2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
38 #include <linux/acpi.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
55 UNDEFINED_CAPABLE
= 0,
56 SYSTEM_INTEL_MSR_CAPABLE
,
60 #define INTEL_MSR_RANGE (0xffff)
62 struct acpi_cpufreq_data
{
63 struct acpi_processor_performance
*acpi_data
;
64 struct cpufreq_frequency_table
*freq_table
;
66 unsigned int cpu_feature
;
69 static DEFINE_PER_CPU(struct acpi_cpufreq_data
*, acfreq_data
);
71 /* acpi_perf_data is a pointer to percpu data. */
72 static struct acpi_processor_performance __percpu
*acpi_perf_data
;
74 static struct cpufreq_driver acpi_cpufreq_driver
;
76 static unsigned int acpi_pstate_strict
;
78 static int check_est_cpu(unsigned int cpuid
)
80 struct cpuinfo_x86
*cpu
= &cpu_data(cpuid
);
82 return cpu_has(cpu
, X86_FEATURE_EST
);
85 static unsigned extract_io(u32 value
, struct acpi_cpufreq_data
*data
)
87 struct acpi_processor_performance
*perf
;
90 perf
= data
->acpi_data
;
92 for (i
= 0; i
< perf
->state_count
; i
++) {
93 if (value
== perf
->states
[i
].status
)
94 return data
->freq_table
[i
].frequency
;
99 static unsigned extract_msr(u32 msr
, struct acpi_cpufreq_data
*data
)
102 struct acpi_processor_performance
*perf
;
104 msr
&= INTEL_MSR_RANGE
;
105 perf
= data
->acpi_data
;
107 for (i
= 0; data
->freq_table
[i
].frequency
!= CPUFREQ_TABLE_END
; i
++) {
108 if (msr
== perf
->states
[data
->freq_table
[i
].index
].status
)
109 return data
->freq_table
[i
].frequency
;
111 return data
->freq_table
[0].frequency
;
114 static unsigned extract_freq(u32 val
, struct acpi_cpufreq_data
*data
)
116 switch (data
->cpu_feature
) {
117 case SYSTEM_INTEL_MSR_CAPABLE
:
118 return extract_msr(val
, data
);
119 case SYSTEM_IO_CAPABLE
:
120 return extract_io(val
, data
);
137 const struct cpumask
*mask
;
145 /* Called via smp_call_function_single(), on the target CPU */
146 static void do_drv_read(void *_cmd
)
148 struct drv_cmd
*cmd
= _cmd
;
152 case SYSTEM_INTEL_MSR_CAPABLE
:
153 rdmsr(cmd
->addr
.msr
.reg
, cmd
->val
, h
);
155 case SYSTEM_IO_CAPABLE
:
156 acpi_os_read_port((acpi_io_address
)cmd
->addr
.io
.port
,
158 (u32
)cmd
->addr
.io
.bit_width
);
165 /* Called via smp_call_function_many(), on the target CPUs */
166 static void do_drv_write(void *_cmd
)
168 struct drv_cmd
*cmd
= _cmd
;
172 case SYSTEM_INTEL_MSR_CAPABLE
:
173 rdmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
174 lo
= (lo
& ~INTEL_MSR_RANGE
) | (cmd
->val
& INTEL_MSR_RANGE
);
175 wrmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
177 case SYSTEM_IO_CAPABLE
:
178 acpi_os_write_port((acpi_io_address
)cmd
->addr
.io
.port
,
180 (u32
)cmd
->addr
.io
.bit_width
);
187 static void drv_read(struct drv_cmd
*cmd
)
192 err
= smp_call_function_any(cmd
->mask
, do_drv_read
, cmd
, 1);
193 WARN_ON_ONCE(err
); /* smp_call_function_any() was buggy? */
196 static void drv_write(struct drv_cmd
*cmd
)
200 this_cpu
= get_cpu();
201 if (cpumask_test_cpu(this_cpu
, cmd
->mask
))
203 smp_call_function_many(cmd
->mask
, do_drv_write
, cmd
, 1);
207 static u32
get_cur_val(const struct cpumask
*mask
)
209 struct acpi_processor_performance
*perf
;
212 if (unlikely(cpumask_empty(mask
)))
215 switch (per_cpu(acfreq_data
, cpumask_first(mask
))->cpu_feature
) {
216 case SYSTEM_INTEL_MSR_CAPABLE
:
217 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
218 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_STATUS
;
220 case SYSTEM_IO_CAPABLE
:
221 cmd
.type
= SYSTEM_IO_CAPABLE
;
222 perf
= per_cpu(acfreq_data
, cpumask_first(mask
))->acpi_data
;
223 cmd
.addr
.io
.port
= perf
->control_register
.address
;
224 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
233 pr_debug("get_cur_val = %u\n", cmd
.val
);
238 static unsigned int get_cur_freq_on_cpu(unsigned int cpu
)
240 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, cpu
);
242 unsigned int cached_freq
;
244 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu
);
246 if (unlikely(data
== NULL
||
247 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
251 cached_freq
= data
->freq_table
[data
->acpi_data
->state
].frequency
;
252 freq
= extract_freq(get_cur_val(cpumask_of(cpu
)), data
);
253 if (freq
!= cached_freq
) {
255 * The dreaded BIOS frequency change behind our back.
256 * Force set the frequency on next target call.
261 pr_debug("cur freq = %u\n", freq
);
266 static unsigned int check_freqs(const struct cpumask
*mask
, unsigned int freq
,
267 struct acpi_cpufreq_data
*data
)
269 unsigned int cur_freq
;
272 for (i
= 0; i
< 100; i
++) {
273 cur_freq
= extract_freq(get_cur_val(mask
), data
);
274 if (cur_freq
== freq
)
281 static int acpi_cpufreq_target(struct cpufreq_policy
*policy
,
282 unsigned int target_freq
, unsigned int relation
)
284 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
285 struct acpi_processor_performance
*perf
;
286 struct cpufreq_freqs freqs
;
288 unsigned int next_state
= 0; /* Index into freq_table */
289 unsigned int next_perf_state
= 0; /* Index into perf table */
293 pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq
, policy
->cpu
);
295 if (unlikely(data
== NULL
||
296 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
300 perf
= data
->acpi_data
;
301 result
= cpufreq_frequency_table_target(policy
,
304 relation
, &next_state
);
305 if (unlikely(result
)) {
310 next_perf_state
= data
->freq_table
[next_state
].index
;
311 if (perf
->state
== next_perf_state
) {
312 if (unlikely(data
->resume
)) {
313 pr_debug("Called after resume, resetting to P%d\n",
317 pr_debug("Already at target state (P%d)\n",
323 switch (data
->cpu_feature
) {
324 case SYSTEM_INTEL_MSR_CAPABLE
:
325 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
326 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_CTL
;
327 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
329 case SYSTEM_IO_CAPABLE
:
330 cmd
.type
= SYSTEM_IO_CAPABLE
;
331 cmd
.addr
.io
.port
= perf
->control_register
.address
;
332 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
333 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
340 /* cpufreq holds the hotplug lock, so we are safe from here on */
341 if (policy
->shared_type
!= CPUFREQ_SHARED_TYPE_ANY
)
342 cmd
.mask
= policy
->cpus
;
344 cmd
.mask
= cpumask_of(policy
->cpu
);
346 freqs
.old
= perf
->states
[perf
->state
].core_frequency
* 1000;
347 freqs
.new = data
->freq_table
[next_state
].frequency
;
348 for_each_cpu(i
, policy
->cpus
) {
350 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
355 if (acpi_pstate_strict
) {
356 if (!check_freqs(cmd
.mask
, freqs
.new, data
)) {
357 pr_debug("acpi_cpufreq_target failed (%d)\n",
364 for_each_cpu(i
, policy
->cpus
) {
366 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
368 perf
->state
= next_perf_state
;
374 static int acpi_cpufreq_verify(struct cpufreq_policy
*policy
)
376 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
378 pr_debug("acpi_cpufreq_verify\n");
380 return cpufreq_frequency_table_verify(policy
, data
->freq_table
);
384 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data
*data
, unsigned int cpu
)
386 struct acpi_processor_performance
*perf
= data
->acpi_data
;
389 /* search the closest match to cpu_khz */
392 unsigned long freqn
= perf
->states
[0].core_frequency
* 1000;
394 for (i
= 0; i
< (perf
->state_count
-1); i
++) {
396 freqn
= perf
->states
[i
+1].core_frequency
* 1000;
397 if ((2 * cpu_khz
) > (freqn
+ freq
)) {
402 perf
->state
= perf
->state_count
-1;
405 /* assume CPU is at P0... */
407 return perf
->states
[0].core_frequency
* 1000;
411 static void free_acpi_perf_data(void)
415 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416 for_each_possible_cpu(i
)
417 free_cpumask_var(per_cpu_ptr(acpi_perf_data
, i
)
419 free_percpu(acpi_perf_data
);
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
430 static int __init
acpi_cpufreq_early_init(void)
433 pr_debug("acpi_cpufreq_early_init\n");
435 acpi_perf_data
= alloc_percpu(struct acpi_processor_performance
);
436 if (!acpi_perf_data
) {
437 pr_debug("Memory allocation error for acpi_perf_data.\n");
440 for_each_possible_cpu(i
) {
441 if (!zalloc_cpumask_var_node(
442 &per_cpu_ptr(acpi_perf_data
, i
)->shared_cpu_map
,
443 GFP_KERNEL
, cpu_to_node(i
))) {
445 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446 free_acpi_perf_data();
451 /* Do initialization in ACPI core */
452 acpi_processor_preregister_performance(acpi_perf_data
);
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
463 static int bios_with_sw_any_bug
;
465 static int sw_any_bug_found(const struct dmi_system_id
*d
)
467 bios_with_sw_any_bug
= 1;
471 static const struct dmi_system_id sw_any_bug_dmi_table
[] = {
473 .callback
= sw_any_bug_found
,
474 .ident
= "Supermicro Server X6DLP",
476 DMI_MATCH(DMI_SYS_VENDOR
, "Supermicro"),
477 DMI_MATCH(DMI_BIOS_VERSION
, "080010"),
478 DMI_MATCH(DMI_PRODUCT_NAME
, "X6DLP"),
484 static int acpi_cpufreq_blacklist(struct cpuinfo_x86
*c
)
486 /* Intel Xeon Processor 7100 Series Specification Update
487 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488 * AL30: A Machine Check Exception (MCE) Occurring during an
489 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490 * Both Processor Cores to Lock Up. */
491 if (c
->x86_vendor
== X86_VENDOR_INTEL
) {
492 if ((c
->x86
== 15) &&
493 (c
->x86_model
== 6) &&
494 (c
->x86_mask
== 8)) {
495 printk(KERN_INFO
"acpi-cpufreq: Intel(R) "
496 "Xeon(R) 7100 Errata AL30, processors may "
497 "lock up on frequency changes: disabling "
506 static int acpi_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
509 unsigned int valid_states
= 0;
510 unsigned int cpu
= policy
->cpu
;
511 struct acpi_cpufreq_data
*data
;
512 unsigned int result
= 0;
513 struct cpuinfo_x86
*c
= &cpu_data(policy
->cpu
);
514 struct acpi_processor_performance
*perf
;
516 static int blacklisted
;
519 pr_debug("acpi_cpufreq_cpu_init\n");
524 blacklisted
= acpi_cpufreq_blacklist(c
);
529 data
= kzalloc(sizeof(struct acpi_cpufreq_data
), GFP_KERNEL
);
533 data
->acpi_data
= per_cpu_ptr(acpi_perf_data
, cpu
);
534 per_cpu(acfreq_data
, cpu
) = data
;
536 if (cpu_has(c
, X86_FEATURE_CONSTANT_TSC
))
537 acpi_cpufreq_driver
.flags
|= CPUFREQ_CONST_LOOPS
;
539 result
= acpi_processor_register_performance(data
->acpi_data
, cpu
);
543 perf
= data
->acpi_data
;
544 policy
->shared_type
= perf
->shared_type
;
547 * Will let policy->cpus know about dependency only when software
548 * coordination is required.
550 if (policy
->shared_type
== CPUFREQ_SHARED_TYPE_ALL
||
551 policy
->shared_type
== CPUFREQ_SHARED_TYPE_ANY
) {
552 cpumask_copy(policy
->cpus
, perf
->shared_cpu_map
);
554 cpumask_copy(policy
->related_cpus
, perf
->shared_cpu_map
);
557 dmi_check_system(sw_any_bug_dmi_table
);
558 if (bios_with_sw_any_bug
&& cpumask_weight(policy
->cpus
) == 1) {
559 policy
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
560 cpumask_copy(policy
->cpus
, cpu_core_mask(cpu
));
564 /* capability check */
565 if (perf
->state_count
<= 1) {
566 pr_debug("No P-States\n");
571 if (perf
->control_register
.space_id
!= perf
->status_register
.space_id
) {
576 switch (perf
->control_register
.space_id
) {
577 case ACPI_ADR_SPACE_SYSTEM_IO
:
578 pr_debug("SYSTEM IO addr space\n");
579 data
->cpu_feature
= SYSTEM_IO_CAPABLE
;
581 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
582 pr_debug("HARDWARE addr space\n");
583 if (!check_est_cpu(cpu
)) {
587 data
->cpu_feature
= SYSTEM_INTEL_MSR_CAPABLE
;
590 pr_debug("Unknown addr space %d\n",
591 (u32
) (perf
->control_register
.space_id
));
596 data
->freq_table
= kmalloc(sizeof(struct cpufreq_frequency_table
) *
597 (perf
->state_count
+1), GFP_KERNEL
);
598 if (!data
->freq_table
) {
603 /* detect transition latency */
604 policy
->cpuinfo
.transition_latency
= 0;
605 for (i
= 0; i
< perf
->state_count
; i
++) {
606 if ((perf
->states
[i
].transition_latency
* 1000) >
607 policy
->cpuinfo
.transition_latency
)
608 policy
->cpuinfo
.transition_latency
=
609 perf
->states
[i
].transition_latency
* 1000;
612 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613 if (perf
->control_register
.space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
&&
614 policy
->cpuinfo
.transition_latency
> 20 * 1000) {
615 policy
->cpuinfo
.transition_latency
= 20 * 1000;
616 printk_once(KERN_INFO
617 "P-state transition latency capped at 20 uS\n");
621 for (i
= 0; i
< perf
->state_count
; i
++) {
622 if (i
> 0 && perf
->states
[i
].core_frequency
>=
623 data
->freq_table
[valid_states
-1].frequency
/ 1000)
626 data
->freq_table
[valid_states
].index
= i
;
627 data
->freq_table
[valid_states
].frequency
=
628 perf
->states
[i
].core_frequency
* 1000;
631 data
->freq_table
[valid_states
].frequency
= CPUFREQ_TABLE_END
;
634 result
= cpufreq_frequency_table_cpuinfo(policy
, data
->freq_table
);
638 if (perf
->states
[0].core_frequency
* 1000 != policy
->cpuinfo
.max_freq
)
639 printk(KERN_WARNING FW_WARN
"P-state 0 is not max freq\n");
641 switch (perf
->control_register
.space_id
) {
642 case ACPI_ADR_SPACE_SYSTEM_IO
:
643 /* Current speed is unknown and not detectable by IO port */
644 policy
->cur
= acpi_cpufreq_guess_freq(data
, policy
->cpu
);
646 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
647 acpi_cpufreq_driver
.get
= get_cur_freq_on_cpu
;
648 policy
->cur
= get_cur_freq_on_cpu(cpu
);
654 /* notify BIOS that we exist */
655 acpi_processor_notify_smm(THIS_MODULE
);
657 /* Check for APERF/MPERF support in hardware */
658 if (boot_cpu_has(X86_FEATURE_APERFMPERF
))
659 acpi_cpufreq_driver
.getavg
= cpufreq_get_measured_perf
;
661 pr_debug("CPU%u - ACPI performance management activated.\n", cpu
);
662 for (i
= 0; i
< perf
->state_count
; i
++)
663 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
664 (i
== perf
->state
? '*' : ' '), i
,
665 (u32
) perf
->states
[i
].core_frequency
,
666 (u32
) perf
->states
[i
].power
,
667 (u32
) perf
->states
[i
].transition_latency
);
669 cpufreq_frequency_table_get_attr(data
->freq_table
, policy
->cpu
);
672 * the first call to ->target() should result in us actually
673 * writing something to the appropriate registers.
680 kfree(data
->freq_table
);
682 acpi_processor_unregister_performance(perf
, cpu
);
685 per_cpu(acfreq_data
, cpu
) = NULL
;
690 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
692 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
694 pr_debug("acpi_cpufreq_cpu_exit\n");
697 cpufreq_frequency_table_put_attr(policy
->cpu
);
698 per_cpu(acfreq_data
, policy
->cpu
) = NULL
;
699 acpi_processor_unregister_performance(data
->acpi_data
,
701 kfree(data
->freq_table
);
708 static int acpi_cpufreq_resume(struct cpufreq_policy
*policy
)
710 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
712 pr_debug("acpi_cpufreq_resume\n");
719 static struct freq_attr
*acpi_cpufreq_attr
[] = {
720 &cpufreq_freq_attr_scaling_available_freqs
,
724 static struct cpufreq_driver acpi_cpufreq_driver
= {
725 .verify
= acpi_cpufreq_verify
,
726 .target
= acpi_cpufreq_target
,
727 .bios_limit
= acpi_processor_get_bios_limit
,
728 .init
= acpi_cpufreq_cpu_init
,
729 .exit
= acpi_cpufreq_cpu_exit
,
730 .resume
= acpi_cpufreq_resume
,
731 .name
= "acpi-cpufreq",
732 .owner
= THIS_MODULE
,
733 .attr
= acpi_cpufreq_attr
,
736 static int __init
acpi_cpufreq_init(void)
743 pr_debug("acpi_cpufreq_init\n");
745 ret
= acpi_cpufreq_early_init();
749 ret
= cpufreq_register_driver(&acpi_cpufreq_driver
);
751 free_acpi_perf_data();
756 static void __exit
acpi_cpufreq_exit(void)
758 pr_debug("acpi_cpufreq_exit\n");
760 cpufreq_unregister_driver(&acpi_cpufreq_driver
);
762 free_acpi_perf_data();
765 module_param(acpi_pstate_strict
, uint
, 0644);
766 MODULE_PARM_DESC(acpi_pstate_strict
,
767 "value 0 or non-zero. non-zero -> strict ACPI checks are "
768 "performed during frequency changes.");
770 late_initcall(acpi_cpufreq_init
);
771 module_exit(acpi_cpufreq_exit
);
773 MODULE_ALIAS("acpi");