2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mtd/gpmi-nand.h>
26 #include <linux/mtd/partitions.h>
27 #include "gpmi-nand.h"
29 /* add our owner bbt descriptor */
30 static uint8_t scan_ff_pattern
[] = { 0xff };
31 static struct nand_bbt_descr gpmi_bbt_descr
= {
35 .pattern
= scan_ff_pattern
38 /* We will use all the (page + OOB). */
39 static struct nand_ecclayout gpmi_hw_ecclayout
= {
42 .oobfree
= { {.offset
= 0, .length
= 0} }
45 static irqreturn_t
bch_irq(int irq
, void *cookie
)
47 struct gpmi_nand_data
*this = cookie
;
50 complete(&this->bch_done
);
55 * Calculate the ECC strength by hand:
56 * E : The ECC strength.
57 * G : the length of Galois Field.
58 * N : The chunk count of per page.
59 * O : the oobsize of the NAND chip.
60 * M : the metasize of per page.
64 * ------------ <= (O - M)
72 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
74 struct bch_geometry
*geo
= &this->bch_geometry
;
75 struct mtd_info
*mtd
= &this->mtd
;
78 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
79 / (geo
->gf_len
* geo
->ecc_chunk_count
);
81 /* We need the minor even number. */
82 return round_down(ecc_strength
, 2);
85 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
87 struct bch_geometry
*geo
= &this->bch_geometry
;
88 struct mtd_info
*mtd
= &this->mtd
;
89 unsigned int metadata_size
;
90 unsigned int status_size
;
91 unsigned int block_mark_bit_offset
;
94 * The size of the metadata can be changed, though we set it to 10
95 * bytes now. But it can't be too large, because we have to save
96 * enough space for BCH.
98 geo
->metadata_size
= 10;
100 /* The default for the length of Galois Field. */
103 /* The default for chunk size. There is no oobsize greater then 512. */
104 geo
->ecc_chunk_size
= 512;
105 while (geo
->ecc_chunk_size
< mtd
->oobsize
)
106 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
108 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
110 /* We use the same ECC strength for all chunks. */
111 geo
->ecc_strength
= get_ecc_strength(this);
112 if (!geo
->ecc_strength
) {
113 pr_err("We get a wrong ECC strength.\n");
117 geo
->page_size
= mtd
->writesize
+ mtd
->oobsize
;
118 geo
->payload_size
= mtd
->writesize
;
121 * The auxiliary buffer contains the metadata and the ECC status. The
122 * metadata is padded to the nearest 32-bit boundary. The ECC status
123 * contains one byte for every ECC chunk, and is also padded to the
124 * nearest 32-bit boundary.
126 metadata_size
= ALIGN(geo
->metadata_size
, 4);
127 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
129 geo
->auxiliary_size
= metadata_size
+ status_size
;
130 geo
->auxiliary_status_offset
= metadata_size
;
132 if (!this->swap_block_mark
)
136 * We need to compute the byte and bit offsets of
137 * the physical block mark within the ECC-based view of the page.
139 * NAND chip with 2K page shows below:
145 * +---+----------+-+----------+-+----------+-+----------+-+
146 * | M | data |E| data |E| data |E| data |E|
147 * +---+----------+-+----------+-+----------+-+----------+-+
149 * The position of block mark moves forward in the ECC-based view
150 * of page, and the delta is:
153 * D = (---------------- + M)
156 * With the formula to compute the ECC strength, and the condition
157 * : C >= O (C is the ecc chunk size)
159 * It's easy to deduce to the following result:
161 * E * G (O - M) C - M C - M
162 * ----------- <= ------- <= -------- < ---------
168 * D = (---------------- + M) < C
171 * The above inequality means the position of block mark
172 * within the ECC-based view of the page is still in the data chunk,
173 * and it's NOT in the ECC bits of the chunk.
175 * Use the following to compute the bit position of the
176 * physical block mark within the ECC-based view of the page:
177 * (page_size - D) * 8
181 block_mark_bit_offset
= mtd
->writesize
* 8 -
182 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
183 + geo
->metadata_size
* 8);
185 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
186 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
190 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
192 int chipnr
= this->current_chip
;
194 return this->dma_chans
[chipnr
];
197 /* Can we use the upper's buffer directly for DMA? */
198 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
200 struct scatterlist
*sgl
= &this->data_sgl
;
203 this->direct_dma_map_ok
= true;
205 /* first try to map the upper buffer directly */
206 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
207 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
209 /* We have to use our own DMA buffer. */
210 sg_init_one(sgl
, this->data_buffer_dma
, PAGE_SIZE
);
212 if (dr
== DMA_TO_DEVICE
)
213 memcpy(this->data_buffer_dma
, this->upper_buf
,
216 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
218 pr_err("map failed.\n");
220 this->direct_dma_map_ok
= false;
224 /* This will be called after the DMA operation is finished. */
225 static void dma_irq_callback(void *param
)
227 struct gpmi_nand_data
*this = param
;
228 struct completion
*dma_c
= &this->dma_done
;
232 switch (this->dma_type
) {
233 case DMA_FOR_COMMAND
:
234 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
237 case DMA_FOR_READ_DATA
:
238 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
239 if (this->direct_dma_map_ok
== false)
240 memcpy(this->upper_buf
, this->data_buffer_dma
,
244 case DMA_FOR_WRITE_DATA
:
245 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
248 case DMA_FOR_READ_ECC_PAGE
:
249 case DMA_FOR_WRITE_ECC_PAGE
:
250 /* We have to wait the BCH interrupt to finish. */
254 pr_err("in wrong DMA operation.\n");
258 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
259 struct dma_async_tx_descriptor
*desc
)
261 struct completion
*dma_c
= &this->dma_done
;
264 init_completion(dma_c
);
266 desc
->callback
= dma_irq_callback
;
267 desc
->callback_param
= this;
268 dmaengine_submit(desc
);
270 /* Wait for the interrupt from the DMA block. */
271 err
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
273 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type
);
274 gpmi_dump_info(this);
281 * This function is used in BCH reading or BCH writing pages.
282 * It will wait for the BCH interrupt as long as ONE second.
283 * Actually, we must wait for two interrupts :
284 * [1] firstly the DMA interrupt and
285 * [2] secondly the BCH interrupt.
287 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
288 struct dma_async_tx_descriptor
*desc
)
290 struct completion
*bch_c
= &this->bch_done
;
293 /* Prepare to receive an interrupt from the BCH block. */
294 init_completion(bch_c
);
297 start_dma_without_bch_irq(this, desc
);
299 /* Wait for the interrupt from the BCH block. */
300 err
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
302 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type
);
303 gpmi_dump_info(this);
310 acquire_register_block(struct gpmi_nand_data
*this, const char *res_name
)
312 struct platform_device
*pdev
= this->pdev
;
313 struct resources
*res
= &this->resources
;
317 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
319 pr_err("Can't get resource for %s\n", res_name
);
323 p
= ioremap(r
->start
, resource_size(r
));
325 pr_err("Can't remap %s\n", res_name
);
329 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
331 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
334 pr_err("unknown resource name : %s\n", res_name
);
339 static void release_register_block(struct gpmi_nand_data
*this)
341 struct resources
*res
= &this->resources
;
343 iounmap(res
->gpmi_regs
);
345 iounmap(res
->bch_regs
);
346 res
->gpmi_regs
= NULL
;
347 res
->bch_regs
= NULL
;
351 acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
353 struct platform_device
*pdev
= this->pdev
;
354 struct resources
*res
= &this->resources
;
355 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
359 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
361 pr_err("Can't get resource for %s\n", res_name
);
365 err
= request_irq(r
->start
, irq_h
, 0, res_name
, this);
367 pr_err("Can't own %s\n", res_name
);
371 res
->bch_low_interrupt
= r
->start
;
372 res
->bch_high_interrupt
= r
->end
;
376 static void release_bch_irq(struct gpmi_nand_data
*this)
378 struct resources
*res
= &this->resources
;
379 int i
= res
->bch_low_interrupt
;
381 for (; i
<= res
->bch_high_interrupt
; i
++)
385 static bool gpmi_dma_filter(struct dma_chan
*chan
, void *param
)
387 struct gpmi_nand_data
*this = param
;
388 struct resource
*r
= this->private;
390 if (!mxs_dma_is_apbh(chan
))
393 * only catch the GPMI dma channels :
394 * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
395 * (These four channels share the same IRQ!)
397 * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
398 * (These eight channels share the same IRQ!)
400 if (r
->start
<= chan
->chan_id
&& chan
->chan_id
<= r
->end
) {
401 chan
->private = &this->dma_data
;
407 static void release_dma_channels(struct gpmi_nand_data
*this)
410 for (i
= 0; i
< DMA_CHANS
; i
++)
411 if (this->dma_chans
[i
]) {
412 dma_release_channel(this->dma_chans
[i
]);
413 this->dma_chans
[i
] = NULL
;
417 static int __devinit
acquire_dma_channels(struct gpmi_nand_data
*this)
419 struct platform_device
*pdev
= this->pdev
;
420 struct gpmi_nand_platform_data
*pdata
= this->pdata
;
421 struct resources
*res
= &this->resources
;
422 struct resource
*r
, *r_dma
;
425 r
= platform_get_resource_byname(pdev
, IORESOURCE_DMA
,
426 GPMI_NAND_DMA_CHANNELS_RES_NAME
);
427 r_dma
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
,
428 GPMI_NAND_DMA_INTERRUPT_RES_NAME
);
430 pr_err("Can't get resource for DMA\n");
434 /* used in gpmi_dma_filter() */
437 for (i
= r
->start
; i
<= r
->end
; i
++) {
438 struct dma_chan
*dma_chan
;
441 if (i
- r
->start
>= pdata
->max_chip_count
)
445 dma_cap_set(DMA_SLAVE
, mask
);
447 /* get the DMA interrupt */
448 if (r_dma
->start
== r_dma
->end
) {
449 /* only register the first. */
451 this->dma_data
.chan_irq
= r_dma
->start
;
453 this->dma_data
.chan_irq
= NO_IRQ
;
455 this->dma_data
.chan_irq
= r_dma
->start
+ (i
- r
->start
);
457 dma_chan
= dma_request_channel(mask
, gpmi_dma_filter
, this);
461 /* fill the first empty item */
462 this->dma_chans
[i
- r
->start
] = dma_chan
;
465 res
->dma_low_channel
= r
->start
;
466 res
->dma_high_channel
= i
;
470 pr_err("Can't acquire DMA channel %u\n", i
);
471 release_dma_channels(this);
475 static int __devinit
acquire_resources(struct gpmi_nand_data
*this)
477 struct resources
*res
= &this->resources
;
480 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
484 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
488 ret
= acquire_bch_irq(this, bch_irq
);
492 ret
= acquire_dma_channels(this);
494 goto exit_dma_channels
;
496 res
->clock
= clk_get(&this->pdev
->dev
, NULL
);
497 if (IS_ERR(res
->clock
)) {
498 pr_err("can not get the clock\n");
505 release_dma_channels(this);
507 release_bch_irq(this);
509 release_register_block(this);
513 static void release_resources(struct gpmi_nand_data
*this)
515 struct resources
*r
= &this->resources
;
518 release_register_block(this);
519 release_bch_irq(this);
520 release_dma_channels(this);
523 static int __devinit
init_hardware(struct gpmi_nand_data
*this)
528 * This structure contains the "safe" GPMI timing that should succeed
529 * with any NAND Flash device
530 * (although, with less-than-optimal performance).
532 struct nand_timing safe_timing
= {
533 .data_setup_in_ns
= 80,
534 .data_hold_in_ns
= 60,
535 .address_setup_in_ns
= 25,
536 .gpmi_sample_delay_in_ns
= 6,
542 /* Initialize the hardwares. */
543 ret
= gpmi_init(this);
547 this->timing
= safe_timing
;
551 static int read_page_prepare(struct gpmi_nand_data
*this,
552 void *destination
, unsigned length
,
553 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
554 void **use_virt
, dma_addr_t
*use_phys
)
556 struct device
*dev
= this->dev
;
558 if (virt_addr_valid(destination
)) {
559 dma_addr_t dest_phys
;
561 dest_phys
= dma_map_single(dev
, destination
,
562 length
, DMA_FROM_DEVICE
);
563 if (dma_mapping_error(dev
, dest_phys
)) {
564 if (alt_size
< length
) {
565 pr_err("Alternate buffer is too small\n");
570 *use_virt
= destination
;
571 *use_phys
= dest_phys
;
572 this->direct_dma_map_ok
= true;
577 *use_virt
= alt_virt
;
578 *use_phys
= alt_phys
;
579 this->direct_dma_map_ok
= false;
583 static inline void read_page_end(struct gpmi_nand_data
*this,
584 void *destination
, unsigned length
,
585 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
586 void *used_virt
, dma_addr_t used_phys
)
588 if (this->direct_dma_map_ok
)
589 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
592 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
593 void *destination
, unsigned length
,
594 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
595 void *used_virt
, dma_addr_t used_phys
)
597 if (!this->direct_dma_map_ok
)
598 memcpy(destination
, alt_virt
, length
);
601 static int send_page_prepare(struct gpmi_nand_data
*this,
602 const void *source
, unsigned length
,
603 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
604 const void **use_virt
, dma_addr_t
*use_phys
)
606 struct device
*dev
= this->dev
;
608 if (virt_addr_valid(source
)) {
609 dma_addr_t source_phys
;
611 source_phys
= dma_map_single(dev
, (void *)source
, length
,
613 if (dma_mapping_error(dev
, source_phys
)) {
614 if (alt_size
< length
) {
615 pr_err("Alternate buffer is too small\n");
621 *use_phys
= source_phys
;
626 * Copy the content of the source buffer into the alternate
627 * buffer and set up the return values accordingly.
629 memcpy(alt_virt
, source
, length
);
631 *use_virt
= alt_virt
;
632 *use_phys
= alt_phys
;
636 static void send_page_end(struct gpmi_nand_data
*this,
637 const void *source
, unsigned length
,
638 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
639 const void *used_virt
, dma_addr_t used_phys
)
641 struct device
*dev
= this->dev
;
642 if (used_virt
== source
)
643 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
646 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
648 struct device
*dev
= this->dev
;
650 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
651 dma_free_coherent(dev
, this->page_buffer_size
,
652 this->page_buffer_virt
,
653 this->page_buffer_phys
);
654 kfree(this->cmd_buffer
);
655 kfree(this->data_buffer_dma
);
657 this->cmd_buffer
= NULL
;
658 this->data_buffer_dma
= NULL
;
659 this->page_buffer_virt
= NULL
;
660 this->page_buffer_size
= 0;
663 /* Allocate the DMA buffers */
664 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
666 struct bch_geometry
*geo
= &this->bch_geometry
;
667 struct device
*dev
= this->dev
;
669 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
670 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
);
671 if (this->cmd_buffer
== NULL
)
674 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
675 this->data_buffer_dma
= kzalloc(PAGE_SIZE
, GFP_DMA
);
676 if (this->data_buffer_dma
== NULL
)
680 * [3] Allocate the page buffer.
682 * Both the payload buffer and the auxiliary buffer must appear on
683 * 32-bit boundaries. We presume the size of the payload buffer is a
684 * power of two and is much larger than four, which guarantees the
685 * auxiliary buffer will appear on a 32-bit boundary.
687 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
688 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
689 &this->page_buffer_phys
, GFP_DMA
);
690 if (!this->page_buffer_virt
)
694 /* Slice up the page buffer. */
695 this->payload_virt
= this->page_buffer_virt
;
696 this->payload_phys
= this->page_buffer_phys
;
697 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
698 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
702 gpmi_free_dma_buffer(this);
703 pr_err("allocate DMA buffer ret!!\n");
707 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
709 struct nand_chip
*chip
= mtd
->priv
;
710 struct gpmi_nand_data
*this = chip
->priv
;
714 * Every operation begins with a command byte and a series of zero or
715 * more address bytes. These are distinguished by either the Address
716 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
717 * asserted. When MTD is ready to execute the command, it will deassert
718 * both latch enables.
720 * Rather than run a separate DMA operation for every single byte, we
721 * queue them up and run a single DMA operation for the entire series
722 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
724 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
725 if (data
!= NAND_CMD_NONE
)
726 this->cmd_buffer
[this->command_length
++] = data
;
730 if (!this->command_length
)
733 ret
= gpmi_send_command(this);
735 pr_err("Chip: %u, Error %d\n", this->current_chip
, ret
);
737 this->command_length
= 0;
740 static int gpmi_dev_ready(struct mtd_info
*mtd
)
742 struct nand_chip
*chip
= mtd
->priv
;
743 struct gpmi_nand_data
*this = chip
->priv
;
745 return gpmi_is_ready(this, this->current_chip
);
748 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
750 struct nand_chip
*chip
= mtd
->priv
;
751 struct gpmi_nand_data
*this = chip
->priv
;
753 if ((this->current_chip
< 0) && (chipnr
>= 0))
755 else if ((this->current_chip
>= 0) && (chipnr
< 0))
758 this->current_chip
= chipnr
;
761 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
763 struct nand_chip
*chip
= mtd
->priv
;
764 struct gpmi_nand_data
*this = chip
->priv
;
766 pr_debug("len is %d\n", len
);
767 this->upper_buf
= buf
;
768 this->upper_len
= len
;
770 gpmi_read_data(this);
773 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
775 struct nand_chip
*chip
= mtd
->priv
;
776 struct gpmi_nand_data
*this = chip
->priv
;
778 pr_debug("len is %d\n", len
);
779 this->upper_buf
= (uint8_t *)buf
;
780 this->upper_len
= len
;
782 gpmi_send_data(this);
785 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
787 struct nand_chip
*chip
= mtd
->priv
;
788 struct gpmi_nand_data
*this = chip
->priv
;
789 uint8_t *buf
= this->data_buffer_dma
;
791 gpmi_read_buf(mtd
, buf
, 1);
796 * Handles block mark swapping.
797 * It can be called in swapping the block mark, or swapping it back,
798 * because the the operations are the same.
800 static void block_mark_swapping(struct gpmi_nand_data
*this,
801 void *payload
, void *auxiliary
)
803 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
808 unsigned char from_data
;
809 unsigned char from_oob
;
811 if (!this->swap_block_mark
)
815 * If control arrives here, we're swapping. Make some convenience
818 bit
= nfc_geo
->block_mark_bit_offset
;
819 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
823 * Get the byte from the data area that overlays the block mark. Since
824 * the ECC engine applies its own view to the bits in the page, the
825 * physical block mark won't (in general) appear on a byte boundary in
828 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
830 /* Get the byte from the OOB. */
836 mask
= (0x1 << bit
) - 1;
837 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
840 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
843 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
844 uint8_t *buf
, int page
)
846 struct gpmi_nand_data
*this = chip
->priv
;
847 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
849 dma_addr_t payload_phys
;
850 void *auxiliary_virt
;
851 dma_addr_t auxiliary_phys
;
853 unsigned char *status
;
855 unsigned int corrected
;
858 pr_debug("page number is : %d\n", page
);
859 ret
= read_page_prepare(this, buf
, mtd
->writesize
,
860 this->payload_virt
, this->payload_phys
,
861 nfc_geo
->payload_size
,
862 &payload_virt
, &payload_phys
);
864 pr_err("Inadequate DMA buffer\n");
868 auxiliary_virt
= this->auxiliary_virt
;
869 auxiliary_phys
= this->auxiliary_phys
;
872 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
873 read_page_end(this, buf
, mtd
->writesize
,
874 this->payload_virt
, this->payload_phys
,
875 nfc_geo
->payload_size
,
876 payload_virt
, payload_phys
);
878 pr_err("Error in ECC-based read: %d\n", ret
);
882 /* handle the block mark swapping */
883 block_mark_swapping(this, payload_virt
, auxiliary_virt
);
885 /* Loop over status bytes, accumulating ECC status. */
888 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
890 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
891 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
894 if (*status
== STATUS_UNCORRECTABLE
) {
898 corrected
+= *status
;
902 * Propagate ECC status to the owning MTD only when failed or
903 * corrected times nearly reaches our ECC correction threshold.
905 if (failed
|| corrected
>= (nfc_geo
->ecc_strength
- 1)) {
906 mtd
->ecc_stats
.failed
+= failed
;
907 mtd
->ecc_stats
.corrected
+= corrected
;
911 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
912 * details about our policy for delivering the OOB.
914 * We fill the caller's buffer with set bits, and then copy the block
915 * mark to th caller's buffer. Note that, if block mark swapping was
916 * necessary, it has already been done, so we can rely on the first
917 * byte of the auxiliary buffer to contain the block mark.
919 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
920 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
922 read_page_swap_end(this, buf
, mtd
->writesize
,
923 this->payload_virt
, this->payload_phys
,
924 nfc_geo
->payload_size
,
925 payload_virt
, payload_phys
);
930 static void gpmi_ecc_write_page(struct mtd_info
*mtd
,
931 struct nand_chip
*chip
, const uint8_t *buf
)
933 struct gpmi_nand_data
*this = chip
->priv
;
934 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
935 const void *payload_virt
;
936 dma_addr_t payload_phys
;
937 const void *auxiliary_virt
;
938 dma_addr_t auxiliary_phys
;
941 pr_debug("ecc write page.\n");
942 if (this->swap_block_mark
) {
944 * If control arrives here, we're doing block mark swapping.
945 * Since we can't modify the caller's buffers, we must copy them
948 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
949 payload_virt
= this->payload_virt
;
950 payload_phys
= this->payload_phys
;
952 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
953 nfc_geo
->auxiliary_size
);
954 auxiliary_virt
= this->auxiliary_virt
;
955 auxiliary_phys
= this->auxiliary_phys
;
957 /* Handle block mark swapping. */
958 block_mark_swapping(this,
959 (void *) payload_virt
, (void *) auxiliary_virt
);
962 * If control arrives here, we're not doing block mark swapping,
963 * so we can to try and use the caller's buffers.
965 ret
= send_page_prepare(this,
967 this->payload_virt
, this->payload_phys
,
968 nfc_geo
->payload_size
,
969 &payload_virt
, &payload_phys
);
971 pr_err("Inadequate payload DMA buffer\n");
975 ret
= send_page_prepare(this,
976 chip
->oob_poi
, mtd
->oobsize
,
977 this->auxiliary_virt
, this->auxiliary_phys
,
978 nfc_geo
->auxiliary_size
,
979 &auxiliary_virt
, &auxiliary_phys
);
981 pr_err("Inadequate auxiliary DMA buffer\n");
987 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
989 pr_err("Error in ECC-based write: %d\n", ret
);
991 if (!this->swap_block_mark
) {
992 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
993 this->auxiliary_virt
, this->auxiliary_phys
,
994 nfc_geo
->auxiliary_size
,
995 auxiliary_virt
, auxiliary_phys
);
997 send_page_end(this, buf
, mtd
->writesize
,
998 this->payload_virt
, this->payload_phys
,
999 nfc_geo
->payload_size
,
1000 payload_virt
, payload_phys
);
1005 * There are several places in this driver where we have to handle the OOB and
1006 * block marks. This is the function where things are the most complicated, so
1007 * this is where we try to explain it all. All the other places refer back to
1010 * These are the rules, in order of decreasing importance:
1012 * 1) Nothing the caller does can be allowed to imperil the block mark.
1014 * 2) In read operations, the first byte of the OOB we return must reflect the
1015 * true state of the block mark, no matter where that block mark appears in
1016 * the physical page.
1018 * 3) ECC-based read operations return an OOB full of set bits (since we never
1019 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1022 * 4) "Raw" read operations return a direct view of the physical bytes in the
1023 * page, using the conventional definition of which bytes are data and which
1024 * are OOB. This gives the caller a way to see the actual, physical bytes
1025 * in the page, without the distortions applied by our ECC engine.
1028 * What we do for this specific read operation depends on two questions:
1030 * 1) Are we doing a "raw" read, or an ECC-based read?
1032 * 2) Are we using block mark swapping or transcription?
1034 * There are four cases, illustrated by the following Karnaugh map:
1036 * | Raw | ECC-based |
1037 * -------------+-------------------------+-------------------------+
1038 * | Read the conventional | |
1039 * | OOB at the end of the | |
1040 * Swapping | page and return it. It | |
1041 * | contains exactly what | |
1042 * | we want. | Read the block mark and |
1043 * -------------+-------------------------+ return it in a buffer |
1044 * | Read the conventional | full of set bits. |
1045 * | OOB at the end of the | |
1046 * | page and also the block | |
1047 * Transcribing | mark in the metadata. | |
1048 * | Copy the block mark | |
1049 * | into the first byte of | |
1051 * -------------+-------------------------+-------------------------+
1053 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1054 * giving an accurate view of the actual, physical bytes in the page (we're
1055 * overwriting the block mark). That's OK because it's more important to follow
1058 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1059 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1060 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1061 * ECC-based or raw view of the page is implicit in which function it calls
1062 * (there is a similar pair of ECC-based/raw functions for writing).
1064 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1065 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1066 * caller wants an ECC-based or raw view of the page is not propagated down to
1069 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1070 int page
, int sndcmd
)
1072 struct gpmi_nand_data
*this = chip
->priv
;
1074 pr_debug("page number is %d\n", page
);
1075 /* clear the OOB buffer */
1076 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1078 /* Read out the conventional OOB. */
1079 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1080 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1083 * Now, we want to make sure the block mark is correct. In the
1084 * Swapping/Raw case, we already have it. Otherwise, we need to
1085 * explicitly read it.
1087 if (!this->swap_block_mark
) {
1088 /* Read the block mark into the first byte of the OOB buffer. */
1089 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1090 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1094 * Return true, indicating that the next call to this function must send
1101 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1104 * The BCH will use all the (page + oob).
1105 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1106 * But it can not stop some ioctls such MEMWRITEOOB which uses
1107 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1113 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1115 struct nand_chip
*chip
= mtd
->priv
;
1116 struct gpmi_nand_data
*this = chip
->priv
;
1118 uint8_t *block_mark
;
1119 int column
, page
, status
, chipnr
;
1121 /* Get block number */
1122 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
1124 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
1126 /* Do we have a flash based bad block table ? */
1127 if (chip
->options
& NAND_BBT_USE_FLASH
)
1128 ret
= nand_update_bbt(mtd
, ofs
);
1130 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1131 chip
->select_chip(mtd
, chipnr
);
1133 column
= this->swap_block_mark
? mtd
->writesize
: 0;
1135 /* Write the block mark. */
1136 block_mark
= this->data_buffer_dma
;
1137 block_mark
[0] = 0; /* bad block marker */
1139 /* Shift to get page */
1140 page
= (int)(ofs
>> chip
->page_shift
);
1142 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, column
, page
);
1143 chip
->write_buf(mtd
, block_mark
, 1);
1144 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1146 status
= chip
->waitfunc(mtd
, chip
);
1147 if (status
& NAND_STATUS_FAIL
)
1150 chip
->select_chip(mtd
, -1);
1153 mtd
->ecc_stats
.badblocks
++;
1158 static int __devinit
nand_boot_set_geometry(struct gpmi_nand_data
*this)
1160 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1163 * Set the boot block stride size.
1165 * In principle, we should be reading this from the OTP bits, since
1166 * that's where the ROM is going to get it. In fact, we don't have any
1167 * way to read the OTP bits, so we go with the default and hope for the
1170 geometry
->stride_size_in_pages
= 64;
1173 * Set the search area stride exponent.
1175 * In principle, we should be reading this from the OTP bits, since
1176 * that's where the ROM is going to get it. In fact, we don't have any
1177 * way to read the OTP bits, so we go with the default and hope for the
1180 geometry
->search_area_stride_exponent
= 2;
1184 static const char *fingerprint
= "STMP";
1185 static int __devinit
mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1187 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1188 struct device
*dev
= this->dev
;
1189 struct mtd_info
*mtd
= &this->mtd
;
1190 struct nand_chip
*chip
= &this->nand
;
1191 unsigned int search_area_size_in_strides
;
1192 unsigned int stride
;
1195 uint8_t *buffer
= chip
->buffers
->databuf
;
1196 int saved_chip_number
;
1197 int found_an_ncb_fingerprint
= false;
1199 /* Compute the number of strides in a search area. */
1200 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1202 saved_chip_number
= this->current_chip
;
1203 chip
->select_chip(mtd
, 0);
1206 * Loop through the first search area, looking for the NCB fingerprint.
1208 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1210 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1211 /* Compute the page and byte addresses. */
1212 page
= stride
* rom_geo
->stride_size_in_pages
;
1213 byte
= page
* mtd
->writesize
;
1215 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1218 * Read the NCB fingerprint. The fingerprint is four bytes long
1219 * and starts in the 12th byte of the page.
1221 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 12, page
);
1222 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1224 /* Look for the fingerprint. */
1225 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1226 found_an_ncb_fingerprint
= true;
1232 chip
->select_chip(mtd
, saved_chip_number
);
1234 if (found_an_ncb_fingerprint
)
1235 dev_dbg(dev
, "\tFound a fingerprint\n");
1237 dev_dbg(dev
, "\tNo fingerprint found\n");
1238 return found_an_ncb_fingerprint
;
1241 /* Writes a transcription stamp. */
1242 static int __devinit
mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1244 struct device
*dev
= this->dev
;
1245 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1246 struct mtd_info
*mtd
= &this->mtd
;
1247 struct nand_chip
*chip
= &this->nand
;
1248 unsigned int block_size_in_pages
;
1249 unsigned int search_area_size_in_strides
;
1250 unsigned int search_area_size_in_pages
;
1251 unsigned int search_area_size_in_blocks
;
1253 unsigned int stride
;
1256 uint8_t *buffer
= chip
->buffers
->databuf
;
1257 int saved_chip_number
;
1260 /* Compute the search area geometry. */
1261 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1262 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1263 search_area_size_in_pages
= search_area_size_in_strides
*
1264 rom_geo
->stride_size_in_pages
;
1265 search_area_size_in_blocks
=
1266 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1267 block_size_in_pages
;
1269 dev_dbg(dev
, "Search Area Geometry :\n");
1270 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1271 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1272 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1274 /* Select chip 0. */
1275 saved_chip_number
= this->current_chip
;
1276 chip
->select_chip(mtd
, 0);
1278 /* Loop over blocks in the first search area, erasing them. */
1279 dev_dbg(dev
, "Erasing the search area...\n");
1281 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1282 /* Compute the page address. */
1283 page
= block
* block_size_in_pages
;
1285 /* Erase this block. */
1286 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1287 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1288 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1290 /* Wait for the erase to finish. */
1291 status
= chip
->waitfunc(mtd
, chip
);
1292 if (status
& NAND_STATUS_FAIL
)
1293 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1296 /* Write the NCB fingerprint into the page buffer. */
1297 memset(buffer
, ~0, mtd
->writesize
);
1298 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1299 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1301 /* Loop through the first search area, writing NCB fingerprints. */
1302 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1303 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1304 /* Compute the page and byte addresses. */
1305 page
= stride
* rom_geo
->stride_size_in_pages
;
1306 byte
= page
* mtd
->writesize
;
1308 /* Write the first page of the current stride. */
1309 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1310 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1311 chip
->ecc
.write_page_raw(mtd
, chip
, buffer
);
1312 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1314 /* Wait for the write to finish. */
1315 status
= chip
->waitfunc(mtd
, chip
);
1316 if (status
& NAND_STATUS_FAIL
)
1317 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1320 /* Deselect chip 0. */
1321 chip
->select_chip(mtd
, saved_chip_number
);
1325 static int __devinit
mx23_boot_init(struct gpmi_nand_data
*this)
1327 struct device
*dev
= this->dev
;
1328 struct nand_chip
*chip
= &this->nand
;
1329 struct mtd_info
*mtd
= &this->mtd
;
1330 unsigned int block_count
;
1339 * If control arrives here, we can't use block mark swapping, which
1340 * means we're forced to use transcription. First, scan for the
1341 * transcription stamp. If we find it, then we don't have to do
1342 * anything -- the block marks are already transcribed.
1344 if (mx23_check_transcription_stamp(this))
1348 * If control arrives here, we couldn't find a transcription stamp, so
1349 * so we presume the block marks are in the conventional location.
1351 dev_dbg(dev
, "Transcribing bad block marks...\n");
1353 /* Compute the number of blocks in the entire medium. */
1354 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1357 * Loop over all the blocks in the medium, transcribing block marks as
1360 for (block
= 0; block
< block_count
; block
++) {
1362 * Compute the chip, page and byte addresses for this block's
1363 * conventional mark.
1365 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1366 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1367 byte
= block
<< chip
->phys_erase_shift
;
1369 /* Send the command to read the conventional block mark. */
1370 chip
->select_chip(mtd
, chipnr
);
1371 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1372 block_mark
= chip
->read_byte(mtd
);
1373 chip
->select_chip(mtd
, -1);
1376 * Check if the block is marked bad. If so, we need to mark it
1377 * again, but this time the result will be a mark in the
1378 * location where we transcribe block marks.
1380 if (block_mark
!= 0xff) {
1381 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1382 ret
= chip
->block_markbad(mtd
, byte
);
1384 dev_err(dev
, "Failed to mark block bad with "
1389 /* Write the stamp that indicates we've transcribed the block marks. */
1390 mx23_write_transcription_stamp(this);
1394 static int __devinit
nand_boot_init(struct gpmi_nand_data
*this)
1396 nand_boot_set_geometry(this);
1398 /* This is ROM arch-specific initilization before the BBT scanning. */
1399 if (GPMI_IS_MX23(this))
1400 return mx23_boot_init(this);
1404 static int __devinit
gpmi_set_geometry(struct gpmi_nand_data
*this)
1408 /* Free the temporary DMA memory for reading ID. */
1409 gpmi_free_dma_buffer(this);
1411 /* Set up the NFC geometry which is used by BCH. */
1412 ret
= bch_set_geometry(this);
1414 pr_err("set geometry ret : %d\n", ret
);
1418 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1419 return gpmi_alloc_dma_buffer(this);
1422 static int gpmi_pre_bbt_scan(struct gpmi_nand_data
*this)
1426 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1427 if (GPMI_IS_MX23(this))
1428 this->swap_block_mark
= false;
1430 this->swap_block_mark
= true;
1432 /* Set up the medium geometry */
1433 ret
= gpmi_set_geometry(this);
1437 /* NAND boot init, depends on the gpmi_set_geometry(). */
1438 return nand_boot_init(this);
1441 static int gpmi_scan_bbt(struct mtd_info
*mtd
)
1443 struct nand_chip
*chip
= mtd
->priv
;
1444 struct gpmi_nand_data
*this = chip
->priv
;
1447 /* Prepare for the BBT scan. */
1448 ret
= gpmi_pre_bbt_scan(this);
1452 /* use the default BBT implementation */
1453 return nand_default_bbt(mtd
);
1456 void gpmi_nfc_exit(struct gpmi_nand_data
*this)
1458 nand_release(&this->mtd
);
1459 gpmi_free_dma_buffer(this);
1462 static int __devinit
gpmi_nfc_init(struct gpmi_nand_data
*this)
1464 struct gpmi_nand_platform_data
*pdata
= this->pdata
;
1465 struct mtd_info
*mtd
= &this->mtd
;
1466 struct nand_chip
*chip
= &this->nand
;
1469 /* init current chip */
1470 this->current_chip
= -1;
1472 /* init the MTD data structures */
1474 mtd
->name
= "gpmi-nand";
1475 mtd
->owner
= THIS_MODULE
;
1477 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1479 chip
->select_chip
= gpmi_select_chip
;
1480 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1481 chip
->dev_ready
= gpmi_dev_ready
;
1482 chip
->read_byte
= gpmi_read_byte
;
1483 chip
->read_buf
= gpmi_read_buf
;
1484 chip
->write_buf
= gpmi_write_buf
;
1485 chip
->ecc
.read_page
= gpmi_ecc_read_page
;
1486 chip
->ecc
.write_page
= gpmi_ecc_write_page
;
1487 chip
->ecc
.read_oob
= gpmi_ecc_read_oob
;
1488 chip
->ecc
.write_oob
= gpmi_ecc_write_oob
;
1489 chip
->scan_bbt
= gpmi_scan_bbt
;
1490 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1491 chip
->block_markbad
= gpmi_block_markbad
;
1492 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1493 chip
->ecc
.mode
= NAND_ECC_HW
;
1495 chip
->ecc
.layout
= &gpmi_hw_ecclayout
;
1497 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1498 this->bch_geometry
.payload_size
= 1024;
1499 this->bch_geometry
.auxiliary_size
= 128;
1500 ret
= gpmi_alloc_dma_buffer(this);
1504 ret
= nand_scan(mtd
, pdata
->max_chip_count
);
1506 pr_err("Chip scan failed\n");
1510 ret
= mtd_device_parse_register(mtd
, NULL
, NULL
,
1511 pdata
->partitions
, pdata
->partition_count
);
1517 gpmi_nfc_exit(this);
1521 static int __devinit
gpmi_nand_probe(struct platform_device
*pdev
)
1523 struct gpmi_nand_platform_data
*pdata
= pdev
->dev
.platform_data
;
1524 struct gpmi_nand_data
*this;
1527 this = kzalloc(sizeof(*this), GFP_KERNEL
);
1529 pr_err("Failed to allocate per-device memory\n");
1533 platform_set_drvdata(pdev
, this);
1535 this->dev
= &pdev
->dev
;
1536 this->pdata
= pdata
;
1538 if (pdata
->platform_init
) {
1539 ret
= pdata
->platform_init();
1541 goto platform_init_error
;
1544 ret
= acquire_resources(this);
1546 goto exit_acquire_resources
;
1548 ret
= init_hardware(this);
1552 ret
= gpmi_nfc_init(this);
1559 release_resources(this);
1560 platform_init_error
:
1561 exit_acquire_resources
:
1562 platform_set_drvdata(pdev
, NULL
);
1567 static int __exit
gpmi_nand_remove(struct platform_device
*pdev
)
1569 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
1571 gpmi_nfc_exit(this);
1572 release_resources(this);
1573 platform_set_drvdata(pdev
, NULL
);
1578 static const struct platform_device_id gpmi_ids
[] = {
1580 .name
= "imx23-gpmi-nand",
1581 .driver_data
= IS_MX23
,
1583 .name
= "imx28-gpmi-nand",
1584 .driver_data
= IS_MX28
,
1588 static struct platform_driver gpmi_nand_driver
= {
1590 .name
= "gpmi-nand",
1592 .probe
= gpmi_nand_probe
,
1593 .remove
= __exit_p(gpmi_nand_remove
),
1594 .id_table
= gpmi_ids
,
1597 static int __init
gpmi_nand_init(void)
1601 err
= platform_driver_register(&gpmi_nand_driver
);
1603 printk(KERN_INFO
"GPMI NAND driver registered. (IMX)\n");
1605 pr_err("i.MX GPMI NAND driver registration failed\n");
1609 static void __exit
gpmi_nand_exit(void)
1611 platform_driver_unregister(&gpmi_nand_driver
);
1614 module_init(gpmi_nand_init
);
1615 module_exit(gpmi_nand_exit
);
1617 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1618 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1619 MODULE_LICENSE("GPL");