Use dentry_path() to create full path to inode object
[pohmelfs.git] / arch / blackfin / kernel / setup.c
blobd6102c86d037601adcb96d6745d5dc8eadfcf624
1 /*
2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
47 #ifdef CONFIG_MTD_UCLINUX
48 extern struct map_info uclinux_ram_map;
49 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
50 unsigned long _ebss;
51 EXPORT_SYMBOL(memory_mtd_end);
52 EXPORT_SYMBOL(memory_mtd_start);
53 EXPORT_SYMBOL(mtd_size);
54 #endif
56 char __initdata command_line[COMMAND_LINE_SIZE];
57 struct blackfin_initial_pda __initdata initial_pda;
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84 static int early_init_clkin_hz(char *buf);
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
89 unsigned int cpu;
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
96 #endif
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
108 bfin_setup_cpudata(cpu);
111 * In cache coherence emulation mode, we need to have the
112 * D-cache enabled before running any atomic operation which
113 * might involve cache invalidation (i.e. spinlock, rwlock).
114 * So printk's are deferred until then.
116 #ifdef CONFIG_BFIN_ICACHE
117 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
118 printk(KERN_INFO " External memory:"
119 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
120 " cacheable"
121 # else
122 " uncacheable"
123 # endif
124 " in instruction cache\n");
125 if (L2_LENGTH)
126 printk(KERN_INFO " L2 SRAM :"
127 # ifdef CONFIG_BFIN_L2_ICACHEABLE
128 " cacheable"
129 # else
130 " uncacheable"
131 # endif
132 " in instruction cache\n");
134 #else
135 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
136 #endif
138 #ifdef CONFIG_BFIN_DCACHE
139 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
140 printk(KERN_INFO " External memory:"
141 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
142 " cacheable (write-back)"
143 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
144 " cacheable (write-through)"
145 # else
146 " uncacheable"
147 # endif
148 " in data cache\n");
149 if (L2_LENGTH)
150 printk(KERN_INFO " L2 SRAM :"
151 # if defined CONFIG_BFIN_L2_WRITEBACK
152 " cacheable (write-back)"
153 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
154 " cacheable (write-through)"
155 # else
156 " uncacheable"
157 # endif
158 " in data cache\n");
159 #else
160 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
161 #endif
164 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
166 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
168 cpudata->imemctl = bfin_read_IMEM_CONTROL();
169 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
172 void __init bfin_cache_init(void)
174 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
175 generate_cplb_tables();
176 #endif
177 bfin_setup_caches(0);
180 void __init bfin_relocate_l1_mem(void)
182 unsigned long text_l1_len = (unsigned long)_text_l1_len;
183 unsigned long data_l1_len = (unsigned long)_data_l1_len;
184 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
185 unsigned long l2_len = (unsigned long)_l2_len;
187 early_shadow_stamp();
190 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
191 * we know that everything about l1 text/data is nice and aligned,
192 * so copy by 4 byte chunks, and don't worry about overlapping
193 * src/dest.
195 * We can't use the dma_memcpy functions, since they can call
196 * scheduler functions which might be in L1 :( and core writes
197 * into L1 instruction cause bad access errors, so we are stuck,
198 * we are required to use DMA, but can't use the common dma
199 * functions. We can't use memcpy either - since that might be
200 * going to be in the relocated L1
203 blackfin_dma_early_init();
205 /* if necessary, copy L1 text to L1 instruction SRAM */
206 if (L1_CODE_LENGTH && text_l1_len)
207 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
209 /* if necessary, copy L1 data to L1 data bank A SRAM */
210 if (L1_DATA_A_LENGTH && data_l1_len)
211 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
213 /* if necessary, copy L1 data B to L1 data bank B SRAM */
214 if (L1_DATA_B_LENGTH && data_b_l1_len)
215 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
217 early_dma_memcpy_done();
219 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
220 blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
221 #endif
223 /* if necessary, copy L2 text/data to L2 SRAM */
224 if (L2_LENGTH && l2_len)
225 memcpy(_stext_l2, _l2_lma, l2_len);
228 #ifdef CONFIG_SMP
229 void __init bfin_relocate_coreb_l1_mem(void)
231 unsigned long text_l1_len = (unsigned long)_text_l1_len;
232 unsigned long data_l1_len = (unsigned long)_data_l1_len;
233 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
235 blackfin_dma_early_init();
237 /* if necessary, copy L1 text to L1 instruction SRAM */
238 if (L1_CODE_LENGTH && text_l1_len)
239 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
240 text_l1_len);
242 /* if necessary, copy L1 data to L1 data bank A SRAM */
243 if (L1_DATA_A_LENGTH && data_l1_len)
244 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
245 data_l1_len);
247 /* if necessary, copy L1 data B to L1 data bank B SRAM */
248 if (L1_DATA_B_LENGTH && data_b_l1_len)
249 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
250 data_b_l1_len);
252 early_dma_memcpy_done();
254 #ifdef CONFIG_ICACHE_FLUSH_L1
255 blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
256 (unsigned long)_stext_l1 + COREB_L1_CODE_START;
257 #endif
259 #endif
261 #ifdef CONFIG_ROMKERNEL
262 void __init bfin_relocate_xip_data(void)
264 early_shadow_stamp();
266 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
267 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
269 #endif
271 /* add_memory_region to memmap */
272 static void __init add_memory_region(unsigned long long start,
273 unsigned long long size, int type)
275 int i;
277 i = bfin_memmap.nr_map;
279 if (i == BFIN_MEMMAP_MAX) {
280 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
281 return;
284 bfin_memmap.map[i].addr = start;
285 bfin_memmap.map[i].size = size;
286 bfin_memmap.map[i].type = type;
287 bfin_memmap.nr_map++;
291 * Sanitize the boot memmap, removing overlaps.
293 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
295 struct change_member *change_tmp;
296 unsigned long current_type, last_type;
297 unsigned long long last_addr;
298 int chgidx, still_changing;
299 int overlap_entries;
300 int new_entry;
301 int old_nr, new_nr, chg_nr;
302 int i;
305 Visually we're performing the following (1,2,3,4 = memory types)
307 Sample memory map (w/overlaps):
308 ____22__________________
309 ______________________4_
310 ____1111________________
311 _44_____________________
312 11111111________________
313 ____________________33__
314 ___________44___________
315 __________33333_________
316 ______________22________
317 ___________________2222_
318 _________111111111______
319 _____________________11_
320 _________________4______
322 Sanitized equivalent (no overlap):
323 1_______________________
324 _44_____________________
325 ___1____________________
326 ____22__________________
327 ______11________________
328 _________1______________
329 __________3_____________
330 ___________44___________
331 _____________33_________
332 _______________2________
333 ________________1_______
334 _________________4______
335 ___________________2____
336 ____________________33__
337 ______________________4_
339 /* if there's only one memory region, don't bother */
340 if (*pnr_map < 2)
341 return -1;
343 old_nr = *pnr_map;
345 /* bail out if we find any unreasonable addresses in memmap */
346 for (i = 0; i < old_nr; i++)
347 if (map[i].addr + map[i].size < map[i].addr)
348 return -1;
350 /* create pointers for initial change-point information (for sorting) */
351 for (i = 0; i < 2*old_nr; i++)
352 change_point[i] = &change_point_list[i];
354 /* record all known change-points (starting and ending addresses),
355 omitting those that are for empty memory regions */
356 chgidx = 0;
357 for (i = 0; i < old_nr; i++) {
358 if (map[i].size != 0) {
359 change_point[chgidx]->addr = map[i].addr;
360 change_point[chgidx++]->pentry = &map[i];
361 change_point[chgidx]->addr = map[i].addr + map[i].size;
362 change_point[chgidx++]->pentry = &map[i];
365 chg_nr = chgidx; /* true number of change-points */
367 /* sort change-point list by memory addresses (low -> high) */
368 still_changing = 1;
369 while (still_changing) {
370 still_changing = 0;
371 for (i = 1; i < chg_nr; i++) {
372 /* if <current_addr> > <last_addr>, swap */
373 /* or, if current=<start_addr> & last=<end_addr>, swap */
374 if ((change_point[i]->addr < change_point[i-1]->addr) ||
375 ((change_point[i]->addr == change_point[i-1]->addr) &&
376 (change_point[i]->addr == change_point[i]->pentry->addr) &&
377 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
379 change_tmp = change_point[i];
380 change_point[i] = change_point[i-1];
381 change_point[i-1] = change_tmp;
382 still_changing = 1;
387 /* create a new memmap, removing overlaps */
388 overlap_entries = 0; /* number of entries in the overlap table */
389 new_entry = 0; /* index for creating new memmap entries */
390 last_type = 0; /* start with undefined memory type */
391 last_addr = 0; /* start with 0 as last starting address */
392 /* loop through change-points, determining affect on the new memmap */
393 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
394 /* keep track of all overlapping memmap entries */
395 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
396 /* add map entry to overlap list (> 1 entry implies an overlap) */
397 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
398 } else {
399 /* remove entry from list (order independent, so swap with last) */
400 for (i = 0; i < overlap_entries; i++) {
401 if (overlap_list[i] == change_point[chgidx]->pentry)
402 overlap_list[i] = overlap_list[overlap_entries-1];
404 overlap_entries--;
406 /* if there are overlapping entries, decide which "type" to use */
407 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
408 current_type = 0;
409 for (i = 0; i < overlap_entries; i++)
410 if (overlap_list[i]->type > current_type)
411 current_type = overlap_list[i]->type;
412 /* continue building up new memmap based on this information */
413 if (current_type != last_type) {
414 if (last_type != 0) {
415 new_map[new_entry].size =
416 change_point[chgidx]->addr - last_addr;
417 /* move forward only if the new size was non-zero */
418 if (new_map[new_entry].size != 0)
419 if (++new_entry >= BFIN_MEMMAP_MAX)
420 break; /* no more space left for new entries */
422 if (current_type != 0) {
423 new_map[new_entry].addr = change_point[chgidx]->addr;
424 new_map[new_entry].type = current_type;
425 last_addr = change_point[chgidx]->addr;
427 last_type = current_type;
430 new_nr = new_entry; /* retain count for new entries */
432 /* copy new mapping into original location */
433 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
434 *pnr_map = new_nr;
436 return 0;
439 static void __init print_memory_map(char *who)
441 int i;
443 for (i = 0; i < bfin_memmap.nr_map; i++) {
444 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
445 bfin_memmap.map[i].addr,
446 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
447 switch (bfin_memmap.map[i].type) {
448 case BFIN_MEMMAP_RAM:
449 printk(KERN_CONT "(usable)\n");
450 break;
451 case BFIN_MEMMAP_RESERVED:
452 printk(KERN_CONT "(reserved)\n");
453 break;
454 default:
455 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
456 break;
461 static __init int parse_memmap(char *arg)
463 unsigned long long start_at, mem_size;
465 if (!arg)
466 return -EINVAL;
468 mem_size = memparse(arg, &arg);
469 if (*arg == '@') {
470 start_at = memparse(arg+1, &arg);
471 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
472 } else if (*arg == '$') {
473 start_at = memparse(arg+1, &arg);
474 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
477 return 0;
481 * Initial parsing of the command line. Currently, we support:
482 * - Controlling the linux memory size: mem=xxx[KMG]
483 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
484 * $ -> reserved memory is dcacheable
485 * # -> reserved memory is icacheable
486 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
487 * @ from <start> to <start>+<mem>, type RAM
488 * $ from <start> to <start>+<mem>, type RESERVED
490 static __init void parse_cmdline_early(char *cmdline_p)
492 char c = ' ', *to = cmdline_p;
493 unsigned int memsize;
494 for (;;) {
495 if (c == ' ') {
496 if (!memcmp(to, "mem=", 4)) {
497 to += 4;
498 memsize = memparse(to, &to);
499 if (memsize)
500 _ramend = memsize;
502 } else if (!memcmp(to, "max_mem=", 8)) {
503 to += 8;
504 memsize = memparse(to, &to);
505 if (memsize) {
506 physical_mem_end = memsize;
507 if (*to != ' ') {
508 if (*to == '$'
509 || *(to + 1) == '$')
510 reserved_mem_dcache_on = 1;
511 if (*to == '#'
512 || *(to + 1) == '#')
513 reserved_mem_icache_on = 1;
516 } else if (!memcmp(to, "clkin_hz=", 9)) {
517 to += 9;
518 early_init_clkin_hz(to);
519 #ifdef CONFIG_EARLY_PRINTK
520 } else if (!memcmp(to, "earlyprintk=", 12)) {
521 to += 12;
522 setup_early_printk(to);
523 #endif
524 } else if (!memcmp(to, "memmap=", 7)) {
525 to += 7;
526 parse_memmap(to);
529 c = *(to++);
530 if (!c)
531 break;
536 * Setup memory defaults from user config.
537 * The physical memory layout looks like:
539 * [_rambase, _ramstart]: kernel image
540 * [memory_start, memory_end]: dynamic memory managed by kernel
541 * [memory_end, _ramend]: reserved memory
542 * [memory_mtd_start(memory_end),
543 * memory_mtd_start + mtd_size]: rootfs (if any)
544 * [_ramend - DMA_UNCACHED_REGION,
545 * _ramend]: uncached DMA region
546 * [_ramend, physical_mem_end]: memory not managed by kernel
548 static __init void memory_setup(void)
550 #ifdef CONFIG_MTD_UCLINUX
551 unsigned long mtd_phys = 0;
552 #endif
553 unsigned long max_mem;
555 _rambase = CONFIG_BOOT_LOAD;
556 _ramstart = (unsigned long)_end;
558 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
559 console_init();
560 panic("DMA region exceeds memory limit: %lu.",
561 _ramend - _ramstart);
563 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
565 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
566 /* Due to a Hardware Anomaly we need to limit the size of usable
567 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
568 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
570 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
571 if (max_mem >= 56 * 1024 * 1024)
572 max_mem = 56 * 1024 * 1024;
573 # else
574 if (max_mem >= 60 * 1024 * 1024)
575 max_mem = 60 * 1024 * 1024;
576 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
577 #endif /* ANOMALY_05000263 */
580 #ifdef CONFIG_MPU
581 /* Round up to multiple of 4MB */
582 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
583 #else
584 memory_start = PAGE_ALIGN(_ramstart);
585 #endif
587 #if defined(CONFIG_MTD_UCLINUX)
588 /* generic memory mapped MTD driver */
589 memory_mtd_end = memory_end;
591 mtd_phys = _ramstart;
592 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
594 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
595 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
596 mtd_size =
597 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
598 # endif
600 # if defined(CONFIG_CRAMFS)
601 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
602 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
603 # endif
605 # if defined(CONFIG_ROMFS_FS)
606 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
607 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
608 mtd_size =
609 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
611 /* ROM_FS is XIP, so if we found it, we need to limit memory */
612 if (memory_end > max_mem) {
613 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
614 memory_end = max_mem;
617 # endif /* CONFIG_ROMFS_FS */
619 /* Since the default MTD_UCLINUX has no magic number, we just blindly
620 * read 8 past the end of the kernel's image, and look at it.
621 * When no image is attached, mtd_size is set to a random number
622 * Do some basic sanity checks before operating on things
624 if (mtd_size == 0 || memory_end <= mtd_size) {
625 pr_emerg("Could not find valid ram mtd attached.\n");
626 } else {
627 memory_end -= mtd_size;
629 /* Relocate MTD image to the top of memory after the uncached memory area */
630 uclinux_ram_map.phys = memory_mtd_start = memory_end;
631 uclinux_ram_map.size = mtd_size;
632 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
633 _end, mtd_size, (void *)memory_mtd_start);
634 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
636 #endif /* CONFIG_MTD_UCLINUX */
638 /* We need lo limit memory, since everything could have a text section
639 * of userspace in it, and expose anomaly 05000263. If the anomaly
640 * doesn't exist, or we don't need to - then dont.
642 if (memory_end > max_mem) {
643 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
644 memory_end = max_mem;
647 #ifdef CONFIG_MPU
648 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
649 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
650 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
651 #else
652 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
653 #endif
654 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
655 #endif
657 init_mm.start_code = (unsigned long)_stext;
658 init_mm.end_code = (unsigned long)_etext;
659 init_mm.end_data = (unsigned long)_edata;
660 init_mm.brk = (unsigned long)0;
662 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
663 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
665 printk(KERN_INFO "Memory map:\n"
666 " fixedcode = 0x%p-0x%p\n"
667 " text = 0x%p-0x%p\n"
668 " rodata = 0x%p-0x%p\n"
669 " bss = 0x%p-0x%p\n"
670 " data = 0x%p-0x%p\n"
671 " stack = 0x%p-0x%p\n"
672 " init = 0x%p-0x%p\n"
673 " available = 0x%p-0x%p\n"
674 #ifdef CONFIG_MTD_UCLINUX
675 " rootfs = 0x%p-0x%p\n"
676 #endif
677 #if DMA_UNCACHED_REGION > 0
678 " DMA Zone = 0x%p-0x%p\n"
679 #endif
680 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
681 _stext, _etext,
682 __start_rodata, __end_rodata,
683 __bss_start, __bss_stop,
684 _sdata, _edata,
685 (void *)&init_thread_union,
686 (void *)((int)(&init_thread_union) + THREAD_SIZE),
687 __init_begin, __init_end,
688 (void *)_ramstart, (void *)memory_end
689 #ifdef CONFIG_MTD_UCLINUX
690 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
691 #endif
692 #if DMA_UNCACHED_REGION > 0
693 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
694 #endif
699 * Find the lowest, highest page frame number we have available
701 void __init find_min_max_pfn(void)
703 int i;
705 max_pfn = 0;
706 min_low_pfn = memory_end;
708 for (i = 0; i < bfin_memmap.nr_map; i++) {
709 unsigned long start, end;
710 /* RAM? */
711 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
712 continue;
713 start = PFN_UP(bfin_memmap.map[i].addr);
714 end = PFN_DOWN(bfin_memmap.map[i].addr +
715 bfin_memmap.map[i].size);
716 if (start >= end)
717 continue;
718 if (end > max_pfn)
719 max_pfn = end;
720 if (start < min_low_pfn)
721 min_low_pfn = start;
725 static __init void setup_bootmem_allocator(void)
727 int bootmap_size;
728 int i;
729 unsigned long start_pfn, end_pfn;
730 unsigned long curr_pfn, last_pfn, size;
732 /* mark memory between memory_start and memory_end usable */
733 add_memory_region(memory_start,
734 memory_end - memory_start, BFIN_MEMMAP_RAM);
735 /* sanity check for overlap */
736 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
737 print_memory_map("boot memmap");
739 /* initialize globals in linux/bootmem.h */
740 find_min_max_pfn();
741 /* pfn of the last usable page frame */
742 if (max_pfn > memory_end >> PAGE_SHIFT)
743 max_pfn = memory_end >> PAGE_SHIFT;
744 /* pfn of last page frame directly mapped by kernel */
745 max_low_pfn = max_pfn;
746 /* pfn of the first usable page frame after kernel image*/
747 if (min_low_pfn < memory_start >> PAGE_SHIFT)
748 min_low_pfn = memory_start >> PAGE_SHIFT;
750 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
751 end_pfn = memory_end >> PAGE_SHIFT;
754 * give all the memory to the bootmap allocator, tell it to put the
755 * boot mem_map at the start of memory.
757 bootmap_size = init_bootmem_node(NODE_DATA(0),
758 memory_start >> PAGE_SHIFT, /* map goes here */
759 start_pfn, end_pfn);
761 /* register the memmap regions with the bootmem allocator */
762 for (i = 0; i < bfin_memmap.nr_map; i++) {
764 * Reserve usable memory
766 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
767 continue;
769 * We are rounding up the start address of usable memory:
771 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
772 if (curr_pfn >= end_pfn)
773 continue;
775 * ... and at the end of the usable range downwards:
777 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
778 bfin_memmap.map[i].size);
780 if (last_pfn > end_pfn)
781 last_pfn = end_pfn;
784 * .. finally, did all the rounding and playing
785 * around just make the area go away?
787 if (last_pfn <= curr_pfn)
788 continue;
790 size = last_pfn - curr_pfn;
791 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
794 /* reserve memory before memory_start, including bootmap */
795 reserve_bootmem(PAGE_OFFSET,
796 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
797 BOOTMEM_DEFAULT);
800 #define EBSZ_TO_MEG(ebsz) \
801 ({ \
802 int meg = 0; \
803 switch (ebsz & 0xf) { \
804 case 0x1: meg = 16; break; \
805 case 0x3: meg = 32; break; \
806 case 0x5: meg = 64; break; \
807 case 0x7: meg = 128; break; \
808 case 0x9: meg = 256; break; \
809 case 0xb: meg = 512; break; \
811 meg; \
813 static inline int __init get_mem_size(void)
815 #if defined(EBIU_SDBCTL)
816 # if defined(BF561_FAMILY)
817 int ret = 0;
818 u32 sdbctl = bfin_read_EBIU_SDBCTL();
819 ret += EBSZ_TO_MEG(sdbctl >> 0);
820 ret += EBSZ_TO_MEG(sdbctl >> 8);
821 ret += EBSZ_TO_MEG(sdbctl >> 16);
822 ret += EBSZ_TO_MEG(sdbctl >> 24);
823 return ret;
824 # else
825 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
826 # endif
827 #elif defined(EBIU_DDRCTL1)
828 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
829 int ret = 0;
830 switch (ddrctl & 0xc0000) {
831 case DEVSZ_64:
832 ret = 64 / 8;
833 break;
834 case DEVSZ_128:
835 ret = 128 / 8;
836 break;
837 case DEVSZ_256:
838 ret = 256 / 8;
839 break;
840 case DEVSZ_512:
841 ret = 512 / 8;
842 break;
844 switch (ddrctl & 0x30000) {
845 case DEVWD_4: ret *= 2;
846 case DEVWD_8: ret *= 2;
847 case DEVWD_16: break;
849 if ((ddrctl & 0xc000) == 0x4000)
850 ret *= 2;
851 return ret;
852 #endif
853 BUG();
856 __attribute__((weak))
857 void __init native_machine_early_platform_add_devices(void)
861 void __init setup_arch(char **cmdline_p)
863 u32 mmr;
864 unsigned long sclk, cclk;
866 native_machine_early_platform_add_devices();
868 enable_shadow_console();
870 /* Check to make sure we are running on the right processor */
871 if (unlikely(CPUID != bfin_cpuid()))
872 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
873 CPU, bfin_cpuid(), bfin_revid());
875 #ifdef CONFIG_DUMMY_CONSOLE
876 conswitchp = &dummy_con;
877 #endif
879 #if defined(CONFIG_CMDLINE_BOOL)
880 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
881 command_line[sizeof(command_line) - 1] = 0;
882 #endif
884 /* Keep a copy of command line */
885 *cmdline_p = &command_line[0];
886 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
887 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
889 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
891 /* If the user does not specify things on the command line, use
892 * what the bootloader set things up as
894 physical_mem_end = 0;
895 parse_cmdline_early(&command_line[0]);
897 if (_ramend == 0)
898 _ramend = get_mem_size() * 1024 * 1024;
900 if (physical_mem_end == 0)
901 physical_mem_end = _ramend;
903 memory_setup();
905 /* Initialize Async memory banks */
906 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
907 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
908 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
909 #ifdef CONFIG_EBIU_MBSCTLVAL
910 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
911 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
912 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
913 #endif
914 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
915 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
916 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
917 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
918 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
919 ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
920 #endif
922 cclk = get_cclk();
923 sclk = get_sclk();
925 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
926 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
928 #ifdef BF561_FAMILY
929 if (ANOMALY_05000266) {
930 bfin_read_IMDMA_D0_IRQ_STATUS();
931 bfin_read_IMDMA_D1_IRQ_STATUS();
933 #endif
935 mmr = bfin_read_TBUFCTL();
936 printk(KERN_INFO "Hardware Trace %s and %sabled\n",
937 (mmr & 0x1) ? "active" : "off",
938 (mmr & 0x2) ? "en" : "dis");
940 mmr = bfin_read_SYSCR();
941 printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
943 /* Newer parts mirror SWRST bits in SYSCR */
944 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
945 defined(CONFIG_BF538) || defined(CONFIG_BF539)
946 _bfin_swrst = bfin_read_SWRST();
947 #else
948 /* Clear boot mode field */
949 _bfin_swrst = mmr & ~0xf;
950 #endif
952 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
953 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
954 #endif
955 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
956 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
957 #endif
959 #ifdef CONFIG_SMP
960 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
961 #else
962 if (_bfin_swrst & RESET_DOUBLE) {
963 #endif
964 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
965 #ifdef CONFIG_DEBUG_DOUBLEFAULT
966 /* We assume the crashing kernel, and the current symbol table match */
967 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
968 initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
969 initial_pda.retx_doublefault);
970 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n",
971 initial_pda.dcplb_doublefault_addr);
972 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n",
973 initial_pda.icplb_doublefault_addr);
974 #endif
975 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
976 initial_pda.retx);
977 } else if (_bfin_swrst & RESET_WDOG)
978 printk(KERN_INFO "Recovering from Watchdog event\n");
979 else if (_bfin_swrst & RESET_SOFTWARE)
980 printk(KERN_NOTICE "Reset caused by Software reset\n");
982 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
983 if (bfin_compiled_revid() == 0xffff)
984 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
985 else if (bfin_compiled_revid() == -1)
986 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
987 else
988 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
990 if (likely(CPUID == bfin_cpuid())) {
991 if (bfin_revid() != bfin_compiled_revid()) {
992 if (bfin_compiled_revid() == -1)
993 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
994 bfin_revid());
995 else if (bfin_compiled_revid() != 0xffff) {
996 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
997 bfin_compiled_revid(), bfin_revid());
998 if (bfin_compiled_revid() > bfin_revid())
999 panic("Error: you are missing anomaly workarounds for this rev");
1002 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1003 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1004 CPU, bfin_revid());
1007 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1009 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1010 cclk / 1000000, sclk / 1000000);
1012 setup_bootmem_allocator();
1014 paging_init();
1016 /* Copy atomic sequences to their fixed location, and sanity check that
1017 these locations are the ones that we advertise to userspace. */
1018 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1019 FIXED_CODE_END - FIXED_CODE_START);
1020 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1021 != SIGRETURN_STUB - FIXED_CODE_START);
1022 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1023 != ATOMIC_XCHG32 - FIXED_CODE_START);
1024 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1025 != ATOMIC_CAS32 - FIXED_CODE_START);
1026 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1027 != ATOMIC_ADD32 - FIXED_CODE_START);
1028 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1029 != ATOMIC_SUB32 - FIXED_CODE_START);
1030 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1031 != ATOMIC_IOR32 - FIXED_CODE_START);
1032 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1033 != ATOMIC_AND32 - FIXED_CODE_START);
1034 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1035 != ATOMIC_XOR32 - FIXED_CODE_START);
1036 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1037 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1039 #ifdef CONFIG_SMP
1040 platform_init_cpus();
1041 #endif
1042 init_exception_vectors();
1043 bfin_cache_init(); /* Initialize caches for the boot CPU */
1046 static int __init topology_init(void)
1048 unsigned int cpu;
1050 for_each_possible_cpu(cpu) {
1051 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1054 return 0;
1057 subsys_initcall(topology_init);
1059 /* Get the input clock frequency */
1060 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1061 static u_long get_clkin_hz(void)
1063 return cached_clkin_hz;
1065 static int __init early_init_clkin_hz(char *buf)
1067 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1068 #ifdef BFIN_KERNEL_CLOCK
1069 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1070 panic("cannot change clkin_hz when reprogramming clocks");
1071 #endif
1072 return 1;
1074 early_param("clkin_hz=", early_init_clkin_hz);
1076 /* Get the voltage input multiplier */
1077 static u_long get_vco(void)
1079 static u_long cached_vco;
1080 u_long msel, pll_ctl;
1082 /* The assumption here is that VCO never changes at runtime.
1083 * If, someday, we support that, then we'll have to change this.
1085 if (cached_vco)
1086 return cached_vco;
1088 pll_ctl = bfin_read_PLL_CTL();
1089 msel = (pll_ctl >> 9) & 0x3F;
1090 if (0 == msel)
1091 msel = 64;
1093 cached_vco = get_clkin_hz();
1094 cached_vco >>= (1 & pll_ctl); /* DF bit */
1095 cached_vco *= msel;
1096 return cached_vco;
1099 /* Get the Core clock */
1100 u_long get_cclk(void)
1102 static u_long cached_cclk_pll_div, cached_cclk;
1103 u_long csel, ssel;
1105 if (bfin_read_PLL_STAT() & 0x1)
1106 return get_clkin_hz();
1108 ssel = bfin_read_PLL_DIV();
1109 if (ssel == cached_cclk_pll_div)
1110 return cached_cclk;
1111 else
1112 cached_cclk_pll_div = ssel;
1114 csel = ((ssel >> 4) & 0x03);
1115 ssel &= 0xf;
1116 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1117 cached_cclk = get_vco() / ssel;
1118 else
1119 cached_cclk = get_vco() >> csel;
1120 return cached_cclk;
1122 EXPORT_SYMBOL(get_cclk);
1124 /* Get the System clock */
1125 u_long get_sclk(void)
1127 static u_long cached_sclk;
1128 u_long ssel;
1130 /* The assumption here is that SCLK never changes at runtime.
1131 * If, someday, we support that, then we'll have to change this.
1133 if (cached_sclk)
1134 return cached_sclk;
1136 if (bfin_read_PLL_STAT() & 0x1)
1137 return get_clkin_hz();
1139 ssel = bfin_read_PLL_DIV() & 0xf;
1140 if (0 == ssel) {
1141 printk(KERN_WARNING "Invalid System Clock\n");
1142 ssel = 1;
1145 cached_sclk = get_vco() / ssel;
1146 return cached_sclk;
1148 EXPORT_SYMBOL(get_sclk);
1150 unsigned long sclk_to_usecs(unsigned long sclk)
1152 u64 tmp = USEC_PER_SEC * (u64)sclk;
1153 do_div(tmp, get_sclk());
1154 return tmp;
1156 EXPORT_SYMBOL(sclk_to_usecs);
1158 unsigned long usecs_to_sclk(unsigned long usecs)
1160 u64 tmp = get_sclk() * (u64)usecs;
1161 do_div(tmp, USEC_PER_SEC);
1162 return tmp;
1164 EXPORT_SYMBOL(usecs_to_sclk);
1167 * Get CPU information for use by the procfs.
1169 static int show_cpuinfo(struct seq_file *m, void *v)
1171 char *cpu, *mmu, *fpu, *vendor, *cache;
1172 uint32_t revid;
1173 int cpu_num = *(unsigned int *)v;
1174 u_long sclk, cclk;
1175 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1176 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1178 cpu = CPU;
1179 mmu = "none";
1180 fpu = "none";
1181 revid = bfin_revid();
1183 sclk = get_sclk();
1184 cclk = get_cclk();
1186 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1187 case 0xca:
1188 vendor = "Analog Devices";
1189 break;
1190 default:
1191 vendor = "unknown";
1192 break;
1195 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1197 if (CPUID == bfin_cpuid())
1198 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1199 else
1200 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1201 CPUID, bfin_cpuid());
1203 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1204 "stepping\t: %d ",
1205 cpu, cclk/1000000, sclk/1000000,
1206 #ifdef CONFIG_MPU
1207 "mpu on",
1208 #else
1209 "mpu off",
1210 #endif
1211 revid);
1213 if (bfin_revid() != bfin_compiled_revid()) {
1214 if (bfin_compiled_revid() == -1)
1215 seq_printf(m, "(Compiled for Rev none)");
1216 else if (bfin_compiled_revid() == 0xffff)
1217 seq_printf(m, "(Compiled for Rev any)");
1218 else
1219 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1222 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1223 cclk/1000000, cclk%1000000,
1224 sclk/1000000, sclk%1000000);
1225 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1226 "Calibration\t: %lu loops\n",
1227 (loops_per_jiffy * HZ) / 500000,
1228 ((loops_per_jiffy * HZ) / 5000) % 100,
1229 (loops_per_jiffy * HZ));
1231 /* Check Cache configutation */
1232 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1233 case ACACHE_BSRAM:
1234 cache = "dbank-A/B\t: cache/sram";
1235 dcache_size = 16;
1236 dsup_banks = 1;
1237 break;
1238 case ACACHE_BCACHE:
1239 cache = "dbank-A/B\t: cache/cache";
1240 dcache_size = 32;
1241 dsup_banks = 2;
1242 break;
1243 case ASRAM_BSRAM:
1244 cache = "dbank-A/B\t: sram/sram";
1245 dcache_size = 0;
1246 dsup_banks = 0;
1247 break;
1248 default:
1249 cache = "unknown";
1250 dcache_size = 0;
1251 dsup_banks = 0;
1252 break;
1255 /* Is it turned on? */
1256 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1257 dcache_size = 0;
1259 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1260 icache_size = 0;
1262 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1263 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1264 icache_size, dcache_size, 0);
1265 seq_printf(m, "%s\n", cache);
1266 seq_printf(m, "external memory\t: "
1267 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1268 "cacheable"
1269 #else
1270 "uncacheable"
1271 #endif
1272 " in instruction cache\n");
1273 seq_printf(m, "external memory\t: "
1274 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1275 "cacheable (write-back)"
1276 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1277 "cacheable (write-through)"
1278 #else
1279 "uncacheable"
1280 #endif
1281 " in data cache\n");
1283 if (icache_size)
1284 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1285 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1286 else
1287 seq_printf(m, "icache setup\t: off\n");
1289 seq_printf(m,
1290 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1291 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1292 BFIN_DLINES);
1293 #ifdef __ARCH_SYNC_CORE_DCACHE
1294 seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1295 #endif
1296 #ifdef __ARCH_SYNC_CORE_ICACHE
1297 seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1298 #endif
1300 seq_printf(m, "\n");
1302 if (cpu_num != num_possible_cpus() - 1)
1303 return 0;
1305 if (L2_LENGTH) {
1306 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1307 seq_printf(m, "L2 SRAM\t\t: "
1308 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1309 "cacheable"
1310 #else
1311 "uncacheable"
1312 #endif
1313 " in instruction cache\n");
1314 seq_printf(m, "L2 SRAM\t\t: "
1315 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1316 "cacheable (write-back)"
1317 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1318 "cacheable (write-through)"
1319 #else
1320 "uncacheable"
1321 #endif
1322 " in data cache\n");
1324 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1325 seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1326 physical_mem_end >> 10, 0ul, physical_mem_end);
1327 seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1328 ((int)memory_end - (int)_rambase) >> 10,
1329 _rambase, memory_end);
1331 return 0;
1334 static void *c_start(struct seq_file *m, loff_t *pos)
1336 if (*pos == 0)
1337 *pos = cpumask_first(cpu_online_mask);
1338 if (*pos >= num_online_cpus())
1339 return NULL;
1341 return pos;
1344 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1346 *pos = cpumask_next(*pos, cpu_online_mask);
1348 return c_start(m, pos);
1351 static void c_stop(struct seq_file *m, void *v)
1355 const struct seq_operations cpuinfo_op = {
1356 .start = c_start,
1357 .next = c_next,
1358 .stop = c_stop,
1359 .show = show_cpuinfo,
1362 void __init cmdline_init(const char *r0)
1364 early_shadow_stamp();
1365 if (r0)
1366 strncpy(command_line, r0, COMMAND_LINE_SIZE);