void read_persistent_clock(struct timespec
*ts
)
790 __read_persistent_clock(ts
);
792 /* Sanitize it in case real time clock is set below EPOCH */
793 if (ts
->tv_sec
< 0) {
800 /* clocksource code */
801 static cycle_t
rtc_read(struct clocksource
*cs
)
803 return (cycle_t
)get_rtc();
806 static cycle_t
timebase_read(struct clocksource
*cs
)
808 return (cycle_t
)get_tb();
811 void update_vsyscall(struct timespec
*wall_time
, struct timespec
*wtm
,
812 struct clocksource
*clock
, u32 mult
)
814 u64 new_tb_to_xs
, new_stamp_xsec
;
817 if (clock
!= &clocksource_timebase
)
820 /* Make userspace gettimeofday spin until we're done. */
821 ++vdso_data
->tb_update_count
;
824 /* XXX this assumes clock->shift == 22 */
825 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
826 new_tb_to_xs
= (u64
) mult
* 4611686018ULL;
827 new_stamp_xsec
= (u64
) wall_time
->tv_nsec
* XSEC_PER_SEC
;
828 do_div(new_stamp_xsec
, 1000000000);
829 new_stamp_xsec
+= (u64
) wall_time
->tv_sec
* XSEC_PER_SEC
;
831 BUG_ON(wall_time
->tv_nsec
>= NSEC_PER_SEC
);
832 /* this is tv_nsec / 1e9 as a 0.32 fraction */
833 frac_sec
= ((u64
) wall_time
->tv_nsec
* 18446744073ULL) >> 32;
836 * tb_update_count is used to allow the userspace gettimeofday code
837 * to assure itself that it sees a consistent view of the tb_to_xs and
838 * stamp_xsec variables. It reads the tb_update_count, then reads
839 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
840 * the two values of tb_update_count match and are even then the
841 * tb_to_xs and stamp_xsec values are consistent. If not, then it
842 * loops back and reads them again until this criteria is met.
843 * We expect the caller to have done the first increment of
844 * vdso_data->tb_update_count already.
846 vdso_data
->tb_orig_stamp
= clock
->cycle_last
;
847 vdso_data
->stamp_xsec
= new_stamp_xsec
;
848 vdso_data
->tb_to_xs
= new_tb_to_xs
;
849 vdso_data
->wtom_clock_sec
= wtm
->tv_sec
;
850 vdso_data
->wtom_clock_nsec
= wtm
->tv_nsec
;
851 vdso_data
->stamp_xtime
= *wall_time
;
852 vdso_data
->stamp_sec_fraction
= frac_sec
;
854 ++(vdso_data
->tb_update_count
);
857 void update_vsyscall_tz(void)
859 /* Make userspace gettimeofday spin until we're done. */
860 ++vdso_data
->tb_update_count
;
862 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
863 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
865 ++vdso_data
->tb_update_count
;
868 static void __init
clocksource_init(void)
870 struct clocksource
*clock
;
873 clock
= &clocksource_rtc
;
875 clock
= &clocksource_timebase
;
877 clock
->mult
= clocksource_hz2mult(tb_ticks_per_sec
, clock
->shift
);
879 if (clocksource_register(clock
)) {
880 printk(KERN_ERR
"clocksource: %s is already registered\n",
885 printk(KERN_INFO
"clocksource: %s mult[%x] shift[%d] registered\n",
886 clock
->name
, clock
->mult
, clock
->shift
);
889 static int decrementer_set_next_event(unsigned long evt
,
890 struct clock_event_device
*dev
)
892 __get_cpu_var(decrementers
).next_tb
= get_tb_or_rtc() + evt
;
897 static void decrementer_set_mode(enum clock_event_mode mode
,
898 struct clock_event_device
*dev
)
900 if (mode
!= CLOCK_EVT_MODE_ONESHOT
)
901 decrementer_set_next_event(DECREMENTER_MAX
, dev
);
904 static inline uint64_t div_sc64(unsigned long ticks
, unsigned long nsec
,
907 uint64_t tmp
= ((uint64_t)ticks
) << shift
;
913 static void __init
setup_clockevent_multiplier(unsigned long hz
)
915 u64 mult
, shift
= 32;
918 mult
= div_sc64(hz
, NSEC_PER_SEC
, shift
);
919 if (mult
&& (mult
>> 32UL) == 0UL)
925 decrementer_clockevent
.shift
= shift
;
926 decrementer_clockevent
.mult
= mult
;
929 static void register_decrementer_clockevent(int cpu
)
931 struct clock_event_device
*dec
= &per_cpu(decrementers
, cpu
).event
;
933 *dec
= decrementer_clockevent
;
934 dec
->cpumask
= cpumask_of(cpu
);
936 printk_once(KERN_DEBUG
"clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
937 dec
->name
, dec
->mult
, dec
->shift
, cpu
);
939 clockevents_register_device(dec
);
942 static void __init
init_decrementer_clockevent(void)
944 int cpu
= smp_processor_id();
946 setup_clockevent_multiplier(ppc_tb_freq
);
947 decrementer_clockevent
.max_delta_ns
=
948 clockevent_delta2ns(DECREMENTER_MAX
, &decrementer_clockevent
);
949 decrementer_clockevent
.min_delta_ns
=
950 clockevent_delta2ns(2, &decrementer_clockevent
);
952 register_decrementer_clockevent(cpu
);
955 void secondary_cpu_time_init(void)
957 /* Start the decrementer on CPUs that have manual control
960 start_cpu_decrementer();
962 /* FIME: Should make unrelatred change to move snapshot_timebase
964 register_decrementer_clockevent(smp_processor_id());
967 /* This function is only called on the boot processor */
968 void __init
time_init(void)
970 struct div_result res
;
975 /* 601 processor: dec counts down by 128 every 128ns */
976 ppc_tb_freq
= 1000000000;
978 /* Normal PowerPC with timebase register */
979 ppc_md
.calibrate_decr();
980 printk(KERN_DEBUG
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
981 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
982 printk(KERN_DEBUG
"time_init: processor frequency = %lu.%.6lu MHz\n",
983 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
986 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
987 tb_ticks_per_sec
= ppc_tb_freq
;
988 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
989 calc_cputime_factors();
990 setup_cputime_one_jiffy();
993 * Compute scale factor for sched_clock.
994 * The calibrate_decr() function has set tb_ticks_per_sec,
995 * which is the timebase frequency.
996 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
997 * the 128-bit result as a 64.64 fixed-point number.
998 * We then shift that number right until it is less than 1.0,
999 * giving us the scale factor and shift count to use in
1002 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
1003 scale
= res
.result_low
;
1004 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
1005 scale
= (scale
>> 1) | (res
.result_high
<< 63);
1006 res
.result_high
>>= 1;
1008 tb_to_ns_scale
= scale
;
1009 tb_to_ns_shift
= shift
;
1010 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1011 boot_tb
= get_tb_or_rtc();
1013 /* If platform provided a timezone (pmac), we correct the time */
1014 if (timezone_offset
) {
1015 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
1016 sys_tz
.tz_dsttime
= 0;
1019 vdso_data
->tb_update_count
= 0;
1020 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
1022 /* Start the decrementer on CPUs that have manual control
1025 start_cpu_decrementer();
1027 /* Register the clocksource, if we're not running on iSeries */
1028 if (!firmware_has_feature(FW_FEATURE_ISERIES
))
1031 init_decrementer_clockevent();
1036 #define STARTOFTIME 1970
1037 #define SECDAY 86400L
1038 #define SECYR (SECDAY * 365)
1039 #define leapyear(year) ((year) % 4 == 0 && \
1040 ((year) % 100 != 0 || (year) % 400 == 0))
1041 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1042 #define days_in_month(a) (month_days[(a) - 1])
1044 static int month_days
[12] = {
1045 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1049 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1051 void GregorianDay(struct rtc_time
* tm
)
1056 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1058 lastYear
= tm
->tm_year
- 1;
1061 * Number of leap corrections to apply up to end of last year
1063 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1066 * This year is a leap year if it is divisible by 4 except when it is
1067 * divisible by 100 unless it is divisible by 400
1069 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1071 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1073 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1076 tm
->tm_wday
= day
% 7;
1079 void to_tm(int tim
, struct rtc_time
* tm
)
1082 register long hms
, day
;
1087 /* Hours, minutes, seconds are easy */
1088 tm
->tm_hour
= hms
/ 3600;
1089 tm
->tm_min
= (hms
% 3600) / 60;
1090 tm
->tm_sec
= (hms
% 3600) % 60;
1092 /* Number of years in days */
1093 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1094 day
-= days_in_year(i
);
1097 /* Number of months in days left */
1098 if (leapyear(tm
->tm_year
))
1099 days_in_month(FEBRUARY
) = 29;
1100 for (i
= 1; day
>= days_in_month(i
); i
++)
1101 day
-= days_in_month(i
);
1102 days_in_month(FEBRUARY
) = 28;
1105 /* Days are what is left over (+1) from all that. */
1106 tm
->tm_mday
= day
+ 1;
1109 * Determine the day of week
1115 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1118 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1119 unsigned divisor
, struct div_result
*dr
)
1121 unsigned long a
, b
, c
, d
;
1122 unsigned long w
, x
, y
, z
;
1125 a
= dividend_high
>> 32;
1126 b
= dividend_high
& 0xffffffff;
1127 c
= dividend_low
>> 32;
1128 d
= dividend_low
& 0xffffffff;
1131 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1133 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1136 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1139 do_div(rc
, divisor
);
1142 dr
->result_high
= ((u64
)w
<< 32) + x
;
1143 dr
->result_low
= ((u64
)y
<< 32) + z
;
1147 /* We don't need to calibrate delay, we use the CPU timebase for that */
1148 void calibrate_delay(void)
1150 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1151 * as the number of __delay(1) in a jiffy, so make it so
1153 loops_per_jiffy
= tb_ticks_per_jiffy
;
1156 static int __init
rtc_init(void)
1158 struct platform_device
*pdev
;
1160 if (!ppc_md
.get_rtc_time
)
1163 pdev
= platform_device_register_simple("rtc-generic", -1, NULL
, 0);
1165 return PTR_ERR(pdev
);
1170 module_init(rtc_init
);