Use dentry_path() to create full path to inode object
[pohmelfs.git] / drivers / media / video / gspca / ov519.c
blob739e8a2a2d308ea31268de9f625617d3dce27b0b
1 /**
2 * OV519 driver
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #define MODULE_NAME "ov519"
44 #include <linux/input.h>
45 #include "gspca.h"
47 /* The jpeg_hdr is used by w996Xcf only */
48 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 #define CONEX_CAM
50 #include "jpeg.h"
52 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53 MODULE_DESCRIPTION("OV519 USB Camera Driver");
54 MODULE_LICENSE("GPL");
56 /* global parameters */
57 static int frame_rate;
59 /* Number of times to retry a failed I2C transaction. Increase this if you
60 * are getting "Failed to read sensor ID..." */
61 static int i2c_detect_tries = 10;
63 /* controls */
64 enum e_ctrl {
65 BRIGHTNESS,
66 CONTRAST,
67 EXPOSURE,
68 COLORS,
69 HFLIP,
70 VFLIP,
71 AUTOBRIGHT,
72 AUTOGAIN,
73 FREQ,
74 NCTRL /* number of controls */
77 /* ov519 device descriptor */
78 struct sd {
79 struct gspca_dev gspca_dev; /* !! must be the first item */
81 struct gspca_ctrl ctrls[NCTRL];
83 u8 packet_nr;
85 char bridge;
86 #define BRIDGE_OV511 0
87 #define BRIDGE_OV511PLUS 1
88 #define BRIDGE_OV518 2
89 #define BRIDGE_OV518PLUS 3
90 #define BRIDGE_OV519 4 /* = ov530 */
91 #define BRIDGE_OVFX2 5
92 #define BRIDGE_W9968CF 6
93 #define BRIDGE_MASK 7
95 char invert_led;
96 #define BRIDGE_INVERT_LED 8
98 char snapshot_pressed;
99 char snapshot_needs_reset;
101 /* Determined by sensor type */
102 u8 sif;
104 u8 quality;
105 #define QUALITY_MIN 50
106 #define QUALITY_MAX 70
107 #define QUALITY_DEF 50
109 u8 stopped; /* Streaming is temporarily paused */
110 u8 first_frame;
112 u8 frame_rate; /* current Framerate */
113 u8 clockdiv; /* clockdiv override */
115 s8 sensor; /* Type of image sensor chip (SEN_*) */
117 u8 sensor_addr;
118 u16 sensor_width;
119 u16 sensor_height;
120 s16 sensor_reg_cache[256];
122 u8 jpeg_hdr[JPEG_HDR_SZ];
124 enum sensors {
125 SEN_OV2610,
126 SEN_OV2610AE,
127 SEN_OV3610,
128 SEN_OV6620,
129 SEN_OV6630,
130 SEN_OV66308AF,
131 SEN_OV7610,
132 SEN_OV7620,
133 SEN_OV7620AE,
134 SEN_OV7640,
135 SEN_OV7648,
136 SEN_OV7660,
137 SEN_OV7670,
138 SEN_OV76BE,
139 SEN_OV8610,
140 SEN_OV9600,
143 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
144 the ov sensors which is already present here. When we have the time we
145 really should move the sensor drivers to v4l2 sub drivers. */
146 #include "w996Xcf.c"
148 /* V4L2 controls supported by the driver */
149 static void setbrightness(struct gspca_dev *gspca_dev);
150 static void setcontrast(struct gspca_dev *gspca_dev);
151 static void setexposure(struct gspca_dev *gspca_dev);
152 static void setcolors(struct gspca_dev *gspca_dev);
153 static void sethvflip(struct gspca_dev *gspca_dev);
154 static void setautobright(struct gspca_dev *gspca_dev);
155 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
156 static void setfreq(struct gspca_dev *gspca_dev);
157 static void setfreq_i(struct sd *sd);
159 static const struct ctrl sd_ctrls[] = {
160 [BRIGHTNESS] = {
162 .id = V4L2_CID_BRIGHTNESS,
163 .type = V4L2_CTRL_TYPE_INTEGER,
164 .name = "Brightness",
165 .minimum = 0,
166 .maximum = 255,
167 .step = 1,
168 .default_value = 127,
170 .set_control = setbrightness,
172 [CONTRAST] = {
174 .id = V4L2_CID_CONTRAST,
175 .type = V4L2_CTRL_TYPE_INTEGER,
176 .name = "Contrast",
177 .minimum = 0,
178 .maximum = 255,
179 .step = 1,
180 .default_value = 127,
182 .set_control = setcontrast,
184 [EXPOSURE] = {
186 .id = V4L2_CID_EXPOSURE,
187 .type = V4L2_CTRL_TYPE_INTEGER,
188 .name = "Exposure",
189 .minimum = 0,
190 .maximum = 255,
191 .step = 1,
192 .default_value = 127,
194 .set_control = setexposure,
196 [COLORS] = {
198 .id = V4L2_CID_SATURATION,
199 .type = V4L2_CTRL_TYPE_INTEGER,
200 .name = "Color",
201 .minimum = 0,
202 .maximum = 255,
203 .step = 1,
204 .default_value = 127,
206 .set_control = setcolors,
208 /* The flip controls work for sensors ov7660 and ov7670 only */
209 [HFLIP] = {
211 .id = V4L2_CID_HFLIP,
212 .type = V4L2_CTRL_TYPE_BOOLEAN,
213 .name = "Mirror",
214 .minimum = 0,
215 .maximum = 1,
216 .step = 1,
217 .default_value = 0,
219 .set_control = sethvflip,
221 [VFLIP] = {
223 .id = V4L2_CID_VFLIP,
224 .type = V4L2_CTRL_TYPE_BOOLEAN,
225 .name = "Vflip",
226 .minimum = 0,
227 .maximum = 1,
228 .step = 1,
229 .default_value = 0,
231 .set_control = sethvflip,
233 [AUTOBRIGHT] = {
235 .id = V4L2_CID_AUTOBRIGHTNESS,
236 .type = V4L2_CTRL_TYPE_BOOLEAN,
237 .name = "Auto Brightness",
238 .minimum = 0,
239 .maximum = 1,
240 .step = 1,
241 .default_value = 1,
243 .set_control = setautobright,
245 [AUTOGAIN] = {
247 .id = V4L2_CID_AUTOGAIN,
248 .type = V4L2_CTRL_TYPE_BOOLEAN,
249 .name = "Auto Gain",
250 .minimum = 0,
251 .maximum = 1,
252 .step = 1,
253 .default_value = 1,
254 .flags = V4L2_CTRL_FLAG_UPDATE
256 .set = sd_setautogain,
258 [FREQ] = {
260 .id = V4L2_CID_POWER_LINE_FREQUENCY,
261 .type = V4L2_CTRL_TYPE_MENU,
262 .name = "Light frequency filter",
263 .minimum = 0,
264 .maximum = 2, /* 0: no flicker, 1: 50Hz, 2:60Hz, 3: auto */
265 .step = 1,
266 .default_value = 0,
268 .set_control = setfreq,
272 /* table of the disabled controls */
273 static const unsigned ctrl_dis[] = {
274 [SEN_OV2610] = ((1 << NCTRL) - 1) /* no control */
275 ^ ((1 << EXPOSURE) /* but exposure */
276 | (1 << AUTOGAIN)), /* and autogain */
278 [SEN_OV2610AE] = ((1 << NCTRL) - 1) /* no control */
279 ^ ((1 << EXPOSURE) /* but exposure */
280 | (1 << AUTOGAIN)), /* and autogain */
282 [SEN_OV3610] = (1 << NCTRL) - 1, /* no control */
284 [SEN_OV6620] = (1 << HFLIP) |
285 (1 << VFLIP) |
286 (1 << EXPOSURE) |
287 (1 << AUTOGAIN),
289 [SEN_OV6630] = (1 << HFLIP) |
290 (1 << VFLIP) |
291 (1 << EXPOSURE) |
292 (1 << AUTOGAIN),
294 [SEN_OV66308AF] = (1 << HFLIP) |
295 (1 << VFLIP) |
296 (1 << EXPOSURE) |
297 (1 << AUTOGAIN),
299 [SEN_OV7610] = (1 << HFLIP) |
300 (1 << VFLIP) |
301 (1 << EXPOSURE) |
302 (1 << AUTOGAIN),
304 [SEN_OV7620] = (1 << HFLIP) |
305 (1 << VFLIP) |
306 (1 << EXPOSURE) |
307 (1 << AUTOGAIN),
309 [SEN_OV7620AE] = (1 << HFLIP) |
310 (1 << VFLIP) |
311 (1 << EXPOSURE) |
312 (1 << AUTOGAIN),
314 [SEN_OV7640] = (1 << HFLIP) |
315 (1 << VFLIP) |
316 (1 << AUTOBRIGHT) |
317 (1 << CONTRAST) |
318 (1 << EXPOSURE) |
319 (1 << AUTOGAIN),
321 [SEN_OV7648] = (1 << HFLIP) |
322 (1 << VFLIP) |
323 (1 << AUTOBRIGHT) |
324 (1 << CONTRAST) |
325 (1 << EXPOSURE) |
326 (1 << AUTOGAIN),
328 [SEN_OV7660] = (1 << AUTOBRIGHT) |
329 (1 << EXPOSURE) |
330 (1 << AUTOGAIN),
332 [SEN_OV7670] = (1 << COLORS) |
333 (1 << AUTOBRIGHT) |
334 (1 << EXPOSURE) |
335 (1 << AUTOGAIN),
337 [SEN_OV76BE] = (1 << HFLIP) |
338 (1 << VFLIP) |
339 (1 << EXPOSURE) |
340 (1 << AUTOGAIN),
342 [SEN_OV8610] = (1 << HFLIP) |
343 (1 << VFLIP) |
344 (1 << EXPOSURE) |
345 (1 << AUTOGAIN) |
346 (1 << FREQ),
347 [SEN_OV9600] = ((1 << NCTRL) - 1) /* no control */
348 ^ ((1 << EXPOSURE) /* but exposure */
349 | (1 << AUTOGAIN)), /* and autogain */
353 static const struct v4l2_pix_format ov519_vga_mode[] = {
354 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
355 .bytesperline = 320,
356 .sizeimage = 320 * 240 * 3 / 8 + 590,
357 .colorspace = V4L2_COLORSPACE_JPEG,
358 .priv = 1},
359 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
360 .bytesperline = 640,
361 .sizeimage = 640 * 480 * 3 / 8 + 590,
362 .colorspace = V4L2_COLORSPACE_JPEG,
363 .priv = 0},
365 static const struct v4l2_pix_format ov519_sif_mode[] = {
366 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
367 .bytesperline = 160,
368 .sizeimage = 160 * 120 * 3 / 8 + 590,
369 .colorspace = V4L2_COLORSPACE_JPEG,
370 .priv = 3},
371 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
372 .bytesperline = 176,
373 .sizeimage = 176 * 144 * 3 / 8 + 590,
374 .colorspace = V4L2_COLORSPACE_JPEG,
375 .priv = 1},
376 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
377 .bytesperline = 320,
378 .sizeimage = 320 * 240 * 3 / 8 + 590,
379 .colorspace = V4L2_COLORSPACE_JPEG,
380 .priv = 2},
381 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
382 .bytesperline = 352,
383 .sizeimage = 352 * 288 * 3 / 8 + 590,
384 .colorspace = V4L2_COLORSPACE_JPEG,
385 .priv = 0},
388 /* Note some of the sizeimage values for the ov511 / ov518 may seem
389 larger then necessary, however they need to be this big as the ov511 /
390 ov518 always fills the entire isoc frame, using 0 padding bytes when
391 it doesn't have any data. So with low framerates the amount of data
392 transferred can become quite large (libv4l will remove all the 0 padding
393 in userspace). */
394 static const struct v4l2_pix_format ov518_vga_mode[] = {
395 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
396 .bytesperline = 320,
397 .sizeimage = 320 * 240 * 3,
398 .colorspace = V4L2_COLORSPACE_JPEG,
399 .priv = 1},
400 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
401 .bytesperline = 640,
402 .sizeimage = 640 * 480 * 2,
403 .colorspace = V4L2_COLORSPACE_JPEG,
404 .priv = 0},
406 static const struct v4l2_pix_format ov518_sif_mode[] = {
407 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
408 .bytesperline = 160,
409 .sizeimage = 70000,
410 .colorspace = V4L2_COLORSPACE_JPEG,
411 .priv = 3},
412 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
413 .bytesperline = 176,
414 .sizeimage = 70000,
415 .colorspace = V4L2_COLORSPACE_JPEG,
416 .priv = 1},
417 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
418 .bytesperline = 320,
419 .sizeimage = 320 * 240 * 3,
420 .colorspace = V4L2_COLORSPACE_JPEG,
421 .priv = 2},
422 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
423 .bytesperline = 352,
424 .sizeimage = 352 * 288 * 3,
425 .colorspace = V4L2_COLORSPACE_JPEG,
426 .priv = 0},
429 static const struct v4l2_pix_format ov511_vga_mode[] = {
430 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
431 .bytesperline = 320,
432 .sizeimage = 320 * 240 * 3,
433 .colorspace = V4L2_COLORSPACE_JPEG,
434 .priv = 1},
435 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
436 .bytesperline = 640,
437 .sizeimage = 640 * 480 * 2,
438 .colorspace = V4L2_COLORSPACE_JPEG,
439 .priv = 0},
441 static const struct v4l2_pix_format ov511_sif_mode[] = {
442 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
443 .bytesperline = 160,
444 .sizeimage = 70000,
445 .colorspace = V4L2_COLORSPACE_JPEG,
446 .priv = 3},
447 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
448 .bytesperline = 176,
449 .sizeimage = 70000,
450 .colorspace = V4L2_COLORSPACE_JPEG,
451 .priv = 1},
452 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
453 .bytesperline = 320,
454 .sizeimage = 320 * 240 * 3,
455 .colorspace = V4L2_COLORSPACE_JPEG,
456 .priv = 2},
457 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
458 .bytesperline = 352,
459 .sizeimage = 352 * 288 * 3,
460 .colorspace = V4L2_COLORSPACE_JPEG,
461 .priv = 0},
464 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
465 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
466 .bytesperline = 320,
467 .sizeimage = 320 * 240,
468 .colorspace = V4L2_COLORSPACE_SRGB,
469 .priv = 1},
470 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
471 .bytesperline = 640,
472 .sizeimage = 640 * 480,
473 .colorspace = V4L2_COLORSPACE_SRGB,
474 .priv = 0},
476 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
477 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
478 .bytesperline = 160,
479 .sizeimage = 160 * 120,
480 .colorspace = V4L2_COLORSPACE_SRGB,
481 .priv = 3},
482 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
483 .bytesperline = 176,
484 .sizeimage = 176 * 144,
485 .colorspace = V4L2_COLORSPACE_SRGB,
486 .priv = 1},
487 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
488 .bytesperline = 320,
489 .sizeimage = 320 * 240,
490 .colorspace = V4L2_COLORSPACE_SRGB,
491 .priv = 2},
492 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
493 .bytesperline = 352,
494 .sizeimage = 352 * 288,
495 .colorspace = V4L2_COLORSPACE_SRGB,
496 .priv = 0},
498 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
499 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
500 .bytesperline = 800,
501 .sizeimage = 800 * 600,
502 .colorspace = V4L2_COLORSPACE_SRGB,
503 .priv = 1},
504 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
505 .bytesperline = 1600,
506 .sizeimage = 1600 * 1200,
507 .colorspace = V4L2_COLORSPACE_SRGB},
509 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
510 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
511 .bytesperline = 640,
512 .sizeimage = 640 * 480,
513 .colorspace = V4L2_COLORSPACE_SRGB,
514 .priv = 1},
515 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
516 .bytesperline = 800,
517 .sizeimage = 800 * 600,
518 .colorspace = V4L2_COLORSPACE_SRGB,
519 .priv = 1},
520 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
521 .bytesperline = 1024,
522 .sizeimage = 1024 * 768,
523 .colorspace = V4L2_COLORSPACE_SRGB,
524 .priv = 1},
525 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
526 .bytesperline = 1600,
527 .sizeimage = 1600 * 1200,
528 .colorspace = V4L2_COLORSPACE_SRGB,
529 .priv = 0},
530 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
531 .bytesperline = 2048,
532 .sizeimage = 2048 * 1536,
533 .colorspace = V4L2_COLORSPACE_SRGB,
534 .priv = 0},
536 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
537 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
538 .bytesperline = 640,
539 .sizeimage = 640 * 480,
540 .colorspace = V4L2_COLORSPACE_SRGB,
541 .priv = 1},
542 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
543 .bytesperline = 1280,
544 .sizeimage = 1280 * 1024,
545 .colorspace = V4L2_COLORSPACE_SRGB},
548 /* Registers common to OV511 / OV518 */
549 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
550 #define R51x_SYS_RESET 0x50
551 /* Reset type flags */
552 #define OV511_RESET_OMNICE 0x08
553 #define R51x_SYS_INIT 0x53
554 #define R51x_SYS_SNAP 0x52
555 #define R51x_SYS_CUST_ID 0x5f
556 #define R51x_COMP_LUT_BEGIN 0x80
558 /* OV511 Camera interface register numbers */
559 #define R511_CAM_DELAY 0x10
560 #define R511_CAM_EDGE 0x11
561 #define R511_CAM_PXCNT 0x12
562 #define R511_CAM_LNCNT 0x13
563 #define R511_CAM_PXDIV 0x14
564 #define R511_CAM_LNDIV 0x15
565 #define R511_CAM_UV_EN 0x16
566 #define R511_CAM_LINE_MODE 0x17
567 #define R511_CAM_OPTS 0x18
569 #define R511_SNAP_FRAME 0x19
570 #define R511_SNAP_PXCNT 0x1a
571 #define R511_SNAP_LNCNT 0x1b
572 #define R511_SNAP_PXDIV 0x1c
573 #define R511_SNAP_LNDIV 0x1d
574 #define R511_SNAP_UV_EN 0x1e
575 #define R511_SNAP_OPTS 0x1f
577 #define R511_DRAM_FLOW_CTL 0x20
578 #define R511_FIFO_OPTS 0x31
579 #define R511_I2C_CTL 0x40
580 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
581 #define R511_COMP_EN 0x78
582 #define R511_COMP_LUT_EN 0x79
584 /* OV518 Camera interface register numbers */
585 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
586 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
588 /* OV519 Camera interface register numbers */
589 #define OV519_R10_H_SIZE 0x10
590 #define OV519_R11_V_SIZE 0x11
591 #define OV519_R12_X_OFFSETL 0x12
592 #define OV519_R13_X_OFFSETH 0x13
593 #define OV519_R14_Y_OFFSETL 0x14
594 #define OV519_R15_Y_OFFSETH 0x15
595 #define OV519_R16_DIVIDER 0x16
596 #define OV519_R20_DFR 0x20
597 #define OV519_R25_FORMAT 0x25
599 /* OV519 System Controller register numbers */
600 #define OV519_R51_RESET1 0x51
601 #define OV519_R54_EN_CLK1 0x54
602 #define OV519_R57_SNAPSHOT 0x57
604 #define OV519_GPIO_DATA_OUT0 0x71
605 #define OV519_GPIO_IO_CTRL0 0x72
607 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
610 * The FX2 chip does not give us a zero length read at end of frame.
611 * It does, however, give a short read at the end of a frame, if
612 * necessary, rather than run two frames together.
614 * By choosing the right bulk transfer size, we are guaranteed to always
615 * get a short read for the last read of each frame. Frame sizes are
616 * always a composite number (width * height, or a multiple) so if we
617 * choose a prime number, we are guaranteed that the last read of a
618 * frame will be short.
620 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
621 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
622 * to figure out why. [PMiller]
624 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
626 * It isn't enough to know the number of bytes per frame, in case we
627 * have data dropouts or buffer overruns (even though the FX2 double
628 * buffers, there are some pretty strict real time constraints for
629 * isochronous transfer for larger frame sizes).
631 /*jfm: this value does not work for 800x600 - see isoc_init */
632 #define OVFX2_BULK_SIZE (13 * 4096)
634 /* I2C registers */
635 #define R51x_I2C_W_SID 0x41
636 #define R51x_I2C_SADDR_3 0x42
637 #define R51x_I2C_SADDR_2 0x43
638 #define R51x_I2C_R_SID 0x44
639 #define R51x_I2C_DATA 0x45
640 #define R518_I2C_CTL 0x47 /* OV518(+) only */
641 #define OVFX2_I2C_ADDR 0x00
643 /* I2C ADDRESSES */
644 #define OV7xx0_SID 0x42
645 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
646 #define OV8xx0_SID 0xa0
647 #define OV6xx0_SID 0xc0
649 /* OV7610 registers */
650 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
651 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
652 #define OV7610_REG_RED 0x02 /* red channel balance */
653 #define OV7610_REG_SAT 0x03 /* saturation */
654 #define OV8610_REG_HUE 0x04 /* 04 reserved */
655 #define OV7610_REG_CNT 0x05 /* Y contrast */
656 #define OV7610_REG_BRT 0x06 /* Y brightness */
657 #define OV7610_REG_COM_C 0x14 /* misc common regs */
658 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
659 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
660 #define OV7610_REG_COM_I 0x29 /* misc settings */
662 /* OV7660 and OV7670 registers */
663 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
664 #define OV7670_R01_BLUE 0x01 /* blue gain */
665 #define OV7670_R02_RED 0x02 /* red gain */
666 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
667 #define OV7670_R04_COM1 0x04 /* Control 1 */
668 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
669 #define OV7670_R0C_COM3 0x0c /* Control 3 */
670 #define OV7670_R0D_COM4 0x0d /* Control 4 */
671 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
672 #define OV7670_R0F_COM6 0x0f /* Control 6 */
673 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
674 #define OV7670_R11_CLKRC 0x11 /* Clock control */
675 #define OV7670_R12_COM7 0x12 /* Control 7 */
676 #define OV7670_COM7_FMT_VGA 0x00
677 /*#define OV7670_COM7_YUV 0x00 * YUV */
678 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
679 #define OV7670_COM7_FMT_MASK 0x38
680 #define OV7670_COM7_RESET 0x80 /* Register reset */
681 #define OV7670_R13_COM8 0x13 /* Control 8 */
682 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
683 #define OV7670_COM8_AWB 0x02 /* White balance enable */
684 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
685 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
686 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
687 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
688 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
689 #define OV7670_R15_COM10 0x15 /* Control 10 */
690 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
691 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
692 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
693 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
694 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
695 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
696 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
697 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
698 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
699 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
700 #define OV7670_R32_HREF 0x32 /* HREF pieces */
701 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
702 #define OV7670_R3B_COM11 0x3b /* Control 11 */
703 #define OV7670_COM11_EXP 0x02
704 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
705 #define OV7670_R3C_COM12 0x3c /* Control 12 */
706 #define OV7670_R3D_COM13 0x3d /* Control 13 */
707 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
708 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
709 #define OV7670_R3E_COM14 0x3e /* Control 14 */
710 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
711 #define OV7670_R40_COM15 0x40 /* Control 15 */
712 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
713 #define OV7670_R41_COM16 0x41 /* Control 16 */
714 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
715 /* end of ov7660 common registers */
716 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
717 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
718 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
719 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
720 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
721 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
722 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
723 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
724 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
725 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
726 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
727 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
728 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
730 struct ov_regvals {
731 u8 reg;
732 u8 val;
734 struct ov_i2c_regvals {
735 u8 reg;
736 u8 val;
739 /* Settings for OV2610 camera chip */
740 static const struct ov_i2c_regvals norm_2610[] = {
741 { 0x12, 0x80 }, /* reset */
744 static const struct ov_i2c_regvals norm_2610ae[] = {
745 {0x12, 0x80}, /* reset */
746 {0x13, 0xcd},
747 {0x09, 0x01},
748 {0x0d, 0x00},
749 {0x11, 0x80},
750 {0x12, 0x20}, /* 1600x1200 */
751 {0x33, 0x0c},
752 {0x35, 0x90},
753 {0x36, 0x37},
754 /* ms-win traces */
755 {0x11, 0x83}, /* clock / 3 ? */
756 {0x2d, 0x00}, /* 60 Hz filter */
757 {0x24, 0xb0}, /* normal colors */
758 {0x25, 0x90},
759 {0x10, 0x43},
762 static const struct ov_i2c_regvals norm_3620b[] = {
764 * From the datasheet: "Note that after writing to register COMH
765 * (0x12) to change the sensor mode, registers related to the
766 * sensor’s cropping window will be reset back to their default
767 * values."
769 * "wait 4096 external clock ... to make sure the sensor is
770 * stable and ready to access registers" i.e. 160us at 24MHz
772 { 0x12, 0x80 }, /* COMH reset */
773 { 0x12, 0x00 }, /* QXGA, master */
776 * 11 CLKRC "Clock Rate Control"
777 * [7] internal frequency doublers: on
778 * [6] video port mode: master
779 * [5:0] clock divider: 1
781 { 0x11, 0x80 },
784 * 13 COMI "Common Control I"
785 * = 192 (0xC0) 11000000
786 * COMI[7] "AEC speed selection"
787 * = 1 (0x01) 1....... "Faster AEC correction"
788 * COMI[6] "AEC speed step selection"
789 * = 1 (0x01) .1...... "Big steps, fast"
790 * COMI[5] "Banding filter on off"
791 * = 0 (0x00) ..0..... "Off"
792 * COMI[4] "Banding filter option"
793 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
794 * the PLL is ON"
795 * COMI[3] "Reserved"
796 * = 0 (0x00) ....0...
797 * COMI[2] "AGC auto manual control selection"
798 * = 0 (0x00) .....0.. "Manual"
799 * COMI[1] "AWB auto manual control selection"
800 * = 0 (0x00) ......0. "Manual"
801 * COMI[0] "Exposure control"
802 * = 0 (0x00) .......0 "Manual"
804 { 0x13, 0xc0 },
807 * 09 COMC "Common Control C"
808 * = 8 (0x08) 00001000
809 * COMC[7:5] "Reserved"
810 * = 0 (0x00) 000.....
811 * COMC[4] "Sleep Mode Enable"
812 * = 0 (0x00) ...0.... "Normal mode"
813 * COMC[3:2] "Sensor sampling reset timing selection"
814 * = 2 (0x02) ....10.. "Longer reset time"
815 * COMC[1:0] "Output drive current select"
816 * = 0 (0x00) ......00 "Weakest"
818 { 0x09, 0x08 },
821 * 0C COMD "Common Control D"
822 * = 8 (0x08) 00001000
823 * COMD[7] "Reserved"
824 * = 0 (0x00) 0.......
825 * COMD[6] "Swap MSB and LSB at the output port"
826 * = 0 (0x00) .0...... "False"
827 * COMD[5:3] "Reserved"
828 * = 1 (0x01) ..001...
829 * COMD[2] "Output Average On Off"
830 * = 0 (0x00) .....0.. "Output Normal"
831 * COMD[1] "Sensor precharge voltage selection"
832 * = 0 (0x00) ......0. "Selects internal
833 * reference precharge
834 * voltage"
835 * COMD[0] "Snapshot option"
836 * = 0 (0x00) .......0 "Enable live video output
837 * after snapshot sequence"
839 { 0x0c, 0x08 },
842 * 0D COME "Common Control E"
843 * = 161 (0xA1) 10100001
844 * COME[7] "Output average option"
845 * = 1 (0x01) 1....... "Output average of 4 pixels"
846 * COME[6] "Anti-blooming control"
847 * = 0 (0x00) .0...... "Off"
848 * COME[5:3] "Reserved"
849 * = 4 (0x04) ..100...
850 * COME[2] "Clock output power down pin status"
851 * = 0 (0x00) .....0.. "Tri-state data output pin
852 * on power down"
853 * COME[1] "Data output pin status selection at power down"
854 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
855 * HREF, and CHSYNC pins on
856 * power down"
857 * COME[0] "Auto zero circuit select"
858 * = 1 (0x01) .......1 "On"
860 { 0x0d, 0xa1 },
863 * 0E COMF "Common Control F"
864 * = 112 (0x70) 01110000
865 * COMF[7] "System clock selection"
866 * = 0 (0x00) 0....... "Use 24 MHz system clock"
867 * COMF[6:4] "Reserved"
868 * = 7 (0x07) .111....
869 * COMF[3] "Manual auto negative offset canceling selection"
870 * = 0 (0x00) ....0... "Auto detect negative
871 * offset and cancel it"
872 * COMF[2:0] "Reserved"
873 * = 0 (0x00) .....000
875 { 0x0e, 0x70 },
878 * 0F COMG "Common Control G"
879 * = 66 (0x42) 01000010
880 * COMG[7] "Optical black output selection"
881 * = 0 (0x00) 0....... "Disable"
882 * COMG[6] "Black level calibrate selection"
883 * = 1 (0x01) .1...... "Use optical black pixels
884 * to calibrate"
885 * COMG[5:4] "Reserved"
886 * = 0 (0x00) ..00....
887 * COMG[3] "Channel offset adjustment"
888 * = 0 (0x00) ....0... "Disable offset adjustment"
889 * COMG[2] "ADC black level calibration option"
890 * = 0 (0x00) .....0.. "Use B/G line and G/R
891 * line to calibrate each
892 * channel's black level"
893 * COMG[1] "Reserved"
894 * = 1 (0x01) ......1.
895 * COMG[0] "ADC black level calibration enable"
896 * = 0 (0x00) .......0 "Disable"
898 { 0x0f, 0x42 },
901 * 14 COMJ "Common Control J"
902 * = 198 (0xC6) 11000110
903 * COMJ[7:6] "AGC gain ceiling"
904 * = 3 (0x03) 11...... "8x"
905 * COMJ[5:4] "Reserved"
906 * = 0 (0x00) ..00....
907 * COMJ[3] "Auto banding filter"
908 * = 0 (0x00) ....0... "Banding filter is always
909 * on off depending on
910 * COMI[5] setting"
911 * COMJ[2] "VSYNC drop option"
912 * = 1 (0x01) .....1.. "SYNC is dropped if frame
913 * data is dropped"
914 * COMJ[1] "Frame data drop"
915 * = 1 (0x01) ......1. "Drop frame data if
916 * exposure is not within
917 * tolerance. In AEC mode,
918 * data is normally dropped
919 * when data is out of
920 * range."
921 * COMJ[0] "Reserved"
922 * = 0 (0x00) .......0
924 { 0x14, 0xc6 },
927 * 15 COMK "Common Control K"
928 * = 2 (0x02) 00000010
929 * COMK[7] "CHSYNC pin output swap"
930 * = 0 (0x00) 0....... "CHSYNC"
931 * COMK[6] "HREF pin output swap"
932 * = 0 (0x00) .0...... "HREF"
933 * COMK[5] "PCLK output selection"
934 * = 0 (0x00) ..0..... "PCLK always output"
935 * COMK[4] "PCLK edge selection"
936 * = 0 (0x00) ...0.... "Data valid on falling edge"
937 * COMK[3] "HREF output polarity"
938 * = 0 (0x00) ....0... "positive"
939 * COMK[2] "Reserved"
940 * = 0 (0x00) .....0..
941 * COMK[1] "VSYNC polarity"
942 * = 1 (0x01) ......1. "negative"
943 * COMK[0] "HSYNC polarity"
944 * = 0 (0x00) .......0 "positive"
946 { 0x15, 0x02 },
949 * 33 CHLF "Current Control"
950 * = 9 (0x09) 00001001
951 * CHLF[7:6] "Sensor current control"
952 * = 0 (0x00) 00......
953 * CHLF[5] "Sensor current range control"
954 * = 0 (0x00) ..0..... "normal range"
955 * CHLF[4] "Sensor current"
956 * = 0 (0x00) ...0.... "normal current"
957 * CHLF[3] "Sensor buffer current control"
958 * = 1 (0x01) ....1... "half current"
959 * CHLF[2] "Column buffer current control"
960 * = 0 (0x00) .....0.. "normal current"
961 * CHLF[1] "Analog DSP current control"
962 * = 0 (0x00) ......0. "normal current"
963 * CHLF[1] "ADC current control"
964 * = 0 (0x00) ......0. "normal current"
966 { 0x33, 0x09 },
969 * 34 VBLM "Blooming Control"
970 * = 80 (0x50) 01010000
971 * VBLM[7] "Hard soft reset switch"
972 * = 0 (0x00) 0....... "Hard reset"
973 * VBLM[6:4] "Blooming voltage selection"
974 * = 5 (0x05) .101....
975 * VBLM[3:0] "Sensor current control"
976 * = 0 (0x00) ....0000
978 { 0x34, 0x50 },
981 * 36 VCHG "Sensor Precharge Voltage Control"
982 * = 0 (0x00) 00000000
983 * VCHG[7] "Reserved"
984 * = 0 (0x00) 0.......
985 * VCHG[6:4] "Sensor precharge voltage control"
986 * = 0 (0x00) .000....
987 * VCHG[3:0] "Sensor array common reference"
988 * = 0 (0x00) ....0000
990 { 0x36, 0x00 },
993 * 37 ADC "ADC Reference Control"
994 * = 4 (0x04) 00000100
995 * ADC[7:4] "Reserved"
996 * = 0 (0x00) 0000....
997 * ADC[3] "ADC input signal range"
998 * = 0 (0x00) ....0... "Input signal 1.0x"
999 * ADC[2:0] "ADC range control"
1000 * = 4 (0x04) .....100
1002 { 0x37, 0x04 },
1005 * 38 ACOM "Analog Common Ground"
1006 * = 82 (0x52) 01010010
1007 * ACOM[7] "Analog gain control"
1008 * = 0 (0x00) 0....... "Gain 1x"
1009 * ACOM[6] "Analog black level calibration"
1010 * = 1 (0x01) .1...... "On"
1011 * ACOM[5:0] "Reserved"
1012 * = 18 (0x12) ..010010
1014 { 0x38, 0x52 },
1017 * 3A FREFA "Internal Reference Adjustment"
1018 * = 0 (0x00) 00000000
1019 * FREFA[7:0] "Range"
1020 * = 0 (0x00) 00000000
1022 { 0x3a, 0x00 },
1025 * 3C FVOPT "Internal Reference Adjustment"
1026 * = 31 (0x1F) 00011111
1027 * FVOPT[7:0] "Range"
1028 * = 31 (0x1F) 00011111
1030 { 0x3c, 0x1f },
1033 * 44 Undocumented = 0 (0x00) 00000000
1034 * 44[7:0] "It's a secret"
1035 * = 0 (0x00) 00000000
1037 { 0x44, 0x00 },
1040 * 40 Undocumented = 0 (0x00) 00000000
1041 * 40[7:0] "It's a secret"
1042 * = 0 (0x00) 00000000
1044 { 0x40, 0x00 },
1047 * 41 Undocumented = 0 (0x00) 00000000
1048 * 41[7:0] "It's a secret"
1049 * = 0 (0x00) 00000000
1051 { 0x41, 0x00 },
1054 * 42 Undocumented = 0 (0x00) 00000000
1055 * 42[7:0] "It's a secret"
1056 * = 0 (0x00) 00000000
1058 { 0x42, 0x00 },
1061 * 43 Undocumented = 0 (0x00) 00000000
1062 * 43[7:0] "It's a secret"
1063 * = 0 (0x00) 00000000
1065 { 0x43, 0x00 },
1068 * 45 Undocumented = 128 (0x80) 10000000
1069 * 45[7:0] "It's a secret"
1070 * = 128 (0x80) 10000000
1072 { 0x45, 0x80 },
1075 * 48 Undocumented = 192 (0xC0) 11000000
1076 * 48[7:0] "It's a secret"
1077 * = 192 (0xC0) 11000000
1079 { 0x48, 0xc0 },
1082 * 49 Undocumented = 25 (0x19) 00011001
1083 * 49[7:0] "It's a secret"
1084 * = 25 (0x19) 00011001
1086 { 0x49, 0x19 },
1089 * 4B Undocumented = 128 (0x80) 10000000
1090 * 4B[7:0] "It's a secret"
1091 * = 128 (0x80) 10000000
1093 { 0x4b, 0x80 },
1096 * 4D Undocumented = 196 (0xC4) 11000100
1097 * 4D[7:0] "It's a secret"
1098 * = 196 (0xC4) 11000100
1100 { 0x4d, 0xc4 },
1103 * 35 VREF "Reference Voltage Control"
1104 * = 76 (0x4c) 01001100
1105 * VREF[7:5] "Column high reference control"
1106 * = 2 (0x02) 010..... "higher voltage"
1107 * VREF[4:2] "Column low reference control"
1108 * = 3 (0x03) ...011.. "Highest voltage"
1109 * VREF[1:0] "Reserved"
1110 * = 0 (0x00) ......00
1112 { 0x35, 0x4c },
1115 * 3D Undocumented = 0 (0x00) 00000000
1116 * 3D[7:0] "It's a secret"
1117 * = 0 (0x00) 00000000
1119 { 0x3d, 0x00 },
1122 * 3E Undocumented = 0 (0x00) 00000000
1123 * 3E[7:0] "It's a secret"
1124 * = 0 (0x00) 00000000
1126 { 0x3e, 0x00 },
1129 * 3B FREFB "Internal Reference Adjustment"
1130 * = 24 (0x18) 00011000
1131 * FREFB[7:0] "Range"
1132 * = 24 (0x18) 00011000
1134 { 0x3b, 0x18 },
1137 * 33 CHLF "Current Control"
1138 * = 25 (0x19) 00011001
1139 * CHLF[7:6] "Sensor current control"
1140 * = 0 (0x00) 00......
1141 * CHLF[5] "Sensor current range control"
1142 * = 0 (0x00) ..0..... "normal range"
1143 * CHLF[4] "Sensor current"
1144 * = 1 (0x01) ...1.... "double current"
1145 * CHLF[3] "Sensor buffer current control"
1146 * = 1 (0x01) ....1... "half current"
1147 * CHLF[2] "Column buffer current control"
1148 * = 0 (0x00) .....0.. "normal current"
1149 * CHLF[1] "Analog DSP current control"
1150 * = 0 (0x00) ......0. "normal current"
1151 * CHLF[1] "ADC current control"
1152 * = 0 (0x00) ......0. "normal current"
1154 { 0x33, 0x19 },
1157 * 34 VBLM "Blooming Control"
1158 * = 90 (0x5A) 01011010
1159 * VBLM[7] "Hard soft reset switch"
1160 * = 0 (0x00) 0....... "Hard reset"
1161 * VBLM[6:4] "Blooming voltage selection"
1162 * = 5 (0x05) .101....
1163 * VBLM[3:0] "Sensor current control"
1164 * = 10 (0x0A) ....1010
1166 { 0x34, 0x5a },
1169 * 3B FREFB "Internal Reference Adjustment"
1170 * = 0 (0x00) 00000000
1171 * FREFB[7:0] "Range"
1172 * = 0 (0x00) 00000000
1174 { 0x3b, 0x00 },
1177 * 33 CHLF "Current Control"
1178 * = 9 (0x09) 00001001
1179 * CHLF[7:6] "Sensor current control"
1180 * = 0 (0x00) 00......
1181 * CHLF[5] "Sensor current range control"
1182 * = 0 (0x00) ..0..... "normal range"
1183 * CHLF[4] "Sensor current"
1184 * = 0 (0x00) ...0.... "normal current"
1185 * CHLF[3] "Sensor buffer current control"
1186 * = 1 (0x01) ....1... "half current"
1187 * CHLF[2] "Column buffer current control"
1188 * = 0 (0x00) .....0.. "normal current"
1189 * CHLF[1] "Analog DSP current control"
1190 * = 0 (0x00) ......0. "normal current"
1191 * CHLF[1] "ADC current control"
1192 * = 0 (0x00) ......0. "normal current"
1194 { 0x33, 0x09 },
1197 * 34 VBLM "Blooming Control"
1198 * = 80 (0x50) 01010000
1199 * VBLM[7] "Hard soft reset switch"
1200 * = 0 (0x00) 0....... "Hard reset"
1201 * VBLM[6:4] "Blooming voltage selection"
1202 * = 5 (0x05) .101....
1203 * VBLM[3:0] "Sensor current control"
1204 * = 0 (0x00) ....0000
1206 { 0x34, 0x50 },
1209 * 12 COMH "Common Control H"
1210 * = 64 (0x40) 01000000
1211 * COMH[7] "SRST"
1212 * = 0 (0x00) 0....... "No-op"
1213 * COMH[6:4] "Resolution selection"
1214 * = 4 (0x04) .100.... "XGA"
1215 * COMH[3] "Master slave selection"
1216 * = 0 (0x00) ....0... "Master mode"
1217 * COMH[2] "Internal B/R channel option"
1218 * = 0 (0x00) .....0.. "B/R use same channel"
1219 * COMH[1] "Color bar test pattern"
1220 * = 0 (0x00) ......0. "Off"
1221 * COMH[0] "Reserved"
1222 * = 0 (0x00) .......0
1224 { 0x12, 0x40 },
1227 * 17 HREFST "Horizontal window start"
1228 * = 31 (0x1F) 00011111
1229 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1230 * = 31 (0x1F) 00011111
1232 { 0x17, 0x1f },
1235 * 18 HREFEND "Horizontal window end"
1236 * = 95 (0x5F) 01011111
1237 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1238 * = 95 (0x5F) 01011111
1240 { 0x18, 0x5f },
1243 * 19 VSTRT "Vertical window start"
1244 * = 0 (0x00) 00000000
1245 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1246 * = 0 (0x00) 00000000
1248 { 0x19, 0x00 },
1251 * 1A VEND "Vertical window end"
1252 * = 96 (0x60) 01100000
1253 * VEND[7:0] "Vertical Window End, 8 MSBs"
1254 * = 96 (0x60) 01100000
1256 { 0x1a, 0x60 },
1259 * 32 COMM "Common Control M"
1260 * = 18 (0x12) 00010010
1261 * COMM[7:6] "Pixel clock divide option"
1262 * = 0 (0x00) 00...... "/1"
1263 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1264 * = 2 (0x02) ..010...
1265 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1266 * = 2 (0x02) .....010
1268 { 0x32, 0x12 },
1271 * 03 COMA "Common Control A"
1272 * = 74 (0x4A) 01001010
1273 * COMA[7:4] "AWB Update Threshold"
1274 * = 4 (0x04) 0100....
1275 * COMA[3:2] "Vertical window end line control 2 LSBs"
1276 * = 2 (0x02) ....10..
1277 * COMA[1:0] "Vertical window start line control 2 LSBs"
1278 * = 2 (0x02) ......10
1280 { 0x03, 0x4a },
1283 * 11 CLKRC "Clock Rate Control"
1284 * = 128 (0x80) 10000000
1285 * CLKRC[7] "Internal frequency doublers on off seclection"
1286 * = 1 (0x01) 1....... "On"
1287 * CLKRC[6] "Digital video master slave selection"
1288 * = 0 (0x00) .0...... "Master mode, sensor
1289 * provides PCLK"
1290 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1291 * = 0 (0x00) ..000000
1293 { 0x11, 0x80 },
1296 * 12 COMH "Common Control H"
1297 * = 0 (0x00) 00000000
1298 * COMH[7] "SRST"
1299 * = 0 (0x00) 0....... "No-op"
1300 * COMH[6:4] "Resolution selection"
1301 * = 0 (0x00) .000.... "QXGA"
1302 * COMH[3] "Master slave selection"
1303 * = 0 (0x00) ....0... "Master mode"
1304 * COMH[2] "Internal B/R channel option"
1305 * = 0 (0x00) .....0.. "B/R use same channel"
1306 * COMH[1] "Color bar test pattern"
1307 * = 0 (0x00) ......0. "Off"
1308 * COMH[0] "Reserved"
1309 * = 0 (0x00) .......0
1311 { 0x12, 0x00 },
1314 * 12 COMH "Common Control H"
1315 * = 64 (0x40) 01000000
1316 * COMH[7] "SRST"
1317 * = 0 (0x00) 0....... "No-op"
1318 * COMH[6:4] "Resolution selection"
1319 * = 4 (0x04) .100.... "XGA"
1320 * COMH[3] "Master slave selection"
1321 * = 0 (0x00) ....0... "Master mode"
1322 * COMH[2] "Internal B/R channel option"
1323 * = 0 (0x00) .....0.. "B/R use same channel"
1324 * COMH[1] "Color bar test pattern"
1325 * = 0 (0x00) ......0. "Off"
1326 * COMH[0] "Reserved"
1327 * = 0 (0x00) .......0
1329 { 0x12, 0x40 },
1332 * 17 HREFST "Horizontal window start"
1333 * = 31 (0x1F) 00011111
1334 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1335 * = 31 (0x1F) 00011111
1337 { 0x17, 0x1f },
1340 * 18 HREFEND "Horizontal window end"
1341 * = 95 (0x5F) 01011111
1342 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1343 * = 95 (0x5F) 01011111
1345 { 0x18, 0x5f },
1348 * 19 VSTRT "Vertical window start"
1349 * = 0 (0x00) 00000000
1350 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1351 * = 0 (0x00) 00000000
1353 { 0x19, 0x00 },
1356 * 1A VEND "Vertical window end"
1357 * = 96 (0x60) 01100000
1358 * VEND[7:0] "Vertical Window End, 8 MSBs"
1359 * = 96 (0x60) 01100000
1361 { 0x1a, 0x60 },
1364 * 32 COMM "Common Control M"
1365 * = 18 (0x12) 00010010
1366 * COMM[7:6] "Pixel clock divide option"
1367 * = 0 (0x00) 00...... "/1"
1368 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1369 * = 2 (0x02) ..010...
1370 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1371 * = 2 (0x02) .....010
1373 { 0x32, 0x12 },
1376 * 03 COMA "Common Control A"
1377 * = 74 (0x4A) 01001010
1378 * COMA[7:4] "AWB Update Threshold"
1379 * = 4 (0x04) 0100....
1380 * COMA[3:2] "Vertical window end line control 2 LSBs"
1381 * = 2 (0x02) ....10..
1382 * COMA[1:0] "Vertical window start line control 2 LSBs"
1383 * = 2 (0x02) ......10
1385 { 0x03, 0x4a },
1388 * 02 RED "Red Gain Control"
1389 * = 175 (0xAF) 10101111
1390 * RED[7] "Action"
1391 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1392 * RED[6:0] "Value"
1393 * = 47 (0x2F) .0101111
1395 { 0x02, 0xaf },
1398 * 2D ADDVSL "VSYNC Pulse Width"
1399 * = 210 (0xD2) 11010010
1400 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1401 * = 210 (0xD2) 11010010
1403 { 0x2d, 0xd2 },
1406 * 00 GAIN = 24 (0x18) 00011000
1407 * GAIN[7:6] "Reserved"
1408 * = 0 (0x00) 00......
1409 * GAIN[5] "Double"
1410 * = 0 (0x00) ..0..... "False"
1411 * GAIN[4] "Double"
1412 * = 1 (0x01) ...1.... "True"
1413 * GAIN[3:0] "Range"
1414 * = 8 (0x08) ....1000
1416 { 0x00, 0x18 },
1419 * 01 BLUE "Blue Gain Control"
1420 * = 240 (0xF0) 11110000
1421 * BLUE[7] "Action"
1422 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1423 * BLUE[6:0] "Value"
1424 * = 112 (0x70) .1110000
1426 { 0x01, 0xf0 },
1429 * 10 AEC "Automatic Exposure Control"
1430 * = 10 (0x0A) 00001010
1431 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1432 * = 10 (0x0A) 00001010
1434 { 0x10, 0x0a },
1436 { 0xe1, 0x67 },
1437 { 0xe3, 0x03 },
1438 { 0xe4, 0x26 },
1439 { 0xe5, 0x3e },
1440 { 0xf8, 0x01 },
1441 { 0xff, 0x01 },
1444 static const struct ov_i2c_regvals norm_6x20[] = {
1445 { 0x12, 0x80 }, /* reset */
1446 { 0x11, 0x01 },
1447 { 0x03, 0x60 },
1448 { 0x05, 0x7f }, /* For when autoadjust is off */
1449 { 0x07, 0xa8 },
1450 /* The ratio of 0x0c and 0x0d controls the white point */
1451 { 0x0c, 0x24 },
1452 { 0x0d, 0x24 },
1453 { 0x0f, 0x15 }, /* COMS */
1454 { 0x10, 0x75 }, /* AEC Exposure time */
1455 { 0x12, 0x24 }, /* Enable AGC */
1456 { 0x14, 0x04 },
1457 /* 0x16: 0x06 helps frame stability with moving objects */
1458 { 0x16, 0x06 },
1459 /* { 0x20, 0x30 }, * Aperture correction enable */
1460 { 0x26, 0xb2 }, /* BLC enable */
1461 /* 0x28: 0x05 Selects RGB format if RGB on */
1462 { 0x28, 0x05 },
1463 { 0x2a, 0x04 }, /* Disable framerate adjust */
1464 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1465 { 0x2d, 0x85 },
1466 { 0x33, 0xa0 }, /* Color Processing Parameter */
1467 { 0x34, 0xd2 }, /* Max A/D range */
1468 { 0x38, 0x8b },
1469 { 0x39, 0x40 },
1471 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1472 { 0x3c, 0x3c }, /* Change AEC mode */
1473 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1475 { 0x3d, 0x80 },
1476 /* These next two registers (0x4a, 0x4b) are undocumented.
1477 * They control the color balance */
1478 { 0x4a, 0x80 },
1479 { 0x4b, 0x80 },
1480 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1481 { 0x4e, 0xc1 },
1482 { 0x4f, 0x04 },
1483 /* Do 50-53 have any effect? */
1484 /* Toggle 0x12[2] off and on here? */
1487 static const struct ov_i2c_regvals norm_6x30[] = {
1488 { 0x12, 0x80 }, /* Reset */
1489 { 0x00, 0x1f }, /* Gain */
1490 { 0x01, 0x99 }, /* Blue gain */
1491 { 0x02, 0x7c }, /* Red gain */
1492 { 0x03, 0xc0 }, /* Saturation */
1493 { 0x05, 0x0a }, /* Contrast */
1494 { 0x06, 0x95 }, /* Brightness */
1495 { 0x07, 0x2d }, /* Sharpness */
1496 { 0x0c, 0x20 },
1497 { 0x0d, 0x20 },
1498 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1499 { 0x0f, 0x05 },
1500 { 0x10, 0x9a },
1501 { 0x11, 0x00 }, /* Pixel clock = fastest */
1502 { 0x12, 0x24 }, /* Enable AGC and AWB */
1503 { 0x13, 0x21 },
1504 { 0x14, 0x80 },
1505 { 0x15, 0x01 },
1506 { 0x16, 0x03 },
1507 { 0x17, 0x38 },
1508 { 0x18, 0xea },
1509 { 0x19, 0x04 },
1510 { 0x1a, 0x93 },
1511 { 0x1b, 0x00 },
1512 { 0x1e, 0xc4 },
1513 { 0x1f, 0x04 },
1514 { 0x20, 0x20 },
1515 { 0x21, 0x10 },
1516 { 0x22, 0x88 },
1517 { 0x23, 0xc0 }, /* Crystal circuit power level */
1518 { 0x25, 0x9a }, /* Increase AEC black ratio */
1519 { 0x26, 0xb2 }, /* BLC enable */
1520 { 0x27, 0xa2 },
1521 { 0x28, 0x00 },
1522 { 0x29, 0x00 },
1523 { 0x2a, 0x84 }, /* 60 Hz power */
1524 { 0x2b, 0xa8 }, /* 60 Hz power */
1525 { 0x2c, 0xa0 },
1526 { 0x2d, 0x95 }, /* Enable auto-brightness */
1527 { 0x2e, 0x88 },
1528 { 0x33, 0x26 },
1529 { 0x34, 0x03 },
1530 { 0x36, 0x8f },
1531 { 0x37, 0x80 },
1532 { 0x38, 0x83 },
1533 { 0x39, 0x80 },
1534 { 0x3a, 0x0f },
1535 { 0x3b, 0x3c },
1536 { 0x3c, 0x1a },
1537 { 0x3d, 0x80 },
1538 { 0x3e, 0x80 },
1539 { 0x3f, 0x0e },
1540 { 0x40, 0x00 }, /* White bal */
1541 { 0x41, 0x00 }, /* White bal */
1542 { 0x42, 0x80 },
1543 { 0x43, 0x3f }, /* White bal */
1544 { 0x44, 0x80 },
1545 { 0x45, 0x20 },
1546 { 0x46, 0x20 },
1547 { 0x47, 0x80 },
1548 { 0x48, 0x7f },
1549 { 0x49, 0x00 },
1550 { 0x4a, 0x00 },
1551 { 0x4b, 0x80 },
1552 { 0x4c, 0xd0 },
1553 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1554 { 0x4e, 0x40 },
1555 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1556 { 0x50, 0xff },
1557 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1558 { 0x55, 0xff },
1559 { 0x56, 0x12 },
1560 { 0x57, 0x81 },
1561 { 0x58, 0x75 },
1562 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1563 { 0x5a, 0x2c },
1564 { 0x5b, 0x0f }, /* AWB chrominance levels */
1565 { 0x5c, 0x10 },
1566 { 0x3d, 0x80 },
1567 { 0x27, 0xa6 },
1568 { 0x12, 0x20 }, /* Toggle AWB */
1569 { 0x12, 0x24 },
1572 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1574 * Register 0x0f in the 7610 has the following effects:
1576 * 0x85 (AEC method 1): Best overall, good contrast range
1577 * 0x45 (AEC method 2): Very overexposed
1578 * 0xa5 (spec sheet default): Ok, but the black level is
1579 * shifted resulting in loss of contrast
1580 * 0x05 (old driver setting): very overexposed, too much
1581 * contrast
1583 static const struct ov_i2c_regvals norm_7610[] = {
1584 { 0x10, 0xff },
1585 { 0x16, 0x06 },
1586 { 0x28, 0x24 },
1587 { 0x2b, 0xac },
1588 { 0x12, 0x00 },
1589 { 0x38, 0x81 },
1590 { 0x28, 0x24 }, /* 0c */
1591 { 0x0f, 0x85 }, /* lg's setting */
1592 { 0x15, 0x01 },
1593 { 0x20, 0x1c },
1594 { 0x23, 0x2a },
1595 { 0x24, 0x10 },
1596 { 0x25, 0x8a },
1597 { 0x26, 0xa2 },
1598 { 0x27, 0xc2 },
1599 { 0x2a, 0x04 },
1600 { 0x2c, 0xfe },
1601 { 0x2d, 0x93 },
1602 { 0x30, 0x71 },
1603 { 0x31, 0x60 },
1604 { 0x32, 0x26 },
1605 { 0x33, 0x20 },
1606 { 0x34, 0x48 },
1607 { 0x12, 0x24 },
1608 { 0x11, 0x01 },
1609 { 0x0c, 0x24 },
1610 { 0x0d, 0x24 },
1613 static const struct ov_i2c_regvals norm_7620[] = {
1614 { 0x12, 0x80 }, /* reset */
1615 { 0x00, 0x00 }, /* gain */
1616 { 0x01, 0x80 }, /* blue gain */
1617 { 0x02, 0x80 }, /* red gain */
1618 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1619 { 0x06, 0x60 },
1620 { 0x07, 0x00 },
1621 { 0x0c, 0x24 },
1622 { 0x0c, 0x24 },
1623 { 0x0d, 0x24 },
1624 { 0x11, 0x01 },
1625 { 0x12, 0x24 },
1626 { 0x13, 0x01 },
1627 { 0x14, 0x84 },
1628 { 0x15, 0x01 },
1629 { 0x16, 0x03 },
1630 { 0x17, 0x2f },
1631 { 0x18, 0xcf },
1632 { 0x19, 0x06 },
1633 { 0x1a, 0xf5 },
1634 { 0x1b, 0x00 },
1635 { 0x20, 0x18 },
1636 { 0x21, 0x80 },
1637 { 0x22, 0x80 },
1638 { 0x23, 0x00 },
1639 { 0x26, 0xa2 },
1640 { 0x27, 0xea },
1641 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1642 { 0x29, 0x00 },
1643 { 0x2a, 0x10 },
1644 { 0x2b, 0x00 },
1645 { 0x2c, 0x88 },
1646 { 0x2d, 0x91 },
1647 { 0x2e, 0x80 },
1648 { 0x2f, 0x44 },
1649 { 0x60, 0x27 },
1650 { 0x61, 0x02 },
1651 { 0x62, 0x5f },
1652 { 0x63, 0xd5 },
1653 { 0x64, 0x57 },
1654 { 0x65, 0x83 },
1655 { 0x66, 0x55 },
1656 { 0x67, 0x92 },
1657 { 0x68, 0xcf },
1658 { 0x69, 0x76 },
1659 { 0x6a, 0x22 },
1660 { 0x6b, 0x00 },
1661 { 0x6c, 0x02 },
1662 { 0x6d, 0x44 },
1663 { 0x6e, 0x80 },
1664 { 0x6f, 0x1d },
1665 { 0x70, 0x8b },
1666 { 0x71, 0x00 },
1667 { 0x72, 0x14 },
1668 { 0x73, 0x54 },
1669 { 0x74, 0x00 },
1670 { 0x75, 0x8e },
1671 { 0x76, 0x00 },
1672 { 0x77, 0xff },
1673 { 0x78, 0x80 },
1674 { 0x79, 0x80 },
1675 { 0x7a, 0x80 },
1676 { 0x7b, 0xe2 },
1677 { 0x7c, 0x00 },
1680 /* 7640 and 7648. The defaults should be OK for most registers. */
1681 static const struct ov_i2c_regvals norm_7640[] = {
1682 { 0x12, 0x80 },
1683 { 0x12, 0x14 },
1686 static const struct ov_regvals init_519_ov7660[] = {
1687 { 0x5d, 0x03 }, /* Turn off suspend mode */
1688 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1689 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1690 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1691 { 0xa3, 0x18 },
1692 { 0xa4, 0x04 },
1693 { 0xa5, 0x28 },
1694 { 0x37, 0x00 }, /* SetUsbInit */
1695 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1696 /* Enable both fields, YUV Input, disable defect comp (why?) */
1697 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1698 { 0x21, 0x38 },
1699 { 0x22, 0x1d },
1700 { 0x17, 0x50 }, /* undocumented */
1701 { 0x37, 0x00 }, /* undocumented */
1702 { 0x40, 0xff }, /* I2C timeout counter */
1703 { 0x46, 0x00 }, /* I2C clock prescaler */
1705 static const struct ov_i2c_regvals norm_7660[] = {
1706 {OV7670_R12_COM7, OV7670_COM7_RESET},
1707 {OV7670_R11_CLKRC, 0x81},
1708 {0x92, 0x00}, /* DM_LNL */
1709 {0x93, 0x00}, /* DM_LNH */
1710 {0x9d, 0x4c}, /* BD50ST */
1711 {0x9e, 0x3f}, /* BD60ST */
1712 {OV7670_R3B_COM11, 0x02},
1713 {OV7670_R13_COM8, 0xf5},
1714 {OV7670_R10_AECH, 0x00},
1715 {OV7670_R00_GAIN, 0x00},
1716 {OV7670_R01_BLUE, 0x7c},
1717 {OV7670_R02_RED, 0x9d},
1718 {OV7670_R12_COM7, 0x00},
1719 {OV7670_R04_COM1, 00},
1720 {OV7670_R18_HSTOP, 0x01},
1721 {OV7670_R17_HSTART, 0x13},
1722 {OV7670_R32_HREF, 0x92},
1723 {OV7670_R19_VSTART, 0x02},
1724 {OV7670_R1A_VSTOP, 0x7a},
1725 {OV7670_R03_VREF, 0x00},
1726 {OV7670_R0E_COM5, 0x04},
1727 {OV7670_R0F_COM6, 0x62},
1728 {OV7670_R15_COM10, 0x00},
1729 {0x16, 0x02}, /* RSVD */
1730 {0x1b, 0x00}, /* PSHFT */
1731 {OV7670_R1E_MVFP, 0x01},
1732 {0x29, 0x3c}, /* RSVD */
1733 {0x33, 0x00}, /* CHLF */
1734 {0x34, 0x07}, /* ARBLM */
1735 {0x35, 0x84}, /* RSVD */
1736 {0x36, 0x00}, /* RSVD */
1737 {0x37, 0x04}, /* ADC */
1738 {0x39, 0x43}, /* OFON */
1739 {OV7670_R3A_TSLB, 0x00},
1740 {OV7670_R3C_COM12, 0x6c},
1741 {OV7670_R3D_COM13, 0x98},
1742 {OV7670_R3F_EDGE, 0x23},
1743 {OV7670_R40_COM15, 0xc1},
1744 {OV7670_R41_COM16, 0x22},
1745 {0x6b, 0x0a}, /* DBLV */
1746 {0xa1, 0x08}, /* RSVD */
1747 {0x69, 0x80}, /* HV */
1748 {0x43, 0xf0}, /* RSVD.. */
1749 {0x44, 0x10},
1750 {0x45, 0x78},
1751 {0x46, 0xa8},
1752 {0x47, 0x60},
1753 {0x48, 0x80},
1754 {0x59, 0xba},
1755 {0x5a, 0x9a},
1756 {0x5b, 0x22},
1757 {0x5c, 0xb9},
1758 {0x5d, 0x9b},
1759 {0x5e, 0x10},
1760 {0x5f, 0xe0},
1761 {0x60, 0x85},
1762 {0x61, 0x60},
1763 {0x9f, 0x9d}, /* RSVD */
1764 {0xa0, 0xa0}, /* DSPC2 */
1765 {0x4f, 0x60}, /* matrix */
1766 {0x50, 0x64},
1767 {0x51, 0x04},
1768 {0x52, 0x18},
1769 {0x53, 0x3c},
1770 {0x54, 0x54},
1771 {0x55, 0x40},
1772 {0x56, 0x40},
1773 {0x57, 0x40},
1774 {0x58, 0x0d}, /* matrix sign */
1775 {0x8b, 0xcc}, /* RSVD */
1776 {0x8c, 0xcc},
1777 {0x8d, 0xcf},
1778 {0x6c, 0x40}, /* gamma curve */
1779 {0x6d, 0xe0},
1780 {0x6e, 0xa0},
1781 {0x6f, 0x80},
1782 {0x70, 0x70},
1783 {0x71, 0x80},
1784 {0x72, 0x60},
1785 {0x73, 0x60},
1786 {0x74, 0x50},
1787 {0x75, 0x40},
1788 {0x76, 0x38},
1789 {0x77, 0x3c},
1790 {0x78, 0x32},
1791 {0x79, 0x1a},
1792 {0x7a, 0x28},
1793 {0x7b, 0x24},
1794 {0x7c, 0x04}, /* gamma curve */
1795 {0x7d, 0x12},
1796 {0x7e, 0x26},
1797 {0x7f, 0x46},
1798 {0x80, 0x54},
1799 {0x81, 0x64},
1800 {0x82, 0x70},
1801 {0x83, 0x7c},
1802 {0x84, 0x86},
1803 {0x85, 0x8e},
1804 {0x86, 0x9c},
1805 {0x87, 0xab},
1806 {0x88, 0xc4},
1807 {0x89, 0xd1},
1808 {0x8a, 0xe5},
1809 {OV7670_R14_COM9, 0x1e},
1810 {OV7670_R24_AEW, 0x80},
1811 {OV7670_R25_AEB, 0x72},
1812 {OV7670_R26_VPT, 0xb3},
1813 {0x62, 0x80}, /* LCC1 */
1814 {0x63, 0x80}, /* LCC2 */
1815 {0x64, 0x06}, /* LCC3 */
1816 {0x65, 0x00}, /* LCC4 */
1817 {0x66, 0x01}, /* LCC5 */
1818 {0x94, 0x0e}, /* RSVD.. */
1819 {0x95, 0x14},
1820 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1821 | OV7670_COM8_AECSTEP
1822 | OV7670_COM8_BFILT
1823 | 0x10
1824 | OV7670_COM8_AGC
1825 | OV7670_COM8_AWB
1826 | OV7670_COM8_AEC},
1827 {0xa1, 0xc8}
1829 static const struct ov_i2c_regvals norm_9600[] = {
1830 {0x12, 0x80},
1831 {0x0c, 0x28},
1832 {0x11, 0x80},
1833 {0x13, 0xb5},
1834 {0x14, 0x3e},
1835 {0x1b, 0x04},
1836 {0x24, 0xb0},
1837 {0x25, 0x90},
1838 {0x26, 0x94},
1839 {0x35, 0x90},
1840 {0x37, 0x07},
1841 {0x38, 0x08},
1842 {0x01, 0x8e},
1843 {0x02, 0x85}
1846 /* 7670. Defaults taken from OmniVision provided data,
1847 * as provided by Jonathan Corbet of OLPC */
1848 static const struct ov_i2c_regvals norm_7670[] = {
1849 { OV7670_R12_COM7, OV7670_COM7_RESET },
1850 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1851 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1852 { OV7670_R11_CLKRC, 0x01 },
1854 * Set the hardware window. These values from OV don't entirely
1855 * make sense - hstop is less than hstart. But they work...
1857 { OV7670_R17_HSTART, 0x13 },
1858 { OV7670_R18_HSTOP, 0x01 },
1859 { OV7670_R32_HREF, 0xb6 },
1860 { OV7670_R19_VSTART, 0x02 },
1861 { OV7670_R1A_VSTOP, 0x7a },
1862 { OV7670_R03_VREF, 0x0a },
1864 { OV7670_R0C_COM3, 0x00 },
1865 { OV7670_R3E_COM14, 0x00 },
1866 /* Mystery scaling numbers */
1867 { 0x70, 0x3a },
1868 { 0x71, 0x35 },
1869 { 0x72, 0x11 },
1870 { 0x73, 0xf0 },
1871 { 0xa2, 0x02 },
1872 /* { OV7670_R15_COM10, 0x0 }, */
1874 /* Gamma curve values */
1875 { 0x7a, 0x20 },
1876 { 0x7b, 0x10 },
1877 { 0x7c, 0x1e },
1878 { 0x7d, 0x35 },
1879 { 0x7e, 0x5a },
1880 { 0x7f, 0x69 },
1881 { 0x80, 0x76 },
1882 { 0x81, 0x80 },
1883 { 0x82, 0x88 },
1884 { 0x83, 0x8f },
1885 { 0x84, 0x96 },
1886 { 0x85, 0xa3 },
1887 { 0x86, 0xaf },
1888 { 0x87, 0xc4 },
1889 { 0x88, 0xd7 },
1890 { 0x89, 0xe8 },
1892 /* AGC and AEC parameters. Note we start by disabling those features,
1893 then turn them only after tweaking the values. */
1894 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1895 | OV7670_COM8_AECSTEP
1896 | OV7670_COM8_BFILT },
1897 { OV7670_R00_GAIN, 0x00 },
1898 { OV7670_R10_AECH, 0x00 },
1899 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1900 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1901 { OV7670_RA5_BD50MAX, 0x05 },
1902 { OV7670_RAB_BD60MAX, 0x07 },
1903 { OV7670_R24_AEW, 0x95 },
1904 { OV7670_R25_AEB, 0x33 },
1905 { OV7670_R26_VPT, 0xe3 },
1906 { OV7670_R9F_HAECC1, 0x78 },
1907 { OV7670_RA0_HAECC2, 0x68 },
1908 { 0xa1, 0x03 }, /* magic */
1909 { OV7670_RA6_HAECC3, 0xd8 },
1910 { OV7670_RA7_HAECC4, 0xd8 },
1911 { OV7670_RA8_HAECC5, 0xf0 },
1912 { OV7670_RA9_HAECC6, 0x90 },
1913 { OV7670_RAA_HAECC7, 0x94 },
1914 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1915 | OV7670_COM8_AECSTEP
1916 | OV7670_COM8_BFILT
1917 | OV7670_COM8_AGC
1918 | OV7670_COM8_AEC },
1920 /* Almost all of these are magic "reserved" values. */
1921 { OV7670_R0E_COM5, 0x61 },
1922 { OV7670_R0F_COM6, 0x4b },
1923 { 0x16, 0x02 },
1924 { OV7670_R1E_MVFP, 0x07 },
1925 { 0x21, 0x02 },
1926 { 0x22, 0x91 },
1927 { 0x29, 0x07 },
1928 { 0x33, 0x0b },
1929 { 0x35, 0x0b },
1930 { 0x37, 0x1d },
1931 { 0x38, 0x71 },
1932 { 0x39, 0x2a },
1933 { OV7670_R3C_COM12, 0x78 },
1934 { 0x4d, 0x40 },
1935 { 0x4e, 0x20 },
1936 { OV7670_R69_GFIX, 0x00 },
1937 { 0x6b, 0x4a },
1938 { 0x74, 0x10 },
1939 { 0x8d, 0x4f },
1940 { 0x8e, 0x00 },
1941 { 0x8f, 0x00 },
1942 { 0x90, 0x00 },
1943 { 0x91, 0x00 },
1944 { 0x96, 0x00 },
1945 { 0x9a, 0x00 },
1946 { 0xb0, 0x84 },
1947 { 0xb1, 0x0c },
1948 { 0xb2, 0x0e },
1949 { 0xb3, 0x82 },
1950 { 0xb8, 0x0a },
1952 /* More reserved magic, some of which tweaks white balance */
1953 { 0x43, 0x0a },
1954 { 0x44, 0xf0 },
1955 { 0x45, 0x34 },
1956 { 0x46, 0x58 },
1957 { 0x47, 0x28 },
1958 { 0x48, 0x3a },
1959 { 0x59, 0x88 },
1960 { 0x5a, 0x88 },
1961 { 0x5b, 0x44 },
1962 { 0x5c, 0x67 },
1963 { 0x5d, 0x49 },
1964 { 0x5e, 0x0e },
1965 { 0x6c, 0x0a },
1966 { 0x6d, 0x55 },
1967 { 0x6e, 0x11 },
1968 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1969 { 0x6a, 0x40 },
1970 { OV7670_R01_BLUE, 0x40 },
1971 { OV7670_R02_RED, 0x60 },
1972 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1973 | OV7670_COM8_AECSTEP
1974 | OV7670_COM8_BFILT
1975 | OV7670_COM8_AGC
1976 | OV7670_COM8_AEC
1977 | OV7670_COM8_AWB },
1979 /* Matrix coefficients */
1980 { 0x4f, 0x80 },
1981 { 0x50, 0x80 },
1982 { 0x51, 0x00 },
1983 { 0x52, 0x22 },
1984 { 0x53, 0x5e },
1985 { 0x54, 0x80 },
1986 { 0x58, 0x9e },
1988 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1989 { OV7670_R3F_EDGE, 0x00 },
1990 { 0x75, 0x05 },
1991 { 0x76, 0xe1 },
1992 { 0x4c, 0x00 },
1993 { 0x77, 0x01 },
1994 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1995 | OV7670_COM13_UVSAT
1996 | 2}, /* was 3 */
1997 { 0x4b, 0x09 },
1998 { 0xc9, 0x60 },
1999 { OV7670_R41_COM16, 0x38 },
2000 { 0x56, 0x40 },
2002 { 0x34, 0x11 },
2003 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
2004 { 0xa4, 0x88 },
2005 { 0x96, 0x00 },
2006 { 0x97, 0x30 },
2007 { 0x98, 0x20 },
2008 { 0x99, 0x30 },
2009 { 0x9a, 0x84 },
2010 { 0x9b, 0x29 },
2011 { 0x9c, 0x03 },
2012 { 0x9d, 0x4c },
2013 { 0x9e, 0x3f },
2014 { 0x78, 0x04 },
2016 /* Extra-weird stuff. Some sort of multiplexor register */
2017 { 0x79, 0x01 },
2018 { 0xc8, 0xf0 },
2019 { 0x79, 0x0f },
2020 { 0xc8, 0x00 },
2021 { 0x79, 0x10 },
2022 { 0xc8, 0x7e },
2023 { 0x79, 0x0a },
2024 { 0xc8, 0x80 },
2025 { 0x79, 0x0b },
2026 { 0xc8, 0x01 },
2027 { 0x79, 0x0c },
2028 { 0xc8, 0x0f },
2029 { 0x79, 0x0d },
2030 { 0xc8, 0x20 },
2031 { 0x79, 0x09 },
2032 { 0xc8, 0x80 },
2033 { 0x79, 0x02 },
2034 { 0xc8, 0xc0 },
2035 { 0x79, 0x03 },
2036 { 0xc8, 0x40 },
2037 { 0x79, 0x05 },
2038 { 0xc8, 0x30 },
2039 { 0x79, 0x26 },
2042 static const struct ov_i2c_regvals norm_8610[] = {
2043 { 0x12, 0x80 },
2044 { 0x00, 0x00 },
2045 { 0x01, 0x80 },
2046 { 0x02, 0x80 },
2047 { 0x03, 0xc0 },
2048 { 0x04, 0x30 },
2049 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
2050 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
2051 { 0x0a, 0x86 },
2052 { 0x0b, 0xb0 },
2053 { 0x0c, 0x20 },
2054 { 0x0d, 0x20 },
2055 { 0x11, 0x01 },
2056 { 0x12, 0x25 },
2057 { 0x13, 0x01 },
2058 { 0x14, 0x04 },
2059 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
2060 { 0x16, 0x03 },
2061 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
2062 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
2063 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
2064 { 0x1a, 0xf5 },
2065 { 0x1b, 0x00 },
2066 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
2067 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
2068 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
2069 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
2070 { 0x26, 0xa2 },
2071 { 0x27, 0xea },
2072 { 0x28, 0x00 },
2073 { 0x29, 0x00 },
2074 { 0x2a, 0x80 },
2075 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
2076 { 0x2c, 0xac },
2077 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
2078 { 0x2e, 0x80 },
2079 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
2080 { 0x4c, 0x00 },
2081 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
2082 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
2083 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
2084 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
2085 { 0x63, 0xff },
2086 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
2087 * maybe thats wrong */
2088 { 0x65, 0x00 },
2089 { 0x66, 0x55 },
2090 { 0x67, 0xb0 },
2091 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
2092 { 0x69, 0x02 },
2093 { 0x6a, 0x22 },
2094 { 0x6b, 0x00 },
2095 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
2096 * deleting bit7 colors the first images red */
2097 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
2098 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
2099 { 0x6f, 0x01 },
2100 { 0x70, 0x8b },
2101 { 0x71, 0x00 },
2102 { 0x72, 0x14 },
2103 { 0x73, 0x54 },
2104 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2105 { 0x75, 0x0e },
2106 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2107 { 0x77, 0xff },
2108 { 0x78, 0x80 },
2109 { 0x79, 0x80 },
2110 { 0x7a, 0x80 },
2111 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2112 { 0x7c, 0x00 },
2113 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2114 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2115 { 0x7f, 0xfb },
2116 { 0x80, 0x28 },
2117 { 0x81, 0x00 },
2118 { 0x82, 0x23 },
2119 { 0x83, 0x0b },
2120 { 0x84, 0x00 },
2121 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2122 { 0x86, 0xc9 },
2123 { 0x87, 0x00 },
2124 { 0x88, 0x00 },
2125 { 0x89, 0x01 },
2126 { 0x12, 0x20 },
2127 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2130 static unsigned char ov7670_abs_to_sm(unsigned char v)
2132 if (v > 127)
2133 return v & 0x7f;
2134 return (128 - v) | 0x80;
2137 /* Write a OV519 register */
2138 static void reg_w(struct sd *sd, u16 index, u16 value)
2140 int ret, req = 0;
2142 if (sd->gspca_dev.usb_err < 0)
2143 return;
2145 switch (sd->bridge) {
2146 case BRIDGE_OV511:
2147 case BRIDGE_OV511PLUS:
2148 req = 2;
2149 break;
2150 case BRIDGE_OVFX2:
2151 req = 0x0a;
2152 /* fall through */
2153 case BRIDGE_W9968CF:
2154 PDEBUG(D_USBO, "SET %02x %04x %04x",
2155 req, value, index);
2156 ret = usb_control_msg(sd->gspca_dev.dev,
2157 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2158 req,
2159 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2160 value, index, NULL, 0, 500);
2161 goto leave;
2162 default:
2163 req = 1;
2166 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2167 req, index, value);
2168 sd->gspca_dev.usb_buf[0] = value;
2169 ret = usb_control_msg(sd->gspca_dev.dev,
2170 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2171 req,
2172 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2173 0, index,
2174 sd->gspca_dev.usb_buf, 1, 500);
2175 leave:
2176 if (ret < 0) {
2177 pr_err("reg_w %02x failed %d\n", index, ret);
2178 sd->gspca_dev.usb_err = ret;
2179 return;
2183 /* Read from a OV519 register, note not valid for the w9968cf!! */
2184 /* returns: negative is error, pos or zero is data */
2185 static int reg_r(struct sd *sd, u16 index)
2187 int ret;
2188 int req;
2190 if (sd->gspca_dev.usb_err < 0)
2191 return -1;
2193 switch (sd->bridge) {
2194 case BRIDGE_OV511:
2195 case BRIDGE_OV511PLUS:
2196 req = 3;
2197 break;
2198 case BRIDGE_OVFX2:
2199 req = 0x0b;
2200 break;
2201 default:
2202 req = 1;
2205 ret = usb_control_msg(sd->gspca_dev.dev,
2206 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2207 req,
2208 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2209 0, index, sd->gspca_dev.usb_buf, 1, 500);
2211 if (ret >= 0) {
2212 ret = sd->gspca_dev.usb_buf[0];
2213 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2214 req, index, ret);
2215 } else {
2216 pr_err("reg_r %02x failed %d\n", index, ret);
2217 sd->gspca_dev.usb_err = ret;
2220 return ret;
2223 /* Read 8 values from a OV519 register */
2224 static int reg_r8(struct sd *sd,
2225 u16 index)
2227 int ret;
2229 if (sd->gspca_dev.usb_err < 0)
2230 return -1;
2232 ret = usb_control_msg(sd->gspca_dev.dev,
2233 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2234 1, /* REQ_IO */
2235 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2236 0, index, sd->gspca_dev.usb_buf, 8, 500);
2238 if (ret >= 0) {
2239 ret = sd->gspca_dev.usb_buf[0];
2240 } else {
2241 pr_err("reg_r8 %02x failed %d\n", index, ret);
2242 sd->gspca_dev.usb_err = ret;
2245 return ret;
2249 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2250 * the same position as 1's in "mask" are cleared and set to "value". Bits
2251 * that are in the same position as 0's in "mask" are preserved, regardless
2252 * of their respective state in "value".
2254 static void reg_w_mask(struct sd *sd,
2255 u16 index,
2256 u8 value,
2257 u8 mask)
2259 int ret;
2260 u8 oldval;
2262 if (mask != 0xff) {
2263 value &= mask; /* Enforce mask on value */
2264 ret = reg_r(sd, index);
2265 if (ret < 0)
2266 return;
2268 oldval = ret & ~mask; /* Clear the masked bits */
2269 value |= oldval; /* Set the desired bits */
2271 reg_w(sd, index, value);
2275 * Writes multiple (n) byte value to a single register. Only valid with certain
2276 * registers (0x30 and 0xc4 - 0xce).
2278 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2280 int ret;
2282 if (sd->gspca_dev.usb_err < 0)
2283 return;
2285 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2287 ret = usb_control_msg(sd->gspca_dev.dev,
2288 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2289 1 /* REG_IO */,
2290 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2291 0, index,
2292 sd->gspca_dev.usb_buf, n, 500);
2293 if (ret < 0) {
2294 pr_err("reg_w32 %02x failed %d\n", index, ret);
2295 sd->gspca_dev.usb_err = ret;
2299 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2301 int rc, retries;
2303 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2305 /* Three byte write cycle */
2306 for (retries = 6; ; ) {
2307 /* Select camera register */
2308 reg_w(sd, R51x_I2C_SADDR_3, reg);
2310 /* Write "value" to I2C data port of OV511 */
2311 reg_w(sd, R51x_I2C_DATA, value);
2313 /* Initiate 3-byte write cycle */
2314 reg_w(sd, R511_I2C_CTL, 0x01);
2316 do {
2317 rc = reg_r(sd, R511_I2C_CTL);
2318 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2320 if (rc < 0)
2321 return;
2323 if ((rc & 2) == 0) /* Ack? */
2324 break;
2325 if (--retries < 0) {
2326 PDEBUG(D_USBO, "i2c write retries exhausted");
2327 return;
2332 static int ov511_i2c_r(struct sd *sd, u8 reg)
2334 int rc, value, retries;
2336 /* Two byte write cycle */
2337 for (retries = 6; ; ) {
2338 /* Select camera register */
2339 reg_w(sd, R51x_I2C_SADDR_2, reg);
2341 /* Initiate 2-byte write cycle */
2342 reg_w(sd, R511_I2C_CTL, 0x03);
2344 do {
2345 rc = reg_r(sd, R511_I2C_CTL);
2346 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2348 if (rc < 0)
2349 return rc;
2351 if ((rc & 2) == 0) /* Ack? */
2352 break;
2354 /* I2C abort */
2355 reg_w(sd, R511_I2C_CTL, 0x10);
2357 if (--retries < 0) {
2358 PDEBUG(D_USBI, "i2c write retries exhausted");
2359 return -1;
2363 /* Two byte read cycle */
2364 for (retries = 6; ; ) {
2365 /* Initiate 2-byte read cycle */
2366 reg_w(sd, R511_I2C_CTL, 0x05);
2368 do {
2369 rc = reg_r(sd, R511_I2C_CTL);
2370 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2372 if (rc < 0)
2373 return rc;
2375 if ((rc & 2) == 0) /* Ack? */
2376 break;
2378 /* I2C abort */
2379 reg_w(sd, R511_I2C_CTL, 0x10);
2381 if (--retries < 0) {
2382 PDEBUG(D_USBI, "i2c read retries exhausted");
2383 return -1;
2387 value = reg_r(sd, R51x_I2C_DATA);
2389 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2391 /* This is needed to make i2c_w() work */
2392 reg_w(sd, R511_I2C_CTL, 0x05);
2394 return value;
2398 * The OV518 I2C I/O procedure is different, hence, this function.
2399 * This is normally only called from i2c_w(). Note that this function
2400 * always succeeds regardless of whether the sensor is present and working.
2402 static void ov518_i2c_w(struct sd *sd,
2403 u8 reg,
2404 u8 value)
2406 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2408 /* Select camera register */
2409 reg_w(sd, R51x_I2C_SADDR_3, reg);
2411 /* Write "value" to I2C data port of OV511 */
2412 reg_w(sd, R51x_I2C_DATA, value);
2414 /* Initiate 3-byte write cycle */
2415 reg_w(sd, R518_I2C_CTL, 0x01);
2417 /* wait for write complete */
2418 msleep(4);
2419 reg_r8(sd, R518_I2C_CTL);
2423 * returns: negative is error, pos or zero is data
2425 * The OV518 I2C I/O procedure is different, hence, this function.
2426 * This is normally only called from i2c_r(). Note that this function
2427 * always succeeds regardless of whether the sensor is present and working.
2429 static int ov518_i2c_r(struct sd *sd, u8 reg)
2431 int value;
2433 /* Select camera register */
2434 reg_w(sd, R51x_I2C_SADDR_2, reg);
2436 /* Initiate 2-byte write cycle */
2437 reg_w(sd, R518_I2C_CTL, 0x03);
2438 reg_r8(sd, R518_I2C_CTL);
2440 /* Initiate 2-byte read cycle */
2441 reg_w(sd, R518_I2C_CTL, 0x05);
2442 reg_r8(sd, R518_I2C_CTL);
2444 value = reg_r(sd, R51x_I2C_DATA);
2445 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2446 return value;
2449 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2451 int ret;
2453 if (sd->gspca_dev.usb_err < 0)
2454 return;
2456 ret = usb_control_msg(sd->gspca_dev.dev,
2457 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2458 0x02,
2459 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2460 (u16) value, (u16) reg, NULL, 0, 500);
2462 if (ret < 0) {
2463 pr_err("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2464 sd->gspca_dev.usb_err = ret;
2467 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2470 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2472 int ret;
2474 if (sd->gspca_dev.usb_err < 0)
2475 return -1;
2477 ret = usb_control_msg(sd->gspca_dev.dev,
2478 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2479 0x03,
2480 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2481 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2483 if (ret >= 0) {
2484 ret = sd->gspca_dev.usb_buf[0];
2485 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2486 } else {
2487 pr_err("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2488 sd->gspca_dev.usb_err = ret;
2491 return ret;
2494 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2496 if (sd->sensor_reg_cache[reg] == value)
2497 return;
2499 switch (sd->bridge) {
2500 case BRIDGE_OV511:
2501 case BRIDGE_OV511PLUS:
2502 ov511_i2c_w(sd, reg, value);
2503 break;
2504 case BRIDGE_OV518:
2505 case BRIDGE_OV518PLUS:
2506 case BRIDGE_OV519:
2507 ov518_i2c_w(sd, reg, value);
2508 break;
2509 case BRIDGE_OVFX2:
2510 ovfx2_i2c_w(sd, reg, value);
2511 break;
2512 case BRIDGE_W9968CF:
2513 w9968cf_i2c_w(sd, reg, value);
2514 break;
2517 if (sd->gspca_dev.usb_err >= 0) {
2518 /* Up on sensor reset empty the register cache */
2519 if (reg == 0x12 && (value & 0x80))
2520 memset(sd->sensor_reg_cache, -1,
2521 sizeof(sd->sensor_reg_cache));
2522 else
2523 sd->sensor_reg_cache[reg] = value;
2527 static int i2c_r(struct sd *sd, u8 reg)
2529 int ret = -1;
2531 if (sd->sensor_reg_cache[reg] != -1)
2532 return sd->sensor_reg_cache[reg];
2534 switch (sd->bridge) {
2535 case BRIDGE_OV511:
2536 case BRIDGE_OV511PLUS:
2537 ret = ov511_i2c_r(sd, reg);
2538 break;
2539 case BRIDGE_OV518:
2540 case BRIDGE_OV518PLUS:
2541 case BRIDGE_OV519:
2542 ret = ov518_i2c_r(sd, reg);
2543 break;
2544 case BRIDGE_OVFX2:
2545 ret = ovfx2_i2c_r(sd, reg);
2546 break;
2547 case BRIDGE_W9968CF:
2548 ret = w9968cf_i2c_r(sd, reg);
2549 break;
2552 if (ret >= 0)
2553 sd->sensor_reg_cache[reg] = ret;
2555 return ret;
2558 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2559 * the same position as 1's in "mask" are cleared and set to "value". Bits
2560 * that are in the same position as 0's in "mask" are preserved, regardless
2561 * of their respective state in "value".
2563 static void i2c_w_mask(struct sd *sd,
2564 u8 reg,
2565 u8 value,
2566 u8 mask)
2568 int rc;
2569 u8 oldval;
2571 value &= mask; /* Enforce mask on value */
2572 rc = i2c_r(sd, reg);
2573 if (rc < 0)
2574 return;
2575 oldval = rc & ~mask; /* Clear the masked bits */
2576 value |= oldval; /* Set the desired bits */
2577 i2c_w(sd, reg, value);
2580 /* Temporarily stops OV511 from functioning. Must do this before changing
2581 * registers while the camera is streaming */
2582 static inline void ov51x_stop(struct sd *sd)
2584 PDEBUG(D_STREAM, "stopping");
2585 sd->stopped = 1;
2586 switch (sd->bridge) {
2587 case BRIDGE_OV511:
2588 case BRIDGE_OV511PLUS:
2589 reg_w(sd, R51x_SYS_RESET, 0x3d);
2590 break;
2591 case BRIDGE_OV518:
2592 case BRIDGE_OV518PLUS:
2593 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2594 break;
2595 case BRIDGE_OV519:
2596 reg_w(sd, OV519_R51_RESET1, 0x0f);
2597 reg_w(sd, OV519_R51_RESET1, 0x00);
2598 reg_w(sd, 0x22, 0x00); /* FRAR */
2599 break;
2600 case BRIDGE_OVFX2:
2601 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2602 break;
2603 case BRIDGE_W9968CF:
2604 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2605 break;
2609 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2610 * actually stopped (for performance). */
2611 static inline void ov51x_restart(struct sd *sd)
2613 PDEBUG(D_STREAM, "restarting");
2614 if (!sd->stopped)
2615 return;
2616 sd->stopped = 0;
2618 /* Reinitialize the stream */
2619 switch (sd->bridge) {
2620 case BRIDGE_OV511:
2621 case BRIDGE_OV511PLUS:
2622 reg_w(sd, R51x_SYS_RESET, 0x00);
2623 break;
2624 case BRIDGE_OV518:
2625 case BRIDGE_OV518PLUS:
2626 reg_w(sd, 0x2f, 0x80);
2627 reg_w(sd, R51x_SYS_RESET, 0x00);
2628 break;
2629 case BRIDGE_OV519:
2630 reg_w(sd, OV519_R51_RESET1, 0x0f);
2631 reg_w(sd, OV519_R51_RESET1, 0x00);
2632 reg_w(sd, 0x22, 0x1d); /* FRAR */
2633 break;
2634 case BRIDGE_OVFX2:
2635 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2636 break;
2637 case BRIDGE_W9968CF:
2638 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2639 break;
2643 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2645 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2646 * is synchronized. Returns <0 on failure.
2648 static int init_ov_sensor(struct sd *sd, u8 slave)
2650 int i;
2652 ov51x_set_slave_ids(sd, slave);
2654 /* Reset the sensor */
2655 i2c_w(sd, 0x12, 0x80);
2657 /* Wait for it to initialize */
2658 msleep(150);
2660 for (i = 0; i < i2c_detect_tries; i++) {
2661 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2662 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2663 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2664 return 0;
2667 /* Reset the sensor */
2668 i2c_w(sd, 0x12, 0x80);
2670 /* Wait for it to initialize */
2671 msleep(150);
2673 /* Dummy read to sync I2C */
2674 if (i2c_r(sd, 0x00) < 0)
2675 return -1;
2677 return -1;
2680 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2681 * and the read slave will be set to (slave + 1).
2682 * This should not be called from outside the i2c I/O functions.
2683 * Sets I2C read and write slave IDs. Returns <0 for error
2685 static void ov51x_set_slave_ids(struct sd *sd,
2686 u8 slave)
2688 switch (sd->bridge) {
2689 case BRIDGE_OVFX2:
2690 reg_w(sd, OVFX2_I2C_ADDR, slave);
2691 return;
2692 case BRIDGE_W9968CF:
2693 sd->sensor_addr = slave;
2694 return;
2697 reg_w(sd, R51x_I2C_W_SID, slave);
2698 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2701 static void write_regvals(struct sd *sd,
2702 const struct ov_regvals *regvals,
2703 int n)
2705 while (--n >= 0) {
2706 reg_w(sd, regvals->reg, regvals->val);
2707 regvals++;
2711 static void write_i2c_regvals(struct sd *sd,
2712 const struct ov_i2c_regvals *regvals,
2713 int n)
2715 while (--n >= 0) {
2716 i2c_w(sd, regvals->reg, regvals->val);
2717 regvals++;
2721 /****************************************************************************
2723 * OV511 and sensor configuration
2725 ***************************************************************************/
2727 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2728 static void ov_hires_configure(struct sd *sd)
2730 int high, low;
2732 if (sd->bridge != BRIDGE_OVFX2) {
2733 pr_err("error hires sensors only supported with ovfx2\n");
2734 return;
2737 PDEBUG(D_PROBE, "starting ov hires configuration");
2739 /* Detect sensor (sub)type */
2740 high = i2c_r(sd, 0x0a);
2741 low = i2c_r(sd, 0x0b);
2742 /* info("%x, %x", high, low); */
2743 switch (high) {
2744 case 0x96:
2745 switch (low) {
2746 case 0x40:
2747 PDEBUG(D_PROBE, "Sensor is a OV2610");
2748 sd->sensor = SEN_OV2610;
2749 return;
2750 case 0x41:
2751 PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2752 sd->sensor = SEN_OV2610AE;
2753 return;
2754 case 0xb1:
2755 PDEBUG(D_PROBE, "Sensor is a OV9600");
2756 sd->sensor = SEN_OV9600;
2757 return;
2759 break;
2760 case 0x36:
2761 if ((low & 0x0f) == 0x00) {
2762 PDEBUG(D_PROBE, "Sensor is a OV3610");
2763 sd->sensor = SEN_OV3610;
2764 return;
2766 break;
2768 pr_err("Error unknown sensor type: %02x%02x\n", high, low);
2771 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2772 * the same register settings as the OV8610, since they are very similar.
2774 static void ov8xx0_configure(struct sd *sd)
2776 int rc;
2778 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2780 /* Detect sensor (sub)type */
2781 rc = i2c_r(sd, OV7610_REG_COM_I);
2782 if (rc < 0) {
2783 PDEBUG(D_ERR, "Error detecting sensor type");
2784 return;
2786 if ((rc & 3) == 1)
2787 sd->sensor = SEN_OV8610;
2788 else
2789 pr_err("Unknown image sensor version: %d\n", rc & 3);
2792 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2793 * the same register settings as the OV7610, since they are very similar.
2795 static void ov7xx0_configure(struct sd *sd)
2797 int rc, high, low;
2799 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2801 /* Detect sensor (sub)type */
2802 rc = i2c_r(sd, OV7610_REG_COM_I);
2804 /* add OV7670 here
2805 * it appears to be wrongly detected as a 7610 by default */
2806 if (rc < 0) {
2807 PDEBUG(D_ERR, "Error detecting sensor type");
2808 return;
2810 if ((rc & 3) == 3) {
2811 /* quick hack to make OV7670s work */
2812 high = i2c_r(sd, 0x0a);
2813 low = i2c_r(sd, 0x0b);
2814 /* info("%x, %x", high, low); */
2815 if (high == 0x76 && (low & 0xf0) == 0x70) {
2816 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2817 sd->sensor = SEN_OV7670;
2818 } else {
2819 PDEBUG(D_PROBE, "Sensor is an OV7610");
2820 sd->sensor = SEN_OV7610;
2822 } else if ((rc & 3) == 1) {
2823 /* I don't know what's different about the 76BE yet. */
2824 if (i2c_r(sd, 0x15) & 1) {
2825 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2826 sd->sensor = SEN_OV7620AE;
2827 } else {
2828 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2829 sd->sensor = SEN_OV76BE;
2831 } else if ((rc & 3) == 0) {
2832 /* try to read product id registers */
2833 high = i2c_r(sd, 0x0a);
2834 if (high < 0) {
2835 PDEBUG(D_ERR, "Error detecting camera chip PID");
2836 return;
2838 low = i2c_r(sd, 0x0b);
2839 if (low < 0) {
2840 PDEBUG(D_ERR, "Error detecting camera chip VER");
2841 return;
2843 if (high == 0x76) {
2844 switch (low) {
2845 case 0x30:
2846 pr_err("Sensor is an OV7630/OV7635\n");
2847 pr_err("7630 is not supported by this driver\n");
2848 return;
2849 case 0x40:
2850 PDEBUG(D_PROBE, "Sensor is an OV7645");
2851 sd->sensor = SEN_OV7640; /* FIXME */
2852 break;
2853 case 0x45:
2854 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2855 sd->sensor = SEN_OV7640; /* FIXME */
2856 break;
2857 case 0x48:
2858 PDEBUG(D_PROBE, "Sensor is an OV7648");
2859 sd->sensor = SEN_OV7648;
2860 break;
2861 case 0x60:
2862 PDEBUG(D_PROBE, "Sensor is a OV7660");
2863 sd->sensor = SEN_OV7660;
2864 break;
2865 default:
2866 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2867 return;
2869 } else {
2870 PDEBUG(D_PROBE, "Sensor is an OV7620");
2871 sd->sensor = SEN_OV7620;
2873 } else {
2874 pr_err("Unknown image sensor version: %d\n", rc & 3);
2878 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2879 static void ov6xx0_configure(struct sd *sd)
2881 int rc;
2882 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2884 /* Detect sensor (sub)type */
2885 rc = i2c_r(sd, OV7610_REG_COM_I);
2886 if (rc < 0) {
2887 PDEBUG(D_ERR, "Error detecting sensor type");
2888 return;
2891 /* Ugh. The first two bits are the version bits, but
2892 * the entire register value must be used. I guess OVT
2893 * underestimated how many variants they would make. */
2894 switch (rc) {
2895 case 0x00:
2896 sd->sensor = SEN_OV6630;
2897 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2898 break;
2899 case 0x01:
2900 sd->sensor = SEN_OV6620;
2901 PDEBUG(D_PROBE, "Sensor is an OV6620");
2902 break;
2903 case 0x02:
2904 sd->sensor = SEN_OV6630;
2905 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2906 break;
2907 case 0x03:
2908 sd->sensor = SEN_OV66308AF;
2909 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2910 break;
2911 case 0x90:
2912 sd->sensor = SEN_OV6630;
2913 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2914 break;
2915 default:
2916 pr_err("FATAL: Unknown sensor version: 0x%02x\n", rc);
2917 return;
2920 /* Set sensor-specific vars */
2921 sd->sif = 1;
2924 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2925 static void ov51x_led_control(struct sd *sd, int on)
2927 if (sd->invert_led)
2928 on = !on;
2930 switch (sd->bridge) {
2931 /* OV511 has no LED control */
2932 case BRIDGE_OV511PLUS:
2933 reg_w(sd, R511_SYS_LED_CTL, on);
2934 break;
2935 case BRIDGE_OV518:
2936 case BRIDGE_OV518PLUS:
2937 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2938 break;
2939 case BRIDGE_OV519:
2940 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2941 break;
2945 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2947 struct sd *sd = (struct sd *) gspca_dev;
2949 if (!sd->snapshot_needs_reset)
2950 return;
2952 /* Note it is important that we clear sd->snapshot_needs_reset,
2953 before actually clearing the snapshot state in the bridge
2954 otherwise we might race with the pkt_scan interrupt handler */
2955 sd->snapshot_needs_reset = 0;
2957 switch (sd->bridge) {
2958 case BRIDGE_OV511:
2959 case BRIDGE_OV511PLUS:
2960 reg_w(sd, R51x_SYS_SNAP, 0x02);
2961 reg_w(sd, R51x_SYS_SNAP, 0x00);
2962 break;
2963 case BRIDGE_OV518:
2964 case BRIDGE_OV518PLUS:
2965 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2966 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2967 break;
2968 case BRIDGE_OV519:
2969 reg_w(sd, R51x_SYS_RESET, 0x40);
2970 reg_w(sd, R51x_SYS_RESET, 0x00);
2971 break;
2975 static void ov51x_upload_quan_tables(struct sd *sd)
2977 const unsigned char yQuanTable511[] = {
2978 0, 1, 1, 2, 2, 3, 3, 4,
2979 1, 1, 1, 2, 2, 3, 4, 4,
2980 1, 1, 2, 2, 3, 4, 4, 4,
2981 2, 2, 2, 3, 4, 4, 4, 4,
2982 2, 2, 3, 4, 4, 5, 5, 5,
2983 3, 3, 4, 4, 5, 5, 5, 5,
2984 3, 4, 4, 4, 5, 5, 5, 5,
2985 4, 4, 4, 4, 5, 5, 5, 5
2988 const unsigned char uvQuanTable511[] = {
2989 0, 2, 2, 3, 4, 4, 4, 4,
2990 2, 2, 2, 4, 4, 4, 4, 4,
2991 2, 2, 3, 4, 4, 4, 4, 4,
2992 3, 4, 4, 4, 4, 4, 4, 4,
2993 4, 4, 4, 4, 4, 4, 4, 4,
2994 4, 4, 4, 4, 4, 4, 4, 4,
2995 4, 4, 4, 4, 4, 4, 4, 4,
2996 4, 4, 4, 4, 4, 4, 4, 4
2999 /* OV518 quantization tables are 8x4 (instead of 8x8) */
3000 const unsigned char yQuanTable518[] = {
3001 5, 4, 5, 6, 6, 7, 7, 7,
3002 5, 5, 5, 5, 6, 7, 7, 7,
3003 6, 6, 6, 6, 7, 7, 7, 8,
3004 7, 7, 6, 7, 7, 7, 8, 8
3006 const unsigned char uvQuanTable518[] = {
3007 6, 6, 6, 7, 7, 7, 7, 7,
3008 6, 6, 6, 7, 7, 7, 7, 7,
3009 6, 6, 6, 7, 7, 7, 7, 8,
3010 7, 7, 7, 7, 7, 7, 8, 8
3013 const unsigned char *pYTable, *pUVTable;
3014 unsigned char val0, val1;
3015 int i, size, reg = R51x_COMP_LUT_BEGIN;
3017 PDEBUG(D_PROBE, "Uploading quantization tables");
3019 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
3020 pYTable = yQuanTable511;
3021 pUVTable = uvQuanTable511;
3022 size = 32;
3023 } else {
3024 pYTable = yQuanTable518;
3025 pUVTable = uvQuanTable518;
3026 size = 16;
3029 for (i = 0; i < size; i++) {
3030 val0 = *pYTable++;
3031 val1 = *pYTable++;
3032 val0 &= 0x0f;
3033 val1 &= 0x0f;
3034 val0 |= val1 << 4;
3035 reg_w(sd, reg, val0);
3037 val0 = *pUVTable++;
3038 val1 = *pUVTable++;
3039 val0 &= 0x0f;
3040 val1 &= 0x0f;
3041 val0 |= val1 << 4;
3042 reg_w(sd, reg + size, val0);
3044 reg++;
3048 /* This initializes the OV511/OV511+ and the sensor */
3049 static void ov511_configure(struct gspca_dev *gspca_dev)
3051 struct sd *sd = (struct sd *) gspca_dev;
3053 /* For 511 and 511+ */
3054 const struct ov_regvals init_511[] = {
3055 { R51x_SYS_RESET, 0x7f },
3056 { R51x_SYS_INIT, 0x01 },
3057 { R51x_SYS_RESET, 0x7f },
3058 { R51x_SYS_INIT, 0x01 },
3059 { R51x_SYS_RESET, 0x3f },
3060 { R51x_SYS_INIT, 0x01 },
3061 { R51x_SYS_RESET, 0x3d },
3064 const struct ov_regvals norm_511[] = {
3065 { R511_DRAM_FLOW_CTL, 0x01 },
3066 { R51x_SYS_SNAP, 0x00 },
3067 { R51x_SYS_SNAP, 0x02 },
3068 { R51x_SYS_SNAP, 0x00 },
3069 { R511_FIFO_OPTS, 0x1f },
3070 { R511_COMP_EN, 0x00 },
3071 { R511_COMP_LUT_EN, 0x03 },
3074 const struct ov_regvals norm_511_p[] = {
3075 { R511_DRAM_FLOW_CTL, 0xff },
3076 { R51x_SYS_SNAP, 0x00 },
3077 { R51x_SYS_SNAP, 0x02 },
3078 { R51x_SYS_SNAP, 0x00 },
3079 { R511_FIFO_OPTS, 0xff },
3080 { R511_COMP_EN, 0x00 },
3081 { R511_COMP_LUT_EN, 0x03 },
3084 const struct ov_regvals compress_511[] = {
3085 { 0x70, 0x1f },
3086 { 0x71, 0x05 },
3087 { 0x72, 0x06 },
3088 { 0x73, 0x06 },
3089 { 0x74, 0x14 },
3090 { 0x75, 0x03 },
3091 { 0x76, 0x04 },
3092 { 0x77, 0x04 },
3095 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3097 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3099 switch (sd->bridge) {
3100 case BRIDGE_OV511:
3101 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3102 break;
3103 case BRIDGE_OV511PLUS:
3104 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3105 break;
3108 /* Init compression */
3109 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3111 ov51x_upload_quan_tables(sd);
3114 /* This initializes the OV518/OV518+ and the sensor */
3115 static void ov518_configure(struct gspca_dev *gspca_dev)
3117 struct sd *sd = (struct sd *) gspca_dev;
3119 /* For 518 and 518+ */
3120 const struct ov_regvals init_518[] = {
3121 { R51x_SYS_RESET, 0x40 },
3122 { R51x_SYS_INIT, 0xe1 },
3123 { R51x_SYS_RESET, 0x3e },
3124 { R51x_SYS_INIT, 0xe1 },
3125 { R51x_SYS_RESET, 0x00 },
3126 { R51x_SYS_INIT, 0xe1 },
3127 { 0x46, 0x00 },
3128 { 0x5d, 0x03 },
3131 const struct ov_regvals norm_518[] = {
3132 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3133 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3134 { 0x31, 0x0f },
3135 { 0x5d, 0x03 },
3136 { 0x24, 0x9f },
3137 { 0x25, 0x90 },
3138 { 0x20, 0x00 },
3139 { 0x51, 0x04 },
3140 { 0x71, 0x19 },
3141 { 0x2f, 0x80 },
3144 const struct ov_regvals norm_518_p[] = {
3145 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3146 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3147 { 0x31, 0x0f },
3148 { 0x5d, 0x03 },
3149 { 0x24, 0x9f },
3150 { 0x25, 0x90 },
3151 { 0x20, 0x60 },
3152 { 0x51, 0x02 },
3153 { 0x71, 0x19 },
3154 { 0x40, 0xff },
3155 { 0x41, 0x42 },
3156 { 0x46, 0x00 },
3157 { 0x33, 0x04 },
3158 { 0x21, 0x19 },
3159 { 0x3f, 0x10 },
3160 { 0x2f, 0x80 },
3163 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3164 PDEBUG(D_PROBE, "Device revision %d",
3165 0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3167 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3169 /* Set LED GPIO pin to output mode */
3170 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3172 switch (sd->bridge) {
3173 case BRIDGE_OV518:
3174 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3175 break;
3176 case BRIDGE_OV518PLUS:
3177 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3178 break;
3181 ov51x_upload_quan_tables(sd);
3183 reg_w(sd, 0x2f, 0x80);
3186 static void ov519_configure(struct sd *sd)
3188 static const struct ov_regvals init_519[] = {
3189 { 0x5a, 0x6d }, /* EnableSystem */
3190 { 0x53, 0x9b }, /* don't enable the microcontroller */
3191 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3192 { 0x5d, 0x03 },
3193 { 0x49, 0x01 },
3194 { 0x48, 0x00 },
3195 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3196 * detection will fail. This deserves further investigation. */
3197 { OV519_GPIO_IO_CTRL0, 0xee },
3198 { OV519_R51_RESET1, 0x0f },
3199 { OV519_R51_RESET1, 0x00 },
3200 { 0x22, 0x00 },
3201 /* windows reads 0x55 at this point*/
3204 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3207 static void ovfx2_configure(struct sd *sd)
3209 static const struct ov_regvals init_fx2[] = {
3210 { 0x00, 0x60 },
3211 { 0x02, 0x01 },
3212 { 0x0f, 0x1d },
3213 { 0xe9, 0x82 },
3214 { 0xea, 0xc7 },
3215 { 0xeb, 0x10 },
3216 { 0xec, 0xf6 },
3219 sd->stopped = 1;
3221 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3224 /* set the mode */
3225 /* This function works for ov7660 only */
3226 static void ov519_set_mode(struct sd *sd)
3228 static const struct ov_regvals bridge_ov7660[2][10] = {
3229 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3230 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3231 {0x25, 0x01}, {0x26, 0x00}},
3232 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3233 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3234 {0x25, 0x03}, {0x26, 0x00}}
3236 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3237 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3238 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3240 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3241 {OV7670_R17_HSTART, 0x13},
3242 {OV7670_R18_HSTOP, 0x01},
3243 {OV7670_R32_HREF, 0x92},
3244 {OV7670_R19_VSTART, 0x02},
3245 {OV7670_R1A_VSTOP, 0x7a},
3246 {OV7670_R03_VREF, 0x00},
3247 /* {0x33, 0x00}, */
3248 /* {0x34, 0x07}, */
3249 /* {0x36, 0x00}, */
3250 /* {0x6b, 0x0a}, */
3253 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3254 ARRAY_SIZE(bridge_ov7660[0]));
3255 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3256 ARRAY_SIZE(sensor_ov7660[0]));
3257 write_i2c_regvals(sd, sensor_ov7660_2,
3258 ARRAY_SIZE(sensor_ov7660_2));
3261 /* set the frame rate */
3262 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3263 static void ov519_set_fr(struct sd *sd)
3265 int fr;
3266 u8 clock;
3267 /* frame rate table with indices:
3268 * - mode = 0: 320x240, 1: 640x480
3269 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3270 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3272 static const u8 fr_tb[2][6][3] = {
3273 {{0x04, 0xff, 0x00},
3274 {0x04, 0x1f, 0x00},
3275 {0x04, 0x1b, 0x00},
3276 {0x04, 0x15, 0x00},
3277 {0x04, 0x09, 0x00},
3278 {0x04, 0x01, 0x00}},
3279 {{0x0c, 0xff, 0x00},
3280 {0x0c, 0x1f, 0x00},
3281 {0x0c, 0x1b, 0x00},
3282 {0x04, 0xff, 0x01},
3283 {0x04, 0x1f, 0x01},
3284 {0x04, 0x1b, 0x01}},
3287 if (frame_rate > 0)
3288 sd->frame_rate = frame_rate;
3289 if (sd->frame_rate >= 30)
3290 fr = 0;
3291 else if (sd->frame_rate >= 25)
3292 fr = 1;
3293 else if (sd->frame_rate >= 20)
3294 fr = 2;
3295 else if (sd->frame_rate >= 15)
3296 fr = 3;
3297 else if (sd->frame_rate >= 10)
3298 fr = 4;
3299 else
3300 fr = 5;
3301 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3302 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3303 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3304 if (sd->sensor == SEN_OV7660)
3305 clock |= 0x80; /* enable double clock */
3306 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3309 static void setautogain(struct gspca_dev *gspca_dev)
3311 struct sd *sd = (struct sd *) gspca_dev;
3313 i2c_w_mask(sd, 0x13, sd->ctrls[AUTOGAIN].val ? 0x05 : 0x00, 0x05);
3316 /* this function is called at probe time */
3317 static int sd_config(struct gspca_dev *gspca_dev,
3318 const struct usb_device_id *id)
3320 struct sd *sd = (struct sd *) gspca_dev;
3321 struct cam *cam = &gspca_dev->cam;
3323 sd->bridge = id->driver_info & BRIDGE_MASK;
3324 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3326 switch (sd->bridge) {
3327 case BRIDGE_OV511:
3328 case BRIDGE_OV511PLUS:
3329 cam->cam_mode = ov511_vga_mode;
3330 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3331 break;
3332 case BRIDGE_OV518:
3333 case BRIDGE_OV518PLUS:
3334 cam->cam_mode = ov518_vga_mode;
3335 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3336 break;
3337 case BRIDGE_OV519:
3338 cam->cam_mode = ov519_vga_mode;
3339 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3340 break;
3341 case BRIDGE_OVFX2:
3342 cam->cam_mode = ov519_vga_mode;
3343 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3344 cam->bulk_size = OVFX2_BULK_SIZE;
3345 cam->bulk_nurbs = MAX_NURBS;
3346 cam->bulk = 1;
3347 break;
3348 case BRIDGE_W9968CF:
3349 cam->cam_mode = w9968cf_vga_mode;
3350 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3351 break;
3354 gspca_dev->cam.ctrls = sd->ctrls;
3355 sd->quality = QUALITY_DEF;
3356 sd->frame_rate = 15;
3358 return 0;
3361 /* this function is called at probe and resume time */
3362 static int sd_init(struct gspca_dev *gspca_dev)
3364 struct sd *sd = (struct sd *) gspca_dev;
3365 struct cam *cam = &gspca_dev->cam;
3367 switch (sd->bridge) {
3368 case BRIDGE_OV511:
3369 case BRIDGE_OV511PLUS:
3370 ov511_configure(gspca_dev);
3371 break;
3372 case BRIDGE_OV518:
3373 case BRIDGE_OV518PLUS:
3374 ov518_configure(gspca_dev);
3375 break;
3376 case BRIDGE_OV519:
3377 ov519_configure(sd);
3378 break;
3379 case BRIDGE_OVFX2:
3380 ovfx2_configure(sd);
3381 break;
3382 case BRIDGE_W9968CF:
3383 w9968cf_configure(sd);
3384 break;
3387 /* The OV519 must be more aggressive about sensor detection since
3388 * I2C write will never fail if the sensor is not present. We have
3389 * to try to initialize the sensor to detect its presence */
3390 sd->sensor = -1;
3392 /* Test for 76xx */
3393 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3394 ov7xx0_configure(sd);
3396 /* Test for 6xx0 */
3397 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3398 ov6xx0_configure(sd);
3400 /* Test for 8xx0 */
3401 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3402 ov8xx0_configure(sd);
3404 /* Test for 3xxx / 2xxx */
3405 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3406 ov_hires_configure(sd);
3407 } else {
3408 pr_err("Can't determine sensor slave IDs\n");
3409 goto error;
3412 if (sd->sensor < 0)
3413 goto error;
3415 ov51x_led_control(sd, 0); /* turn LED off */
3417 switch (sd->bridge) {
3418 case BRIDGE_OV511:
3419 case BRIDGE_OV511PLUS:
3420 if (sd->sif) {
3421 cam->cam_mode = ov511_sif_mode;
3422 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3424 break;
3425 case BRIDGE_OV518:
3426 case BRIDGE_OV518PLUS:
3427 if (sd->sif) {
3428 cam->cam_mode = ov518_sif_mode;
3429 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3431 break;
3432 case BRIDGE_OV519:
3433 if (sd->sif) {
3434 cam->cam_mode = ov519_sif_mode;
3435 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3437 break;
3438 case BRIDGE_OVFX2:
3439 switch (sd->sensor) {
3440 case SEN_OV2610:
3441 case SEN_OV2610AE:
3442 cam->cam_mode = ovfx2_ov2610_mode;
3443 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3444 break;
3445 case SEN_OV3610:
3446 cam->cam_mode = ovfx2_ov3610_mode;
3447 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3448 break;
3449 case SEN_OV9600:
3450 cam->cam_mode = ovfx2_ov9600_mode;
3451 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3452 break;
3453 default:
3454 if (sd->sif) {
3455 cam->cam_mode = ov519_sif_mode;
3456 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3458 break;
3460 break;
3461 case BRIDGE_W9968CF:
3462 if (sd->sif)
3463 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3465 /* w9968cf needs initialisation once the sensor is known */
3466 w9968cf_init(sd);
3467 break;
3470 gspca_dev->ctrl_dis = ctrl_dis[sd->sensor];
3472 /* initialize the sensor */
3473 switch (sd->sensor) {
3474 case SEN_OV2610:
3475 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3477 /* Enable autogain, autoexpo, awb, bandfilter */
3478 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3479 break;
3480 case SEN_OV2610AE:
3481 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3483 /* enable autoexpo */
3484 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3485 break;
3486 case SEN_OV3610:
3487 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3489 /* Enable autogain, autoexpo, awb, bandfilter */
3490 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3491 break;
3492 case SEN_OV6620:
3493 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3494 break;
3495 case SEN_OV6630:
3496 case SEN_OV66308AF:
3497 sd->ctrls[CONTRAST].def = 200;
3498 /* The default is too low for the ov6630 */
3499 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3500 break;
3501 default:
3502 /* case SEN_OV7610: */
3503 /* case SEN_OV76BE: */
3504 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3505 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3506 break;
3507 case SEN_OV7620:
3508 case SEN_OV7620AE:
3509 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3510 break;
3511 case SEN_OV7640:
3512 case SEN_OV7648:
3513 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3514 break;
3515 case SEN_OV7660:
3516 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3517 msleep(14);
3518 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3519 write_regvals(sd, init_519_ov7660,
3520 ARRAY_SIZE(init_519_ov7660));
3521 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3522 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3523 ov519_set_mode(sd);
3524 ov519_set_fr(sd);
3525 sd->ctrls[COLORS].max = 4; /* 0..4 */
3526 sd->ctrls[COLORS].val =
3527 sd->ctrls[COLORS].def = 2;
3528 setcolors(gspca_dev);
3529 sd->ctrls[CONTRAST].max = 6; /* 0..6 */
3530 sd->ctrls[CONTRAST].val =
3531 sd->ctrls[CONTRAST].def = 3;
3532 setcontrast(gspca_dev);
3533 sd->ctrls[BRIGHTNESS].max = 6; /* 0..6 */
3534 sd->ctrls[BRIGHTNESS].val =
3535 sd->ctrls[BRIGHTNESS].def = 3;
3536 setbrightness(gspca_dev);
3537 sd_reset_snapshot(gspca_dev);
3538 ov51x_restart(sd);
3539 ov51x_stop(sd); /* not in win traces */
3540 ov51x_led_control(sd, 0);
3541 break;
3542 case SEN_OV7670:
3543 sd->ctrls[FREQ].max = 3; /* auto */
3544 sd->ctrls[FREQ].def = 3;
3545 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3546 break;
3547 case SEN_OV8610:
3548 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3549 break;
3550 case SEN_OV9600:
3551 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3553 /* enable autoexpo */
3554 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3555 break;
3557 return gspca_dev->usb_err;
3558 error:
3559 PDEBUG(D_ERR, "OV519 Config failed");
3560 return -EINVAL;
3563 /* function called at start time before URB creation */
3564 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3566 struct sd *sd = (struct sd *) gspca_dev;
3568 switch (sd->bridge) {
3569 case BRIDGE_OVFX2:
3570 if (gspca_dev->width != 800)
3571 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3572 else
3573 gspca_dev->cam.bulk_size = 7 * 4096;
3574 break;
3576 return 0;
3579 /* Set up the OV511/OV511+ with the given image parameters.
3581 * Do not put any sensor-specific code in here (including I2C I/O functions)
3583 static void ov511_mode_init_regs(struct sd *sd)
3585 int hsegs, vsegs, packet_size, fps, needed;
3586 int interlaced = 0;
3587 struct usb_host_interface *alt;
3588 struct usb_interface *intf;
3590 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3591 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3592 if (!alt) {
3593 pr_err("Couldn't get altsetting\n");
3594 sd->gspca_dev.usb_err = -EIO;
3595 return;
3598 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3599 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3601 reg_w(sd, R511_CAM_UV_EN, 0x01);
3602 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3603 reg_w(sd, R511_SNAP_OPTS, 0x03);
3605 /* Here I'm assuming that snapshot size == image size.
3606 * I hope that's always true. --claudio
3608 hsegs = (sd->gspca_dev.width >> 3) - 1;
3609 vsegs = (sd->gspca_dev.height >> 3) - 1;
3611 reg_w(sd, R511_CAM_PXCNT, hsegs);
3612 reg_w(sd, R511_CAM_LNCNT, vsegs);
3613 reg_w(sd, R511_CAM_PXDIV, 0x00);
3614 reg_w(sd, R511_CAM_LNDIV, 0x00);
3616 /* YUV420, low pass filter on */
3617 reg_w(sd, R511_CAM_OPTS, 0x03);
3619 /* Snapshot additions */
3620 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3621 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3622 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3623 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3625 /******** Set the framerate ********/
3626 if (frame_rate > 0)
3627 sd->frame_rate = frame_rate;
3629 switch (sd->sensor) {
3630 case SEN_OV6620:
3631 /* No framerate control, doesn't like higher rates yet */
3632 sd->clockdiv = 3;
3633 break;
3635 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3636 for more sensors we need to do this for them too */
3637 case SEN_OV7620:
3638 case SEN_OV7620AE:
3639 case SEN_OV7640:
3640 case SEN_OV7648:
3641 case SEN_OV76BE:
3642 if (sd->gspca_dev.width == 320)
3643 interlaced = 1;
3644 /* Fall through */
3645 case SEN_OV6630:
3646 case SEN_OV7610:
3647 case SEN_OV7670:
3648 switch (sd->frame_rate) {
3649 case 30:
3650 case 25:
3651 /* Not enough bandwidth to do 640x480 @ 30 fps */
3652 if (sd->gspca_dev.width != 640) {
3653 sd->clockdiv = 0;
3654 break;
3656 /* Fall through for 640x480 case */
3657 default:
3658 /* case 20: */
3659 /* case 15: */
3660 sd->clockdiv = 1;
3661 break;
3662 case 10:
3663 sd->clockdiv = 2;
3664 break;
3665 case 5:
3666 sd->clockdiv = 5;
3667 break;
3669 if (interlaced) {
3670 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3671 /* Higher then 10 does not work */
3672 if (sd->clockdiv > 10)
3673 sd->clockdiv = 10;
3675 break;
3677 case SEN_OV8610:
3678 /* No framerate control ?? */
3679 sd->clockdiv = 0;
3680 break;
3683 /* Check if we have enough bandwidth to disable compression */
3684 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3685 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3686 /* 1000 isoc packets/sec */
3687 if (needed > 1000 * packet_size) {
3688 /* Enable Y and UV quantization and compression */
3689 reg_w(sd, R511_COMP_EN, 0x07);
3690 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3691 } else {
3692 reg_w(sd, R511_COMP_EN, 0x06);
3693 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3696 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3697 reg_w(sd, R51x_SYS_RESET, 0);
3700 /* Sets up the OV518/OV518+ with the given image parameters
3702 * OV518 needs a completely different approach, until we can figure out what
3703 * the individual registers do. Also, only 15 FPS is supported now.
3705 * Do not put any sensor-specific code in here (including I2C I/O functions)
3707 static void ov518_mode_init_regs(struct sd *sd)
3709 int hsegs, vsegs, packet_size;
3710 struct usb_host_interface *alt;
3711 struct usb_interface *intf;
3713 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3714 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3715 if (!alt) {
3716 pr_err("Couldn't get altsetting\n");
3717 sd->gspca_dev.usb_err = -EIO;
3718 return;
3721 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3722 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3724 /******** Set the mode ********/
3725 reg_w(sd, 0x2b, 0);
3726 reg_w(sd, 0x2c, 0);
3727 reg_w(sd, 0x2d, 0);
3728 reg_w(sd, 0x2e, 0);
3729 reg_w(sd, 0x3b, 0);
3730 reg_w(sd, 0x3c, 0);
3731 reg_w(sd, 0x3d, 0);
3732 reg_w(sd, 0x3e, 0);
3734 if (sd->bridge == BRIDGE_OV518) {
3735 /* Set 8-bit (YVYU) input format */
3736 reg_w_mask(sd, 0x20, 0x08, 0x08);
3738 /* Set 12-bit (4:2:0) output format */
3739 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3740 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3741 } else {
3742 reg_w(sd, 0x28, 0x80);
3743 reg_w(sd, 0x38, 0x80);
3746 hsegs = sd->gspca_dev.width / 16;
3747 vsegs = sd->gspca_dev.height / 4;
3749 reg_w(sd, 0x29, hsegs);
3750 reg_w(sd, 0x2a, vsegs);
3752 reg_w(sd, 0x39, hsegs);
3753 reg_w(sd, 0x3a, vsegs);
3755 /* Windows driver does this here; who knows why */
3756 reg_w(sd, 0x2f, 0x80);
3758 /******** Set the framerate ********/
3759 sd->clockdiv = 1;
3761 /* Mode independent, but framerate dependent, regs */
3762 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3763 reg_w(sd, 0x51, 0x04);
3764 reg_w(sd, 0x22, 0x18);
3765 reg_w(sd, 0x23, 0xff);
3767 if (sd->bridge == BRIDGE_OV518PLUS) {
3768 switch (sd->sensor) {
3769 case SEN_OV7620AE:
3770 if (sd->gspca_dev.width == 320) {
3771 reg_w(sd, 0x20, 0x00);
3772 reg_w(sd, 0x21, 0x19);
3773 } else {
3774 reg_w(sd, 0x20, 0x60);
3775 reg_w(sd, 0x21, 0x1f);
3777 break;
3778 case SEN_OV7620:
3779 reg_w(sd, 0x20, 0x00);
3780 reg_w(sd, 0x21, 0x19);
3781 break;
3782 default:
3783 reg_w(sd, 0x21, 0x19);
3785 } else
3786 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3788 /* FIXME: Sensor-specific */
3789 /* Bit 5 is what matters here. Of course, it is "reserved" */
3790 i2c_w(sd, 0x54, 0x23);
3792 reg_w(sd, 0x2f, 0x80);
3794 if (sd->bridge == BRIDGE_OV518PLUS) {
3795 reg_w(sd, 0x24, 0x94);
3796 reg_w(sd, 0x25, 0x90);
3797 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3798 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3799 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3800 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3801 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3802 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3803 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3804 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3805 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3806 } else {
3807 reg_w(sd, 0x24, 0x9f);
3808 reg_w(sd, 0x25, 0x90);
3809 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3810 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3811 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3812 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3813 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3814 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3815 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3816 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3817 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3820 reg_w(sd, 0x2f, 0x80);
3823 /* Sets up the OV519 with the given image parameters
3825 * OV519 needs a completely different approach, until we can figure out what
3826 * the individual registers do.
3828 * Do not put any sensor-specific code in here (including I2C I/O functions)
3830 static void ov519_mode_init_regs(struct sd *sd)
3832 static const struct ov_regvals mode_init_519_ov7670[] = {
3833 { 0x5d, 0x03 }, /* Turn off suspend mode */
3834 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3835 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3836 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3837 { 0xa3, 0x18 },
3838 { 0xa4, 0x04 },
3839 { 0xa5, 0x28 },
3840 { 0x37, 0x00 }, /* SetUsbInit */
3841 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3842 /* Enable both fields, YUV Input, disable defect comp (why?) */
3843 { 0x20, 0x0c },
3844 { 0x21, 0x38 },
3845 { 0x22, 0x1d },
3846 { 0x17, 0x50 }, /* undocumented */
3847 { 0x37, 0x00 }, /* undocumented */
3848 { 0x40, 0xff }, /* I2C timeout counter */
3849 { 0x46, 0x00 }, /* I2C clock prescaler */
3850 { 0x59, 0x04 }, /* new from windrv 090403 */
3851 { 0xff, 0x00 }, /* undocumented */
3852 /* windows reads 0x55 at this point, why? */
3855 static const struct ov_regvals mode_init_519[] = {
3856 { 0x5d, 0x03 }, /* Turn off suspend mode */
3857 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3858 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3859 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3860 { 0xa3, 0x18 },
3861 { 0xa4, 0x04 },
3862 { 0xa5, 0x28 },
3863 { 0x37, 0x00 }, /* SetUsbInit */
3864 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3865 /* Enable both fields, YUV Input, disable defect comp (why?) */
3866 { 0x22, 0x1d },
3867 { 0x17, 0x50 }, /* undocumented */
3868 { 0x37, 0x00 }, /* undocumented */
3869 { 0x40, 0xff }, /* I2C timeout counter */
3870 { 0x46, 0x00 }, /* I2C clock prescaler */
3871 { 0x59, 0x04 }, /* new from windrv 090403 */
3872 { 0xff, 0x00 }, /* undocumented */
3873 /* windows reads 0x55 at this point, why? */
3876 /******** Set the mode ********/
3877 switch (sd->sensor) {
3878 default:
3879 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3880 if (sd->sensor == SEN_OV7640 ||
3881 sd->sensor == SEN_OV7648) {
3882 /* Select 8-bit input mode */
3883 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3885 break;
3886 case SEN_OV7660:
3887 return; /* done by ov519_set_mode/fr() */
3888 case SEN_OV7670:
3889 write_regvals(sd, mode_init_519_ov7670,
3890 ARRAY_SIZE(mode_init_519_ov7670));
3891 break;
3894 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3895 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3896 if (sd->sensor == SEN_OV7670 &&
3897 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3898 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3899 else if (sd->sensor == SEN_OV7648 &&
3900 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3901 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3902 else
3903 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3904 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3905 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3906 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3907 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3908 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3909 reg_w(sd, 0x26, 0x00); /* Undocumented */
3911 /******** Set the framerate ********/
3912 if (frame_rate > 0)
3913 sd->frame_rate = frame_rate;
3915 /* FIXME: These are only valid at the max resolution. */
3916 sd->clockdiv = 0;
3917 switch (sd->sensor) {
3918 case SEN_OV7640:
3919 case SEN_OV7648:
3920 switch (sd->frame_rate) {
3921 default:
3922 /* case 30: */
3923 reg_w(sd, 0xa4, 0x0c);
3924 reg_w(sd, 0x23, 0xff);
3925 break;
3926 case 25:
3927 reg_w(sd, 0xa4, 0x0c);
3928 reg_w(sd, 0x23, 0x1f);
3929 break;
3930 case 20:
3931 reg_w(sd, 0xa4, 0x0c);
3932 reg_w(sd, 0x23, 0x1b);
3933 break;
3934 case 15:
3935 reg_w(sd, 0xa4, 0x04);
3936 reg_w(sd, 0x23, 0xff);
3937 sd->clockdiv = 1;
3938 break;
3939 case 10:
3940 reg_w(sd, 0xa4, 0x04);
3941 reg_w(sd, 0x23, 0x1f);
3942 sd->clockdiv = 1;
3943 break;
3944 case 5:
3945 reg_w(sd, 0xa4, 0x04);
3946 reg_w(sd, 0x23, 0x1b);
3947 sd->clockdiv = 1;
3948 break;
3950 break;
3951 case SEN_OV8610:
3952 switch (sd->frame_rate) {
3953 default: /* 15 fps */
3954 /* case 15: */
3955 reg_w(sd, 0xa4, 0x06);
3956 reg_w(sd, 0x23, 0xff);
3957 break;
3958 case 10:
3959 reg_w(sd, 0xa4, 0x06);
3960 reg_w(sd, 0x23, 0x1f);
3961 break;
3962 case 5:
3963 reg_w(sd, 0xa4, 0x06);
3964 reg_w(sd, 0x23, 0x1b);
3965 break;
3967 break;
3968 case SEN_OV7670: /* guesses, based on 7640 */
3969 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3970 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3971 reg_w(sd, 0xa4, 0x10);
3972 switch (sd->frame_rate) {
3973 case 30:
3974 reg_w(sd, 0x23, 0xff);
3975 break;
3976 case 20:
3977 reg_w(sd, 0x23, 0x1b);
3978 break;
3979 default:
3980 /* case 15: */
3981 reg_w(sd, 0x23, 0xff);
3982 sd->clockdiv = 1;
3983 break;
3985 break;
3989 static void mode_init_ov_sensor_regs(struct sd *sd)
3991 struct gspca_dev *gspca_dev;
3992 int qvga, xstart, xend, ystart, yend;
3993 u8 v;
3995 gspca_dev = &sd->gspca_dev;
3996 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3998 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3999 switch (sd->sensor) {
4000 case SEN_OV2610:
4001 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4002 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4003 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4004 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4005 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4006 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4007 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4008 return;
4009 case SEN_OV2610AE: {
4010 u8 v;
4012 /* frame rates:
4013 * 10fps / 5 fps for 1600x1200
4014 * 40fps / 20fps for 800x600
4016 v = 80;
4017 if (qvga) {
4018 if (sd->frame_rate < 25)
4019 v = 0x81;
4020 } else {
4021 if (sd->frame_rate < 10)
4022 v = 0x81;
4024 i2c_w(sd, 0x11, v);
4025 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
4026 return;
4028 case SEN_OV3610:
4029 if (qvga) {
4030 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
4031 ystart = (776 - gspca_dev->height) / 2;
4032 } else {
4033 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
4034 ystart = (1544 - gspca_dev->height) / 2;
4036 xend = xstart + gspca_dev->width;
4037 yend = ystart + gspca_dev->height;
4038 /* Writing to the COMH register resets the other windowing regs
4039 to their default values, so we must do this first. */
4040 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
4041 i2c_w_mask(sd, 0x32,
4042 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
4043 0x3f);
4044 i2c_w_mask(sd, 0x03,
4045 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
4046 0x0f);
4047 i2c_w(sd, 0x17, xstart >> 4);
4048 i2c_w(sd, 0x18, xend >> 4);
4049 i2c_w(sd, 0x19, ystart >> 3);
4050 i2c_w(sd, 0x1a, yend >> 3);
4051 return;
4052 case SEN_OV8610:
4053 /* For OV8610 qvga means qsvga */
4054 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
4055 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4056 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4057 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
4058 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
4059 break;
4060 case SEN_OV7610:
4061 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4062 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4063 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4064 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4065 break;
4066 case SEN_OV7620:
4067 case SEN_OV7620AE:
4068 case SEN_OV76BE:
4069 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4070 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4071 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4072 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4073 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4074 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
4075 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4076 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4077 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4078 if (sd->sensor == SEN_OV76BE)
4079 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4080 break;
4081 case SEN_OV7640:
4082 case SEN_OV7648:
4083 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4084 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4085 /* Setting this undocumented bit in qvga mode removes a very
4086 annoying vertical shaking of the image */
4087 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4088 /* Unknown */
4089 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4090 /* Allow higher automatic gain (to allow higher framerates) */
4091 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4092 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4093 break;
4094 case SEN_OV7670:
4095 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4096 * do we need to set anything else?
4097 * HSTART etc are set in set_ov_sensor_window itself */
4098 i2c_w_mask(sd, OV7670_R12_COM7,
4099 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4100 OV7670_COM7_FMT_MASK);
4101 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4102 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4103 OV7670_COM8_AWB);
4104 if (qvga) { /* QVGA from ov7670.c by
4105 * Jonathan Corbet */
4106 xstart = 164;
4107 xend = 28;
4108 ystart = 14;
4109 yend = 494;
4110 } else { /* VGA */
4111 xstart = 158;
4112 xend = 14;
4113 ystart = 10;
4114 yend = 490;
4116 /* OV7670 hardware window registers are split across
4117 * multiple locations */
4118 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4119 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4120 v = i2c_r(sd, OV7670_R32_HREF);
4121 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4122 msleep(10); /* need to sleep between read and write to
4123 * same reg! */
4124 i2c_w(sd, OV7670_R32_HREF, v);
4126 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4127 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4128 v = i2c_r(sd, OV7670_R03_VREF);
4129 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4130 msleep(10); /* need to sleep between read and write to
4131 * same reg! */
4132 i2c_w(sd, OV7670_R03_VREF, v);
4133 break;
4134 case SEN_OV6620:
4135 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4136 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4137 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4138 break;
4139 case SEN_OV6630:
4140 case SEN_OV66308AF:
4141 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4142 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4143 break;
4144 case SEN_OV9600: {
4145 const struct ov_i2c_regvals *vals;
4146 static const struct ov_i2c_regvals sxga_15[] = {
4147 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4149 static const struct ov_i2c_regvals sxga_7_5[] = {
4150 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4152 static const struct ov_i2c_regvals vga_30[] = {
4153 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4155 static const struct ov_i2c_regvals vga_15[] = {
4156 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4159 /* frame rates:
4160 * 15fps / 7.5 fps for 1280x1024
4161 * 30fps / 15fps for 640x480
4163 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4164 if (qvga)
4165 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4166 else
4167 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4168 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4169 return;
4171 default:
4172 return;
4175 /******** Clock programming ********/
4176 i2c_w(sd, 0x11, sd->clockdiv);
4179 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4180 static void sethvflip(struct gspca_dev *gspca_dev)
4182 struct sd *sd = (struct sd *) gspca_dev;
4184 if (sd->gspca_dev.streaming)
4185 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4186 i2c_w_mask(sd, OV7670_R1E_MVFP,
4187 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
4188 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
4189 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4190 if (sd->gspca_dev.streaming)
4191 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4194 static void set_ov_sensor_window(struct sd *sd)
4196 struct gspca_dev *gspca_dev;
4197 int qvga, crop;
4198 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4200 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4201 switch (sd->sensor) {
4202 case SEN_OV2610:
4203 case SEN_OV2610AE:
4204 case SEN_OV3610:
4205 case SEN_OV7670:
4206 case SEN_OV9600:
4207 mode_init_ov_sensor_regs(sd);
4208 return;
4209 case SEN_OV7660:
4210 ov519_set_mode(sd);
4211 ov519_set_fr(sd);
4212 return;
4215 gspca_dev = &sd->gspca_dev;
4216 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4217 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4219 /* The different sensor ICs handle setting up of window differently.
4220 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4221 switch (sd->sensor) {
4222 case SEN_OV8610:
4223 hwsbase = 0x1e;
4224 hwebase = 0x1e;
4225 vwsbase = 0x02;
4226 vwebase = 0x02;
4227 break;
4228 case SEN_OV7610:
4229 case SEN_OV76BE:
4230 hwsbase = 0x38;
4231 hwebase = 0x3a;
4232 vwsbase = vwebase = 0x05;
4233 break;
4234 case SEN_OV6620:
4235 case SEN_OV6630:
4236 case SEN_OV66308AF:
4237 hwsbase = 0x38;
4238 hwebase = 0x3a;
4239 vwsbase = 0x05;
4240 vwebase = 0x06;
4241 if (sd->sensor == SEN_OV66308AF && qvga)
4242 /* HDG: this fixes U and V getting swapped */
4243 hwsbase++;
4244 if (crop) {
4245 hwsbase += 8;
4246 hwebase += 8;
4247 vwsbase += 11;
4248 vwebase += 11;
4250 break;
4251 case SEN_OV7620:
4252 case SEN_OV7620AE:
4253 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4254 hwebase = 0x2f;
4255 vwsbase = vwebase = 0x05;
4256 break;
4257 case SEN_OV7640:
4258 case SEN_OV7648:
4259 hwsbase = 0x1a;
4260 hwebase = 0x1a;
4261 vwsbase = vwebase = 0x03;
4262 break;
4263 default:
4264 return;
4267 switch (sd->sensor) {
4268 case SEN_OV6620:
4269 case SEN_OV6630:
4270 case SEN_OV66308AF:
4271 if (qvga) { /* QCIF */
4272 hwscale = 0;
4273 vwscale = 0;
4274 } else { /* CIF */
4275 hwscale = 1;
4276 vwscale = 1; /* The datasheet says 0;
4277 * it's wrong */
4279 break;
4280 case SEN_OV8610:
4281 if (qvga) { /* QSVGA */
4282 hwscale = 1;
4283 vwscale = 1;
4284 } else { /* SVGA */
4285 hwscale = 2;
4286 vwscale = 2;
4288 break;
4289 default: /* SEN_OV7xx0 */
4290 if (qvga) { /* QVGA */
4291 hwscale = 1;
4292 vwscale = 0;
4293 } else { /* VGA */
4294 hwscale = 2;
4295 vwscale = 1;
4299 mode_init_ov_sensor_regs(sd);
4301 i2c_w(sd, 0x17, hwsbase);
4302 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4303 i2c_w(sd, 0x19, vwsbase);
4304 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4307 /* -- start the camera -- */
4308 static int sd_start(struct gspca_dev *gspca_dev)
4310 struct sd *sd = (struct sd *) gspca_dev;
4312 /* Default for most bridges, allow bridge_mode_init_regs to override */
4313 sd->sensor_width = sd->gspca_dev.width;
4314 sd->sensor_height = sd->gspca_dev.height;
4316 switch (sd->bridge) {
4317 case BRIDGE_OV511:
4318 case BRIDGE_OV511PLUS:
4319 ov511_mode_init_regs(sd);
4320 break;
4321 case BRIDGE_OV518:
4322 case BRIDGE_OV518PLUS:
4323 ov518_mode_init_regs(sd);
4324 break;
4325 case BRIDGE_OV519:
4326 ov519_mode_init_regs(sd);
4327 break;
4328 /* case BRIDGE_OVFX2: nothing to do */
4329 case BRIDGE_W9968CF:
4330 w9968cf_mode_init_regs(sd);
4331 break;
4334 set_ov_sensor_window(sd);
4336 if (!(sd->gspca_dev.ctrl_dis & (1 << CONTRAST)))
4337 setcontrast(gspca_dev);
4338 if (!(sd->gspca_dev.ctrl_dis & (1 << BRIGHTNESS)))
4339 setbrightness(gspca_dev);
4340 if (!(sd->gspca_dev.ctrl_dis & (1 << EXPOSURE)))
4341 setexposure(gspca_dev);
4342 if (!(sd->gspca_dev.ctrl_dis & (1 << COLORS)))
4343 setcolors(gspca_dev);
4344 if (!(sd->gspca_dev.ctrl_dis & ((1 << HFLIP) | (1 << VFLIP))))
4345 sethvflip(gspca_dev);
4346 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOBRIGHT)))
4347 setautobright(gspca_dev);
4348 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOGAIN)))
4349 setautogain(gspca_dev);
4350 if (!(sd->gspca_dev.ctrl_dis & (1 << FREQ)))
4351 setfreq_i(sd);
4353 /* Force clear snapshot state in case the snapshot button was
4354 pressed while we weren't streaming */
4355 sd->snapshot_needs_reset = 1;
4356 sd_reset_snapshot(gspca_dev);
4358 sd->first_frame = 3;
4360 ov51x_restart(sd);
4361 ov51x_led_control(sd, 1);
4362 return gspca_dev->usb_err;
4365 static void sd_stopN(struct gspca_dev *gspca_dev)
4367 struct sd *sd = (struct sd *) gspca_dev;
4369 ov51x_stop(sd);
4370 ov51x_led_control(sd, 0);
4373 static void sd_stop0(struct gspca_dev *gspca_dev)
4375 struct sd *sd = (struct sd *) gspca_dev;
4377 if (!sd->gspca_dev.present)
4378 return;
4379 if (sd->bridge == BRIDGE_W9968CF)
4380 w9968cf_stop0(sd);
4382 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4383 /* If the last button state is pressed, release it now! */
4384 if (sd->snapshot_pressed) {
4385 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4386 input_sync(gspca_dev->input_dev);
4387 sd->snapshot_pressed = 0;
4389 #endif
4390 if (sd->bridge == BRIDGE_OV519)
4391 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4394 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4396 struct sd *sd = (struct sd *) gspca_dev;
4398 if (sd->snapshot_pressed != state) {
4399 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4400 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4401 input_sync(gspca_dev->input_dev);
4402 #endif
4403 if (state)
4404 sd->snapshot_needs_reset = 1;
4406 sd->snapshot_pressed = state;
4407 } else {
4408 /* On the ov511 / ov519 we need to reset the button state
4409 multiple times, as resetting does not work as long as the
4410 button stays pressed */
4411 switch (sd->bridge) {
4412 case BRIDGE_OV511:
4413 case BRIDGE_OV511PLUS:
4414 case BRIDGE_OV519:
4415 if (state)
4416 sd->snapshot_needs_reset = 1;
4417 break;
4422 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4423 u8 *in, /* isoc packet */
4424 int len) /* iso packet length */
4426 struct sd *sd = (struct sd *) gspca_dev;
4428 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4429 * byte non-zero. The EOF packet has image width/height in the
4430 * 10th and 11th bytes. The 9th byte is given as follows:
4432 * bit 7: EOF
4433 * 6: compression enabled
4434 * 5: 422/420/400 modes
4435 * 4: 422/420/400 modes
4436 * 3: 1
4437 * 2: snapshot button on
4438 * 1: snapshot frame
4439 * 0: even/odd field
4441 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4442 (in[8] & 0x08)) {
4443 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4444 if (in[8] & 0x80) {
4445 /* Frame end */
4446 if ((in[9] + 1) * 8 != gspca_dev->width ||
4447 (in[10] + 1) * 8 != gspca_dev->height) {
4448 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4449 " requested: %dx%d\n",
4450 (in[9] + 1) * 8, (in[10] + 1) * 8,
4451 gspca_dev->width, gspca_dev->height);
4452 gspca_dev->last_packet_type = DISCARD_PACKET;
4453 return;
4455 /* Add 11 byte footer to frame, might be useful */
4456 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4457 return;
4458 } else {
4459 /* Frame start */
4460 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4461 sd->packet_nr = 0;
4465 /* Ignore the packet number */
4466 len--;
4468 /* intermediate packet */
4469 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4472 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4473 u8 *data, /* isoc packet */
4474 int len) /* iso packet length */
4476 struct sd *sd = (struct sd *) gspca_dev;
4478 /* A false positive here is likely, until OVT gives me
4479 * the definitive SOF/EOF format */
4480 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4481 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4482 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4483 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4484 sd->packet_nr = 0;
4487 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4488 return;
4490 /* Does this device use packet numbers ? */
4491 if (len & 7) {
4492 len--;
4493 if (sd->packet_nr == data[len])
4494 sd->packet_nr++;
4495 /* The last few packets of the frame (which are all 0's
4496 except that they may contain part of the footer), are
4497 numbered 0 */
4498 else if (sd->packet_nr == 0 || data[len]) {
4499 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4500 (int)data[len], (int)sd->packet_nr);
4501 gspca_dev->last_packet_type = DISCARD_PACKET;
4502 return;
4506 /* intermediate packet */
4507 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4510 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4511 u8 *data, /* isoc packet */
4512 int len) /* iso packet length */
4514 /* Header of ov519 is 16 bytes:
4515 * Byte Value Description
4516 * 0 0xff magic
4517 * 1 0xff magic
4518 * 2 0xff magic
4519 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4520 * 9 0xXX 0x01 initial frame without data,
4521 * 0x00 standard frame with image
4522 * 14 Lo in EOF: length of image data / 8
4523 * 15 Hi
4526 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4527 switch (data[3]) {
4528 case 0x50: /* start of frame */
4529 /* Don't check the button state here, as the state
4530 usually (always ?) changes at EOF and checking it
4531 here leads to unnecessary snapshot state resets. */
4532 #define HDRSZ 16
4533 data += HDRSZ;
4534 len -= HDRSZ;
4535 #undef HDRSZ
4536 if (data[0] == 0xff || data[1] == 0xd8)
4537 gspca_frame_add(gspca_dev, FIRST_PACKET,
4538 data, len);
4539 else
4540 gspca_dev->last_packet_type = DISCARD_PACKET;
4541 return;
4542 case 0x51: /* end of frame */
4543 ov51x_handle_button(gspca_dev, data[11] & 1);
4544 if (data[9] != 0)
4545 gspca_dev->last_packet_type = DISCARD_PACKET;
4546 gspca_frame_add(gspca_dev, LAST_PACKET,
4547 NULL, 0);
4548 return;
4552 /* intermediate packet */
4553 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4556 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4557 u8 *data, /* isoc packet */
4558 int len) /* iso packet length */
4560 struct sd *sd = (struct sd *) gspca_dev;
4562 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4564 /* A short read signals EOF */
4565 if (len < gspca_dev->cam.bulk_size) {
4566 /* If the frame is short, and it is one of the first ones
4567 the sensor and bridge are still syncing, so drop it. */
4568 if (sd->first_frame) {
4569 sd->first_frame--;
4570 if (gspca_dev->image_len <
4571 sd->gspca_dev.width * sd->gspca_dev.height)
4572 gspca_dev->last_packet_type = DISCARD_PACKET;
4574 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4575 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4579 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4580 u8 *data, /* isoc packet */
4581 int len) /* iso packet length */
4583 struct sd *sd = (struct sd *) gspca_dev;
4585 switch (sd->bridge) {
4586 case BRIDGE_OV511:
4587 case BRIDGE_OV511PLUS:
4588 ov511_pkt_scan(gspca_dev, data, len);
4589 break;
4590 case BRIDGE_OV518:
4591 case BRIDGE_OV518PLUS:
4592 ov518_pkt_scan(gspca_dev, data, len);
4593 break;
4594 case BRIDGE_OV519:
4595 ov519_pkt_scan(gspca_dev, data, len);
4596 break;
4597 case BRIDGE_OVFX2:
4598 ovfx2_pkt_scan(gspca_dev, data, len);
4599 break;
4600 case BRIDGE_W9968CF:
4601 w9968cf_pkt_scan(gspca_dev, data, len);
4602 break;
4606 /* -- management routines -- */
4608 static void setbrightness(struct gspca_dev *gspca_dev)
4610 struct sd *sd = (struct sd *) gspca_dev;
4611 int val;
4612 static const struct ov_i2c_regvals brit_7660[][7] = {
4613 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4614 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4615 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4616 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4617 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4618 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4619 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4620 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4621 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4622 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4623 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4624 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4625 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4626 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4629 val = sd->ctrls[BRIGHTNESS].val;
4630 switch (sd->sensor) {
4631 case SEN_OV8610:
4632 case SEN_OV7610:
4633 case SEN_OV76BE:
4634 case SEN_OV6620:
4635 case SEN_OV6630:
4636 case SEN_OV66308AF:
4637 case SEN_OV7640:
4638 case SEN_OV7648:
4639 i2c_w(sd, OV7610_REG_BRT, val);
4640 break;
4641 case SEN_OV7620:
4642 case SEN_OV7620AE:
4643 /* 7620 doesn't like manual changes when in auto mode */
4644 if (!sd->ctrls[AUTOBRIGHT].val)
4645 i2c_w(sd, OV7610_REG_BRT, val);
4646 break;
4647 case SEN_OV7660:
4648 write_i2c_regvals(sd, brit_7660[val],
4649 ARRAY_SIZE(brit_7660[0]));
4650 break;
4651 case SEN_OV7670:
4652 /*win trace
4653 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4654 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4655 break;
4659 static void setcontrast(struct gspca_dev *gspca_dev)
4661 struct sd *sd = (struct sd *) gspca_dev;
4662 int val;
4663 static const struct ov_i2c_regvals contrast_7660[][31] = {
4664 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4665 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4666 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4667 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4668 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4669 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4670 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4671 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4672 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4673 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4674 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4675 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4676 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4677 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4678 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4679 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4680 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4681 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4682 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4683 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4684 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4685 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4686 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4687 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4688 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4689 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4690 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4691 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4692 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4693 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4694 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4695 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4696 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4697 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4698 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4699 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4700 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4701 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4702 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4703 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4704 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4705 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4706 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4707 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4708 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4709 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4710 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4711 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4712 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4713 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4714 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4715 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4716 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4717 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4718 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4719 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4722 val = sd->ctrls[CONTRAST].val;
4723 switch (sd->sensor) {
4724 case SEN_OV7610:
4725 case SEN_OV6620:
4726 i2c_w(sd, OV7610_REG_CNT, val);
4727 break;
4728 case SEN_OV6630:
4729 case SEN_OV66308AF:
4730 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4731 break;
4732 case SEN_OV8610: {
4733 static const u8 ctab[] = {
4734 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4737 /* Use Y gamma control instead. Bit 0 enables it. */
4738 i2c_w(sd, 0x64, ctab[val >> 5]);
4739 break;
4741 case SEN_OV7620:
4742 case SEN_OV7620AE: {
4743 static const u8 ctab[] = {
4744 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4745 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4748 /* Use Y gamma control instead. Bit 0 enables it. */
4749 i2c_w(sd, 0x64, ctab[val >> 4]);
4750 break;
4752 case SEN_OV7660:
4753 write_i2c_regvals(sd, contrast_7660[val],
4754 ARRAY_SIZE(contrast_7660[0]));
4755 break;
4756 case SEN_OV7670:
4757 /* check that this isn't just the same as ov7610 */
4758 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4759 break;
4763 static void setexposure(struct gspca_dev *gspca_dev)
4765 struct sd *sd = (struct sd *) gspca_dev;
4767 if (!sd->ctrls[AUTOGAIN].val)
4768 i2c_w(sd, 0x10, sd->ctrls[EXPOSURE].val);
4771 static void setcolors(struct gspca_dev *gspca_dev)
4773 struct sd *sd = (struct sd *) gspca_dev;
4774 int val;
4775 static const struct ov_i2c_regvals colors_7660[][6] = {
4776 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4777 {0x53, 0x19}, {0x54, 0x23}},
4778 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4779 {0x53, 0x2c}, {0x54, 0x3e}},
4780 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4781 {0x53, 0x40}, {0x54, 0x59}},
4782 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4783 {0x53, 0x53}, {0x54, 0x73}},
4784 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4785 {0x53, 0x66}, {0x54, 0x8e}},
4788 val = sd->ctrls[COLORS].val;
4789 switch (sd->sensor) {
4790 case SEN_OV8610:
4791 case SEN_OV7610:
4792 case SEN_OV76BE:
4793 case SEN_OV6620:
4794 case SEN_OV6630:
4795 case SEN_OV66308AF:
4796 i2c_w(sd, OV7610_REG_SAT, val);
4797 break;
4798 case SEN_OV7620:
4799 case SEN_OV7620AE:
4800 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4801 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4802 if (rc < 0)
4803 goto out; */
4804 i2c_w(sd, OV7610_REG_SAT, val);
4805 break;
4806 case SEN_OV7640:
4807 case SEN_OV7648:
4808 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4809 break;
4810 case SEN_OV7660:
4811 write_i2c_regvals(sd, colors_7660[val],
4812 ARRAY_SIZE(colors_7660[0]));
4813 break;
4814 case SEN_OV7670:
4815 /* supported later once I work out how to do it
4816 * transparently fail now! */
4817 /* set REG_COM13 values for UV sat auto mode */
4818 break;
4822 static void setautobright(struct gspca_dev *gspca_dev)
4824 struct sd *sd = (struct sd *) gspca_dev;
4826 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4829 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
4831 struct sd *sd = (struct sd *) gspca_dev;
4833 sd->ctrls[AUTOGAIN].val = val;
4834 if (val) {
4835 gspca_dev->ctrl_inac |= (1 << EXPOSURE);
4836 } else {
4837 gspca_dev->ctrl_inac &= ~(1 << EXPOSURE);
4838 sd->ctrls[EXPOSURE].val = i2c_r(sd, 0x10);
4840 if (gspca_dev->streaming)
4841 setautogain(gspca_dev);
4842 return gspca_dev->usb_err;
4845 static void setfreq_i(struct sd *sd)
4847 if (sd->sensor == SEN_OV7660
4848 || sd->sensor == SEN_OV7670) {
4849 switch (sd->ctrls[FREQ].val) {
4850 case 0: /* Banding filter disabled */
4851 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4852 break;
4853 case 1: /* 50 hz */
4854 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4855 OV7670_COM8_BFILT);
4856 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4857 break;
4858 case 2: /* 60 hz */
4859 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4860 OV7670_COM8_BFILT);
4861 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4862 break;
4863 case 3: /* Auto hz - ov7670 only */
4864 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4865 OV7670_COM8_BFILT);
4866 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4867 0x18);
4868 break;
4870 } else {
4871 switch (sd->ctrls[FREQ].val) {
4872 case 0: /* Banding filter disabled */
4873 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4874 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4875 break;
4876 case 1: /* 50 hz (filter on and framerate adj) */
4877 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4878 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4879 /* 20 fps -> 16.667 fps */
4880 if (sd->sensor == SEN_OV6620 ||
4881 sd->sensor == SEN_OV6630 ||
4882 sd->sensor == SEN_OV66308AF)
4883 i2c_w(sd, 0x2b, 0x5e);
4884 else
4885 i2c_w(sd, 0x2b, 0xac);
4886 break;
4887 case 2: /* 60 hz (filter on, ...) */
4888 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4889 if (sd->sensor == SEN_OV6620 ||
4890 sd->sensor == SEN_OV6630 ||
4891 sd->sensor == SEN_OV66308AF) {
4892 /* 20 fps -> 15 fps */
4893 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4894 i2c_w(sd, 0x2b, 0xa8);
4895 } else {
4896 /* no framerate adj. */
4897 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4899 break;
4903 static void setfreq(struct gspca_dev *gspca_dev)
4905 struct sd *sd = (struct sd *) gspca_dev;
4907 setfreq_i(sd);
4909 /* Ugly but necessary */
4910 if (sd->bridge == BRIDGE_W9968CF)
4911 w9968cf_set_crop_window(sd);
4914 static int sd_querymenu(struct gspca_dev *gspca_dev,
4915 struct v4l2_querymenu *menu)
4917 struct sd *sd = (struct sd *) gspca_dev;
4919 switch (menu->id) {
4920 case V4L2_CID_POWER_LINE_FREQUENCY:
4921 switch (menu->index) {
4922 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4923 strcpy((char *) menu->name, "NoFliker");
4924 return 0;
4925 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4926 strcpy((char *) menu->name, "50 Hz");
4927 return 0;
4928 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4929 strcpy((char *) menu->name, "60 Hz");
4930 return 0;
4931 case 3:
4932 if (sd->sensor != SEN_OV7670)
4933 return -EINVAL;
4935 strcpy((char *) menu->name, "Automatic");
4936 return 0;
4938 break;
4940 return -EINVAL;
4943 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4944 struct v4l2_jpegcompression *jcomp)
4946 struct sd *sd = (struct sd *) gspca_dev;
4948 if (sd->bridge != BRIDGE_W9968CF)
4949 return -EINVAL;
4951 memset(jcomp, 0, sizeof *jcomp);
4952 jcomp->quality = sd->quality;
4953 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4954 V4L2_JPEG_MARKER_DRI;
4955 return 0;
4958 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4959 struct v4l2_jpegcompression *jcomp)
4961 struct sd *sd = (struct sd *) gspca_dev;
4963 if (sd->bridge != BRIDGE_W9968CF)
4964 return -EINVAL;
4966 if (gspca_dev->streaming)
4967 return -EBUSY;
4969 if (jcomp->quality < QUALITY_MIN)
4970 sd->quality = QUALITY_MIN;
4971 else if (jcomp->quality > QUALITY_MAX)
4972 sd->quality = QUALITY_MAX;
4973 else
4974 sd->quality = jcomp->quality;
4976 /* Return resulting jcomp params to app */
4977 sd_get_jcomp(gspca_dev, jcomp);
4979 return 0;
4982 /* sub-driver description */
4983 static const struct sd_desc sd_desc = {
4984 .name = MODULE_NAME,
4985 .ctrls = sd_ctrls,
4986 .nctrls = ARRAY_SIZE(sd_ctrls),
4987 .config = sd_config,
4988 .init = sd_init,
4989 .isoc_init = sd_isoc_init,
4990 .start = sd_start,
4991 .stopN = sd_stopN,
4992 .stop0 = sd_stop0,
4993 .pkt_scan = sd_pkt_scan,
4994 .dq_callback = sd_reset_snapshot,
4995 .querymenu = sd_querymenu,
4996 .get_jcomp = sd_get_jcomp,
4997 .set_jcomp = sd_set_jcomp,
4998 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4999 .other_input = 1,
5000 #endif
5003 /* -- module initialisation -- */
5004 static const struct usb_device_id device_table[] = {
5005 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
5006 {USB_DEVICE(0x041e, 0x4052),
5007 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5008 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
5009 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
5010 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
5011 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
5012 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
5013 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
5014 {USB_DEVICE(0x045e, 0x028c),
5015 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5016 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
5017 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
5018 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
5019 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
5020 {USB_DEVICE(0x05a9, 0x0519),
5021 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5022 {USB_DEVICE(0x05a9, 0x0530),
5023 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5024 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5025 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5026 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5027 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5028 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5029 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5030 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5031 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5032 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5033 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5037 MODULE_DEVICE_TABLE(usb, device_table);
5039 /* -- device connect -- */
5040 static int sd_probe(struct usb_interface *intf,
5041 const struct usb_device_id *id)
5043 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5044 THIS_MODULE);
5047 static struct usb_driver sd_driver = {
5048 .name = MODULE_NAME,
5049 .id_table = device_table,
5050 .probe = sd_probe,
5051 .disconnect = gspca_disconnect,
5052 #ifdef CONFIG_PM
5053 .suspend = gspca_suspend,
5054 .resume = gspca_resume,
5055 #endif
5058 module_usb_driver(sd_driver);
5060 module_param(frame_rate, int, 0644);
5061 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");