2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
54 * One of these is allocated per bio.
57 struct mapped_device
*md
;
61 unsigned long start_time
;
62 spinlock_t endio_lock
;
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
77 * For request-based dm.
78 * One of these is allocated per request.
80 struct dm_rq_target_io
{
81 struct mapped_device
*md
;
83 struct request
*orig
, clone
;
89 * For request-based dm.
90 * One of these is allocated per bio.
92 struct dm_rq_clone_bio_info
{
94 struct dm_rq_target_io
*tio
;
97 union map_info
*dm_get_mapinfo(struct bio
*bio
)
99 if (bio
&& bio
->bi_private
)
100 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
104 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
106 if (rq
&& rq
->end_io_data
)
107 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
112 #define MINOR_ALLOCED ((void *)-1)
115 * Bits for the md->flags field.
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
126 * Work processed by per-device workqueue.
128 struct mapped_device
{
129 struct rw_semaphore io_lock
;
130 struct mutex suspend_lock
;
137 struct request_queue
*queue
;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock
;
142 struct target_type
*immutable_target_type
;
144 struct gendisk
*disk
;
150 * A list of ios that arrived while we were suspended.
153 wait_queue_head_t wait
;
154 struct work_struct work
;
155 struct bio_list deferred
;
156 spinlock_t deferred_lock
;
159 * Processing queue (flush)
161 struct workqueue_struct
*wq
;
164 * The current mapping.
166 struct dm_table
*map
;
169 * io objects are allocated from here.
180 wait_queue_head_t eventq
;
182 struct list_head uevent_list
;
183 spinlock_t uevent_lock
; /* Protect access to uevent_list */
186 * freeze/thaw support require holding onto a super block
188 struct super_block
*frozen_sb
;
189 struct block_device
*bdev
;
191 /* forced geometry settings */
192 struct hd_geometry geometry
;
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio
;
202 * For mempools pre-allocation at the table loading time.
204 struct dm_md_mempools
{
211 static struct kmem_cache
*_io_cache
;
212 static struct kmem_cache
*_tio_cache
;
213 static struct kmem_cache
*_rq_tio_cache
;
214 static struct kmem_cache
*_rq_bio_info_cache
;
216 static int __init
local_init(void)
220 /* allocate a slab for the dm_ios */
221 _io_cache
= KMEM_CACHE(dm_io
, 0);
225 /* allocate a slab for the target ios */
226 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
228 goto out_free_io_cache
;
230 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
232 goto out_free_tio_cache
;
234 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
235 if (!_rq_bio_info_cache
)
236 goto out_free_rq_tio_cache
;
238 r
= dm_uevent_init();
240 goto out_free_rq_bio_info_cache
;
243 r
= register_blkdev(_major
, _name
);
245 goto out_uevent_exit
;
254 out_free_rq_bio_info_cache
:
255 kmem_cache_destroy(_rq_bio_info_cache
);
256 out_free_rq_tio_cache
:
257 kmem_cache_destroy(_rq_tio_cache
);
259 kmem_cache_destroy(_tio_cache
);
261 kmem_cache_destroy(_io_cache
);
266 static void local_exit(void)
268 kmem_cache_destroy(_rq_bio_info_cache
);
269 kmem_cache_destroy(_rq_tio_cache
);
270 kmem_cache_destroy(_tio_cache
);
271 kmem_cache_destroy(_io_cache
);
272 unregister_blkdev(_major
, _name
);
277 DMINFO("cleaned up");
280 static int (*_inits
[])(void) __initdata
= {
290 static void (*_exits
[])(void) = {
300 static int __init
dm_init(void)
302 const int count
= ARRAY_SIZE(_inits
);
306 for (i
= 0; i
< count
; i
++) {
321 static void __exit
dm_exit(void)
323 int i
= ARRAY_SIZE(_exits
);
329 * Should be empty by this point.
331 idr_remove_all(&_minor_idr
);
332 idr_destroy(&_minor_idr
);
336 * Block device functions
338 int dm_deleting_md(struct mapped_device
*md
)
340 return test_bit(DMF_DELETING
, &md
->flags
);
343 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
345 struct mapped_device
*md
;
347 spin_lock(&_minor_lock
);
349 md
= bdev
->bd_disk
->private_data
;
353 if (test_bit(DMF_FREEING
, &md
->flags
) ||
354 dm_deleting_md(md
)) {
360 atomic_inc(&md
->open_count
);
363 spin_unlock(&_minor_lock
);
365 return md
? 0 : -ENXIO
;
368 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
370 struct mapped_device
*md
= disk
->private_data
;
372 spin_lock(&_minor_lock
);
374 atomic_dec(&md
->open_count
);
377 spin_unlock(&_minor_lock
);
382 int dm_open_count(struct mapped_device
*md
)
384 return atomic_read(&md
->open_count
);
388 * Guarantees nothing is using the device before it's deleted.
390 int dm_lock_for_deletion(struct mapped_device
*md
)
394 spin_lock(&_minor_lock
);
396 if (dm_open_count(md
))
399 set_bit(DMF_DELETING
, &md
->flags
);
401 spin_unlock(&_minor_lock
);
406 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
408 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
410 return dm_get_geometry(md
, geo
);
413 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
414 unsigned int cmd
, unsigned long arg
)
416 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
417 struct dm_table
*map
= dm_get_live_table(md
);
418 struct dm_target
*tgt
;
421 if (!map
|| !dm_table_get_size(map
))
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map
) != 1)
428 tgt
= dm_table_get_target(map
, 0);
430 if (dm_suspended_md(md
)) {
435 if (tgt
->type
->ioctl
)
436 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
444 static struct dm_io
*alloc_io(struct mapped_device
*md
)
446 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
449 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
451 mempool_free(io
, md
->io_pool
);
454 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
456 mempool_free(tio
, md
->tio_pool
);
459 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
462 return mempool_alloc(md
->tio_pool
, gfp_mask
);
465 static void free_rq_tio(struct dm_rq_target_io
*tio
)
467 mempool_free(tio
, tio
->md
->tio_pool
);
470 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
472 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
475 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
477 mempool_free(info
, info
->tio
->md
->io_pool
);
480 static int md_in_flight(struct mapped_device
*md
)
482 return atomic_read(&md
->pending
[READ
]) +
483 atomic_read(&md
->pending
[WRITE
]);
486 static void start_io_acct(struct dm_io
*io
)
488 struct mapped_device
*md
= io
->md
;
490 int rw
= bio_data_dir(io
->bio
);
492 io
->start_time
= jiffies
;
494 cpu
= part_stat_lock();
495 part_round_stats(cpu
, &dm_disk(md
)->part0
);
497 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
498 atomic_inc_return(&md
->pending
[rw
]));
501 static void end_io_acct(struct dm_io
*io
)
503 struct mapped_device
*md
= io
->md
;
504 struct bio
*bio
= io
->bio
;
505 unsigned long duration
= jiffies
- io
->start_time
;
507 int rw
= bio_data_dir(bio
);
509 cpu
= part_stat_lock();
510 part_round_stats(cpu
, &dm_disk(md
)->part0
);
511 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
515 * After this is decremented the bio must not be touched if it is
518 pending
= atomic_dec_return(&md
->pending
[rw
]);
519 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
520 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
522 /* nudge anyone waiting on suspend queue */
528 * Add the bio to the list of deferred io.
530 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
534 spin_lock_irqsave(&md
->deferred_lock
, flags
);
535 bio_list_add(&md
->deferred
, bio
);
536 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
537 queue_work(md
->wq
, &md
->work
);
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
545 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
550 read_lock_irqsave(&md
->map_lock
, flags
);
554 read_unlock_irqrestore(&md
->map_lock
, flags
);
560 * Get the geometry associated with a dm device
562 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
570 * Set the geometry of a device.
572 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
574 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
576 if (geo
->start
> sz
) {
577 DMWARN("Start sector is beyond the geometry limits.");
586 /*-----------------------------------------------------------------
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
595 static int __noflush_suspending(struct mapped_device
*md
)
597 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
604 static void dec_pending(struct dm_io
*io
, int error
)
609 struct mapped_device
*md
= io
->md
;
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error
)) {
613 spin_lock_irqsave(&io
->endio_lock
, flags
);
614 if (!(io
->error
> 0 && __noflush_suspending(md
)))
616 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
619 if (atomic_dec_and_test(&io
->io_count
)) {
620 if (io
->error
== DM_ENDIO_REQUEUE
) {
622 * Target requested pushing back the I/O.
624 spin_lock_irqsave(&md
->deferred_lock
, flags
);
625 if (__noflush_suspending(md
))
626 bio_list_add_head(&md
->deferred
, io
->bio
);
628 /* noflush suspend was interrupted. */
630 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
633 io_error
= io
->error
;
638 if (io_error
== DM_ENDIO_REQUEUE
)
641 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
643 * Preflush done for flush with data, reissue
646 bio
->bi_rw
&= ~REQ_FLUSH
;
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md
->queue
, bio
, io_error
);
651 bio_endio(bio
, io_error
);
656 static void clone_endio(struct bio
*bio
, int error
)
659 struct dm_target_io
*tio
= bio
->bi_private
;
660 struct dm_io
*io
= tio
->io
;
661 struct mapped_device
*md
= tio
->io
->md
;
662 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
664 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
668 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
669 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
671 * error and requeue request are handled
675 else if (r
== DM_ENDIO_INCOMPLETE
)
676 /* The target will handle the io */
679 DMWARN("unimplemented target endio return value: %d", r
);
685 * Store md for cleanup instead of tio which is about to get freed.
687 bio
->bi_private
= md
->bs
;
691 dec_pending(io
, error
);
695 * Partial completion handling for request-based dm
697 static void end_clone_bio(struct bio
*clone
, int error
)
699 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
700 struct dm_rq_target_io
*tio
= info
->tio
;
701 struct bio
*bio
= info
->orig
;
702 unsigned int nr_bytes
= info
->orig
->bi_size
;
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
733 if (tio
->orig
->bio
!= bio
)
734 DMERR("bio completion is going in the middle of the request");
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
741 blk_update_request(tio
->orig
, 0, nr_bytes
);
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
749 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
751 atomic_dec(&md
->pending
[rw
]);
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md
))
758 blk_run_queue(md
->queue
);
761 * dm_put() must be at the end of this function. See the comment above
766 static void free_rq_clone(struct request
*clone
)
768 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
770 blk_rq_unprep_clone(clone
);
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
778 static void dm_end_request(struct request
*clone
, int error
)
780 int rw
= rq_data_dir(clone
);
781 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
782 struct mapped_device
*md
= tio
->md
;
783 struct request
*rq
= tio
->orig
;
785 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
786 rq
->errors
= clone
->errors
;
787 rq
->resid_len
= clone
->resid_len
;
791 * We are using the sense buffer of the original
793 * So setting the length of the sense data is enough.
795 rq
->sense_len
= clone
->sense_len
;
798 free_rq_clone(clone
);
799 blk_end_request_all(rq
, error
);
800 rq_completed(md
, rw
, true);
803 static void dm_unprep_request(struct request
*rq
)
805 struct request
*clone
= rq
->special
;
808 rq
->cmd_flags
&= ~REQ_DONTPREP
;
810 free_rq_clone(clone
);
814 * Requeue the original request of a clone.
816 void dm_requeue_unmapped_request(struct request
*clone
)
818 int rw
= rq_data_dir(clone
);
819 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
820 struct mapped_device
*md
= tio
->md
;
821 struct request
*rq
= tio
->orig
;
822 struct request_queue
*q
= rq
->q
;
825 dm_unprep_request(rq
);
827 spin_lock_irqsave(q
->queue_lock
, flags
);
828 blk_requeue_request(q
, rq
);
829 spin_unlock_irqrestore(q
->queue_lock
, flags
);
831 rq_completed(md
, rw
, 0);
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
835 static void __stop_queue(struct request_queue
*q
)
840 static void stop_queue(struct request_queue
*q
)
844 spin_lock_irqsave(q
->queue_lock
, flags
);
846 spin_unlock_irqrestore(q
->queue_lock
, flags
);
849 static void __start_queue(struct request_queue
*q
)
851 if (blk_queue_stopped(q
))
855 static void start_queue(struct request_queue
*q
)
859 spin_lock_irqsave(q
->queue_lock
, flags
);
861 spin_unlock_irqrestore(q
->queue_lock
, flags
);
864 static void dm_done(struct request
*clone
, int error
, bool mapped
)
867 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
868 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
870 if (mapped
&& rq_end_io
)
871 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
874 /* The target wants to complete the I/O */
875 dm_end_request(clone
, r
);
876 else if (r
== DM_ENDIO_INCOMPLETE
)
877 /* The target will handle the I/O */
879 else if (r
== DM_ENDIO_REQUEUE
)
880 /* The target wants to requeue the I/O */
881 dm_requeue_unmapped_request(clone
);
883 DMWARN("unimplemented target endio return value: %d", r
);
889 * Request completion handler for request-based dm
891 static void dm_softirq_done(struct request
*rq
)
894 struct request
*clone
= rq
->completion_data
;
895 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
897 if (rq
->cmd_flags
& REQ_FAILED
)
900 dm_done(clone
, tio
->error
, mapped
);
904 * Complete the clone and the original request with the error status
905 * through softirq context.
907 static void dm_complete_request(struct request
*clone
, int error
)
909 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
910 struct request
*rq
= tio
->orig
;
913 rq
->completion_data
= clone
;
914 blk_complete_request(rq
);
918 * Complete the not-mapped clone and the original request with the error status
919 * through softirq context.
920 * Target's rq_end_io() function isn't called.
921 * This may be used when the target's map_rq() function fails.
923 void dm_kill_unmapped_request(struct request
*clone
, int error
)
925 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
926 struct request
*rq
= tio
->orig
;
928 rq
->cmd_flags
|= REQ_FAILED
;
929 dm_complete_request(clone
, error
);
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
934 * Called with the queue lock held
936 static void end_clone_request(struct request
*clone
, int error
)
939 * For just cleaning up the information of the queue in which
940 * the clone was dispatched.
941 * The clone is *NOT* freed actually here because it is alloced from
942 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
944 __blk_put_request(clone
->q
, clone
);
947 * Actual request completion is done in a softirq context which doesn't
948 * hold the queue lock. Otherwise, deadlock could occur because:
949 * - another request may be submitted by the upper level driver
950 * of the stacking during the completion
951 * - the submission which requires queue lock may be done
954 dm_complete_request(clone
, error
);
958 * Return maximum size of I/O possible at the supplied sector up to the current
961 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
963 sector_t target_offset
= dm_target_offset(ti
, sector
);
965 return ti
->len
- target_offset
;
968 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
970 sector_t len
= max_io_len_target_boundary(sector
, ti
);
973 * Does the target need to split even further ?
977 sector_t offset
= dm_target_offset(ti
, sector
);
978 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
987 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
988 struct dm_target_io
*tio
)
992 struct mapped_device
*md
;
994 clone
->bi_end_io
= clone_endio
;
995 clone
->bi_private
= tio
;
998 * Map the clone. If r == 0 we don't need to do
999 * anything, the target has assumed ownership of
1002 atomic_inc(&tio
->io
->io_count
);
1003 sector
= clone
->bi_sector
;
1004 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
1005 if (r
== DM_MAPIO_REMAPPED
) {
1006 /* the bio has been remapped so dispatch it */
1008 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1009 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1011 generic_make_request(clone
);
1012 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1013 /* error the io and bail out, or requeue it if needed */
1015 dec_pending(tio
->io
, r
);
1017 * Store bio_set for cleanup.
1019 clone
->bi_private
= md
->bs
;
1023 DMWARN("unimplemented target map return value: %d", r
);
1029 struct mapped_device
*md
;
1030 struct dm_table
*map
;
1034 sector_t sector_count
;
1038 static void dm_bio_destructor(struct bio
*bio
)
1040 struct bio_set
*bs
= bio
->bi_private
;
1046 * Creates a little bio that just does part of a bvec.
1048 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1049 unsigned short idx
, unsigned int offset
,
1050 unsigned int len
, struct bio_set
*bs
)
1053 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1055 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1056 clone
->bi_destructor
= dm_bio_destructor
;
1057 *clone
->bi_io_vec
= *bv
;
1059 clone
->bi_sector
= sector
;
1060 clone
->bi_bdev
= bio
->bi_bdev
;
1061 clone
->bi_rw
= bio
->bi_rw
;
1063 clone
->bi_size
= to_bytes(len
);
1064 clone
->bi_io_vec
->bv_offset
= offset
;
1065 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1066 clone
->bi_flags
|= 1 << BIO_CLONED
;
1068 if (bio_integrity(bio
)) {
1069 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1070 bio_integrity_trim(clone
,
1071 bio_sector_offset(bio
, idx
, offset
), len
);
1078 * Creates a bio that consists of range of complete bvecs.
1080 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1081 unsigned short idx
, unsigned short bv_count
,
1082 unsigned int len
, struct bio_set
*bs
)
1086 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1087 __bio_clone(clone
, bio
);
1088 clone
->bi_destructor
= dm_bio_destructor
;
1089 clone
->bi_sector
= sector
;
1090 clone
->bi_idx
= idx
;
1091 clone
->bi_vcnt
= idx
+ bv_count
;
1092 clone
->bi_size
= to_bytes(len
);
1093 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1095 if (bio_integrity(bio
)) {
1096 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1098 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1099 bio_integrity_trim(clone
,
1100 bio_sector_offset(bio
, idx
, 0), len
);
1106 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1107 struct dm_target
*ti
)
1109 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1113 memset(&tio
->info
, 0, sizeof(tio
->info
));
1118 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1119 unsigned request_nr
, sector_t len
)
1121 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1124 tio
->info
.target_request_nr
= request_nr
;
1127 * Discard requests require the bio's inline iovecs be initialized.
1128 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129 * and discard, so no need for concern about wasted bvec allocations.
1131 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1132 __bio_clone(clone
, ci
->bio
);
1133 clone
->bi_destructor
= dm_bio_destructor
;
1135 clone
->bi_sector
= ci
->sector
;
1136 clone
->bi_size
= to_bytes(len
);
1139 __map_bio(ti
, clone
, tio
);
1142 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1143 unsigned num_requests
, sector_t len
)
1145 unsigned request_nr
;
1147 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1148 __issue_target_request(ci
, ti
, request_nr
, len
);
1151 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1153 unsigned target_nr
= 0;
1154 struct dm_target
*ti
;
1156 BUG_ON(bio_has_data(ci
->bio
));
1157 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1158 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1164 * Perform all io with a single clone.
1166 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1168 struct bio
*clone
, *bio
= ci
->bio
;
1169 struct dm_target_io
*tio
;
1171 tio
= alloc_tio(ci
, ti
);
1172 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1173 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1175 __map_bio(ti
, clone
, tio
);
1176 ci
->sector_count
= 0;
1179 static int __clone_and_map_discard(struct clone_info
*ci
)
1181 struct dm_target
*ti
;
1185 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1186 if (!dm_target_is_valid(ti
))
1190 * Even though the device advertised discard support,
1191 * that does not mean every target supports it, and
1192 * reconfiguration might also have changed that since the
1193 * check was performed.
1195 if (!ti
->num_discard_requests
)
1198 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1200 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1203 } while (ci
->sector_count
-= len
);
1208 static int __clone_and_map(struct clone_info
*ci
)
1210 struct bio
*clone
, *bio
= ci
->bio
;
1211 struct dm_target
*ti
;
1212 sector_t len
= 0, max
;
1213 struct dm_target_io
*tio
;
1215 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1216 return __clone_and_map_discard(ci
);
1218 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1219 if (!dm_target_is_valid(ti
))
1222 max
= max_io_len(ci
->sector
, ti
);
1224 if (ci
->sector_count
<= max
) {
1226 * Optimise for the simple case where we can do all of
1227 * the remaining io with a single clone.
1229 __clone_and_map_simple(ci
, ti
);
1231 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1233 * There are some bvecs that don't span targets.
1234 * Do as many of these as possible.
1237 sector_t remaining
= max
;
1240 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1241 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1243 if (bv_len
> remaining
)
1246 remaining
-= bv_len
;
1250 tio
= alloc_tio(ci
, ti
);
1251 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1253 __map_bio(ti
, clone
, tio
);
1256 ci
->sector_count
-= len
;
1261 * Handle a bvec that must be split between two or more targets.
1263 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1264 sector_t remaining
= to_sector(bv
->bv_len
);
1265 unsigned int offset
= 0;
1269 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1270 if (!dm_target_is_valid(ti
))
1273 max
= max_io_len(ci
->sector
, ti
);
1276 len
= min(remaining
, max
);
1278 tio
= alloc_tio(ci
, ti
);
1279 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1280 bv
->bv_offset
+ offset
, len
,
1283 __map_bio(ti
, clone
, tio
);
1286 ci
->sector_count
-= len
;
1287 offset
+= to_bytes(len
);
1288 } while (remaining
-= len
);
1297 * Split the bio into several clones and submit it to targets.
1299 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1301 struct clone_info ci
;
1304 ci
.map
= dm_get_live_table(md
);
1305 if (unlikely(!ci
.map
)) {
1311 ci
.io
= alloc_io(md
);
1313 atomic_set(&ci
.io
->io_count
, 1);
1316 spin_lock_init(&ci
.io
->endio_lock
);
1317 ci
.sector
= bio
->bi_sector
;
1318 ci
.idx
= bio
->bi_idx
;
1320 start_io_acct(ci
.io
);
1321 if (bio
->bi_rw
& REQ_FLUSH
) {
1322 ci
.bio
= &ci
.md
->flush_bio
;
1323 ci
.sector_count
= 0;
1324 error
= __clone_and_map_empty_flush(&ci
);
1325 /* dec_pending submits any data associated with flush */
1328 ci
.sector_count
= bio_sectors(bio
);
1329 while (ci
.sector_count
&& !error
)
1330 error
= __clone_and_map(&ci
);
1333 /* drop the extra reference count */
1334 dec_pending(ci
.io
, error
);
1335 dm_table_put(ci
.map
);
1337 /*-----------------------------------------------------------------
1339 *---------------------------------------------------------------*/
1341 static int dm_merge_bvec(struct request_queue
*q
,
1342 struct bvec_merge_data
*bvm
,
1343 struct bio_vec
*biovec
)
1345 struct mapped_device
*md
= q
->queuedata
;
1346 struct dm_table
*map
= dm_get_live_table(md
);
1347 struct dm_target
*ti
;
1348 sector_t max_sectors
;
1354 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1355 if (!dm_target_is_valid(ti
))
1359 * Find maximum amount of I/O that won't need splitting
1361 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1362 (sector_t
) BIO_MAX_SECTORS
);
1363 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1368 * merge_bvec_fn() returns number of bytes
1369 * it can accept at this offset
1370 * max is precomputed maximal io size
1372 if (max_size
&& ti
->type
->merge
)
1373 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1375 * If the target doesn't support merge method and some of the devices
1376 * provided their merge_bvec method (we know this by looking at
1377 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378 * entries. So always set max_size to 0, and the code below allows
1381 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1390 * Always allow an entire first page
1392 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1393 max_size
= biovec
->bv_len
;
1399 * The request function that just remaps the bio built up by
1402 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1404 int rw
= bio_data_dir(bio
);
1405 struct mapped_device
*md
= q
->queuedata
;
1408 down_read(&md
->io_lock
);
1410 cpu
= part_stat_lock();
1411 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1412 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1415 /* if we're suspended, we have to queue this io for later */
1416 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1417 up_read(&md
->io_lock
);
1419 if (bio_rw(bio
) != READA
)
1426 __split_and_process_bio(md
, bio
);
1427 up_read(&md
->io_lock
);
1431 static int dm_request_based(struct mapped_device
*md
)
1433 return blk_queue_stackable(md
->queue
);
1436 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1438 struct mapped_device
*md
= q
->queuedata
;
1440 if (dm_request_based(md
))
1441 blk_queue_bio(q
, bio
);
1443 _dm_request(q
, bio
);
1446 void dm_dispatch_request(struct request
*rq
)
1450 if (blk_queue_io_stat(rq
->q
))
1451 rq
->cmd_flags
|= REQ_IO_STAT
;
1453 rq
->start_time
= jiffies
;
1454 r
= blk_insert_cloned_request(rq
->q
, rq
);
1456 dm_complete_request(rq
, r
);
1458 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1460 static void dm_rq_bio_destructor(struct bio
*bio
)
1462 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1463 struct mapped_device
*md
= info
->tio
->md
;
1465 free_bio_info(info
);
1466 bio_free(bio
, md
->bs
);
1469 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1472 struct dm_rq_target_io
*tio
= data
;
1473 struct mapped_device
*md
= tio
->md
;
1474 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1479 info
->orig
= bio_orig
;
1481 bio
->bi_end_io
= end_clone_bio
;
1482 bio
->bi_private
= info
;
1483 bio
->bi_destructor
= dm_rq_bio_destructor
;
1488 static int setup_clone(struct request
*clone
, struct request
*rq
,
1489 struct dm_rq_target_io
*tio
)
1493 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1494 dm_rq_bio_constructor
, tio
);
1498 clone
->cmd
= rq
->cmd
;
1499 clone
->cmd_len
= rq
->cmd_len
;
1500 clone
->sense
= rq
->sense
;
1501 clone
->buffer
= rq
->buffer
;
1502 clone
->end_io
= end_clone_request
;
1503 clone
->end_io_data
= tio
;
1508 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1511 struct request
*clone
;
1512 struct dm_rq_target_io
*tio
;
1514 tio
= alloc_rq_tio(md
, gfp_mask
);
1522 memset(&tio
->info
, 0, sizeof(tio
->info
));
1524 clone
= &tio
->clone
;
1525 if (setup_clone(clone
, rq
, tio
)) {
1535 * Called with the queue lock held.
1537 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1539 struct mapped_device
*md
= q
->queuedata
;
1540 struct request
*clone
;
1542 if (unlikely(rq
->special
)) {
1543 DMWARN("Already has something in rq->special.");
1544 return BLKPREP_KILL
;
1547 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1549 return BLKPREP_DEFER
;
1551 rq
->special
= clone
;
1552 rq
->cmd_flags
|= REQ_DONTPREP
;
1559 * 0 : the request has been processed (not requeued)
1560 * !0 : the request has been requeued
1562 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1563 struct mapped_device
*md
)
1565 int r
, requeued
= 0;
1566 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1569 * Hold the md reference here for the in-flight I/O.
1570 * We can't rely on the reference count by device opener,
1571 * because the device may be closed during the request completion
1572 * when all bios are completed.
1573 * See the comment in rq_completed() too.
1578 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1580 case DM_MAPIO_SUBMITTED
:
1581 /* The target has taken the I/O to submit by itself later */
1583 case DM_MAPIO_REMAPPED
:
1584 /* The target has remapped the I/O so dispatch it */
1585 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1586 blk_rq_pos(tio
->orig
));
1587 dm_dispatch_request(clone
);
1589 case DM_MAPIO_REQUEUE
:
1590 /* The target wants to requeue the I/O */
1591 dm_requeue_unmapped_request(clone
);
1596 DMWARN("unimplemented target map return value: %d", r
);
1600 /* The target wants to complete the I/O */
1601 dm_kill_unmapped_request(clone
, r
);
1609 * q->request_fn for request-based dm.
1610 * Called with the queue lock held.
1612 static void dm_request_fn(struct request_queue
*q
)
1614 struct mapped_device
*md
= q
->queuedata
;
1615 struct dm_table
*map
= dm_get_live_table(md
);
1616 struct dm_target
*ti
;
1617 struct request
*rq
, *clone
;
1621 * For suspend, check blk_queue_stopped() and increment
1622 * ->pending within a single queue_lock not to increment the
1623 * number of in-flight I/Os after the queue is stopped in
1626 while (!blk_queue_stopped(q
)) {
1627 rq
= blk_peek_request(q
);
1631 /* always use block 0 to find the target for flushes for now */
1633 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1634 pos
= blk_rq_pos(rq
);
1636 ti
= dm_table_find_target(map
, pos
);
1637 BUG_ON(!dm_target_is_valid(ti
));
1639 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1642 blk_start_request(rq
);
1643 clone
= rq
->special
;
1644 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1646 spin_unlock(q
->queue_lock
);
1647 if (map_request(ti
, clone
, md
))
1650 BUG_ON(!irqs_disabled());
1651 spin_lock(q
->queue_lock
);
1657 BUG_ON(!irqs_disabled());
1658 spin_lock(q
->queue_lock
);
1661 blk_delay_queue(q
, HZ
/ 10);
1668 int dm_underlying_device_busy(struct request_queue
*q
)
1670 return blk_lld_busy(q
);
1672 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1674 static int dm_lld_busy(struct request_queue
*q
)
1677 struct mapped_device
*md
= q
->queuedata
;
1678 struct dm_table
*map
= dm_get_live_table(md
);
1680 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1683 r
= dm_table_any_busy_target(map
);
1690 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1693 struct mapped_device
*md
= congested_data
;
1694 struct dm_table
*map
;
1696 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1697 map
= dm_get_live_table(md
);
1700 * Request-based dm cares about only own queue for
1701 * the query about congestion status of request_queue
1703 if (dm_request_based(md
))
1704 r
= md
->queue
->backing_dev_info
.state
&
1707 r
= dm_table_any_congested(map
, bdi_bits
);
1716 /*-----------------------------------------------------------------
1717 * An IDR is used to keep track of allocated minor numbers.
1718 *---------------------------------------------------------------*/
1719 static void free_minor(int minor
)
1721 spin_lock(&_minor_lock
);
1722 idr_remove(&_minor_idr
, minor
);
1723 spin_unlock(&_minor_lock
);
1727 * See if the device with a specific minor # is free.
1729 static int specific_minor(int minor
)
1733 if (minor
>= (1 << MINORBITS
))
1736 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1740 spin_lock(&_minor_lock
);
1742 if (idr_find(&_minor_idr
, minor
)) {
1747 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1752 idr_remove(&_minor_idr
, m
);
1758 spin_unlock(&_minor_lock
);
1762 static int next_free_minor(int *minor
)
1766 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1770 spin_lock(&_minor_lock
);
1772 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1776 if (m
>= (1 << MINORBITS
)) {
1777 idr_remove(&_minor_idr
, m
);
1785 spin_unlock(&_minor_lock
);
1789 static const struct block_device_operations dm_blk_dops
;
1791 static void dm_wq_work(struct work_struct
*work
);
1793 static void dm_init_md_queue(struct mapped_device
*md
)
1796 * Request-based dm devices cannot be stacked on top of bio-based dm
1797 * devices. The type of this dm device has not been decided yet.
1798 * The type is decided at the first table loading time.
1799 * To prevent problematic device stacking, clear the queue flag
1800 * for request stacking support until then.
1802 * This queue is new, so no concurrency on the queue_flags.
1804 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1806 md
->queue
->queuedata
= md
;
1807 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1808 md
->queue
->backing_dev_info
.congested_data
= md
;
1809 blk_queue_make_request(md
->queue
, dm_request
);
1810 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1811 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1815 * Allocate and initialise a blank device with a given minor.
1817 static struct mapped_device
*alloc_dev(int minor
)
1820 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1824 DMWARN("unable to allocate device, out of memory.");
1828 if (!try_module_get(THIS_MODULE
))
1829 goto bad_module_get
;
1831 /* get a minor number for the dev */
1832 if (minor
== DM_ANY_MINOR
)
1833 r
= next_free_minor(&minor
);
1835 r
= specific_minor(minor
);
1839 md
->type
= DM_TYPE_NONE
;
1840 init_rwsem(&md
->io_lock
);
1841 mutex_init(&md
->suspend_lock
);
1842 mutex_init(&md
->type_lock
);
1843 spin_lock_init(&md
->deferred_lock
);
1844 rwlock_init(&md
->map_lock
);
1845 atomic_set(&md
->holders
, 1);
1846 atomic_set(&md
->open_count
, 0);
1847 atomic_set(&md
->event_nr
, 0);
1848 atomic_set(&md
->uevent_seq
, 0);
1849 INIT_LIST_HEAD(&md
->uevent_list
);
1850 spin_lock_init(&md
->uevent_lock
);
1852 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1856 dm_init_md_queue(md
);
1858 md
->disk
= alloc_disk(1);
1862 atomic_set(&md
->pending
[0], 0);
1863 atomic_set(&md
->pending
[1], 0);
1864 init_waitqueue_head(&md
->wait
);
1865 INIT_WORK(&md
->work
, dm_wq_work
);
1866 init_waitqueue_head(&md
->eventq
);
1868 md
->disk
->major
= _major
;
1869 md
->disk
->first_minor
= minor
;
1870 md
->disk
->fops
= &dm_blk_dops
;
1871 md
->disk
->queue
= md
->queue
;
1872 md
->disk
->private_data
= md
;
1873 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1875 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1877 md
->wq
= alloc_workqueue("kdmflush",
1878 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1882 md
->bdev
= bdget_disk(md
->disk
, 0);
1886 bio_init(&md
->flush_bio
);
1887 md
->flush_bio
.bi_bdev
= md
->bdev
;
1888 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1890 /* Populate the mapping, nobody knows we exist yet */
1891 spin_lock(&_minor_lock
);
1892 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1893 spin_unlock(&_minor_lock
);
1895 BUG_ON(old_md
!= MINOR_ALLOCED
);
1900 destroy_workqueue(md
->wq
);
1902 del_gendisk(md
->disk
);
1905 blk_cleanup_queue(md
->queue
);
1909 module_put(THIS_MODULE
);
1915 static void unlock_fs(struct mapped_device
*md
);
1917 static void free_dev(struct mapped_device
*md
)
1919 int minor
= MINOR(disk_devt(md
->disk
));
1923 destroy_workqueue(md
->wq
);
1925 mempool_destroy(md
->tio_pool
);
1927 mempool_destroy(md
->io_pool
);
1929 bioset_free(md
->bs
);
1930 blk_integrity_unregister(md
->disk
);
1931 del_gendisk(md
->disk
);
1934 spin_lock(&_minor_lock
);
1935 md
->disk
->private_data
= NULL
;
1936 spin_unlock(&_minor_lock
);
1939 blk_cleanup_queue(md
->queue
);
1940 module_put(THIS_MODULE
);
1944 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1946 struct dm_md_mempools
*p
;
1948 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1949 /* the md already has necessary mempools */
1952 p
= dm_table_get_md_mempools(t
);
1953 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1955 md
->io_pool
= p
->io_pool
;
1957 md
->tio_pool
= p
->tio_pool
;
1963 /* mempool bind completed, now no need any mempools in the table */
1964 dm_table_free_md_mempools(t
);
1968 * Bind a table to the device.
1970 static void event_callback(void *context
)
1972 unsigned long flags
;
1974 struct mapped_device
*md
= (struct mapped_device
*) context
;
1976 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1977 list_splice_init(&md
->uevent_list
, &uevents
);
1978 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1980 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1982 atomic_inc(&md
->event_nr
);
1983 wake_up(&md
->eventq
);
1987 * Protected by md->suspend_lock obtained by dm_swap_table().
1989 static void __set_size(struct mapped_device
*md
, sector_t size
)
1991 set_capacity(md
->disk
, size
);
1993 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1997 * Return 1 if the queue has a compulsory merge_bvec_fn function.
1999 * If this function returns 0, then the device is either a non-dm
2000 * device without a merge_bvec_fn, or it is a dm device that is
2001 * able to split any bios it receives that are too big.
2003 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2005 struct mapped_device
*dev_md
;
2007 if (!q
->merge_bvec_fn
)
2010 if (q
->make_request_fn
== dm_request
) {
2011 dev_md
= q
->queuedata
;
2012 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2019 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2020 struct dm_dev
*dev
, sector_t start
,
2021 sector_t len
, void *data
)
2023 struct block_device
*bdev
= dev
->bdev
;
2024 struct request_queue
*q
= bdev_get_queue(bdev
);
2026 return dm_queue_merge_is_compulsory(q
);
2030 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2031 * on the properties of the underlying devices.
2033 static int dm_table_merge_is_optional(struct dm_table
*table
)
2036 struct dm_target
*ti
;
2038 while (i
< dm_table_get_num_targets(table
)) {
2039 ti
= dm_table_get_target(table
, i
++);
2041 if (ti
->type
->iterate_devices
&&
2042 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2050 * Returns old map, which caller must destroy.
2052 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2053 struct queue_limits
*limits
)
2055 struct dm_table
*old_map
;
2056 struct request_queue
*q
= md
->queue
;
2058 unsigned long flags
;
2059 int merge_is_optional
;
2061 size
= dm_table_get_size(t
);
2064 * Wipe any geometry if the size of the table changed.
2066 if (size
!= get_capacity(md
->disk
))
2067 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2069 __set_size(md
, size
);
2071 dm_table_event_callback(t
, event_callback
, md
);
2074 * The queue hasn't been stopped yet, if the old table type wasn't
2075 * for request-based during suspension. So stop it to prevent
2076 * I/O mapping before resume.
2077 * This must be done before setting the queue restrictions,
2078 * because request-based dm may be run just after the setting.
2080 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2083 __bind_mempools(md
, t
);
2085 merge_is_optional
= dm_table_merge_is_optional(t
);
2087 write_lock_irqsave(&md
->map_lock
, flags
);
2090 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2092 dm_table_set_restrictions(t
, q
, limits
);
2093 if (merge_is_optional
)
2094 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2096 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2097 write_unlock_irqrestore(&md
->map_lock
, flags
);
2103 * Returns unbound table for the caller to free.
2105 static struct dm_table
*__unbind(struct mapped_device
*md
)
2107 struct dm_table
*map
= md
->map
;
2108 unsigned long flags
;
2113 dm_table_event_callback(map
, NULL
, NULL
);
2114 write_lock_irqsave(&md
->map_lock
, flags
);
2116 write_unlock_irqrestore(&md
->map_lock
, flags
);
2122 * Constructor for a new device.
2124 int dm_create(int minor
, struct mapped_device
**result
)
2126 struct mapped_device
*md
;
2128 md
= alloc_dev(minor
);
2139 * Functions to manage md->type.
2140 * All are required to hold md->type_lock.
2142 void dm_lock_md_type(struct mapped_device
*md
)
2144 mutex_lock(&md
->type_lock
);
2147 void dm_unlock_md_type(struct mapped_device
*md
)
2149 mutex_unlock(&md
->type_lock
);
2152 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2157 unsigned dm_get_md_type(struct mapped_device
*md
)
2162 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2164 return md
->immutable_target_type
;
2168 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2170 static int dm_init_request_based_queue(struct mapped_device
*md
)
2172 struct request_queue
*q
= NULL
;
2174 if (md
->queue
->elevator
)
2177 /* Fully initialize the queue */
2178 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2183 dm_init_md_queue(md
);
2184 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2185 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2186 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2188 elv_register_queue(md
->queue
);
2194 * Setup the DM device's queue based on md's type
2196 int dm_setup_md_queue(struct mapped_device
*md
)
2198 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2199 !dm_init_request_based_queue(md
)) {
2200 DMWARN("Cannot initialize queue for request-based mapped device");
2207 static struct mapped_device
*dm_find_md(dev_t dev
)
2209 struct mapped_device
*md
;
2210 unsigned minor
= MINOR(dev
);
2212 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2215 spin_lock(&_minor_lock
);
2217 md
= idr_find(&_minor_idr
, minor
);
2218 if (md
&& (md
== MINOR_ALLOCED
||
2219 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2220 dm_deleting_md(md
) ||
2221 test_bit(DMF_FREEING
, &md
->flags
))) {
2227 spin_unlock(&_minor_lock
);
2232 struct mapped_device
*dm_get_md(dev_t dev
)
2234 struct mapped_device
*md
= dm_find_md(dev
);
2241 EXPORT_SYMBOL_GPL(dm_get_md
);
2243 void *dm_get_mdptr(struct mapped_device
*md
)
2245 return md
->interface_ptr
;
2248 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2250 md
->interface_ptr
= ptr
;
2253 void dm_get(struct mapped_device
*md
)
2255 atomic_inc(&md
->holders
);
2256 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2259 const char *dm_device_name(struct mapped_device
*md
)
2263 EXPORT_SYMBOL_GPL(dm_device_name
);
2265 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2267 struct dm_table
*map
;
2271 spin_lock(&_minor_lock
);
2272 map
= dm_get_live_table(md
);
2273 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2274 set_bit(DMF_FREEING
, &md
->flags
);
2275 spin_unlock(&_minor_lock
);
2277 if (!dm_suspended_md(md
)) {
2278 dm_table_presuspend_targets(map
);
2279 dm_table_postsuspend_targets(map
);
2283 * Rare, but there may be I/O requests still going to complete,
2284 * for example. Wait for all references to disappear.
2285 * No one should increment the reference count of the mapped_device,
2286 * after the mapped_device state becomes DMF_FREEING.
2289 while (atomic_read(&md
->holders
))
2291 else if (atomic_read(&md
->holders
))
2292 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2293 dm_device_name(md
), atomic_read(&md
->holders
));
2297 dm_table_destroy(__unbind(md
));
2301 void dm_destroy(struct mapped_device
*md
)
2303 __dm_destroy(md
, true);
2306 void dm_destroy_immediate(struct mapped_device
*md
)
2308 __dm_destroy(md
, false);
2311 void dm_put(struct mapped_device
*md
)
2313 atomic_dec(&md
->holders
);
2315 EXPORT_SYMBOL_GPL(dm_put
);
2317 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2320 DECLARE_WAITQUEUE(wait
, current
);
2322 add_wait_queue(&md
->wait
, &wait
);
2325 set_current_state(interruptible
);
2327 if (!md_in_flight(md
))
2330 if (interruptible
== TASK_INTERRUPTIBLE
&&
2331 signal_pending(current
)) {
2338 set_current_state(TASK_RUNNING
);
2340 remove_wait_queue(&md
->wait
, &wait
);
2346 * Process the deferred bios
2348 static void dm_wq_work(struct work_struct
*work
)
2350 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2354 down_read(&md
->io_lock
);
2356 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2357 spin_lock_irq(&md
->deferred_lock
);
2358 c
= bio_list_pop(&md
->deferred
);
2359 spin_unlock_irq(&md
->deferred_lock
);
2364 up_read(&md
->io_lock
);
2366 if (dm_request_based(md
))
2367 generic_make_request(c
);
2369 __split_and_process_bio(md
, c
);
2371 down_read(&md
->io_lock
);
2374 up_read(&md
->io_lock
);
2377 static void dm_queue_flush(struct mapped_device
*md
)
2379 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2380 smp_mb__after_clear_bit();
2381 queue_work(md
->wq
, &md
->work
);
2385 * Swap in a new table, returning the old one for the caller to destroy.
2387 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2389 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2390 struct queue_limits limits
;
2393 mutex_lock(&md
->suspend_lock
);
2395 /* device must be suspended */
2396 if (!dm_suspended_md(md
))
2399 r
= dm_calculate_queue_limits(table
, &limits
);
2405 map
= __bind(md
, table
, &limits
);
2408 mutex_unlock(&md
->suspend_lock
);
2413 * Functions to lock and unlock any filesystem running on the
2416 static int lock_fs(struct mapped_device
*md
)
2420 WARN_ON(md
->frozen_sb
);
2422 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2423 if (IS_ERR(md
->frozen_sb
)) {
2424 r
= PTR_ERR(md
->frozen_sb
);
2425 md
->frozen_sb
= NULL
;
2429 set_bit(DMF_FROZEN
, &md
->flags
);
2434 static void unlock_fs(struct mapped_device
*md
)
2436 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2439 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2440 md
->frozen_sb
= NULL
;
2441 clear_bit(DMF_FROZEN
, &md
->flags
);
2445 * We need to be able to change a mapping table under a mounted
2446 * filesystem. For example we might want to move some data in
2447 * the background. Before the table can be swapped with
2448 * dm_bind_table, dm_suspend must be called to flush any in
2449 * flight bios and ensure that any further io gets deferred.
2452 * Suspend mechanism in request-based dm.
2454 * 1. Flush all I/Os by lock_fs() if needed.
2455 * 2. Stop dispatching any I/O by stopping the request_queue.
2456 * 3. Wait for all in-flight I/Os to be completed or requeued.
2458 * To abort suspend, start the request_queue.
2460 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2462 struct dm_table
*map
= NULL
;
2464 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2465 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2467 mutex_lock(&md
->suspend_lock
);
2469 if (dm_suspended_md(md
)) {
2474 map
= dm_get_live_table(md
);
2477 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2478 * This flag is cleared before dm_suspend returns.
2481 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2483 /* This does not get reverted if there's an error later. */
2484 dm_table_presuspend_targets(map
);
2487 * Flush I/O to the device.
2488 * Any I/O submitted after lock_fs() may not be flushed.
2489 * noflush takes precedence over do_lockfs.
2490 * (lock_fs() flushes I/Os and waits for them to complete.)
2492 if (!noflush
&& do_lockfs
) {
2499 * Here we must make sure that no processes are submitting requests
2500 * to target drivers i.e. no one may be executing
2501 * __split_and_process_bio. This is called from dm_request and
2504 * To get all processes out of __split_and_process_bio in dm_request,
2505 * we take the write lock. To prevent any process from reentering
2506 * __split_and_process_bio from dm_request and quiesce the thread
2507 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2508 * flush_workqueue(md->wq).
2510 down_write(&md
->io_lock
);
2511 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2512 up_write(&md
->io_lock
);
2515 * Stop md->queue before flushing md->wq in case request-based
2516 * dm defers requests to md->wq from md->queue.
2518 if (dm_request_based(md
))
2519 stop_queue(md
->queue
);
2521 flush_workqueue(md
->wq
);
2524 * At this point no more requests are entering target request routines.
2525 * We call dm_wait_for_completion to wait for all existing requests
2528 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2530 down_write(&md
->io_lock
);
2532 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2533 up_write(&md
->io_lock
);
2535 /* were we interrupted ? */
2539 if (dm_request_based(md
))
2540 start_queue(md
->queue
);
2543 goto out
; /* pushback list is already flushed, so skip flush */
2547 * If dm_wait_for_completion returned 0, the device is completely
2548 * quiescent now. There is no request-processing activity. All new
2549 * requests are being added to md->deferred list.
2552 set_bit(DMF_SUSPENDED
, &md
->flags
);
2554 dm_table_postsuspend_targets(map
);
2560 mutex_unlock(&md
->suspend_lock
);
2564 int dm_resume(struct mapped_device
*md
)
2567 struct dm_table
*map
= NULL
;
2569 mutex_lock(&md
->suspend_lock
);
2570 if (!dm_suspended_md(md
))
2573 map
= dm_get_live_table(md
);
2574 if (!map
|| !dm_table_get_size(map
))
2577 r
= dm_table_resume_targets(map
);
2584 * Flushing deferred I/Os must be done after targets are resumed
2585 * so that mapping of targets can work correctly.
2586 * Request-based dm is queueing the deferred I/Os in its request_queue.
2588 if (dm_request_based(md
))
2589 start_queue(md
->queue
);
2593 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2598 mutex_unlock(&md
->suspend_lock
);
2603 /*-----------------------------------------------------------------
2604 * Event notification.
2605 *---------------------------------------------------------------*/
2606 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2609 char udev_cookie
[DM_COOKIE_LENGTH
];
2610 char *envp
[] = { udev_cookie
, NULL
};
2613 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2615 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2616 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2617 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2622 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2624 return atomic_add_return(1, &md
->uevent_seq
);
2627 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2629 return atomic_read(&md
->event_nr
);
2632 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2634 return wait_event_interruptible(md
->eventq
,
2635 (event_nr
!= atomic_read(&md
->event_nr
)));
2638 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2640 unsigned long flags
;
2642 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2643 list_add(elist
, &md
->uevent_list
);
2644 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2648 * The gendisk is only valid as long as you have a reference
2651 struct gendisk
*dm_disk(struct mapped_device
*md
)
2656 struct kobject
*dm_kobject(struct mapped_device
*md
)
2662 * struct mapped_device should not be exported outside of dm.c
2663 * so use this check to verify that kobj is part of md structure
2665 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2667 struct mapped_device
*md
;
2669 md
= container_of(kobj
, struct mapped_device
, kobj
);
2670 if (&md
->kobj
!= kobj
)
2673 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2681 int dm_suspended_md(struct mapped_device
*md
)
2683 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2686 int dm_suspended(struct dm_target
*ti
)
2688 return dm_suspended_md(dm_table_get_md(ti
->table
));
2690 EXPORT_SYMBOL_GPL(dm_suspended
);
2692 int dm_noflush_suspending(struct dm_target
*ti
)
2694 return __noflush_suspending(dm_table_get_md(ti
->table
));
2696 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2698 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2700 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2701 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2706 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2707 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2708 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2709 if (!pools
->io_pool
)
2710 goto free_pools_and_out
;
2712 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2713 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2714 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2715 if (!pools
->tio_pool
)
2716 goto free_io_pool_and_out
;
2718 pools
->bs
= bioset_create(pool_size
, 0);
2720 goto free_tio_pool_and_out
;
2722 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2723 goto free_bioset_and_out
;
2727 free_bioset_and_out
:
2728 bioset_free(pools
->bs
);
2730 free_tio_pool_and_out
:
2731 mempool_destroy(pools
->tio_pool
);
2733 free_io_pool_and_out
:
2734 mempool_destroy(pools
->io_pool
);
2742 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2748 mempool_destroy(pools
->io_pool
);
2750 if (pools
->tio_pool
)
2751 mempool_destroy(pools
->tio_pool
);
2754 bioset_free(pools
->bs
);
2759 static const struct block_device_operations dm_blk_dops
= {
2760 .open
= dm_blk_open
,
2761 .release
= dm_blk_close
,
2762 .ioctl
= dm_blk_ioctl
,
2763 .getgeo
= dm_blk_getgeo
,
2764 .owner
= THIS_MODULE
2767 EXPORT_SYMBOL(dm_get_mapinfo
);
2772 module_init(dm_init
);
2773 module_exit(dm_exit
);
2775 module_param(major
, uint
, 0);
2776 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2777 MODULE_DESCRIPTION(DM_NAME
" driver");
2778 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2779 MODULE_LICENSE("GPL");