1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/clocksource.h>
10 #include <linux/percpu.h>
11 #include <linux/timex.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
20 #include <asm/x86_init.h>
22 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
23 EXPORT_SYMBOL(cpu_khz
);
25 unsigned int __read_mostly tsc_khz
;
26 EXPORT_SYMBOL(tsc_khz
);
29 * TSC can be unstable due to cpufreq or due to unsynced TSCs
31 static int __read_mostly tsc_unstable
;
33 /* native_sched_clock() is called before tsc_init(), so
34 we must start with the TSC soft disabled to prevent
35 erroneous rdtsc usage on !cpu_has_tsc processors */
36 static int __read_mostly tsc_disabled
= -1;
38 int tsc_clocksource_reliable
;
40 * Scheduler clock - returns current time in nanosec units.
42 u64
native_sched_clock(void)
47 * Fall back to jiffies if there's no TSC available:
48 * ( But note that we still use it if the TSC is marked
49 * unstable. We do this because unlike Time Of Day,
50 * the scheduler clock tolerates small errors and it's
51 * very important for it to be as fast as the platform
54 if (unlikely(tsc_disabled
)) {
55 /* No locking but a rare wrong value is not a big deal: */
56 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
59 /* read the Time Stamp Counter: */
62 /* return the value in ns */
63 return __cycles_2_ns(this_offset
);
66 /* We need to define a real function for sched_clock, to override the
67 weak default version */
68 #ifdef CONFIG_PARAVIRT
69 unsigned long long sched_clock(void)
71 return paravirt_sched_clock();
75 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 int check_tsc_unstable(void)
82 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
85 int __init
notsc_setup(char *str
)
87 printk(KERN_WARNING
"notsc: Kernel compiled with CONFIG_X86_TSC, "
88 "cannot disable TSC completely.\n");
94 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
97 int __init
notsc_setup(char *str
)
99 setup_clear_cpu_cap(X86_FEATURE_TSC
);
104 __setup("notsc", notsc_setup
);
106 static int no_sched_irq_time
;
108 static int __init
tsc_setup(char *str
)
110 if (!strcmp(str
, "reliable"))
111 tsc_clocksource_reliable
= 1;
112 if (!strncmp(str
, "noirqtime", 9))
113 no_sched_irq_time
= 1;
117 __setup("tsc=", tsc_setup
);
119 #define MAX_RETRIES 5
120 #define SMI_TRESHOLD 50000
123 * Read TSC and the reference counters. Take care of SMI disturbance
125 static u64
tsc_read_refs(u64
*p
, int hpet
)
130 for (i
= 0; i
< MAX_RETRIES
; i
++) {
133 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
135 *p
= acpi_pm_read_early();
137 if ((t2
- t1
) < SMI_TRESHOLD
)
144 * Calculate the TSC frequency from HPET reference
146 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
151 hpet2
+= 0x100000000ULL
;
153 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
154 do_div(tmp
, 1000000);
155 do_div(deltatsc
, tmp
);
157 return (unsigned long) deltatsc
;
161 * Calculate the TSC frequency from PMTimer reference
163 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
171 pm2
+= (u64
)ACPI_PM_OVRRUN
;
173 tmp
= pm2
* 1000000000LL;
174 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
175 do_div(deltatsc
, tmp
);
177 return (unsigned long) deltatsc
;
181 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
182 #define CAL_PIT_LOOPS 1000
185 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
186 #define CAL2_PIT_LOOPS 5000
190 * Try to calibrate the TSC against the Programmable
191 * Interrupt Timer and return the frequency of the TSC
194 * Return ULONG_MAX on failure to calibrate.
196 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
198 u64 tsc
, t1
, t2
, delta
;
199 unsigned long tscmin
, tscmax
;
202 /* Set the Gate high, disable speaker */
203 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
206 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207 * count mode), binary count. Set the latch register to 50ms
208 * (LSB then MSB) to begin countdown.
211 outb(latch
& 0xff, 0x42);
212 outb(latch
>> 8, 0x42);
214 tsc
= t1
= t2
= get_cycles();
219 while ((inb(0x61) & 0x20) == 0) {
223 if ((unsigned long) delta
< tscmin
)
224 tscmin
= (unsigned int) delta
;
225 if ((unsigned long) delta
> tscmax
)
226 tscmax
= (unsigned int) delta
;
233 * If we were not able to read the PIT more than loopmin
234 * times, then we have been hit by a massive SMI
236 * If the maximum is 10 times larger than the minimum,
237 * then we got hit by an SMI as well.
239 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
242 /* Calculate the PIT value */
249 * This reads the current MSB of the PIT counter, and
250 * checks if we are running on sufficiently fast and
251 * non-virtualized hardware.
253 * Our expectations are:
255 * - the PIT is running at roughly 1.19MHz
257 * - each IO is going to take about 1us on real hardware,
258 * but we allow it to be much faster (by a factor of 10) or
259 * _slightly_ slower (ie we allow up to a 2us read+counter
260 * update - anything else implies a unacceptably slow CPU
261 * or PIT for the fast calibration to work.
263 * - with 256 PIT ticks to read the value, we have 214us to
264 * see the same MSB (and overhead like doing a single TSC
265 * read per MSB value etc).
267 * - We're doing 2 reads per loop (LSB, MSB), and we expect
268 * them each to take about a microsecond on real hardware.
269 * So we expect a count value of around 100. But we'll be
270 * generous, and accept anything over 50.
272 * - if the PIT is stuck, and we see *many* more reads, we
273 * return early (and the next caller of pit_expect_msb()
274 * then consider it a failure when they don't see the
275 * next expected value).
277 * These expectations mean that we know that we have seen the
278 * transition from one expected value to another with a fairly
279 * high accuracy, and we didn't miss any events. We can thus
280 * use the TSC value at the transitions to calculate a pretty
281 * good value for the TSC frequencty.
283 static inline int pit_verify_msb(unsigned char val
)
287 return inb(0x42) == val
;
290 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
293 u64 tsc
= 0, prev_tsc
= 0;
295 for (count
= 0; count
< 50000; count
++) {
296 if (!pit_verify_msb(val
))
301 *deltap
= get_cycles() - prev_tsc
;
305 * We require _some_ success, but the quality control
306 * will be based on the error terms on the TSC values.
312 * How many MSB values do we want to see? We aim for
313 * a maximum error rate of 500ppm (in practice the
314 * real error is much smaller), but refuse to spend
315 * more than 50ms on it.
317 #define MAX_QUICK_PIT_MS 50
318 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
320 static unsigned long quick_pit_calibrate(void)
324 unsigned long d1
, d2
;
326 /* Set the Gate high, disable speaker */
327 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
330 * Counter 2, mode 0 (one-shot), binary count
332 * NOTE! Mode 2 decrements by two (and then the
333 * output is flipped each time, giving the same
334 * final output frequency as a decrement-by-one),
335 * so mode 0 is much better when looking at the
340 /* Start at 0xffff */
345 * The PIT starts counting at the next edge, so we
346 * need to delay for a microsecond. The easiest way
347 * to do that is to just read back the 16-bit counter
352 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
353 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
354 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
358 * Iterate until the error is less than 500 ppm
361 if (d1
+d2
>= delta
>> 11)
365 * Check the PIT one more time to verify that
366 * all TSC reads were stable wrt the PIT.
368 * This also guarantees serialization of the
369 * last cycle read ('d2') in pit_expect_msb.
371 if (!pit_verify_msb(0xfe - i
))
376 printk("Fast TSC calibration failed\n");
381 * Ok, if we get here, then we've seen the
382 * MSB of the PIT decrement 'i' times, and the
383 * error has shrunk to less than 500 ppm.
385 * As a result, we can depend on there not being
386 * any odd delays anywhere, and the TSC reads are
387 * reliable (within the error).
389 * kHz = ticks / time-in-seconds / 1000;
390 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
391 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
393 delta
*= PIT_TICK_RATE
;
394 do_div(delta
, i
*256*1000);
395 printk("Fast TSC calibration using PIT\n");
400 * native_calibrate_tsc - calibrate the tsc on boot
402 unsigned long native_calibrate_tsc(void)
404 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
405 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
406 unsigned long flags
, latch
, ms
, fast_calibrate
;
407 int hpet
= is_hpet_enabled(), i
, loopmin
;
409 local_irq_save(flags
);
410 fast_calibrate
= quick_pit_calibrate();
411 local_irq_restore(flags
);
413 return fast_calibrate
;
416 * Run 5 calibration loops to get the lowest frequency value
417 * (the best estimate). We use two different calibration modes
420 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
421 * load a timeout of 50ms. We read the time right after we
422 * started the timer and wait until the PIT count down reaches
423 * zero. In each wait loop iteration we read the TSC and check
424 * the delta to the previous read. We keep track of the min
425 * and max values of that delta. The delta is mostly defined
426 * by the IO time of the PIT access, so we can detect when a
427 * SMI/SMM disturbance happened between the two reads. If the
428 * maximum time is significantly larger than the minimum time,
429 * then we discard the result and have another try.
431 * 2) Reference counter. If available we use the HPET or the
432 * PMTIMER as a reference to check the sanity of that value.
433 * We use separate TSC readouts and check inside of the
434 * reference read for a SMI/SMM disturbance. We dicard
435 * disturbed values here as well. We do that around the PIT
436 * calibration delay loop as we have to wait for a certain
437 * amount of time anyway.
440 /* Preset PIT loop values */
443 loopmin
= CAL_PIT_LOOPS
;
445 for (i
= 0; i
< 3; i
++) {
446 unsigned long tsc_pit_khz
;
449 * Read the start value and the reference count of
450 * hpet/pmtimer when available. Then do the PIT
451 * calibration, which will take at least 50ms, and
452 * read the end value.
454 local_irq_save(flags
);
455 tsc1
= tsc_read_refs(&ref1
, hpet
);
456 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
457 tsc2
= tsc_read_refs(&ref2
, hpet
);
458 local_irq_restore(flags
);
460 /* Pick the lowest PIT TSC calibration so far */
461 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
463 /* hpet or pmtimer available ? */
467 /* Check, whether the sampling was disturbed by an SMI */
468 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
471 tsc2
= (tsc2
- tsc1
) * 1000000LL;
473 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
475 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
477 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
479 /* Check the reference deviation */
480 delta
= ((u64
) tsc_pit_min
) * 100;
481 do_div(delta
, tsc_ref_min
);
484 * If both calibration results are inside a 10% window
485 * then we can be sure, that the calibration
486 * succeeded. We break out of the loop right away. We
487 * use the reference value, as it is more precise.
489 if (delta
>= 90 && delta
<= 110) {
491 "TSC: PIT calibration matches %s. %d loops\n",
492 hpet
? "HPET" : "PMTIMER", i
+ 1);
497 * Check whether PIT failed more than once. This
498 * happens in virtualized environments. We need to
499 * give the virtual PC a slightly longer timeframe for
500 * the HPET/PMTIMER to make the result precise.
502 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
505 loopmin
= CAL2_PIT_LOOPS
;
510 * Now check the results.
512 if (tsc_pit_min
== ULONG_MAX
) {
513 /* PIT gave no useful value */
514 printk(KERN_WARNING
"TSC: Unable to calibrate against PIT\n");
516 /* We don't have an alternative source, disable TSC */
517 if (!hpet
&& !ref1
&& !ref2
) {
518 printk("TSC: No reference (HPET/PMTIMER) available\n");
522 /* The alternative source failed as well, disable TSC */
523 if (tsc_ref_min
== ULONG_MAX
) {
524 printk(KERN_WARNING
"TSC: HPET/PMTIMER calibration "
529 /* Use the alternative source */
530 printk(KERN_INFO
"TSC: using %s reference calibration\n",
531 hpet
? "HPET" : "PMTIMER");
536 /* We don't have an alternative source, use the PIT calibration value */
537 if (!hpet
&& !ref1
&& !ref2
) {
538 printk(KERN_INFO
"TSC: Using PIT calibration value\n");
542 /* The alternative source failed, use the PIT calibration value */
543 if (tsc_ref_min
== ULONG_MAX
) {
544 printk(KERN_WARNING
"TSC: HPET/PMTIMER calibration failed. "
545 "Using PIT calibration\n");
550 * The calibration values differ too much. In doubt, we use
551 * the PIT value as we know that there are PMTIMERs around
552 * running at double speed. At least we let the user know:
554 printk(KERN_WARNING
"TSC: PIT calibration deviates from %s: %lu %lu.\n",
555 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
556 printk(KERN_INFO
"TSC: Using PIT calibration value\n");
560 int recalibrate_cpu_khz(void)
563 unsigned long cpu_khz_old
= cpu_khz
;
566 tsc_khz
= x86_platform
.calibrate_tsc();
568 cpu_data(0).loops_per_jiffy
=
569 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
570 cpu_khz_old
, cpu_khz
);
579 EXPORT_SYMBOL(recalibrate_cpu_khz
);
582 /* Accelerators for sched_clock()
583 * convert from cycles(64bits) => nanoseconds (64bits)
585 * ns = cycles / (freq / ns_per_sec)
586 * ns = cycles * (ns_per_sec / freq)
587 * ns = cycles * (10^9 / (cpu_khz * 10^3))
588 * ns = cycles * (10^6 / cpu_khz)
590 * Then we use scaling math (suggested by george@mvista.com) to get:
591 * ns = cycles * (10^6 * SC / cpu_khz) / SC
592 * ns = cycles * cyc2ns_scale / SC
594 * And since SC is a constant power of two, we can convert the div
597 * We can use khz divisor instead of mhz to keep a better precision, since
598 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
599 * (mathieu.desnoyers@polymtl.ca)
601 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
604 DEFINE_PER_CPU(unsigned long, cyc2ns
);
605 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset
);
607 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
609 unsigned long long tsc_now
, ns_now
, *offset
;
610 unsigned long flags
, *scale
;
612 local_irq_save(flags
);
613 sched_clock_idle_sleep_event();
615 scale
= &per_cpu(cyc2ns
, cpu
);
616 offset
= &per_cpu(cyc2ns_offset
, cpu
);
619 ns_now
= __cycles_2_ns(tsc_now
);
622 *scale
= (NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
)/cpu_khz
;
623 *offset
= ns_now
- (tsc_now
* *scale
>> CYC2NS_SCALE_FACTOR
);
626 sched_clock_idle_wakeup_event(0);
627 local_irq_restore(flags
);
630 static unsigned long long cyc2ns_suspend
;
632 void save_sched_clock_state(void)
634 if (!sched_clock_stable
)
637 cyc2ns_suspend
= sched_clock();
641 * Even on processors with invariant TSC, TSC gets reset in some the
642 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
643 * arbitrary value (still sync'd across cpu's) during resume from such sleep
644 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
645 * that sched_clock() continues from the point where it was left off during
648 void restore_sched_clock_state(void)
650 unsigned long long offset
;
654 if (!sched_clock_stable
)
657 local_irq_save(flags
);
659 __this_cpu_write(cyc2ns_offset
, 0);
660 offset
= cyc2ns_suspend
- sched_clock();
662 for_each_possible_cpu(cpu
)
663 per_cpu(cyc2ns_offset
, cpu
) = offset
;
665 local_irq_restore(flags
);
668 #ifdef CONFIG_CPU_FREQ
670 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
673 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
674 * not that important because current Opteron setups do not support
675 * scaling on SMP anyroads.
677 * Should fix up last_tsc too. Currently gettimeofday in the
678 * first tick after the change will be slightly wrong.
681 static unsigned int ref_freq
;
682 static unsigned long loops_per_jiffy_ref
;
683 static unsigned long tsc_khz_ref
;
685 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
688 struct cpufreq_freqs
*freq
= data
;
691 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
694 lpj
= &boot_cpu_data
.loops_per_jiffy
;
696 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
697 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
701 ref_freq
= freq
->old
;
702 loops_per_jiffy_ref
= *lpj
;
703 tsc_khz_ref
= tsc_khz
;
705 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
706 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
707 (val
== CPUFREQ_RESUMECHANGE
)) {
708 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
710 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
711 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
712 mark_tsc_unstable("cpufreq changes");
715 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
720 static struct notifier_block time_cpufreq_notifier_block
= {
721 .notifier_call
= time_cpufreq_notifier
724 static int __init
cpufreq_tsc(void)
728 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
730 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
731 CPUFREQ_TRANSITION_NOTIFIER
);
735 core_initcall(cpufreq_tsc
);
737 #endif /* CONFIG_CPU_FREQ */
739 /* clocksource code */
741 static struct clocksource clocksource_tsc
;
744 * We compare the TSC to the cycle_last value in the clocksource
745 * structure to avoid a nasty time-warp. This can be observed in a
746 * very small window right after one CPU updated cycle_last under
747 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
748 * is smaller than the cycle_last reference value due to a TSC which
749 * is slighty behind. This delta is nowhere else observable, but in
750 * that case it results in a forward time jump in the range of hours
751 * due to the unsigned delta calculation of the time keeping core
752 * code, which is necessary to support wrapping clocksources like pm
755 static cycle_t
read_tsc(struct clocksource
*cs
)
757 cycle_t ret
= (cycle_t
)get_cycles();
759 return ret
>= clocksource_tsc
.cycle_last
?
760 ret
: clocksource_tsc
.cycle_last
;
763 static void resume_tsc(struct clocksource
*cs
)
765 clocksource_tsc
.cycle_last
= 0;
768 static struct clocksource clocksource_tsc
= {
772 .resume
= resume_tsc
,
773 .mask
= CLOCKSOURCE_MASK(64),
774 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
775 CLOCK_SOURCE_MUST_VERIFY
,
777 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
781 void mark_tsc_unstable(char *reason
)
785 sched_clock_stable
= 0;
786 disable_sched_clock_irqtime();
787 printk(KERN_INFO
"Marking TSC unstable due to %s\n", reason
);
788 /* Change only the rating, when not registered */
789 if (clocksource_tsc
.mult
)
790 clocksource_mark_unstable(&clocksource_tsc
);
792 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
793 clocksource_tsc
.rating
= 0;
798 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
800 static void __init
check_system_tsc_reliable(void)
802 #ifdef CONFIG_MGEODE_LX
803 /* RTSC counts during suspend */
804 #define RTSC_SUSP 0x100
805 unsigned long res_low
, res_high
;
807 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
808 /* Geode_LX - the OLPC CPU has a very reliable TSC */
809 if (res_low
& RTSC_SUSP
)
810 tsc_clocksource_reliable
= 1;
812 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
813 tsc_clocksource_reliable
= 1;
817 * Make an educated guess if the TSC is trustworthy and synchronized
820 __cpuinit
int unsynchronized_tsc(void)
822 if (!cpu_has_tsc
|| tsc_unstable
)
826 if (apic_is_clustered_box())
830 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
833 if (tsc_clocksource_reliable
)
836 * Intel systems are normally all synchronized.
837 * Exceptions must mark TSC as unstable:
839 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
840 /* assume multi socket systems are not synchronized: */
841 if (num_possible_cpus() > 1)
849 static void tsc_refine_calibration_work(struct work_struct
*work
);
850 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
852 * tsc_refine_calibration_work - Further refine tsc freq calibration
855 * This functions uses delayed work over a period of a
856 * second to further refine the TSC freq value. Since this is
857 * timer based, instead of loop based, we don't block the boot
858 * process while this longer calibration is done.
860 * If there are any calibration anomalies (too many SMIs, etc),
861 * or the refined calibration is off by 1% of the fast early
862 * calibration, we throw out the new calibration and use the
865 static void tsc_refine_calibration_work(struct work_struct
*work
)
867 static u64 tsc_start
= -1, ref_start
;
869 u64 tsc_stop
, ref_stop
, delta
;
872 /* Don't bother refining TSC on unstable systems */
873 if (check_tsc_unstable())
877 * Since the work is started early in boot, we may be
878 * delayed the first time we expire. So set the workqueue
879 * again once we know timers are working.
881 if (tsc_start
== -1) {
883 * Only set hpet once, to avoid mixing hardware
884 * if the hpet becomes enabled later.
886 hpet
= is_hpet_enabled();
887 schedule_delayed_work(&tsc_irqwork
, HZ
);
888 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
892 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
894 /* hpet or pmtimer available ? */
895 if (ref_start
== ref_stop
)
898 /* Check, whether the sampling was disturbed by an SMI */
899 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
902 delta
= tsc_stop
- tsc_start
;
905 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
907 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
909 /* Make sure we're within 1% */
910 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
914 printk(KERN_INFO
"Refined TSC clocksource calibration: "
915 "%lu.%03lu MHz.\n", (unsigned long)tsc_khz
/ 1000,
916 (unsigned long)tsc_khz
% 1000);
919 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
923 static int __init
init_tsc_clocksource(void)
925 if (!cpu_has_tsc
|| tsc_disabled
> 0 || !tsc_khz
)
928 if (tsc_clocksource_reliable
)
929 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
930 /* lower the rating if we already know its unstable: */
931 if (check_tsc_unstable()) {
932 clocksource_tsc
.rating
= 0;
933 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
935 schedule_delayed_work(&tsc_irqwork
, 0);
939 * We use device_initcall here, to ensure we run after the hpet
940 * is fully initialized, which may occur at fs_initcall time.
942 device_initcall(init_tsc_clocksource
);
944 void __init
tsc_init(void)
949 x86_init
.timers
.tsc_pre_init();
954 tsc_khz
= x86_platform
.calibrate_tsc();
958 mark_tsc_unstable("could not calculate TSC khz");
962 printk("Detected %lu.%03lu MHz processor.\n",
963 (unsigned long)cpu_khz
/ 1000,
964 (unsigned long)cpu_khz
% 1000);
967 * Secondary CPUs do not run through tsc_init(), so set up
968 * all the scale factors for all CPUs, assuming the same
969 * speed as the bootup CPU. (cpufreq notifiers will fix this
970 * up if their speed diverges)
972 for_each_possible_cpu(cpu
)
973 set_cyc2ns_scale(cpu_khz
, cpu
);
975 if (tsc_disabled
> 0)
978 /* now allow native_sched_clock() to use rdtsc */
981 if (!no_sched_irq_time
)
982 enable_sched_clock_irqtime();
984 lpj
= ((u64
)tsc_khz
* 1000);
990 if (unsynchronized_tsc())
991 mark_tsc_unstable("TSCs unsynchronized");
993 check_system_tsc_reliable();
998 * If we have a constant TSC and are using the TSC for the delay loop,
999 * we can skip clock calibration if another cpu in the same socket has already
1000 * been calibrated. This assumes that CONSTANT_TSC applies to all
1001 * cpus in the socket - this should be a safe assumption.
1003 unsigned long __cpuinit
calibrate_delay_is_known(void)
1005 int i
, cpu
= smp_processor_id();
1007 if (!tsc_disabled
&& !cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
))
1010 for_each_online_cpu(i
)
1011 if (cpu_data(i
).phys_proc_id
== cpu_data(cpu
).phys_proc_id
)
1012 return cpu_data(i
).loops_per_jiffy
;