Linux 2.6.33-rc2
[pohmelfs.git] / include / linux / sched.h
blobf2f842db03cea4e1d082f6d45596ba3c3c52e1a1
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
147 extern void calc_global_load(void);
149 extern unsigned long get_parent_ip(unsigned long addr);
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
164 static inline void proc_sched_set_task(struct task_struct *p)
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
171 #endif
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
238 * If the caller does not need such serialisation then use __set_current_state()
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
248 #include <linux/spinlock.h>
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
259 struct task_struct;
261 extern void sched_init(void);
262 extern void sched_init_smp(void);
263 extern asmlinkage void schedule_tail(struct task_struct *prev);
264 extern void init_idle(struct task_struct *idle, int cpu);
265 extern void init_idle_bootup_task(struct task_struct *idle);
267 extern int runqueue_is_locked(int cpu);
268 extern void task_rq_unlock_wait(struct task_struct *p);
270 extern cpumask_var_t nohz_cpu_mask;
271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272 extern int select_nohz_load_balancer(int cpu);
273 extern int get_nohz_load_balancer(void);
274 #else
275 static inline int select_nohz_load_balancer(int cpu)
277 return 0;
279 #endif
282 * Only dump TASK_* tasks. (0 for all tasks)
284 extern void show_state_filter(unsigned long state_filter);
286 static inline void show_state(void)
288 show_state_filter(0);
291 extern void show_regs(struct pt_regs *);
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
308 extern void sched_show_task(struct task_struct *p);
310 #ifdef CONFIG_DETECT_SOFTLOCKUP
311 extern void softlockup_tick(void);
312 extern void touch_softlockup_watchdog(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void softlockup_tick(void)
323 static inline void touch_softlockup_watchdog(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 #endif
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #endif
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched __attribute__((__section__(".sched.text")))
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
358 struct nsproxy;
359 struct user_namespace;
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
373 #define MAPCOUNT_ELF_CORE_MARGIN (5)
374 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
376 extern int sysctl_max_map_count;
378 #include <linux/aio.h>
380 extern unsigned long
381 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
382 unsigned long, unsigned long);
383 extern unsigned long
384 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
385 unsigned long len, unsigned long pgoff,
386 unsigned long flags);
387 extern void arch_unmap_area(struct mm_struct *, unsigned long);
388 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
390 #if USE_SPLIT_PTLOCKS
392 * The mm counters are not protected by its page_table_lock,
393 * so must be incremented atomically.
395 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
396 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
397 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
398 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
399 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
401 #else /* !USE_SPLIT_PTLOCKS */
403 * The mm counters are protected by its page_table_lock,
404 * so can be incremented directly.
406 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
407 #define get_mm_counter(mm, member) ((mm)->_##member)
408 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
409 #define inc_mm_counter(mm, member) (mm)->_##member++
410 #define dec_mm_counter(mm, member) (mm)->_##member--
412 #endif /* !USE_SPLIT_PTLOCKS */
414 #define get_mm_rss(mm) \
415 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
416 #define update_hiwater_rss(mm) do { \
417 unsigned long _rss = get_mm_rss(mm); \
418 if ((mm)->hiwater_rss < _rss) \
419 (mm)->hiwater_rss = _rss; \
420 } while (0)
421 #define update_hiwater_vm(mm) do { \
422 if ((mm)->hiwater_vm < (mm)->total_vm) \
423 (mm)->hiwater_vm = (mm)->total_vm; \
424 } while (0)
426 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
428 return max(mm->hiwater_rss, get_mm_rss(mm));
431 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
432 struct mm_struct *mm)
434 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
436 if (*maxrss < hiwater_rss)
437 *maxrss = hiwater_rss;
440 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
442 return max(mm->hiwater_vm, mm->total_vm);
445 extern void set_dumpable(struct mm_struct *mm, int value);
446 extern int get_dumpable(struct mm_struct *mm);
448 /* mm flags */
449 /* dumpable bits */
450 #define MMF_DUMPABLE 0 /* core dump is permitted */
451 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
453 #define MMF_DUMPABLE_BITS 2
454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
456 /* coredump filter bits */
457 #define MMF_DUMP_ANON_PRIVATE 2
458 #define MMF_DUMP_ANON_SHARED 3
459 #define MMF_DUMP_MAPPED_PRIVATE 4
460 #define MMF_DUMP_MAPPED_SHARED 5
461 #define MMF_DUMP_ELF_HEADERS 6
462 #define MMF_DUMP_HUGETLB_PRIVATE 7
463 #define MMF_DUMP_HUGETLB_SHARED 8
465 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
466 #define MMF_DUMP_FILTER_BITS 7
467 #define MMF_DUMP_FILTER_MASK \
468 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
469 #define MMF_DUMP_FILTER_DEFAULT \
470 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
471 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
473 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
474 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
475 #else
476 # define MMF_DUMP_MASK_DEFAULT_ELF 0
477 #endif
478 /* leave room for more dump flags */
479 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
481 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
483 struct sighand_struct {
484 atomic_t count;
485 struct k_sigaction action[_NSIG];
486 spinlock_t siglock;
487 wait_queue_head_t signalfd_wqh;
490 struct pacct_struct {
491 int ac_flag;
492 long ac_exitcode;
493 unsigned long ac_mem;
494 cputime_t ac_utime, ac_stime;
495 unsigned long ac_minflt, ac_majflt;
498 struct cpu_itimer {
499 cputime_t expires;
500 cputime_t incr;
501 u32 error;
502 u32 incr_error;
506 * struct task_cputime - collected CPU time counts
507 * @utime: time spent in user mode, in &cputime_t units
508 * @stime: time spent in kernel mode, in &cputime_t units
509 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
511 * This structure groups together three kinds of CPU time that are
512 * tracked for threads and thread groups. Most things considering
513 * CPU time want to group these counts together and treat all three
514 * of them in parallel.
516 struct task_cputime {
517 cputime_t utime;
518 cputime_t stime;
519 unsigned long long sum_exec_runtime;
521 /* Alternate field names when used to cache expirations. */
522 #define prof_exp stime
523 #define virt_exp utime
524 #define sched_exp sum_exec_runtime
526 #define INIT_CPUTIME \
527 (struct task_cputime) { \
528 .utime = cputime_zero, \
529 .stime = cputime_zero, \
530 .sum_exec_runtime = 0, \
534 * Disable preemption until the scheduler is running.
535 * Reset by start_kernel()->sched_init()->init_idle().
537 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
538 * before the scheduler is active -- see should_resched().
540 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
543 * struct thread_group_cputimer - thread group interval timer counts
544 * @cputime: thread group interval timers.
545 * @running: non-zero when there are timers running and
546 * @cputime receives updates.
547 * @lock: lock for fields in this struct.
549 * This structure contains the version of task_cputime, above, that is
550 * used for thread group CPU timer calculations.
552 struct thread_group_cputimer {
553 struct task_cputime cputime;
554 int running;
555 spinlock_t lock;
559 * NOTE! "signal_struct" does not have it's own
560 * locking, because a shared signal_struct always
561 * implies a shared sighand_struct, so locking
562 * sighand_struct is always a proper superset of
563 * the locking of signal_struct.
565 struct signal_struct {
566 atomic_t count;
567 atomic_t live;
569 wait_queue_head_t wait_chldexit; /* for wait4() */
571 /* current thread group signal load-balancing target: */
572 struct task_struct *curr_target;
574 /* shared signal handling: */
575 struct sigpending shared_pending;
577 /* thread group exit support */
578 int group_exit_code;
579 /* overloaded:
580 * - notify group_exit_task when ->count is equal to notify_count
581 * - everyone except group_exit_task is stopped during signal delivery
582 * of fatal signals, group_exit_task processes the signal.
584 int notify_count;
585 struct task_struct *group_exit_task;
587 /* thread group stop support, overloads group_exit_code too */
588 int group_stop_count;
589 unsigned int flags; /* see SIGNAL_* flags below */
591 /* POSIX.1b Interval Timers */
592 struct list_head posix_timers;
594 /* ITIMER_REAL timer for the process */
595 struct hrtimer real_timer;
596 struct pid *leader_pid;
597 ktime_t it_real_incr;
600 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
601 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
602 * values are defined to 0 and 1 respectively
604 struct cpu_itimer it[2];
607 * Thread group totals for process CPU timers.
608 * See thread_group_cputimer(), et al, for details.
610 struct thread_group_cputimer cputimer;
612 /* Earliest-expiration cache. */
613 struct task_cputime cputime_expires;
615 struct list_head cpu_timers[3];
617 struct pid *tty_old_pgrp;
619 /* boolean value for session group leader */
620 int leader;
622 struct tty_struct *tty; /* NULL if no tty */
625 * Cumulative resource counters for dead threads in the group,
626 * and for reaped dead child processes forked by this group.
627 * Live threads maintain their own counters and add to these
628 * in __exit_signal, except for the group leader.
630 cputime_t utime, stime, cutime, cstime;
631 cputime_t gtime;
632 cputime_t cgtime;
633 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
634 cputime_t prev_utime, prev_stime;
635 #endif
636 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
637 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
638 unsigned long inblock, oublock, cinblock, coublock;
639 unsigned long maxrss, cmaxrss;
640 struct task_io_accounting ioac;
643 * Cumulative ns of schedule CPU time fo dead threads in the
644 * group, not including a zombie group leader, (This only differs
645 * from jiffies_to_ns(utime + stime) if sched_clock uses something
646 * other than jiffies.)
648 unsigned long long sum_sched_runtime;
651 * We don't bother to synchronize most readers of this at all,
652 * because there is no reader checking a limit that actually needs
653 * to get both rlim_cur and rlim_max atomically, and either one
654 * alone is a single word that can safely be read normally.
655 * getrlimit/setrlimit use task_lock(current->group_leader) to
656 * protect this instead of the siglock, because they really
657 * have no need to disable irqs.
659 struct rlimit rlim[RLIM_NLIMITS];
661 #ifdef CONFIG_BSD_PROCESS_ACCT
662 struct pacct_struct pacct; /* per-process accounting information */
663 #endif
664 #ifdef CONFIG_TASKSTATS
665 struct taskstats *stats;
666 #endif
667 #ifdef CONFIG_AUDIT
668 unsigned audit_tty;
669 struct tty_audit_buf *tty_audit_buf;
670 #endif
672 int oom_adj; /* OOM kill score adjustment (bit shift) */
675 /* Context switch must be unlocked if interrupts are to be enabled */
676 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
677 # define __ARCH_WANT_UNLOCKED_CTXSW
678 #endif
681 * Bits in flags field of signal_struct.
683 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
684 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
685 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
686 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
688 * Pending notifications to parent.
690 #define SIGNAL_CLD_STOPPED 0x00000010
691 #define SIGNAL_CLD_CONTINUED 0x00000020
692 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
694 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
696 /* If true, all threads except ->group_exit_task have pending SIGKILL */
697 static inline int signal_group_exit(const struct signal_struct *sig)
699 return (sig->flags & SIGNAL_GROUP_EXIT) ||
700 (sig->group_exit_task != NULL);
704 * Some day this will be a full-fledged user tracking system..
706 struct user_struct {
707 atomic_t __count; /* reference count */
708 atomic_t processes; /* How many processes does this user have? */
709 atomic_t files; /* How many open files does this user have? */
710 atomic_t sigpending; /* How many pending signals does this user have? */
711 #ifdef CONFIG_INOTIFY_USER
712 atomic_t inotify_watches; /* How many inotify watches does this user have? */
713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
714 #endif
715 #ifdef CONFIG_EPOLL
716 atomic_t epoll_watches; /* The number of file descriptors currently watched */
717 #endif
718 #ifdef CONFIG_POSIX_MQUEUE
719 /* protected by mq_lock */
720 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
721 #endif
722 unsigned long locked_shm; /* How many pages of mlocked shm ? */
724 #ifdef CONFIG_KEYS
725 struct key *uid_keyring; /* UID specific keyring */
726 struct key *session_keyring; /* UID's default session keyring */
727 #endif
729 /* Hash table maintenance information */
730 struct hlist_node uidhash_node;
731 uid_t uid;
732 struct user_namespace *user_ns;
734 #ifdef CONFIG_USER_SCHED
735 struct task_group *tg;
736 #ifdef CONFIG_SYSFS
737 struct kobject kobj;
738 struct delayed_work work;
739 #endif
740 #endif
742 #ifdef CONFIG_PERF_EVENTS
743 atomic_long_t locked_vm;
744 #endif
747 extern int uids_sysfs_init(void);
749 extern struct user_struct *find_user(uid_t);
751 extern struct user_struct root_user;
752 #define INIT_USER (&root_user)
755 struct backing_dev_info;
756 struct reclaim_state;
758 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
759 struct sched_info {
760 /* cumulative counters */
761 unsigned long pcount; /* # of times run on this cpu */
762 unsigned long long run_delay; /* time spent waiting on a runqueue */
764 /* timestamps */
765 unsigned long long last_arrival,/* when we last ran on a cpu */
766 last_queued; /* when we were last queued to run */
767 #ifdef CONFIG_SCHEDSTATS
768 /* BKL stats */
769 unsigned int bkl_count;
770 #endif
772 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
774 #ifdef CONFIG_TASK_DELAY_ACCT
775 struct task_delay_info {
776 spinlock_t lock;
777 unsigned int flags; /* Private per-task flags */
779 /* For each stat XXX, add following, aligned appropriately
781 * struct timespec XXX_start, XXX_end;
782 * u64 XXX_delay;
783 * u32 XXX_count;
785 * Atomicity of updates to XXX_delay, XXX_count protected by
786 * single lock above (split into XXX_lock if contention is an issue).
790 * XXX_count is incremented on every XXX operation, the delay
791 * associated with the operation is added to XXX_delay.
792 * XXX_delay contains the accumulated delay time in nanoseconds.
794 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
795 u64 blkio_delay; /* wait for sync block io completion */
796 u64 swapin_delay; /* wait for swapin block io completion */
797 u32 blkio_count; /* total count of the number of sync block */
798 /* io operations performed */
799 u32 swapin_count; /* total count of the number of swapin block */
800 /* io operations performed */
802 struct timespec freepages_start, freepages_end;
803 u64 freepages_delay; /* wait for memory reclaim */
804 u32 freepages_count; /* total count of memory reclaim */
806 #endif /* CONFIG_TASK_DELAY_ACCT */
808 static inline int sched_info_on(void)
810 #ifdef CONFIG_SCHEDSTATS
811 return 1;
812 #elif defined(CONFIG_TASK_DELAY_ACCT)
813 extern int delayacct_on;
814 return delayacct_on;
815 #else
816 return 0;
817 #endif
820 enum cpu_idle_type {
821 CPU_IDLE,
822 CPU_NOT_IDLE,
823 CPU_NEWLY_IDLE,
824 CPU_MAX_IDLE_TYPES
828 * sched-domains (multiprocessor balancing) declarations:
832 * Increase resolution of nice-level calculations:
834 #define SCHED_LOAD_SHIFT 10
835 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
837 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
839 #ifdef CONFIG_SMP
840 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
841 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
842 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
843 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
844 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
845 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
846 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
847 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
848 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
849 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
850 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
852 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
854 enum powersavings_balance_level {
855 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
856 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
857 * first for long running threads
859 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
860 * cpu package for power savings
862 MAX_POWERSAVINGS_BALANCE_LEVELS
865 extern int sched_mc_power_savings, sched_smt_power_savings;
867 static inline int sd_balance_for_mc_power(void)
869 if (sched_smt_power_savings)
870 return SD_POWERSAVINGS_BALANCE;
872 return SD_PREFER_SIBLING;
875 static inline int sd_balance_for_package_power(void)
877 if (sched_mc_power_savings | sched_smt_power_savings)
878 return SD_POWERSAVINGS_BALANCE;
880 return SD_PREFER_SIBLING;
884 * Optimise SD flags for power savings:
885 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
889 static inline int sd_power_saving_flags(void)
891 if (sched_mc_power_savings | sched_smt_power_savings)
892 return SD_BALANCE_NEWIDLE;
894 return 0;
897 struct sched_group {
898 struct sched_group *next; /* Must be a circular list */
901 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
902 * single CPU.
904 unsigned int cpu_power;
907 * The CPUs this group covers.
909 * NOTE: this field is variable length. (Allocated dynamically
910 * by attaching extra space to the end of the structure,
911 * depending on how many CPUs the kernel has booted up with)
913 * It is also be embedded into static data structures at build
914 * time. (See 'struct static_sched_group' in kernel/sched.c)
916 unsigned long cpumask[0];
919 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
921 return to_cpumask(sg->cpumask);
924 enum sched_domain_level {
925 SD_LV_NONE = 0,
926 SD_LV_SIBLING,
927 SD_LV_MC,
928 SD_LV_CPU,
929 SD_LV_NODE,
930 SD_LV_ALLNODES,
931 SD_LV_MAX
934 struct sched_domain_attr {
935 int relax_domain_level;
938 #define SD_ATTR_INIT (struct sched_domain_attr) { \
939 .relax_domain_level = -1, \
942 struct sched_domain {
943 /* These fields must be setup */
944 struct sched_domain *parent; /* top domain must be null terminated */
945 struct sched_domain *child; /* bottom domain must be null terminated */
946 struct sched_group *groups; /* the balancing groups of the domain */
947 unsigned long min_interval; /* Minimum balance interval ms */
948 unsigned long max_interval; /* Maximum balance interval ms */
949 unsigned int busy_factor; /* less balancing by factor if busy */
950 unsigned int imbalance_pct; /* No balance until over watermark */
951 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
952 unsigned int busy_idx;
953 unsigned int idle_idx;
954 unsigned int newidle_idx;
955 unsigned int wake_idx;
956 unsigned int forkexec_idx;
957 unsigned int smt_gain;
958 int flags; /* See SD_* */
959 enum sched_domain_level level;
961 /* Runtime fields. */
962 unsigned long last_balance; /* init to jiffies. units in jiffies */
963 unsigned int balance_interval; /* initialise to 1. units in ms. */
964 unsigned int nr_balance_failed; /* initialise to 0 */
966 u64 last_update;
968 #ifdef CONFIG_SCHEDSTATS
969 /* load_balance() stats */
970 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
974 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
975 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
976 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
977 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
979 /* Active load balancing */
980 unsigned int alb_count;
981 unsigned int alb_failed;
982 unsigned int alb_pushed;
984 /* SD_BALANCE_EXEC stats */
985 unsigned int sbe_count;
986 unsigned int sbe_balanced;
987 unsigned int sbe_pushed;
989 /* SD_BALANCE_FORK stats */
990 unsigned int sbf_count;
991 unsigned int sbf_balanced;
992 unsigned int sbf_pushed;
994 /* try_to_wake_up() stats */
995 unsigned int ttwu_wake_remote;
996 unsigned int ttwu_move_affine;
997 unsigned int ttwu_move_balance;
998 #endif
999 #ifdef CONFIG_SCHED_DEBUG
1000 char *name;
1001 #endif
1004 * Span of all CPUs in this domain.
1006 * NOTE: this field is variable length. (Allocated dynamically
1007 * by attaching extra space to the end of the structure,
1008 * depending on how many CPUs the kernel has booted up with)
1010 * It is also be embedded into static data structures at build
1011 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1013 unsigned long span[0];
1016 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1018 return to_cpumask(sd->span);
1021 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1022 struct sched_domain_attr *dattr_new);
1024 /* Allocate an array of sched domains, for partition_sched_domains(). */
1025 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1026 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1028 /* Test a flag in parent sched domain */
1029 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1031 if (sd->parent && (sd->parent->flags & flag))
1032 return 1;
1034 return 0;
1037 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1038 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1040 #else /* CONFIG_SMP */
1042 struct sched_domain_attr;
1044 static inline void
1045 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1046 struct sched_domain_attr *dattr_new)
1049 #endif /* !CONFIG_SMP */
1052 struct io_context; /* See blkdev.h */
1055 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1056 extern void prefetch_stack(struct task_struct *t);
1057 #else
1058 static inline void prefetch_stack(struct task_struct *t) { }
1059 #endif
1061 struct audit_context; /* See audit.c */
1062 struct mempolicy;
1063 struct pipe_inode_info;
1064 struct uts_namespace;
1066 struct rq;
1067 struct sched_domain;
1070 * wake flags
1072 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1073 #define WF_FORK 0x02 /* child wakeup after fork */
1075 struct sched_class {
1076 const struct sched_class *next;
1078 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1079 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1080 void (*yield_task) (struct rq *rq);
1082 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1084 struct task_struct * (*pick_next_task) (struct rq *rq);
1085 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1087 #ifdef CONFIG_SMP
1088 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1090 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1091 struct rq *busiest, unsigned long max_load_move,
1092 struct sched_domain *sd, enum cpu_idle_type idle,
1093 int *all_pinned, int *this_best_prio);
1095 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1096 struct rq *busiest, struct sched_domain *sd,
1097 enum cpu_idle_type idle);
1098 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1099 void (*post_schedule) (struct rq *this_rq);
1100 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1101 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1103 void (*set_cpus_allowed)(struct task_struct *p,
1104 const struct cpumask *newmask);
1106 void (*rq_online)(struct rq *rq);
1107 void (*rq_offline)(struct rq *rq);
1108 #endif
1110 void (*set_curr_task) (struct rq *rq);
1111 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1112 void (*task_fork) (struct task_struct *p);
1114 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1115 int running);
1116 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1117 int running);
1118 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119 int oldprio, int running);
1121 unsigned int (*get_rr_interval) (struct rq *rq,
1122 struct task_struct *task);
1124 #ifdef CONFIG_FAIR_GROUP_SCHED
1125 void (*moved_group) (struct task_struct *p, int on_rq);
1126 #endif
1129 struct load_weight {
1130 unsigned long weight, inv_weight;
1134 * CFS stats for a schedulable entity (task, task-group etc)
1136 * Current field usage histogram:
1138 * 4 se->block_start
1139 * 4 se->run_node
1140 * 4 se->sleep_start
1141 * 6 se->load.weight
1143 struct sched_entity {
1144 struct load_weight load; /* for load-balancing */
1145 struct rb_node run_node;
1146 struct list_head group_node;
1147 unsigned int on_rq;
1149 u64 exec_start;
1150 u64 sum_exec_runtime;
1151 u64 vruntime;
1152 u64 prev_sum_exec_runtime;
1154 u64 last_wakeup;
1155 u64 avg_overlap;
1157 u64 nr_migrations;
1159 u64 start_runtime;
1160 u64 avg_wakeup;
1162 #ifdef CONFIG_SCHEDSTATS
1163 u64 wait_start;
1164 u64 wait_max;
1165 u64 wait_count;
1166 u64 wait_sum;
1167 u64 iowait_count;
1168 u64 iowait_sum;
1170 u64 sleep_start;
1171 u64 sleep_max;
1172 s64 sum_sleep_runtime;
1174 u64 block_start;
1175 u64 block_max;
1176 u64 exec_max;
1177 u64 slice_max;
1179 u64 nr_migrations_cold;
1180 u64 nr_failed_migrations_affine;
1181 u64 nr_failed_migrations_running;
1182 u64 nr_failed_migrations_hot;
1183 u64 nr_forced_migrations;
1185 u64 nr_wakeups;
1186 u64 nr_wakeups_sync;
1187 u64 nr_wakeups_migrate;
1188 u64 nr_wakeups_local;
1189 u64 nr_wakeups_remote;
1190 u64 nr_wakeups_affine;
1191 u64 nr_wakeups_affine_attempts;
1192 u64 nr_wakeups_passive;
1193 u64 nr_wakeups_idle;
1194 #endif
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 struct sched_entity *parent;
1198 /* rq on which this entity is (to be) queued: */
1199 struct cfs_rq *cfs_rq;
1200 /* rq "owned" by this entity/group: */
1201 struct cfs_rq *my_q;
1202 #endif
1205 struct sched_rt_entity {
1206 struct list_head run_list;
1207 unsigned long timeout;
1208 unsigned int time_slice;
1209 int nr_cpus_allowed;
1211 struct sched_rt_entity *back;
1212 #ifdef CONFIG_RT_GROUP_SCHED
1213 struct sched_rt_entity *parent;
1214 /* rq on which this entity is (to be) queued: */
1215 struct rt_rq *rt_rq;
1216 /* rq "owned" by this entity/group: */
1217 struct rt_rq *my_q;
1218 #endif
1221 struct rcu_node;
1223 struct task_struct {
1224 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1225 void *stack;
1226 atomic_t usage;
1227 unsigned int flags; /* per process flags, defined below */
1228 unsigned int ptrace;
1230 int lock_depth; /* BKL lock depth */
1232 #ifdef CONFIG_SMP
1233 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1234 int oncpu;
1235 #endif
1236 #endif
1238 int prio, static_prio, normal_prio;
1239 unsigned int rt_priority;
1240 const struct sched_class *sched_class;
1241 struct sched_entity se;
1242 struct sched_rt_entity rt;
1244 #ifdef CONFIG_PREEMPT_NOTIFIERS
1245 /* list of struct preempt_notifier: */
1246 struct hlist_head preempt_notifiers;
1247 #endif
1250 * fpu_counter contains the number of consecutive context switches
1251 * that the FPU is used. If this is over a threshold, the lazy fpu
1252 * saving becomes unlazy to save the trap. This is an unsigned char
1253 * so that after 256 times the counter wraps and the behavior turns
1254 * lazy again; this to deal with bursty apps that only use FPU for
1255 * a short time
1257 unsigned char fpu_counter;
1258 #ifdef CONFIG_BLK_DEV_IO_TRACE
1259 unsigned int btrace_seq;
1260 #endif
1262 unsigned int policy;
1263 cpumask_t cpus_allowed;
1265 #ifdef CONFIG_TREE_PREEMPT_RCU
1266 int rcu_read_lock_nesting;
1267 char rcu_read_unlock_special;
1268 struct rcu_node *rcu_blocked_node;
1269 struct list_head rcu_node_entry;
1270 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1272 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1273 struct sched_info sched_info;
1274 #endif
1276 struct list_head tasks;
1277 struct plist_node pushable_tasks;
1279 struct mm_struct *mm, *active_mm;
1281 /* task state */
1282 int exit_state;
1283 int exit_code, exit_signal;
1284 int pdeath_signal; /* The signal sent when the parent dies */
1285 /* ??? */
1286 unsigned int personality;
1287 unsigned did_exec:1;
1288 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1289 * execve */
1290 unsigned in_iowait:1;
1293 /* Revert to default priority/policy when forking */
1294 unsigned sched_reset_on_fork:1;
1296 pid_t pid;
1297 pid_t tgid;
1299 #ifdef CONFIG_CC_STACKPROTECTOR
1300 /* Canary value for the -fstack-protector gcc feature */
1301 unsigned long stack_canary;
1302 #endif
1305 * pointers to (original) parent process, youngest child, younger sibling,
1306 * older sibling, respectively. (p->father can be replaced with
1307 * p->real_parent->pid)
1309 struct task_struct *real_parent; /* real parent process */
1310 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1312 * children/sibling forms the list of my natural children
1314 struct list_head children; /* list of my children */
1315 struct list_head sibling; /* linkage in my parent's children list */
1316 struct task_struct *group_leader; /* threadgroup leader */
1319 * ptraced is the list of tasks this task is using ptrace on.
1320 * This includes both natural children and PTRACE_ATTACH targets.
1321 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1323 struct list_head ptraced;
1324 struct list_head ptrace_entry;
1327 * This is the tracer handle for the ptrace BTS extension.
1328 * This field actually belongs to the ptracer task.
1330 struct bts_context *bts;
1332 /* PID/PID hash table linkage. */
1333 struct pid_link pids[PIDTYPE_MAX];
1334 struct list_head thread_group;
1336 struct completion *vfork_done; /* for vfork() */
1337 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1338 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1340 cputime_t utime, stime, utimescaled, stimescaled;
1341 cputime_t gtime;
1342 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1343 cputime_t prev_utime, prev_stime;
1344 #endif
1345 unsigned long nvcsw, nivcsw; /* context switch counts */
1346 struct timespec start_time; /* monotonic time */
1347 struct timespec real_start_time; /* boot based time */
1348 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1349 unsigned long min_flt, maj_flt;
1351 struct task_cputime cputime_expires;
1352 struct list_head cpu_timers[3];
1354 /* process credentials */
1355 const struct cred *real_cred; /* objective and real subjective task
1356 * credentials (COW) */
1357 const struct cred *cred; /* effective (overridable) subjective task
1358 * credentials (COW) */
1359 struct mutex cred_guard_mutex; /* guard against foreign influences on
1360 * credential calculations
1361 * (notably. ptrace) */
1362 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1364 char comm[TASK_COMM_LEN]; /* executable name excluding path
1365 - access with [gs]et_task_comm (which lock
1366 it with task_lock())
1367 - initialized normally by flush_old_exec */
1368 /* file system info */
1369 int link_count, total_link_count;
1370 #ifdef CONFIG_SYSVIPC
1371 /* ipc stuff */
1372 struct sysv_sem sysvsem;
1373 #endif
1374 #ifdef CONFIG_DETECT_HUNG_TASK
1375 /* hung task detection */
1376 unsigned long last_switch_count;
1377 #endif
1378 /* CPU-specific state of this task */
1379 struct thread_struct thread;
1380 /* filesystem information */
1381 struct fs_struct *fs;
1382 /* open file information */
1383 struct files_struct *files;
1384 /* namespaces */
1385 struct nsproxy *nsproxy;
1386 /* signal handlers */
1387 struct signal_struct *signal;
1388 struct sighand_struct *sighand;
1390 sigset_t blocked, real_blocked;
1391 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1392 struct sigpending pending;
1394 unsigned long sas_ss_sp;
1395 size_t sas_ss_size;
1396 int (*notifier)(void *priv);
1397 void *notifier_data;
1398 sigset_t *notifier_mask;
1399 struct audit_context *audit_context;
1400 #ifdef CONFIG_AUDITSYSCALL
1401 uid_t loginuid;
1402 unsigned int sessionid;
1403 #endif
1404 seccomp_t seccomp;
1406 /* Thread group tracking */
1407 u32 parent_exec_id;
1408 u32 self_exec_id;
1409 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1410 * mempolicy */
1411 spinlock_t alloc_lock;
1413 #ifdef CONFIG_GENERIC_HARDIRQS
1414 /* IRQ handler threads */
1415 struct irqaction *irqaction;
1416 #endif
1418 /* Protection of the PI data structures: */
1419 raw_spinlock_t pi_lock;
1421 #ifdef CONFIG_RT_MUTEXES
1422 /* PI waiters blocked on a rt_mutex held by this task */
1423 struct plist_head pi_waiters;
1424 /* Deadlock detection and priority inheritance handling */
1425 struct rt_mutex_waiter *pi_blocked_on;
1426 #endif
1428 #ifdef CONFIG_DEBUG_MUTEXES
1429 /* mutex deadlock detection */
1430 struct mutex_waiter *blocked_on;
1431 #endif
1432 #ifdef CONFIG_TRACE_IRQFLAGS
1433 unsigned int irq_events;
1434 unsigned long hardirq_enable_ip;
1435 unsigned long hardirq_disable_ip;
1436 unsigned int hardirq_enable_event;
1437 unsigned int hardirq_disable_event;
1438 int hardirqs_enabled;
1439 int hardirq_context;
1440 unsigned long softirq_disable_ip;
1441 unsigned long softirq_enable_ip;
1442 unsigned int softirq_disable_event;
1443 unsigned int softirq_enable_event;
1444 int softirqs_enabled;
1445 int softirq_context;
1446 #endif
1447 #ifdef CONFIG_LOCKDEP
1448 # define MAX_LOCK_DEPTH 48UL
1449 u64 curr_chain_key;
1450 int lockdep_depth;
1451 unsigned int lockdep_recursion;
1452 struct held_lock held_locks[MAX_LOCK_DEPTH];
1453 gfp_t lockdep_reclaim_gfp;
1454 #endif
1456 /* journalling filesystem info */
1457 void *journal_info;
1459 /* stacked block device info */
1460 struct bio *bio_list, **bio_tail;
1462 /* VM state */
1463 struct reclaim_state *reclaim_state;
1465 struct backing_dev_info *backing_dev_info;
1467 struct io_context *io_context;
1469 unsigned long ptrace_message;
1470 siginfo_t *last_siginfo; /* For ptrace use. */
1471 struct task_io_accounting ioac;
1472 #if defined(CONFIG_TASK_XACCT)
1473 u64 acct_rss_mem1; /* accumulated rss usage */
1474 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1475 cputime_t acct_timexpd; /* stime + utime since last update */
1476 #endif
1477 #ifdef CONFIG_CPUSETS
1478 nodemask_t mems_allowed; /* Protected by alloc_lock */
1479 int cpuset_mem_spread_rotor;
1480 #endif
1481 #ifdef CONFIG_CGROUPS
1482 /* Control Group info protected by css_set_lock */
1483 struct css_set *cgroups;
1484 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1485 struct list_head cg_list;
1486 #endif
1487 #ifdef CONFIG_FUTEX
1488 struct robust_list_head __user *robust_list;
1489 #ifdef CONFIG_COMPAT
1490 struct compat_robust_list_head __user *compat_robust_list;
1491 #endif
1492 struct list_head pi_state_list;
1493 struct futex_pi_state *pi_state_cache;
1494 #endif
1495 #ifdef CONFIG_PERF_EVENTS
1496 struct perf_event_context *perf_event_ctxp;
1497 struct mutex perf_event_mutex;
1498 struct list_head perf_event_list;
1499 #endif
1500 #ifdef CONFIG_NUMA
1501 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1502 short il_next;
1503 #endif
1504 atomic_t fs_excl; /* holding fs exclusive resources */
1505 struct rcu_head rcu;
1508 * cache last used pipe for splice
1510 struct pipe_inode_info *splice_pipe;
1511 #ifdef CONFIG_TASK_DELAY_ACCT
1512 struct task_delay_info *delays;
1513 #endif
1514 #ifdef CONFIG_FAULT_INJECTION
1515 int make_it_fail;
1516 #endif
1517 struct prop_local_single dirties;
1518 #ifdef CONFIG_LATENCYTOP
1519 int latency_record_count;
1520 struct latency_record latency_record[LT_SAVECOUNT];
1521 #endif
1523 * time slack values; these are used to round up poll() and
1524 * select() etc timeout values. These are in nanoseconds.
1526 unsigned long timer_slack_ns;
1527 unsigned long default_timer_slack_ns;
1529 struct list_head *scm_work_list;
1530 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1531 /* Index of current stored adress in ret_stack */
1532 int curr_ret_stack;
1533 /* Stack of return addresses for return function tracing */
1534 struct ftrace_ret_stack *ret_stack;
1535 /* time stamp for last schedule */
1536 unsigned long long ftrace_timestamp;
1538 * Number of functions that haven't been traced
1539 * because of depth overrun.
1541 atomic_t trace_overrun;
1542 /* Pause for the tracing */
1543 atomic_t tracing_graph_pause;
1544 #endif
1545 #ifdef CONFIG_TRACING
1546 /* state flags for use by tracers */
1547 unsigned long trace;
1548 /* bitmask of trace recursion */
1549 unsigned long trace_recursion;
1550 #endif /* CONFIG_TRACING */
1551 unsigned long stack_start;
1552 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1553 struct memcg_batch_info {
1554 int do_batch; /* incremented when batch uncharge started */
1555 struct mem_cgroup *memcg; /* target memcg of uncharge */
1556 unsigned long bytes; /* uncharged usage */
1557 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1558 } memcg_batch;
1559 #endif
1562 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1563 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1566 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1567 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1568 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1569 * values are inverted: lower p->prio value means higher priority.
1571 * The MAX_USER_RT_PRIO value allows the actual maximum
1572 * RT priority to be separate from the value exported to
1573 * user-space. This allows kernel threads to set their
1574 * priority to a value higher than any user task. Note:
1575 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1578 #define MAX_USER_RT_PRIO 100
1579 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1581 #define MAX_PRIO (MAX_RT_PRIO + 40)
1582 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1584 static inline int rt_prio(int prio)
1586 if (unlikely(prio < MAX_RT_PRIO))
1587 return 1;
1588 return 0;
1591 static inline int rt_task(struct task_struct *p)
1593 return rt_prio(p->prio);
1596 static inline struct pid *task_pid(struct task_struct *task)
1598 return task->pids[PIDTYPE_PID].pid;
1601 static inline struct pid *task_tgid(struct task_struct *task)
1603 return task->group_leader->pids[PIDTYPE_PID].pid;
1607 * Without tasklist or rcu lock it is not safe to dereference
1608 * the result of task_pgrp/task_session even if task == current,
1609 * we can race with another thread doing sys_setsid/sys_setpgid.
1611 static inline struct pid *task_pgrp(struct task_struct *task)
1613 return task->group_leader->pids[PIDTYPE_PGID].pid;
1616 static inline struct pid *task_session(struct task_struct *task)
1618 return task->group_leader->pids[PIDTYPE_SID].pid;
1621 struct pid_namespace;
1624 * the helpers to get the task's different pids as they are seen
1625 * from various namespaces
1627 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1628 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1629 * current.
1630 * task_xid_nr_ns() : id seen from the ns specified;
1632 * set_task_vxid() : assigns a virtual id to a task;
1634 * see also pid_nr() etc in include/linux/pid.h
1636 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1637 struct pid_namespace *ns);
1639 static inline pid_t task_pid_nr(struct task_struct *tsk)
1641 return tsk->pid;
1644 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1645 struct pid_namespace *ns)
1647 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1650 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1656 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1658 return tsk->tgid;
1661 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1663 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1665 return pid_vnr(task_tgid(tsk));
1669 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1670 struct pid_namespace *ns)
1672 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1675 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1681 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1682 struct pid_namespace *ns)
1684 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1687 static inline pid_t task_session_vnr(struct task_struct *tsk)
1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1692 /* obsolete, do not use */
1693 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1695 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1699 * pid_alive - check that a task structure is not stale
1700 * @p: Task structure to be checked.
1702 * Test if a process is not yet dead (at most zombie state)
1703 * If pid_alive fails, then pointers within the task structure
1704 * can be stale and must not be dereferenced.
1706 static inline int pid_alive(struct task_struct *p)
1708 return p->pids[PIDTYPE_PID].pid != NULL;
1712 * is_global_init - check if a task structure is init
1713 * @tsk: Task structure to be checked.
1715 * Check if a task structure is the first user space task the kernel created.
1717 static inline int is_global_init(struct task_struct *tsk)
1719 return tsk->pid == 1;
1723 * is_container_init:
1724 * check whether in the task is init in its own pid namespace.
1726 extern int is_container_init(struct task_struct *tsk);
1728 extern struct pid *cad_pid;
1730 extern void free_task(struct task_struct *tsk);
1731 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1733 extern void __put_task_struct(struct task_struct *t);
1735 static inline void put_task_struct(struct task_struct *t)
1737 if (atomic_dec_and_test(&t->usage))
1738 __put_task_struct(t);
1741 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1742 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1745 * Per process flags
1747 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1748 /* Not implemented yet, only for 486*/
1749 #define PF_STARTING 0x00000002 /* being created */
1750 #define PF_EXITING 0x00000004 /* getting shut down */
1751 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1752 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1753 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1754 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1755 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1756 #define PF_DUMPCORE 0x00000200 /* dumped core */
1757 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1758 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1759 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1760 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1761 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1762 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1763 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1764 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1765 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1766 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1767 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1768 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1769 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1770 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1771 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1772 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1773 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1774 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1775 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1776 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1777 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1778 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1781 * Only the _current_ task can read/write to tsk->flags, but other
1782 * tasks can access tsk->flags in readonly mode for example
1783 * with tsk_used_math (like during threaded core dumping).
1784 * There is however an exception to this rule during ptrace
1785 * or during fork: the ptracer task is allowed to write to the
1786 * child->flags of its traced child (same goes for fork, the parent
1787 * can write to the child->flags), because we're guaranteed the
1788 * child is not running and in turn not changing child->flags
1789 * at the same time the parent does it.
1791 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1792 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1793 #define clear_used_math() clear_stopped_child_used_math(current)
1794 #define set_used_math() set_stopped_child_used_math(current)
1795 #define conditional_stopped_child_used_math(condition, child) \
1796 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1797 #define conditional_used_math(condition) \
1798 conditional_stopped_child_used_math(condition, current)
1799 #define copy_to_stopped_child_used_math(child) \
1800 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1801 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1802 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1803 #define used_math() tsk_used_math(current)
1805 #ifdef CONFIG_TREE_PREEMPT_RCU
1807 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1808 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1810 static inline void rcu_copy_process(struct task_struct *p)
1812 p->rcu_read_lock_nesting = 0;
1813 p->rcu_read_unlock_special = 0;
1814 p->rcu_blocked_node = NULL;
1815 INIT_LIST_HEAD(&p->rcu_node_entry);
1818 #else
1820 static inline void rcu_copy_process(struct task_struct *p)
1824 #endif
1826 #ifdef CONFIG_SMP
1827 extern int set_cpus_allowed_ptr(struct task_struct *p,
1828 const struct cpumask *new_mask);
1829 #else
1830 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1831 const struct cpumask *new_mask)
1833 if (!cpumask_test_cpu(0, new_mask))
1834 return -EINVAL;
1835 return 0;
1837 #endif
1839 #ifndef CONFIG_CPUMASK_OFFSTACK
1840 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1842 return set_cpus_allowed_ptr(p, &new_mask);
1844 #endif
1847 * Architectures can set this to 1 if they have specified
1848 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1849 * but then during bootup it turns out that sched_clock()
1850 * is reliable after all:
1852 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1853 extern int sched_clock_stable;
1854 #endif
1856 /* ftrace calls sched_clock() directly */
1857 extern unsigned long long notrace sched_clock(void);
1859 extern void sched_clock_init(void);
1860 extern u64 sched_clock_cpu(int cpu);
1862 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1863 static inline void sched_clock_tick(void)
1867 static inline void sched_clock_idle_sleep_event(void)
1871 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1874 #else
1875 extern void sched_clock_tick(void);
1876 extern void sched_clock_idle_sleep_event(void);
1877 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1878 #endif
1881 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1882 * clock constructed from sched_clock():
1884 extern unsigned long long cpu_clock(int cpu);
1886 extern unsigned long long
1887 task_sched_runtime(struct task_struct *task);
1888 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1890 /* sched_exec is called by processes performing an exec */
1891 #ifdef CONFIG_SMP
1892 extern void sched_exec(void);
1893 #else
1894 #define sched_exec() {}
1895 #endif
1897 extern void sched_clock_idle_sleep_event(void);
1898 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1900 #ifdef CONFIG_HOTPLUG_CPU
1901 extern void idle_task_exit(void);
1902 #else
1903 static inline void idle_task_exit(void) {}
1904 #endif
1906 extern void sched_idle_next(void);
1908 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1909 extern void wake_up_idle_cpu(int cpu);
1910 #else
1911 static inline void wake_up_idle_cpu(int cpu) { }
1912 #endif
1914 extern unsigned int sysctl_sched_latency;
1915 extern unsigned int sysctl_sched_min_granularity;
1916 extern unsigned int sysctl_sched_wakeup_granularity;
1917 extern unsigned int sysctl_sched_shares_ratelimit;
1918 extern unsigned int sysctl_sched_shares_thresh;
1919 extern unsigned int sysctl_sched_child_runs_first;
1921 enum sched_tunable_scaling {
1922 SCHED_TUNABLESCALING_NONE,
1923 SCHED_TUNABLESCALING_LOG,
1924 SCHED_TUNABLESCALING_LINEAR,
1925 SCHED_TUNABLESCALING_END,
1927 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1929 #ifdef CONFIG_SCHED_DEBUG
1930 extern unsigned int sysctl_sched_migration_cost;
1931 extern unsigned int sysctl_sched_nr_migrate;
1932 extern unsigned int sysctl_sched_time_avg;
1933 extern unsigned int sysctl_timer_migration;
1935 int sched_proc_update_handler(struct ctl_table *table, int write,
1936 void __user *buffer, size_t *length,
1937 loff_t *ppos);
1938 #endif
1939 #ifdef CONFIG_SCHED_DEBUG
1940 static inline unsigned int get_sysctl_timer_migration(void)
1942 return sysctl_timer_migration;
1944 #else
1945 static inline unsigned int get_sysctl_timer_migration(void)
1947 return 1;
1949 #endif
1950 extern unsigned int sysctl_sched_rt_period;
1951 extern int sysctl_sched_rt_runtime;
1953 int sched_rt_handler(struct ctl_table *table, int write,
1954 void __user *buffer, size_t *lenp,
1955 loff_t *ppos);
1957 extern unsigned int sysctl_sched_compat_yield;
1959 #ifdef CONFIG_RT_MUTEXES
1960 extern int rt_mutex_getprio(struct task_struct *p);
1961 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1962 extern void rt_mutex_adjust_pi(struct task_struct *p);
1963 #else
1964 static inline int rt_mutex_getprio(struct task_struct *p)
1966 return p->normal_prio;
1968 # define rt_mutex_adjust_pi(p) do { } while (0)
1969 #endif
1971 extern void set_user_nice(struct task_struct *p, long nice);
1972 extern int task_prio(const struct task_struct *p);
1973 extern int task_nice(const struct task_struct *p);
1974 extern int can_nice(const struct task_struct *p, const int nice);
1975 extern int task_curr(const struct task_struct *p);
1976 extern int idle_cpu(int cpu);
1977 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1978 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1979 struct sched_param *);
1980 extern struct task_struct *idle_task(int cpu);
1981 extern struct task_struct *curr_task(int cpu);
1982 extern void set_curr_task(int cpu, struct task_struct *p);
1984 void yield(void);
1987 * The default (Linux) execution domain.
1989 extern struct exec_domain default_exec_domain;
1991 union thread_union {
1992 struct thread_info thread_info;
1993 unsigned long stack[THREAD_SIZE/sizeof(long)];
1996 #ifndef __HAVE_ARCH_KSTACK_END
1997 static inline int kstack_end(void *addr)
1999 /* Reliable end of stack detection:
2000 * Some APM bios versions misalign the stack
2002 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2004 #endif
2006 extern union thread_union init_thread_union;
2007 extern struct task_struct init_task;
2009 extern struct mm_struct init_mm;
2011 extern struct pid_namespace init_pid_ns;
2014 * find a task by one of its numerical ids
2016 * find_task_by_pid_ns():
2017 * finds a task by its pid in the specified namespace
2018 * find_task_by_vpid():
2019 * finds a task by its virtual pid
2021 * see also find_vpid() etc in include/linux/pid.h
2024 extern struct task_struct *find_task_by_vpid(pid_t nr);
2025 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2026 struct pid_namespace *ns);
2028 extern void __set_special_pids(struct pid *pid);
2030 /* per-UID process charging. */
2031 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2032 static inline struct user_struct *get_uid(struct user_struct *u)
2034 atomic_inc(&u->__count);
2035 return u;
2037 extern void free_uid(struct user_struct *);
2038 extern void release_uids(struct user_namespace *ns);
2040 #include <asm/current.h>
2042 extern void do_timer(unsigned long ticks);
2044 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2045 extern int wake_up_process(struct task_struct *tsk);
2046 extern void wake_up_new_task(struct task_struct *tsk,
2047 unsigned long clone_flags);
2048 #ifdef CONFIG_SMP
2049 extern void kick_process(struct task_struct *tsk);
2050 #else
2051 static inline void kick_process(struct task_struct *tsk) { }
2052 #endif
2053 extern void sched_fork(struct task_struct *p, int clone_flags);
2054 extern void sched_dead(struct task_struct *p);
2056 extern void proc_caches_init(void);
2057 extern void flush_signals(struct task_struct *);
2058 extern void __flush_signals(struct task_struct *);
2059 extern void ignore_signals(struct task_struct *);
2060 extern void flush_signal_handlers(struct task_struct *, int force_default);
2061 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2063 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2065 unsigned long flags;
2066 int ret;
2068 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2069 ret = dequeue_signal(tsk, mask, info);
2070 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2072 return ret;
2075 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2076 sigset_t *mask);
2077 extern void unblock_all_signals(void);
2078 extern void release_task(struct task_struct * p);
2079 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2080 extern int force_sigsegv(int, struct task_struct *);
2081 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2082 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2083 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2084 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2085 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2086 extern int kill_pid(struct pid *pid, int sig, int priv);
2087 extern int kill_proc_info(int, struct siginfo *, pid_t);
2088 extern int do_notify_parent(struct task_struct *, int);
2089 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2090 extern void force_sig(int, struct task_struct *);
2091 extern int send_sig(int, struct task_struct *, int);
2092 extern void zap_other_threads(struct task_struct *p);
2093 extern struct sigqueue *sigqueue_alloc(void);
2094 extern void sigqueue_free(struct sigqueue *);
2095 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2096 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2097 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2099 static inline int kill_cad_pid(int sig, int priv)
2101 return kill_pid(cad_pid, sig, priv);
2104 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2105 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2106 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2107 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2110 * True if we are on the alternate signal stack.
2112 static inline int on_sig_stack(unsigned long sp)
2114 #ifdef CONFIG_STACK_GROWSUP
2115 return sp >= current->sas_ss_sp &&
2116 sp - current->sas_ss_sp < current->sas_ss_size;
2117 #else
2118 return sp > current->sas_ss_sp &&
2119 sp - current->sas_ss_sp <= current->sas_ss_size;
2120 #endif
2123 static inline int sas_ss_flags(unsigned long sp)
2125 return (current->sas_ss_size == 0 ? SS_DISABLE
2126 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2130 * Routines for handling mm_structs
2132 extern struct mm_struct * mm_alloc(void);
2134 /* mmdrop drops the mm and the page tables */
2135 extern void __mmdrop(struct mm_struct *);
2136 static inline void mmdrop(struct mm_struct * mm)
2138 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2139 __mmdrop(mm);
2142 /* mmput gets rid of the mappings and all user-space */
2143 extern void mmput(struct mm_struct *);
2144 /* Grab a reference to a task's mm, if it is not already going away */
2145 extern struct mm_struct *get_task_mm(struct task_struct *task);
2146 /* Remove the current tasks stale references to the old mm_struct */
2147 extern void mm_release(struct task_struct *, struct mm_struct *);
2148 /* Allocate a new mm structure and copy contents from tsk->mm */
2149 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2151 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2152 struct task_struct *, struct pt_regs *);
2153 extern void flush_thread(void);
2154 extern void exit_thread(void);
2156 extern void exit_files(struct task_struct *);
2157 extern void __cleanup_signal(struct signal_struct *);
2158 extern void __cleanup_sighand(struct sighand_struct *);
2160 extern void exit_itimers(struct signal_struct *);
2161 extern void flush_itimer_signals(void);
2163 extern NORET_TYPE void do_group_exit(int);
2165 extern void daemonize(const char *, ...);
2166 extern int allow_signal(int);
2167 extern int disallow_signal(int);
2169 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2170 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2171 struct task_struct *fork_idle(int);
2173 extern void set_task_comm(struct task_struct *tsk, char *from);
2174 extern char *get_task_comm(char *to, struct task_struct *tsk);
2176 #ifdef CONFIG_SMP
2177 extern void wait_task_context_switch(struct task_struct *p);
2178 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2179 #else
2180 static inline void wait_task_context_switch(struct task_struct *p) {}
2181 static inline unsigned long wait_task_inactive(struct task_struct *p,
2182 long match_state)
2184 return 1;
2186 #endif
2188 #define next_task(p) \
2189 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2191 #define for_each_process(p) \
2192 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2194 extern bool current_is_single_threaded(void);
2197 * Careful: do_each_thread/while_each_thread is a double loop so
2198 * 'break' will not work as expected - use goto instead.
2200 #define do_each_thread(g, t) \
2201 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2203 #define while_each_thread(g, t) \
2204 while ((t = next_thread(t)) != g)
2206 /* de_thread depends on thread_group_leader not being a pid based check */
2207 #define thread_group_leader(p) (p == p->group_leader)
2209 /* Do to the insanities of de_thread it is possible for a process
2210 * to have the pid of the thread group leader without actually being
2211 * the thread group leader. For iteration through the pids in proc
2212 * all we care about is that we have a task with the appropriate
2213 * pid, we don't actually care if we have the right task.
2215 static inline int has_group_leader_pid(struct task_struct *p)
2217 return p->pid == p->tgid;
2220 static inline
2221 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2223 return p1->tgid == p2->tgid;
2226 static inline struct task_struct *next_thread(const struct task_struct *p)
2228 return list_entry_rcu(p->thread_group.next,
2229 struct task_struct, thread_group);
2232 static inline int thread_group_empty(struct task_struct *p)
2234 return list_empty(&p->thread_group);
2237 #define delay_group_leader(p) \
2238 (thread_group_leader(p) && !thread_group_empty(p))
2240 static inline int task_detached(struct task_struct *p)
2242 return p->exit_signal == -1;
2246 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2247 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2248 * pins the final release of task.io_context. Also protects ->cpuset and
2249 * ->cgroup.subsys[].
2251 * Nests both inside and outside of read_lock(&tasklist_lock).
2252 * It must not be nested with write_lock_irq(&tasklist_lock),
2253 * neither inside nor outside.
2255 static inline void task_lock(struct task_struct *p)
2257 spin_lock(&p->alloc_lock);
2260 static inline void task_unlock(struct task_struct *p)
2262 spin_unlock(&p->alloc_lock);
2265 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2266 unsigned long *flags);
2268 static inline void unlock_task_sighand(struct task_struct *tsk,
2269 unsigned long *flags)
2271 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2274 #ifndef __HAVE_THREAD_FUNCTIONS
2276 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2277 #define task_stack_page(task) ((task)->stack)
2279 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2281 *task_thread_info(p) = *task_thread_info(org);
2282 task_thread_info(p)->task = p;
2285 static inline unsigned long *end_of_stack(struct task_struct *p)
2287 return (unsigned long *)(task_thread_info(p) + 1);
2290 #endif
2292 static inline int object_is_on_stack(void *obj)
2294 void *stack = task_stack_page(current);
2296 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2299 extern void thread_info_cache_init(void);
2301 #ifdef CONFIG_DEBUG_STACK_USAGE
2302 static inline unsigned long stack_not_used(struct task_struct *p)
2304 unsigned long *n = end_of_stack(p);
2306 do { /* Skip over canary */
2307 n++;
2308 } while (!*n);
2310 return (unsigned long)n - (unsigned long)end_of_stack(p);
2312 #endif
2314 /* set thread flags in other task's structures
2315 * - see asm/thread_info.h for TIF_xxxx flags available
2317 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2319 set_ti_thread_flag(task_thread_info(tsk), flag);
2322 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2324 clear_ti_thread_flag(task_thread_info(tsk), flag);
2327 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2329 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2332 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2334 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2337 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2339 return test_ti_thread_flag(task_thread_info(tsk), flag);
2342 static inline void set_tsk_need_resched(struct task_struct *tsk)
2344 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2347 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2349 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2352 static inline int test_tsk_need_resched(struct task_struct *tsk)
2354 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2357 static inline int restart_syscall(void)
2359 set_tsk_thread_flag(current, TIF_SIGPENDING);
2360 return -ERESTARTNOINTR;
2363 static inline int signal_pending(struct task_struct *p)
2365 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2368 static inline int __fatal_signal_pending(struct task_struct *p)
2370 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2373 static inline int fatal_signal_pending(struct task_struct *p)
2375 return signal_pending(p) && __fatal_signal_pending(p);
2378 static inline int signal_pending_state(long state, struct task_struct *p)
2380 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2381 return 0;
2382 if (!signal_pending(p))
2383 return 0;
2385 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2388 static inline int need_resched(void)
2390 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2394 * cond_resched() and cond_resched_lock(): latency reduction via
2395 * explicit rescheduling in places that are safe. The return
2396 * value indicates whether a reschedule was done in fact.
2397 * cond_resched_lock() will drop the spinlock before scheduling,
2398 * cond_resched_softirq() will enable bhs before scheduling.
2400 extern int _cond_resched(void);
2402 #define cond_resched() ({ \
2403 __might_sleep(__FILE__, __LINE__, 0); \
2404 _cond_resched(); \
2407 extern int __cond_resched_lock(spinlock_t *lock);
2409 #ifdef CONFIG_PREEMPT
2410 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2411 #else
2412 #define PREEMPT_LOCK_OFFSET 0
2413 #endif
2415 #define cond_resched_lock(lock) ({ \
2416 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2417 __cond_resched_lock(lock); \
2420 extern int __cond_resched_softirq(void);
2422 #define cond_resched_softirq() ({ \
2423 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2424 __cond_resched_softirq(); \
2428 * Does a critical section need to be broken due to another
2429 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2430 * but a general need for low latency)
2432 static inline int spin_needbreak(spinlock_t *lock)
2434 #ifdef CONFIG_PREEMPT
2435 return spin_is_contended(lock);
2436 #else
2437 return 0;
2438 #endif
2442 * Thread group CPU time accounting.
2444 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2445 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2447 static inline void thread_group_cputime_init(struct signal_struct *sig)
2449 sig->cputimer.cputime = INIT_CPUTIME;
2450 spin_lock_init(&sig->cputimer.lock);
2451 sig->cputimer.running = 0;
2454 static inline void thread_group_cputime_free(struct signal_struct *sig)
2459 * Reevaluate whether the task has signals pending delivery.
2460 * Wake the task if so.
2461 * This is required every time the blocked sigset_t changes.
2462 * callers must hold sighand->siglock.
2464 extern void recalc_sigpending_and_wake(struct task_struct *t);
2465 extern void recalc_sigpending(void);
2467 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2470 * Wrappers for p->thread_info->cpu access. No-op on UP.
2472 #ifdef CONFIG_SMP
2474 static inline unsigned int task_cpu(const struct task_struct *p)
2476 return task_thread_info(p)->cpu;
2479 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2481 #else
2483 static inline unsigned int task_cpu(const struct task_struct *p)
2485 return 0;
2488 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2492 #endif /* CONFIG_SMP */
2494 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2496 #ifdef CONFIG_TRACING
2497 extern void
2498 __trace_special(void *__tr, void *__data,
2499 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2500 #else
2501 static inline void
2502 __trace_special(void *__tr, void *__data,
2503 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2506 #endif
2508 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2509 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2511 extern void normalize_rt_tasks(void);
2513 #ifdef CONFIG_GROUP_SCHED
2515 extern struct task_group init_task_group;
2516 #ifdef CONFIG_USER_SCHED
2517 extern struct task_group root_task_group;
2518 extern void set_tg_uid(struct user_struct *user);
2519 #endif
2521 extern struct task_group *sched_create_group(struct task_group *parent);
2522 extern void sched_destroy_group(struct task_group *tg);
2523 extern void sched_move_task(struct task_struct *tsk);
2524 #ifdef CONFIG_FAIR_GROUP_SCHED
2525 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2526 extern unsigned long sched_group_shares(struct task_group *tg);
2527 #endif
2528 #ifdef CONFIG_RT_GROUP_SCHED
2529 extern int sched_group_set_rt_runtime(struct task_group *tg,
2530 long rt_runtime_us);
2531 extern long sched_group_rt_runtime(struct task_group *tg);
2532 extern int sched_group_set_rt_period(struct task_group *tg,
2533 long rt_period_us);
2534 extern long sched_group_rt_period(struct task_group *tg);
2535 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2536 #endif
2537 #endif
2539 extern int task_can_switch_user(struct user_struct *up,
2540 struct task_struct *tsk);
2542 #ifdef CONFIG_TASK_XACCT
2543 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2545 tsk->ioac.rchar += amt;
2548 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2550 tsk->ioac.wchar += amt;
2553 static inline void inc_syscr(struct task_struct *tsk)
2555 tsk->ioac.syscr++;
2558 static inline void inc_syscw(struct task_struct *tsk)
2560 tsk->ioac.syscw++;
2562 #else
2563 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2567 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2571 static inline void inc_syscr(struct task_struct *tsk)
2575 static inline void inc_syscw(struct task_struct *tsk)
2578 #endif
2580 #ifndef TASK_SIZE_OF
2581 #define TASK_SIZE_OF(tsk) TASK_SIZE
2582 #endif
2585 * Call the function if the target task is executing on a CPU right now:
2587 extern void task_oncpu_function_call(struct task_struct *p,
2588 void (*func) (void *info), void *info);
2591 #ifdef CONFIG_MM_OWNER
2592 extern void mm_update_next_owner(struct mm_struct *mm);
2593 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2594 #else
2595 static inline void mm_update_next_owner(struct mm_struct *mm)
2599 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2602 #endif /* CONFIG_MM_OWNER */
2604 #endif /* __KERNEL__ */
2606 #endif