1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/sections.h>
22 #include <linux/topology.h>
23 #include <linux/cpumask.h>
24 #include <asm/pgtable.h>
25 #include <linux/atomic.h>
26 #include <asm/proto.h>
27 #include <asm/setup.h>
32 #include <linux/numa.h>
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/uv/uv.h>
45 /* all of these masks are initialized in setup_cpu_local_masks() */
46 cpumask_var_t cpu_initialized_mask
;
47 cpumask_var_t cpu_callout_mask
;
48 cpumask_var_t cpu_callin_mask
;
50 /* representing cpus for which sibling maps can be computed */
51 cpumask_var_t cpu_sibling_setup_mask
;
53 /* correctly size the local cpu masks */
54 void __init
setup_cpu_local_masks(void)
56 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
57 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
58 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
59 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
62 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
65 cpu_detect_cache_sizes(c
);
67 /* Not much we can do here... */
68 /* Check if at least it has cpuid */
69 if (c
->cpuid_level
== -1) {
70 /* No cpuid. It must be an ancient CPU */
72 strcpy(c
->x86_model_id
, "486");
74 strcpy(c
->x86_model_id
, "386");
79 static const struct cpu_dev __cpuinitconst default_cpu
= {
80 .c_init
= default_init
,
81 .c_vendor
= "Unknown",
82 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
85 static const struct cpu_dev
*this_cpu __cpuinitdata
= &default_cpu
;
87 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
90 * We need valid kernel segments for data and code in long mode too
91 * IRET will check the segment types kkeil 2000/10/28
92 * Also sysret mandates a special GDT layout
94 * TLS descriptors are currently at a different place compared to i386.
95 * Hopefully nobody expects them at a fixed place (Wine?)
97 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
99 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
105 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
109 * Segments used for calling PnP BIOS have byte granularity.
110 * They code segments and data segments have fixed 64k limits,
111 * the transfer segment sizes are set at run time.
114 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
116 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
118 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
120 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
124 * The APM segments have byte granularity and their bases
125 * are set at run time. All have 64k limits.
128 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
130 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
132 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
134 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
136 GDT_STACK_CANARY_INIT
139 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
141 static int __init
x86_xsave_setup(char *s
)
143 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
144 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
147 __setup("noxsave", x86_xsave_setup
);
149 static int __init
x86_xsaveopt_setup(char *s
)
151 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
154 __setup("noxsaveopt", x86_xsaveopt_setup
);
157 static int cachesize_override __cpuinitdata
= -1;
158 static int disable_x86_serial_nr __cpuinitdata
= 1;
160 static int __init
cachesize_setup(char *str
)
162 get_option(&str
, &cachesize_override
);
165 __setup("cachesize=", cachesize_setup
);
167 static int __init
x86_fxsr_setup(char *s
)
169 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
170 setup_clear_cpu_cap(X86_FEATURE_XMM
);
173 __setup("nofxsr", x86_fxsr_setup
);
175 static int __init
x86_sep_setup(char *s
)
177 setup_clear_cpu_cap(X86_FEATURE_SEP
);
180 __setup("nosep", x86_sep_setup
);
182 /* Standard macro to see if a specific flag is changeable */
183 static inline int flag_is_changeable_p(u32 flag
)
188 * Cyrix and IDT cpus allow disabling of CPUID
189 * so the code below may return different results
190 * when it is executed before and after enabling
191 * the CPUID. Add "volatile" to not allow gcc to
192 * optimize the subsequent calls to this function.
194 asm volatile ("pushfl \n\t"
205 : "=&r" (f1
), "=&r" (f2
)
208 return ((f1
^f2
) & flag
) != 0;
211 /* Probe for the CPUID instruction */
212 static int __cpuinit
have_cpuid_p(void)
214 return flag_is_changeable_p(X86_EFLAGS_ID
);
217 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
219 unsigned long lo
, hi
;
221 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
224 /* Disable processor serial number: */
226 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
228 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
230 printk(KERN_NOTICE
"CPU serial number disabled.\n");
231 clear_cpu_cap(c
, X86_FEATURE_PN
);
233 /* Disabling the serial number may affect the cpuid level */
234 c
->cpuid_level
= cpuid_eax(0);
237 static int __init
x86_serial_nr_setup(char *s
)
239 disable_x86_serial_nr
= 0;
242 __setup("serialnumber", x86_serial_nr_setup
);
244 static inline int flag_is_changeable_p(u32 flag
)
248 /* Probe for the CPUID instruction */
249 static inline int have_cpuid_p(void)
253 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
258 static int disable_smep __cpuinitdata
;
259 static __init
int setup_disable_smep(char *arg
)
264 __setup("nosmep", setup_disable_smep
);
266 static __cpuinit
void setup_smep(struct cpuinfo_x86
*c
)
268 if (cpu_has(c
, X86_FEATURE_SMEP
)) {
269 if (unlikely(disable_smep
)) {
270 setup_clear_cpu_cap(X86_FEATURE_SMEP
);
271 clear_in_cr4(X86_CR4_SMEP
);
273 set_in_cr4(X86_CR4_SMEP
);
278 * Some CPU features depend on higher CPUID levels, which may not always
279 * be available due to CPUID level capping or broken virtualization
280 * software. Add those features to this table to auto-disable them.
282 struct cpuid_dependent_feature
{
287 static const struct cpuid_dependent_feature __cpuinitconst
288 cpuid_dependent_features
[] = {
289 { X86_FEATURE_MWAIT
, 0x00000005 },
290 { X86_FEATURE_DCA
, 0x00000009 },
291 { X86_FEATURE_XSAVE
, 0x0000000d },
295 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
297 const struct cpuid_dependent_feature
*df
;
299 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
301 if (!cpu_has(c
, df
->feature
))
304 * Note: cpuid_level is set to -1 if unavailable, but
305 * extended_extended_level is set to 0 if unavailable
306 * and the legitimate extended levels are all negative
307 * when signed; hence the weird messing around with
310 if (!((s32
)df
->level
< 0 ?
311 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
312 (s32
)df
->level
> (s32
)c
->cpuid_level
))
315 clear_cpu_cap(c
, df
->feature
);
320 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
321 x86_cap_flags
[df
->feature
], df
->level
);
326 * Naming convention should be: <Name> [(<Codename>)]
327 * This table only is used unless init_<vendor>() below doesn't set it;
328 * in particular, if CPUID levels 0x80000002..4 are supported, this
332 /* Look up CPU names by table lookup. */
333 static const char *__cpuinit
table_lookup_model(struct cpuinfo_x86
*c
)
335 const struct cpu_model_info
*info
;
337 if (c
->x86_model
>= 16)
338 return NULL
; /* Range check */
343 info
= this_cpu
->c_models
;
345 while (info
&& info
->family
) {
346 if (info
->family
== c
->x86
)
347 return info
->model_names
[c
->x86_model
];
350 return NULL
; /* Not found */
353 __u32 cpu_caps_cleared
[NCAPINTS
] __cpuinitdata
;
354 __u32 cpu_caps_set
[NCAPINTS
] __cpuinitdata
;
356 void load_percpu_segment(int cpu
)
359 loadsegment(fs
, __KERNEL_PERCPU
);
362 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
364 load_stack_canary_segment();
368 * Current gdt points %fs at the "master" per-cpu area: after this,
369 * it's on the real one.
371 void switch_to_new_gdt(int cpu
)
373 struct desc_ptr gdt_descr
;
375 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
376 gdt_descr
.size
= GDT_SIZE
- 1;
377 load_gdt(&gdt_descr
);
378 /* Reload the per-cpu base */
380 load_percpu_segment(cpu
);
383 static const struct cpu_dev
*__cpuinitdata cpu_devs
[X86_VENDOR_NUM
] = {};
385 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
390 if (c
->extended_cpuid_level
< 0x80000004)
393 v
= (unsigned int *)c
->x86_model_id
;
394 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
395 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
396 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
397 c
->x86_model_id
[48] = 0;
400 * Intel chips right-justify this string for some dumb reason;
401 * undo that brain damage:
403 p
= q
= &c
->x86_model_id
[0];
409 while (q
<= &c
->x86_model_id
[48])
410 *q
++ = '\0'; /* Zero-pad the rest */
414 void __cpuinit
cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
416 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
418 n
= c
->extended_cpuid_level
;
420 if (n
>= 0x80000005) {
421 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
422 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
424 /* On K8 L1 TLB is inclusive, so don't count it */
429 if (n
< 0x80000006) /* Some chips just has a large L1. */
432 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
436 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
438 /* do processor-specific cache resizing */
439 if (this_cpu
->c_size_cache
)
440 l2size
= this_cpu
->c_size_cache(c
, l2size
);
442 /* Allow user to override all this if necessary. */
443 if (cachesize_override
!= -1)
444 l2size
= cachesize_override
;
447 return; /* Again, no L2 cache is possible */
450 c
->x86_cache_size
= l2size
;
453 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
456 u32 eax
, ebx
, ecx
, edx
;
457 int index_msb
, core_bits
;
460 if (!cpu_has(c
, X86_FEATURE_HT
))
463 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
466 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
469 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
471 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
473 if (smp_num_siblings
== 1) {
474 printk_once(KERN_INFO
"CPU0: Hyper-Threading is disabled\n");
478 if (smp_num_siblings
<= 1)
481 index_msb
= get_count_order(smp_num_siblings
);
482 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
484 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
486 index_msb
= get_count_order(smp_num_siblings
);
488 core_bits
= get_count_order(c
->x86_max_cores
);
490 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
491 ((1 << core_bits
) - 1);
494 if (!printed
&& (c
->x86_max_cores
* smp_num_siblings
) > 1) {
495 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
497 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
504 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
506 char *v
= c
->x86_vendor_id
;
509 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
513 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
514 (cpu_devs
[i
]->c_ident
[1] &&
515 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
517 this_cpu
= cpu_devs
[i
];
518 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
524 "CPU: vendor_id '%s' unknown, using generic init.\n" \
525 "CPU: Your system may be unstable.\n", v
);
527 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
528 this_cpu
= &default_cpu
;
531 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
533 /* Get vendor name */
534 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
535 (unsigned int *)&c
->x86_vendor_id
[0],
536 (unsigned int *)&c
->x86_vendor_id
[8],
537 (unsigned int *)&c
->x86_vendor_id
[4]);
540 /* Intel-defined flags: level 0x00000001 */
541 if (c
->cpuid_level
>= 0x00000001) {
542 u32 junk
, tfms
, cap0
, misc
;
544 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
545 c
->x86
= (tfms
>> 8) & 0xf;
546 c
->x86_model
= (tfms
>> 4) & 0xf;
547 c
->x86_mask
= tfms
& 0xf;
550 c
->x86
+= (tfms
>> 20) & 0xff;
552 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
554 if (cap0
& (1<<19)) {
555 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
556 c
->x86_cache_alignment
= c
->x86_clflush_size
;
561 void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
566 /* Intel-defined flags: level 0x00000001 */
567 if (c
->cpuid_level
>= 0x00000001) {
568 u32 capability
, excap
;
570 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
571 c
->x86_capability
[0] = capability
;
572 c
->x86_capability
[4] = excap
;
575 /* Additional Intel-defined flags: level 0x00000007 */
576 if (c
->cpuid_level
>= 0x00000007) {
577 u32 eax
, ebx
, ecx
, edx
;
579 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
581 c
->x86_capability
[9] = ebx
;
584 /* AMD-defined flags: level 0x80000001 */
585 xlvl
= cpuid_eax(0x80000000);
586 c
->extended_cpuid_level
= xlvl
;
588 if ((xlvl
& 0xffff0000) == 0x80000000) {
589 if (xlvl
>= 0x80000001) {
590 c
->x86_capability
[1] = cpuid_edx(0x80000001);
591 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
595 if (c
->extended_cpuid_level
>= 0x80000008) {
596 u32 eax
= cpuid_eax(0x80000008);
598 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
599 c
->x86_phys_bits
= eax
& 0xff;
602 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
603 c
->x86_phys_bits
= 36;
606 if (c
->extended_cpuid_level
>= 0x80000007)
607 c
->x86_power
= cpuid_edx(0x80000007);
609 init_scattered_cpuid_features(c
);
612 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
618 * First of all, decide if this is a 486 or higher
619 * It's a 486 if we can modify the AC flag
621 if (flag_is_changeable_p(X86_EFLAGS_AC
))
626 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
627 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
628 c
->x86_vendor_id
[0] = 0;
629 cpu_devs
[i
]->c_identify(c
);
630 if (c
->x86_vendor_id
[0]) {
639 * Do minimum CPU detection early.
640 * Fields really needed: vendor, cpuid_level, family, model, mask,
642 * The others are not touched to avoid unwanted side effects.
644 * WARNING: this function is only called on the BP. Don't add code here
645 * that is supposed to run on all CPUs.
647 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
650 c
->x86_clflush_size
= 64;
651 c
->x86_phys_bits
= 36;
652 c
->x86_virt_bits
= 48;
654 c
->x86_clflush_size
= 32;
655 c
->x86_phys_bits
= 32;
656 c
->x86_virt_bits
= 32;
658 c
->x86_cache_alignment
= c
->x86_clflush_size
;
660 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
661 c
->extended_cpuid_level
= 0;
664 identify_cpu_without_cpuid(c
);
666 /* cyrix could have cpuid enabled via c_identify()*/
676 if (this_cpu
->c_early_init
)
677 this_cpu
->c_early_init(c
);
680 filter_cpuid_features(c
, false);
684 if (this_cpu
->c_bsp_init
)
685 this_cpu
->c_bsp_init(c
);
688 void __init
early_cpu_init(void)
690 const struct cpu_dev
*const *cdev
;
693 #ifdef CONFIG_PROCESSOR_SELECT
694 printk(KERN_INFO
"KERNEL supported cpus:\n");
697 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
698 const struct cpu_dev
*cpudev
= *cdev
;
700 if (count
>= X86_VENDOR_NUM
)
702 cpu_devs
[count
] = cpudev
;
705 #ifdef CONFIG_PROCESSOR_SELECT
709 for (j
= 0; j
< 2; j
++) {
710 if (!cpudev
->c_ident
[j
])
712 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
718 early_identify_cpu(&boot_cpu_data
);
722 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
723 * unfortunately, that's not true in practice because of early VIA
724 * chips and (more importantly) broken virtualizers that are not easy
725 * to detect. In the latter case it doesn't even *fail* reliably, so
726 * probing for it doesn't even work. Disable it completely on 32-bit
727 * unless we can find a reliable way to detect all the broken cases.
728 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
730 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
733 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
735 set_cpu_cap(c
, X86_FEATURE_NOPL
);
739 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
741 c
->extended_cpuid_level
= 0;
744 identify_cpu_without_cpuid(c
);
746 /* cyrix could have cpuid enabled via c_identify()*/
756 if (c
->cpuid_level
>= 0x00000001) {
757 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
759 # ifdef CONFIG_X86_HT
760 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
762 c
->apicid
= c
->initial_apicid
;
765 c
->phys_proc_id
= c
->initial_apicid
;
770 get_model_name(c
); /* Default name */
776 * This does the hard work of actually picking apart the CPU stuff...
778 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
782 c
->loops_per_jiffy
= loops_per_jiffy
;
783 c
->x86_cache_size
= -1;
784 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
785 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
786 c
->x86_vendor_id
[0] = '\0'; /* Unset */
787 c
->x86_model_id
[0] = '\0'; /* Unset */
788 c
->x86_max_cores
= 1;
789 c
->x86_coreid_bits
= 0;
791 c
->x86_clflush_size
= 64;
792 c
->x86_phys_bits
= 36;
793 c
->x86_virt_bits
= 48;
795 c
->cpuid_level
= -1; /* CPUID not detected */
796 c
->x86_clflush_size
= 32;
797 c
->x86_phys_bits
= 32;
798 c
->x86_virt_bits
= 32;
800 c
->x86_cache_alignment
= c
->x86_clflush_size
;
801 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
805 if (this_cpu
->c_identify
)
806 this_cpu
->c_identify(c
);
808 /* Clear/Set all flags overriden by options, after probe */
809 for (i
= 0; i
< NCAPINTS
; i
++) {
810 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
811 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
815 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
819 * Vendor-specific initialization. In this section we
820 * canonicalize the feature flags, meaning if there are
821 * features a certain CPU supports which CPUID doesn't
822 * tell us, CPUID claiming incorrect flags, or other bugs,
823 * we handle them here.
825 * At the end of this section, c->x86_capability better
826 * indicate the features this CPU genuinely supports!
828 if (this_cpu
->c_init
)
831 /* Disable the PN if appropriate */
832 squash_the_stupid_serial_number(c
);
835 * The vendor-specific functions might have changed features.
836 * Now we do "generic changes."
839 /* Filter out anything that depends on CPUID levels we don't have */
840 filter_cpuid_features(c
, true);
842 /* If the model name is still unset, do table lookup. */
843 if (!c
->x86_model_id
[0]) {
845 p
= table_lookup_model(c
);
847 strcpy(c
->x86_model_id
, p
);
850 sprintf(c
->x86_model_id
, "%02x/%02x",
851 c
->x86
, c
->x86_model
);
862 * Clear/Set all flags overriden by options, need do it
863 * before following smp all cpus cap AND.
865 for (i
= 0; i
< NCAPINTS
; i
++) {
866 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
867 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
871 * On SMP, boot_cpu_data holds the common feature set between
872 * all CPUs; so make sure that we indicate which features are
873 * common between the CPUs. The first time this routine gets
874 * executed, c == &boot_cpu_data.
876 if (c
!= &boot_cpu_data
) {
877 /* AND the already accumulated flags with these */
878 for (i
= 0; i
< NCAPINTS
; i
++)
879 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
882 /* Init Machine Check Exception if available. */
885 select_idle_routine(c
);
888 numa_add_cpu(smp_processor_id());
893 static void vgetcpu_set_mode(void)
895 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
896 vgetcpu_mode
= VGETCPU_RDTSCP
;
898 vgetcpu_mode
= VGETCPU_LSL
;
902 void __init
identify_boot_cpu(void)
904 identify_cpu(&boot_cpu_data
);
905 init_amd_e400_c1e_mask();
914 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
916 BUG_ON(c
== &boot_cpu_data
);
929 static const struct msr_range msr_range_array
[] __cpuinitconst
= {
930 { 0x00000000, 0x00000418},
931 { 0xc0000000, 0xc000040b},
932 { 0xc0010000, 0xc0010142},
933 { 0xc0011000, 0xc001103b},
936 static void __cpuinit
print_cpu_msr(void)
938 unsigned index_min
, index_max
;
943 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
944 index_min
= msr_range_array
[i
].min
;
945 index_max
= msr_range_array
[i
].max
;
947 for (index
= index_min
; index
< index_max
; index
++) {
948 if (rdmsrl_amd_safe(index
, &val
))
950 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
955 static int show_msr __cpuinitdata
;
957 static __init
int setup_show_msr(char *arg
)
961 get_option(&arg
, &num
);
967 __setup("show_msr=", setup_show_msr
);
969 static __init
int setup_noclflush(char *arg
)
971 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
974 __setup("noclflush", setup_noclflush
);
976 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
978 const char *vendor
= NULL
;
980 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
981 vendor
= this_cpu
->c_vendor
;
983 if (c
->cpuid_level
>= 0)
984 vendor
= c
->x86_vendor_id
;
987 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
988 printk(KERN_CONT
"%s ", vendor
);
990 if (c
->x86_model_id
[0])
991 printk(KERN_CONT
"%s", c
->x86_model_id
);
993 printk(KERN_CONT
"%d86", c
->x86
);
995 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
996 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
998 printk(KERN_CONT
"\n");
1001 if (c
->cpu_index
< show_msr
)
1009 static __init
int setup_disablecpuid(char *arg
)
1013 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
1014 setup_clear_cpu_cap(bit
);
1020 __setup("clearcpuid=", setup_disablecpuid
);
1022 #ifdef CONFIG_X86_64
1023 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
1024 struct desc_ptr nmi_idt_descr
= { NR_VECTORS
* 16 - 1,
1025 (unsigned long) nmi_idt_table
};
1027 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
1028 irq_stack_union
) __aligned(PAGE_SIZE
);
1031 * The following four percpu variables are hot. Align current_task to
1032 * cacheline size such that all four fall in the same cacheline.
1034 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
1036 EXPORT_PER_CPU_SYMBOL(current_task
);
1038 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
1039 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
1040 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1042 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1043 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1045 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
1047 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1048 EXPORT_PER_CPU_SYMBOL(fpu_owner_task
);
1051 * Special IST stacks which the CPU switches to when it calls
1052 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1053 * limit), all of them are 4K, except the debug stack which
1056 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1057 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1058 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1061 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1062 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1064 /* May not be marked __init: used by software suspend */
1065 void syscall_init(void)
1068 * LSTAR and STAR live in a bit strange symbiosis.
1069 * They both write to the same internal register. STAR allows to
1070 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1072 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1073 wrmsrl(MSR_LSTAR
, system_call
);
1074 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1076 #ifdef CONFIG_IA32_EMULATION
1077 syscall32_cpu_init();
1080 /* Flags to clear on syscall */
1081 wrmsrl(MSR_SYSCALL_MASK
,
1082 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|X86_EFLAGS_IOPL
);
1085 unsigned long kernel_eflags
;
1088 * Copies of the original ist values from the tss are only accessed during
1089 * debugging, no special alignment required.
1091 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1093 static DEFINE_PER_CPU(unsigned long, debug_stack_addr
);
1094 DEFINE_PER_CPU(int, debug_stack_usage
);
1096 int is_debug_stack(unsigned long addr
)
1098 return __get_cpu_var(debug_stack_usage
) ||
1099 (addr
<= __get_cpu_var(debug_stack_addr
) &&
1100 addr
> (__get_cpu_var(debug_stack_addr
) - DEBUG_STKSZ
));
1103 void debug_stack_set_zero(void)
1105 load_idt((const struct desc_ptr
*)&nmi_idt_descr
);
1108 void debug_stack_reset(void)
1110 load_idt((const struct desc_ptr
*)&idt_descr
);
1113 #else /* CONFIG_X86_64 */
1115 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1116 EXPORT_PER_CPU_SYMBOL(current_task
);
1117 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1118 EXPORT_PER_CPU_SYMBOL(fpu_owner_task
);
1120 #ifdef CONFIG_CC_STACKPROTECTOR
1121 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1124 /* Make sure %fs and %gs are initialized properly in idle threads */
1125 struct pt_regs
* __cpuinit
idle_regs(struct pt_regs
*regs
)
1127 memset(regs
, 0, sizeof(struct pt_regs
));
1128 regs
->fs
= __KERNEL_PERCPU
;
1129 regs
->gs
= __KERNEL_STACK_CANARY
;
1133 #endif /* CONFIG_X86_64 */
1136 * Clear all 6 debug registers:
1138 static void clear_all_debug_regs(void)
1142 for (i
= 0; i
< 8; i
++) {
1143 /* Ignore db4, db5 */
1144 if ((i
== 4) || (i
== 5))
1153 * Restore debug regs if using kgdbwait and you have a kernel debugger
1154 * connection established.
1156 static void dbg_restore_debug_regs(void)
1158 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
1159 arch_kgdb_ops
.correct_hw_break();
1161 #else /* ! CONFIG_KGDB */
1162 #define dbg_restore_debug_regs()
1163 #endif /* ! CONFIG_KGDB */
1166 * Prints an error where the NUMA and configured core-number mismatch and the
1167 * platform didn't override this to fix it up
1169 void __cpuinit
x86_default_fixup_cpu_id(struct cpuinfo_x86
*c
, int node
)
1171 pr_err("NUMA core number %d differs from configured core number %d\n", node
, c
->phys_proc_id
);
1175 * cpu_init() initializes state that is per-CPU. Some data is already
1176 * initialized (naturally) in the bootstrap process, such as the GDT
1177 * and IDT. We reload them nevertheless, this function acts as a
1178 * 'CPU state barrier', nothing should get across.
1179 * A lot of state is already set up in PDA init for 64 bit
1181 #ifdef CONFIG_X86_64
1183 void __cpuinit
cpu_init(void)
1185 struct orig_ist
*oist
;
1186 struct task_struct
*me
;
1187 struct tss_struct
*t
;
1192 cpu
= stack_smp_processor_id();
1193 t
= &per_cpu(init_tss
, cpu
);
1194 oist
= &per_cpu(orig_ist
, cpu
);
1197 if (cpu
!= 0 && percpu_read(numa_node
) == 0 &&
1198 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
1199 set_numa_node(early_cpu_to_node(cpu
));
1204 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1205 panic("CPU#%d already initialized!\n", cpu
);
1207 pr_debug("Initializing CPU#%d\n", cpu
);
1209 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1212 * Initialize the per-CPU GDT with the boot GDT,
1213 * and set up the GDT descriptor:
1216 switch_to_new_gdt(cpu
);
1219 load_idt((const struct desc_ptr
*)&idt_descr
);
1221 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1224 wrmsrl(MSR_FS_BASE
, 0);
1225 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1233 * set up and load the per-CPU TSS
1235 if (!oist
->ist
[0]) {
1236 char *estacks
= per_cpu(exception_stacks
, cpu
);
1238 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1239 estacks
+= exception_stack_sizes
[v
];
1240 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1241 (unsigned long)estacks
;
1242 if (v
== DEBUG_STACK
-1)
1243 per_cpu(debug_stack_addr
, cpu
) = (unsigned long)estacks
;
1247 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1250 * <= is required because the CPU will access up to
1251 * 8 bits beyond the end of the IO permission bitmap.
1253 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1254 t
->io_bitmap
[i
] = ~0UL;
1256 atomic_inc(&init_mm
.mm_count
);
1257 me
->active_mm
= &init_mm
;
1259 enter_lazy_tlb(&init_mm
, me
);
1261 load_sp0(t
, ¤t
->thread
);
1262 set_tss_desc(cpu
, t
);
1264 load_LDT(&init_mm
.context
);
1266 clear_all_debug_regs();
1267 dbg_restore_debug_regs();
1272 raw_local_save_flags(kernel_eflags
);
1280 void __cpuinit
cpu_init(void)
1282 int cpu
= smp_processor_id();
1283 struct task_struct
*curr
= current
;
1284 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1285 struct thread_struct
*thread
= &curr
->thread
;
1287 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1288 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1293 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1295 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1296 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1298 load_idt(&idt_descr
);
1299 switch_to_new_gdt(cpu
);
1302 * Set up and load the per-CPU TSS and LDT
1304 atomic_inc(&init_mm
.mm_count
);
1305 curr
->active_mm
= &init_mm
;
1307 enter_lazy_tlb(&init_mm
, curr
);
1309 load_sp0(t
, thread
);
1310 set_tss_desc(cpu
, t
);
1312 load_LDT(&init_mm
.context
);
1314 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1316 #ifdef CONFIG_DOUBLEFAULT
1317 /* Set up doublefault TSS pointer in the GDT */
1318 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1321 clear_all_debug_regs();
1322 dbg_restore_debug_regs();