2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
13 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
27 #define CAFE_NAND_CTRL1 0x00
28 #define CAFE_NAND_CTRL2 0x04
29 #define CAFE_NAND_CTRL3 0x08
30 #define CAFE_NAND_STATUS 0x0c
31 #define CAFE_NAND_IRQ 0x10
32 #define CAFE_NAND_IRQ_MASK 0x14
33 #define CAFE_NAND_DATA_LEN 0x18
34 #define CAFE_NAND_ADDR1 0x1c
35 #define CAFE_NAND_ADDR2 0x20
36 #define CAFE_NAND_TIMING1 0x24
37 #define CAFE_NAND_TIMING2 0x28
38 #define CAFE_NAND_TIMING3 0x2c
39 #define CAFE_NAND_NONMEM 0x30
40 #define CAFE_NAND_ECC_RESULT 0x3C
41 #define CAFE_NAND_DMA_CTRL 0x40
42 #define CAFE_NAND_DMA_ADDR0 0x44
43 #define CAFE_NAND_DMA_ADDR1 0x48
44 #define CAFE_NAND_ECC_SYN01 0x50
45 #define CAFE_NAND_ECC_SYN23 0x54
46 #define CAFE_NAND_ECC_SYN45 0x58
47 #define CAFE_NAND_ECC_SYN67 0x5c
48 #define CAFE_NAND_READ_DATA 0x1000
49 #define CAFE_NAND_WRITE_DATA 0x2000
51 #define CAFE_GLOBAL_CTRL 0x3004
52 #define CAFE_GLOBAL_IRQ 0x3008
53 #define CAFE_GLOBAL_IRQ_MASK 0x300c
54 #define CAFE_NAND_RESET 0x3034
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT (1<<19)
60 struct nand_chip nand
;
63 struct rs_control
*rs
;
71 unsigned char *dmabuf
;
74 static int usedma
= 1;
75 module_param(usedma
, int, 0644);
77 static int skipbbt
= 0;
78 module_param(skipbbt
, int, 0644);
81 module_param(debug
, int, 0644);
83 static int regdebug
= 0;
84 module_param(regdebug
, int, 0644);
86 static int checkecc
= 1;
87 module_param(checkecc
, int, 0644);
89 static unsigned int numtimings
;
91 module_param_array(timing
, int, &numtimings
, 0644);
93 static const char *part_probes
[] = { "cmdlinepart", "RedBoot", NULL
};
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
102 static int cafe_device_ready(struct mtd_info
*mtd
)
104 struct cafe_priv
*cafe
= mtd
->priv
;
105 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
106 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
108 cafe_writel(cafe
, irqs
, NAND_IRQ
);
110 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
112 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
118 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
120 struct cafe_priv
*cafe
= mtd
->priv
;
123 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
125 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
127 cafe
->datalen
+= len
;
129 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
133 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
135 struct cafe_priv
*cafe
= mtd
->priv
;
138 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
140 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
142 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144 cafe
->datalen
+= len
;
147 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
149 struct cafe_priv
*cafe
= mtd
->priv
;
152 cafe_read_buf(mtd
, &d
, 1);
153 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
158 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
159 int column
, int page_addr
)
161 struct cafe_priv
*cafe
= mtd
->priv
;
164 uint32_t doneint
= 0x80000000;
166 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
167 command
, column
, page_addr
);
169 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
170 /* Second half of a command we already calculated */
171 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
173 cafe
->ctl2
&= ~(1<<30);
174 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
175 cafe
->ctl1
, cafe
->nr_data
);
178 /* Reset ECC engine */
179 cafe_writel(cafe
, 0, NAND_CTRL2
);
181 /* Emulate NAND_CMD_READOOB on large-page chips */
182 if (mtd
->writesize
> 512 &&
183 command
== NAND_CMD_READOOB
) {
184 column
+= mtd
->writesize
;
185 command
= NAND_CMD_READ0
;
188 /* FIXME: Do we need to send read command before sending data
189 for small-page chips, to position the buffer correctly? */
192 cafe_writel(cafe
, column
, NAND_ADDR1
);
196 } else if (page_addr
!= -1) {
197 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
200 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
202 if (mtd
->size
> mtd
->writesize
<< 16)
206 cafe
->data_pos
= cafe
->datalen
= 0;
208 /* Set command valid bit, mask in the chip select bit */
209 ctl1
= 0x80000000 | command
| (cafe
->ctl1
& CTRL1_CHIPSELECT
);
211 /* Set RD or WR bits as appropriate */
212 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
213 ctl1
|= (1<<26); /* rd */
214 /* Always 5 bytes, for now */
216 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
218 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
219 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
220 ctl1
|= 1<<26; /* rd */
221 /* For now, assume just read to end of page */
222 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
223 } else if (command
== NAND_CMD_SEQIN
)
224 ctl1
|= 1<<25; /* wr */
226 /* Set number of address bytes */
228 ctl1
|= ((adrbytes
-1)|8) << 27;
230 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
231 /* Ignore the first command of a pair; the hardware
232 deals with them both at once, later */
234 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235 cafe
->ctl1
, cafe
->datalen
);
238 /* RNDOUT and READ0 commands need a following byte */
239 if (command
== NAND_CMD_RNDOUT
)
240 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
241 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
242 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
245 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
246 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
248 /* NB: The datasheet lies -- we really should be subtracting 1 here */
249 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
250 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
251 if (usedma
&& (ctl1
& (3<<25))) {
252 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
253 /* If WR or RD bits set, set up DMA */
254 if (ctl1
& (1<<26)) {
257 /* ... so it's done when the DMA is done, not just
259 doneint
= 0x10000000;
261 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
265 if (unlikely(regdebug
)) {
267 printk("About to write command %08x to register 0\n", ctl1
);
268 for (i
=4; i
< 0x5c; i
+=4)
269 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
272 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
273 /* Apply this short delay always to ensure that we do wait tWB in
274 * any case on any machine. */
281 for (c
= 500000; c
!= 0; c
--) {
282 irqs
= cafe_readl(cafe
, NAND_IRQ
);
287 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
290 cafe_writel(cafe
, doneint
, NAND_IRQ
);
291 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
292 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
295 WARN_ON(cafe
->ctl2
& (1<<30));
299 case NAND_CMD_CACHEDPROG
:
300 case NAND_CMD_PAGEPROG
:
301 case NAND_CMD_ERASE1
:
302 case NAND_CMD_ERASE2
:
305 case NAND_CMD_STATUS
:
306 case NAND_CMD_DEPLETE1
:
307 case NAND_CMD_RNDOUT
:
308 case NAND_CMD_STATUS_ERROR
:
309 case NAND_CMD_STATUS_ERROR0
:
310 case NAND_CMD_STATUS_ERROR1
:
311 case NAND_CMD_STATUS_ERROR2
:
312 case NAND_CMD_STATUS_ERROR3
:
313 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
316 nand_wait_ready(mtd
);
317 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
320 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
322 struct cafe_priv
*cafe
= mtd
->priv
;
324 cafe_dev_dbg(&cafe
->pdev
->dev
, "select_chip %d\n", chipnr
);
326 /* Mask the appropriate bit into the stored value of ctl1
327 which will be used by cafe_nand_cmdfunc() */
329 cafe
->ctl1
|= CTRL1_CHIPSELECT
;
331 cafe
->ctl1
&= ~CTRL1_CHIPSELECT
;
334 static irqreturn_t
cafe_nand_interrupt(int irq
, void *id
)
336 struct mtd_info
*mtd
= id
;
337 struct cafe_priv
*cafe
= mtd
->priv
;
338 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
339 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
343 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
347 static void cafe_nand_bug(struct mtd_info
*mtd
)
352 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
353 struct nand_chip
*chip
, int page
)
357 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
358 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
359 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
360 status
= chip
->waitfunc(mtd
, chip
);
362 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
365 /* Don't use -- use nand_read_oob_std for now */
366 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
367 int page
, int sndcmd
)
369 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
370 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
374 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
375 * @mtd: mtd info structure
376 * @chip: nand chip info structure
377 * @buf: buffer to store read data
379 * The hw generator calculates the error syndrome automatically. Therefor
380 * we need a special oob layout and handling.
382 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
383 uint8_t *buf
, int page
)
385 struct cafe_priv
*cafe
= mtd
->priv
;
387 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
388 cafe_readl(cafe
, NAND_ECC_RESULT
),
389 cafe_readl(cafe
, NAND_ECC_SYN01
));
391 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
392 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
394 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
395 unsigned short syn
[8], pat
[4];
397 u8
*oob
= chip
->oob_poi
;
400 for (i
=0; i
<8; i
+=2) {
401 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
402 syn
[i
] = cafe
->rs
->index_of
[tmp
& 0xfff];
403 syn
[i
+1] = cafe
->rs
->index_of
[(tmp
>> 16) & 0xfff];
406 n
= decode_rs16(cafe
->rs
, NULL
, NULL
, 1367, syn
, 0, pos
, 0,
409 for (i
= 0; i
< n
; i
++) {
412 /* The 12-bit symbols are mapped to bytes here */
418 /* high four bits do not correspond to data */
423 } else if (p
== 1365) {
424 buf
[2047] ^= pat
[i
] >> 4;
425 oob
[0] ^= pat
[i
] << 4;
426 } else if (p
> 1365) {
428 oob
[3*p
/2 - 2048] ^= pat
[i
] >> 4;
429 oob
[3*p
/2 - 2047] ^= pat
[i
] << 4;
431 oob
[3*p
/2 - 2049] ^= pat
[i
] >> 8;
432 oob
[3*p
/2 - 2048] ^= pat
[i
];
434 } else if ((p
& 1) == 1) {
435 buf
[3*p
/2] ^= pat
[i
] >> 4;
436 buf
[3*p
/2 + 1] ^= pat
[i
] << 4;
438 buf
[3*p
/2 - 1] ^= pat
[i
] >> 8;
439 buf
[3*p
/2] ^= pat
[i
];
444 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
445 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
446 for (i
= 0; i
< 0x5c; i
+= 4)
447 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
448 mtd
->ecc_stats
.failed
++;
450 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", n
);
451 mtd
->ecc_stats
.corrected
+= n
;
458 static struct nand_ecclayout cafe_oobinfo_2048
= {
460 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
461 .oobfree
= {{14, 50}}
464 /* Ick. The BBT code really ought to be able to work this bit out
465 for itself from the above, at least for the 2KiB case */
466 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
467 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
469 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
470 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
473 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
474 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
475 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
480 .pattern
= cafe_bbt_pattern_2048
483 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
484 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
485 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
490 .pattern
= cafe_mirror_pattern_2048
493 static struct nand_ecclayout cafe_oobinfo_512
= {
495 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
499 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
500 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
501 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
506 .pattern
= cafe_bbt_pattern_512
509 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
510 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
511 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
516 .pattern
= cafe_mirror_pattern_512
520 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
521 struct nand_chip
*chip
, const uint8_t *buf
)
523 struct cafe_priv
*cafe
= mtd
->priv
;
525 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
526 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
528 /* Set up ECC autogeneration */
529 cafe
->ctl2
|= (1<<30);
532 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
533 const uint8_t *buf
, int page
, int cached
, int raw
)
537 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
540 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
542 chip
->ecc
.write_page(mtd
, chip
, buf
);
545 * Cached progamming disabled for now, Not sure if its worth the
546 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
550 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
552 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
553 status
= chip
->waitfunc(mtd
, chip
);
555 * See if operation failed and additional status checks are
558 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
559 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
562 if (status
& NAND_STATUS_FAIL
)
565 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
566 status
= chip
->waitfunc(mtd
, chip
);
569 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
570 /* Send command to read back the data */
571 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
573 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
579 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
584 /* F_2[X]/(X**6+X+1) */
585 static unsigned short __devinit
gf64_mul(u8 a
, u8 b
)
591 for (i
= 0; i
< 6; i
++) {
603 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
604 static u16 __devinit
gf4096_mul(u16 a
, u16 b
)
606 u8 ah
, al
, bh
, bl
, ch
, cl
;
613 ch
= gf64_mul(ah
^ al
, bh
^ bl
) ^ gf64_mul(al
, bl
);
614 cl
= gf64_mul(gf64_mul(ah
, bh
), 0x21) ^ gf64_mul(al
, bl
);
616 return (ch
<< 6) ^ cl
;
619 static int __devinit
cafe_mul(int x
)
623 return gf4096_mul(x
, 0xe01);
626 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
627 const struct pci_device_id
*ent
)
629 struct mtd_info
*mtd
;
630 struct cafe_priv
*cafe
;
634 /* Very old versions shared the same PCI ident for all three
635 functions on the chip. Verify the class too... */
636 if ((pdev
->class >> 8) != PCI_CLASS_MEMORY_FLASH
)
639 err
= pci_enable_device(pdev
);
643 pci_set_master(pdev
);
645 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
647 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
650 cafe
= (void *)(&mtd
[1]);
652 mtd
->dev
.parent
= &pdev
->dev
;
654 mtd
->owner
= THIS_MODULE
;
657 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
659 dev_warn(&pdev
->dev
, "failed to iomap\n");
663 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
664 &cafe
->dmaaddr
, GFP_KERNEL
);
669 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
671 cafe
->rs
= init_rs_non_canonical(12, &cafe_mul
, 0, 1, 8);
677 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
678 cafe
->nand
.dev_ready
= cafe_device_ready
;
679 cafe
->nand
.read_byte
= cafe_read_byte
;
680 cafe
->nand
.read_buf
= cafe_read_buf
;
681 cafe
->nand
.write_buf
= cafe_write_buf
;
682 cafe
->nand
.select_chip
= cafe_select_chip
;
684 cafe
->nand
.chip_delay
= 0;
686 /* Enable the following for a flash based bad block table */
687 cafe
->nand
.bbt_options
= NAND_BBT_USE_FLASH
;
688 cafe
->nand
.options
= NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
691 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
692 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
695 if (numtimings
&& numtimings
!= 3) {
696 dev_warn(&cafe
->pdev
->dev
, "%d timing register values ignored; precisely three are required\n", numtimings
);
699 if (numtimings
== 3) {
700 cafe_dev_dbg(&cafe
->pdev
->dev
, "Using provided timings (%08x %08x %08x)\n",
701 timing
[0], timing
[1], timing
[2]);
703 timing
[0] = cafe_readl(cafe
, NAND_TIMING1
);
704 timing
[1] = cafe_readl(cafe
, NAND_TIMING2
);
705 timing
[2] = cafe_readl(cafe
, NAND_TIMING3
);
707 if (timing
[0] | timing
[1] | timing
[2]) {
708 cafe_dev_dbg(&cafe
->pdev
->dev
, "Timing registers already set (%08x %08x %08x)\n",
709 timing
[0], timing
[1], timing
[2]);
711 dev_warn(&cafe
->pdev
->dev
, "Timing registers unset; using most conservative defaults\n");
712 timing
[0] = timing
[1] = timing
[2] = 0xffffffff;
716 /* Start off by resetting the NAND controller completely */
717 cafe_writel(cafe
, 1, NAND_RESET
);
718 cafe_writel(cafe
, 0, NAND_RESET
);
720 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
721 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
722 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
724 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
725 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, IRQF_SHARED
,
728 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
732 /* Disable master reset, enable NAND clock */
733 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
736 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
737 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
738 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
740 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
741 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
743 /* Set up DMA address */
744 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
745 if (sizeof(cafe
->dmaaddr
) > 4)
746 /* Shift in two parts to shut the compiler up */
747 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
749 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
751 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
752 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
754 /* Enable NAND IRQ in global IRQ mask register */
755 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
756 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
757 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
759 /* Scan to find existence of the device */
760 if (nand_scan_ident(mtd
, 2, NULL
)) {
765 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
766 if (mtd
->writesize
== 2048)
767 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
769 /* Set up ECC according to the type of chip we found */
770 if (mtd
->writesize
== 2048) {
771 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
772 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
773 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
774 } else if (mtd
->writesize
== 512) {
775 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
776 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
777 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
779 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
783 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
784 cafe
->nand
.ecc
.size
= mtd
->writesize
;
785 cafe
->nand
.ecc
.bytes
= 14;
786 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
787 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
788 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
789 cafe
->nand
.write_page
= cafe_nand_write_page
;
790 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
791 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
792 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
793 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
795 err
= nand_scan_tail(mtd
);
799 pci_set_drvdata(pdev
, mtd
);
801 mtd
->name
= "cafe_nand";
802 mtd_device_parse_register(mtd
, part_probes
, 0, NULL
, 0);
807 /* Disable NAND IRQ in global IRQ mask register */
808 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
809 free_irq(pdev
->irq
, mtd
);
811 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
813 pci_iounmap(pdev
, cafe
->mmio
);
820 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
822 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
823 struct cafe_priv
*cafe
= mtd
->priv
;
825 /* Disable NAND IRQ in global IRQ mask register */
826 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
827 free_irq(pdev
->irq
, mtd
);
830 pci_iounmap(pdev
, cafe
->mmio
);
831 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
835 static const struct pci_device_id cafe_nand_tbl
[] = {
836 { PCI_VENDOR_ID_MARVELL
, PCI_DEVICE_ID_MARVELL_88ALP01_NAND
,
837 PCI_ANY_ID
, PCI_ANY_ID
},
841 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
843 static int cafe_nand_resume(struct pci_dev
*pdev
)
846 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
847 struct cafe_priv
*cafe
= mtd
->priv
;
849 /* Start off by resetting the NAND controller completely */
850 cafe_writel(cafe
, 1, NAND_RESET
);
851 cafe_writel(cafe
, 0, NAND_RESET
);
852 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
854 /* Restore timing configuration */
855 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
856 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
857 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
859 /* Disable master reset, enable NAND clock */
860 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
863 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
864 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
865 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
866 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
867 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
869 /* Set up DMA address */
870 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
871 if (sizeof(cafe
->dmaaddr
) > 4)
872 /* Shift in two parts to shut the compiler up */
873 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
875 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
877 /* Enable NAND IRQ in global IRQ mask register */
878 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
882 static struct pci_driver cafe_nand_pci_driver
= {
884 .id_table
= cafe_nand_tbl
,
885 .probe
= cafe_nand_probe
,
886 .remove
= __devexit_p(cafe_nand_remove
),
887 .resume
= cafe_nand_resume
,
890 static int __init
cafe_nand_init(void)
892 return pci_register_driver(&cafe_nand_pci_driver
);
895 static void __exit
cafe_nand_exit(void)
897 pci_unregister_driver(&cafe_nand_pci_driver
);
899 module_init(cafe_nand_init
);
900 module_exit(cafe_nand_exit
);
902 MODULE_LICENSE("GPL");
903 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
904 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");