2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <linux/slab.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_MTD_UBI_DEBUG
66 static void paranoid_vtbl_check(const struct ubi_device
*ubi
);
68 #define paranoid_vtbl_check(ubi)
71 /* Empty volume table record */
72 static struct ubi_vtbl_record empty_vtbl_record
;
75 * ubi_change_vtbl_record - change volume table record.
76 * @ubi: UBI device description object
77 * @idx: table index to change
78 * @vtbl_rec: new volume table record
80 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
81 * volume table record is written. The caller does not have to calculate CRC of
82 * the record as it is done by this function. Returns zero in case of success
83 * and a negative error code in case of failure.
85 int ubi_change_vtbl_record(struct ubi_device
*ubi
, int idx
,
86 struct ubi_vtbl_record
*vtbl_rec
)
90 struct ubi_volume
*layout_vol
;
92 ubi_assert(idx
>= 0 && idx
< ubi
->vtbl_slots
);
93 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
96 vtbl_rec
= &empty_vtbl_record
;
98 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
, UBI_VTBL_RECORD_SIZE_CRC
);
99 vtbl_rec
->crc
= cpu_to_be32(crc
);
102 memcpy(&ubi
->vtbl
[idx
], vtbl_rec
, sizeof(struct ubi_vtbl_record
));
103 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
104 err
= ubi_eba_unmap_leb(ubi
, layout_vol
, i
);
108 err
= ubi_eba_write_leb(ubi
, layout_vol
, i
, ubi
->vtbl
, 0,
109 ubi
->vtbl_size
, UBI_LONGTERM
);
114 paranoid_vtbl_check(ubi
);
119 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
120 * @ubi: UBI device description object
121 * @rename_list: list of &struct ubi_rename_entry objects
123 * This function re-names multiple volumes specified in @req in the volume
124 * table. Returns zero in case of success and a negative error code in case of
127 int ubi_vtbl_rename_volumes(struct ubi_device
*ubi
,
128 struct list_head
*rename_list
)
131 struct ubi_rename_entry
*re
;
132 struct ubi_volume
*layout_vol
;
134 list_for_each_entry(re
, rename_list
, list
) {
136 struct ubi_volume
*vol
= re
->desc
->vol
;
137 struct ubi_vtbl_record
*vtbl_rec
= &ubi
->vtbl
[vol
->vol_id
];
140 memcpy(vtbl_rec
, &empty_vtbl_record
,
141 sizeof(struct ubi_vtbl_record
));
145 vtbl_rec
->name_len
= cpu_to_be16(re
->new_name_len
);
146 memcpy(vtbl_rec
->name
, re
->new_name
, re
->new_name_len
);
147 memset(vtbl_rec
->name
+ re
->new_name_len
, 0,
148 UBI_VOL_NAME_MAX
+ 1 - re
->new_name_len
);
149 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
,
150 UBI_VTBL_RECORD_SIZE_CRC
);
151 vtbl_rec
->crc
= cpu_to_be32(crc
);
154 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
155 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
156 err
= ubi_eba_unmap_leb(ubi
, layout_vol
, i
);
160 err
= ubi_eba_write_leb(ubi
, layout_vol
, i
, ubi
->vtbl
, 0,
161 ubi
->vtbl_size
, UBI_LONGTERM
);
170 * vtbl_check - check if volume table is not corrupted and sensible.
171 * @ubi: UBI device description object
172 * @vtbl: volume table
174 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
175 * and %-EINVAL if it contains inconsistent data.
177 static int vtbl_check(const struct ubi_device
*ubi
,
178 const struct ubi_vtbl_record
*vtbl
)
180 int i
, n
, reserved_pebs
, alignment
, data_pad
, vol_type
, name_len
;
185 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
188 reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
189 alignment
= be32_to_cpu(vtbl
[i
].alignment
);
190 data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
191 upd_marker
= vtbl
[i
].upd_marker
;
192 vol_type
= vtbl
[i
].vol_type
;
193 name_len
= be16_to_cpu(vtbl
[i
].name_len
);
194 name
= &vtbl
[i
].name
[0];
196 crc
= crc32(UBI_CRC32_INIT
, &vtbl
[i
], UBI_VTBL_RECORD_SIZE_CRC
);
197 if (be32_to_cpu(vtbl
[i
].crc
) != crc
) {
198 ubi_err("bad CRC at record %u: %#08x, not %#08x",
199 i
, crc
, be32_to_cpu(vtbl
[i
].crc
));
200 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
204 if (reserved_pebs
== 0) {
205 if (memcmp(&vtbl
[i
], &empty_vtbl_record
,
206 UBI_VTBL_RECORD_SIZE
)) {
213 if (reserved_pebs
< 0 || alignment
< 0 || data_pad
< 0 ||
219 if (alignment
> ubi
->leb_size
|| alignment
== 0) {
224 n
= alignment
& (ubi
->min_io_size
- 1);
225 if (alignment
!= 1 && n
) {
230 n
= ubi
->leb_size
% alignment
;
232 dbg_err("bad data_pad, has to be %d", n
);
237 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
242 if (upd_marker
!= 0 && upd_marker
!= 1) {
247 if (reserved_pebs
> ubi
->good_peb_count
) {
248 dbg_err("too large reserved_pebs %d, good PEBs %d",
249 reserved_pebs
, ubi
->good_peb_count
);
254 if (name_len
> UBI_VOL_NAME_MAX
) {
259 if (name
[0] == '\0') {
264 if (name_len
!= strnlen(name
, name_len
+ 1)) {
270 /* Checks that all names are unique */
271 for (i
= 0; i
< ubi
->vtbl_slots
- 1; i
++) {
272 for (n
= i
+ 1; n
< ubi
->vtbl_slots
; n
++) {
273 int len1
= be16_to_cpu(vtbl
[i
].name_len
);
274 int len2
= be16_to_cpu(vtbl
[n
].name_len
);
276 if (len1
> 0 && len1
== len2
&&
277 !strncmp(vtbl
[i
].name
, vtbl
[n
].name
, len1
)) {
278 ubi_err("volumes %d and %d have the same name"
279 " \"%s\"", i
, n
, vtbl
[i
].name
);
280 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
281 ubi_dbg_dump_vtbl_record(&vtbl
[n
], n
);
290 ubi_err("volume table check failed: record %d, error %d", i
, err
);
291 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
296 * create_vtbl - create a copy of volume table.
297 * @ubi: UBI device description object
298 * @si: scanning information
299 * @copy: number of the volume table copy
300 * @vtbl: contents of the volume table
302 * This function returns zero in case of success and a negative error code in
305 static int create_vtbl(struct ubi_device
*ubi
, struct ubi_scan_info
*si
,
306 int copy
, void *vtbl
)
309 struct ubi_vid_hdr
*vid_hdr
;
310 struct ubi_scan_leb
*new_seb
;
312 ubi_msg("create volume table (copy #%d)", copy
+ 1);
314 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
319 new_seb
= ubi_scan_get_free_peb(ubi
, si
);
320 if (IS_ERR(new_seb
)) {
321 err
= PTR_ERR(new_seb
);
325 vid_hdr
->vol_type
= UBI_LAYOUT_VOLUME_TYPE
;
326 vid_hdr
->vol_id
= cpu_to_be32(UBI_LAYOUT_VOLUME_ID
);
327 vid_hdr
->compat
= UBI_LAYOUT_VOLUME_COMPAT
;
328 vid_hdr
->data_size
= vid_hdr
->used_ebs
=
329 vid_hdr
->data_pad
= cpu_to_be32(0);
330 vid_hdr
->lnum
= cpu_to_be32(copy
);
331 vid_hdr
->sqnum
= cpu_to_be64(++si
->max_sqnum
);
333 /* The EC header is already there, write the VID header */
334 err
= ubi_io_write_vid_hdr(ubi
, new_seb
->pnum
, vid_hdr
);
338 /* Write the layout volume contents */
339 err
= ubi_io_write_data(ubi
, vtbl
, new_seb
->pnum
, 0, ubi
->vtbl_size
);
344 * And add it to the scanning information. Don't delete the old version
345 * of this LEB as it will be deleted and freed in 'ubi_scan_add_used()'.
347 err
= ubi_scan_add_used(ubi
, si
, new_seb
->pnum
, new_seb
->ec
,
350 ubi_free_vid_hdr(ubi
, vid_hdr
);
354 if (err
== -EIO
&& ++tries
<= 5) {
356 * Probably this physical eraseblock went bad, try to pick
359 list_add(&new_seb
->u
.list
, &si
->erase
);
364 ubi_free_vid_hdr(ubi
, vid_hdr
);
370 * process_lvol - process the layout volume.
371 * @ubi: UBI device description object
372 * @si: scanning information
373 * @sv: layout volume scanning information
375 * This function is responsible for reading the layout volume, ensuring it is
376 * not corrupted, and recovering from corruptions if needed. Returns volume
377 * table in case of success and a negative error code in case of failure.
379 static struct ubi_vtbl_record
*process_lvol(struct ubi_device
*ubi
,
380 struct ubi_scan_info
*si
,
381 struct ubi_scan_volume
*sv
)
385 struct ubi_scan_leb
*seb
;
386 struct ubi_vtbl_record
*leb
[UBI_LAYOUT_VOLUME_EBS
] = { NULL
, NULL
};
387 int leb_corrupted
[UBI_LAYOUT_VOLUME_EBS
] = {1, 1};
390 * UBI goes through the following steps when it changes the layout
393 * b. write new data to LEB 0;
395 * d. write new data to LEB 1.
397 * Before the change, both LEBs contain the same data.
399 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
400 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
401 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
402 * finally, unclean reboots may result in a situation when neither LEB
403 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
404 * 0 contains more recent information.
406 * So the plan is to first check LEB 0. Then
407 * a. if LEB 0 is OK, it must be containing the most recent data; then
408 * we compare it with LEB 1, and if they are different, we copy LEB
410 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
414 dbg_gen("check layout volume");
416 /* Read both LEB 0 and LEB 1 into memory */
417 ubi_rb_for_each_entry(rb
, seb
, &sv
->root
, u
.rb
) {
418 leb
[seb
->lnum
] = vzalloc(ubi
->vtbl_size
);
419 if (!leb
[seb
->lnum
]) {
424 err
= ubi_io_read_data(ubi
, leb
[seb
->lnum
], seb
->pnum
, 0,
426 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
))
428 * Scrub the PEB later. Note, -EBADMSG indicates an
429 * uncorrectable ECC error, but we have our own CRC and
430 * the data will be checked later. If the data is OK,
431 * the PEB will be scrubbed (because we set
432 * seb->scrub). If the data is not OK, the contents of
433 * the PEB will be recovered from the second copy, and
434 * seb->scrub will be cleared in
435 * 'ubi_scan_add_used()'.
444 leb_corrupted
[0] = vtbl_check(ubi
, leb
[0]);
445 if (leb_corrupted
[0] < 0)
449 if (!leb_corrupted
[0]) {
452 leb_corrupted
[1] = memcmp(leb
[0], leb
[1],
454 if (leb_corrupted
[1]) {
455 ubi_warn("volume table copy #2 is corrupted");
456 err
= create_vtbl(ubi
, si
, 1, leb
[0]);
459 ubi_msg("volume table was restored");
462 /* Both LEB 1 and LEB 2 are OK and consistent */
466 /* LEB 0 is corrupted or does not exist */
468 leb_corrupted
[1] = vtbl_check(ubi
, leb
[1]);
469 if (leb_corrupted
[1] < 0)
472 if (leb_corrupted
[1]) {
473 /* Both LEB 0 and LEB 1 are corrupted */
474 ubi_err("both volume tables are corrupted");
478 ubi_warn("volume table copy #1 is corrupted");
479 err
= create_vtbl(ubi
, si
, 0, leb
[1]);
482 ubi_msg("volume table was restored");
495 * create_empty_lvol - create empty layout volume.
496 * @ubi: UBI device description object
497 * @si: scanning information
499 * This function returns volume table contents in case of success and a
500 * negative error code in case of failure.
502 static struct ubi_vtbl_record
*create_empty_lvol(struct ubi_device
*ubi
,
503 struct ubi_scan_info
*si
)
506 struct ubi_vtbl_record
*vtbl
;
508 vtbl
= vzalloc(ubi
->vtbl_size
);
510 return ERR_PTR(-ENOMEM
);
512 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
513 memcpy(&vtbl
[i
], &empty_vtbl_record
, UBI_VTBL_RECORD_SIZE
);
515 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
518 err
= create_vtbl(ubi
, si
, i
, vtbl
);
529 * init_volumes - initialize volume information for existing volumes.
530 * @ubi: UBI device description object
531 * @si: scanning information
532 * @vtbl: volume table
534 * This function allocates volume description objects for existing volumes.
535 * Returns zero in case of success and a negative error code in case of
538 static int init_volumes(struct ubi_device
*ubi
, const struct ubi_scan_info
*si
,
539 const struct ubi_vtbl_record
*vtbl
)
541 int i
, reserved_pebs
= 0;
542 struct ubi_scan_volume
*sv
;
543 struct ubi_volume
*vol
;
545 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
548 if (be32_to_cpu(vtbl
[i
].reserved_pebs
) == 0)
549 continue; /* Empty record */
551 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
555 vol
->reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
556 vol
->alignment
= be32_to_cpu(vtbl
[i
].alignment
);
557 vol
->data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
558 vol
->upd_marker
= vtbl
[i
].upd_marker
;
559 vol
->vol_type
= vtbl
[i
].vol_type
== UBI_VID_DYNAMIC
?
560 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
561 vol
->name_len
= be16_to_cpu(vtbl
[i
].name_len
);
562 vol
->usable_leb_size
= ubi
->leb_size
- vol
->data_pad
;
563 memcpy(vol
->name
, vtbl
[i
].name
, vol
->name_len
);
564 vol
->name
[vol
->name_len
] = '\0';
567 if (vtbl
[i
].flags
& UBI_VTBL_AUTORESIZE_FLG
) {
568 /* Auto re-size flag may be set only for one volume */
569 if (ubi
->autoresize_vol_id
!= -1) {
570 ubi_err("more than one auto-resize volume (%d "
571 "and %d)", ubi
->autoresize_vol_id
, i
);
576 ubi
->autoresize_vol_id
= i
;
579 ubi_assert(!ubi
->volumes
[i
]);
580 ubi
->volumes
[i
] = vol
;
583 reserved_pebs
+= vol
->reserved_pebs
;
586 * In case of dynamic volume UBI knows nothing about how many
587 * data is stored there. So assume the whole volume is used.
589 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
) {
590 vol
->used_ebs
= vol
->reserved_pebs
;
591 vol
->last_eb_bytes
= vol
->usable_leb_size
;
593 (long long)vol
->used_ebs
* vol
->usable_leb_size
;
597 /* Static volumes only */
598 sv
= ubi_scan_find_sv(si
, i
);
601 * No eraseblocks belonging to this volume found. We
602 * don't actually know whether this static volume is
603 * completely corrupted or just contains no data. And
604 * we cannot know this as long as data size is not
605 * stored on flash. So we just assume the volume is
606 * empty. FIXME: this should be handled.
611 if (sv
->leb_count
!= sv
->used_ebs
) {
613 * We found a static volume which misses several
614 * eraseblocks. Treat it as corrupted.
616 ubi_warn("static volume %d misses %d LEBs - corrupted",
617 sv
->vol_id
, sv
->used_ebs
- sv
->leb_count
);
622 vol
->used_ebs
= sv
->used_ebs
;
624 (long long)(vol
->used_ebs
- 1) * vol
->usable_leb_size
;
625 vol
->used_bytes
+= sv
->last_data_size
;
626 vol
->last_eb_bytes
= sv
->last_data_size
;
629 /* And add the layout volume */
630 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
634 vol
->reserved_pebs
= UBI_LAYOUT_VOLUME_EBS
;
635 vol
->alignment
= UBI_LAYOUT_VOLUME_ALIGN
;
636 vol
->vol_type
= UBI_DYNAMIC_VOLUME
;
637 vol
->name_len
= sizeof(UBI_LAYOUT_VOLUME_NAME
) - 1;
638 memcpy(vol
->name
, UBI_LAYOUT_VOLUME_NAME
, vol
->name_len
+ 1);
639 vol
->usable_leb_size
= ubi
->leb_size
;
640 vol
->used_ebs
= vol
->reserved_pebs
;
641 vol
->last_eb_bytes
= vol
->reserved_pebs
;
643 (long long)vol
->used_ebs
* (ubi
->leb_size
- vol
->data_pad
);
644 vol
->vol_id
= UBI_LAYOUT_VOLUME_ID
;
647 ubi_assert(!ubi
->volumes
[i
]);
648 ubi
->volumes
[vol_id2idx(ubi
, vol
->vol_id
)] = vol
;
649 reserved_pebs
+= vol
->reserved_pebs
;
653 if (reserved_pebs
> ubi
->avail_pebs
) {
654 ubi_err("not enough PEBs, required %d, available %d",
655 reserved_pebs
, ubi
->avail_pebs
);
656 if (ubi
->corr_peb_count
)
657 ubi_err("%d PEBs are corrupted and not used",
658 ubi
->corr_peb_count
);
660 ubi
->rsvd_pebs
+= reserved_pebs
;
661 ubi
->avail_pebs
-= reserved_pebs
;
667 * check_sv - check volume scanning information.
668 * @vol: UBI volume description object
669 * @sv: volume scanning information
671 * This function returns zero if the volume scanning information is consistent
672 * to the data read from the volume tabla, and %-EINVAL if not.
674 static int check_sv(const struct ubi_volume
*vol
,
675 const struct ubi_scan_volume
*sv
)
679 if (sv
->highest_lnum
>= vol
->reserved_pebs
) {
683 if (sv
->leb_count
> vol
->reserved_pebs
) {
687 if (sv
->vol_type
!= vol
->vol_type
) {
691 if (sv
->used_ebs
> vol
->reserved_pebs
) {
695 if (sv
->data_pad
!= vol
->data_pad
) {
702 ubi_err("bad scanning information, error %d", err
);
704 ubi_dbg_dump_vol_info(vol
);
709 * check_scanning_info - check that scanning information.
710 * @ubi: UBI device description object
711 * @si: scanning information
713 * Even though we protect on-flash data by CRC checksums, we still don't trust
714 * the media. This function ensures that scanning information is consistent to
715 * the information read from the volume table. Returns zero if the scanning
716 * information is OK and %-EINVAL if it is not.
718 static int check_scanning_info(const struct ubi_device
*ubi
,
719 struct ubi_scan_info
*si
)
722 struct ubi_scan_volume
*sv
;
723 struct ubi_volume
*vol
;
725 if (si
->vols_found
> UBI_INT_VOL_COUNT
+ ubi
->vtbl_slots
) {
726 ubi_err("scanning found %d volumes, maximum is %d + %d",
727 si
->vols_found
, UBI_INT_VOL_COUNT
, ubi
->vtbl_slots
);
731 if (si
->highest_vol_id
>= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
&&
732 si
->highest_vol_id
< UBI_INTERNAL_VOL_START
) {
733 ubi_err("too large volume ID %d found by scanning",
738 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
741 sv
= ubi_scan_find_sv(si
, i
);
742 vol
= ubi
->volumes
[i
];
745 ubi_scan_rm_volume(si
, sv
);
749 if (vol
->reserved_pebs
== 0) {
750 ubi_assert(i
< ubi
->vtbl_slots
);
756 * During scanning we found a volume which does not
757 * exist according to the information in the volume
758 * table. This must have happened due to an unclean
759 * reboot while the volume was being removed. Discard
762 ubi_msg("finish volume %d removal", sv
->vol_id
);
763 ubi_scan_rm_volume(si
, sv
);
765 err
= check_sv(vol
, sv
);
775 * ubi_read_volume_table - read the volume table.
776 * @ubi: UBI device description object
777 * @si: scanning information
779 * This function reads volume table, checks it, recover from errors if needed,
780 * or creates it if needed. Returns zero in case of success and a negative
781 * error code in case of failure.
783 int ubi_read_volume_table(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
786 struct ubi_scan_volume
*sv
;
788 empty_vtbl_record
.crc
= cpu_to_be32(0xf116c36b);
791 * The number of supported volumes is limited by the eraseblock size
792 * and by the UBI_MAX_VOLUMES constant.
794 ubi
->vtbl_slots
= ubi
->leb_size
/ UBI_VTBL_RECORD_SIZE
;
795 if (ubi
->vtbl_slots
> UBI_MAX_VOLUMES
)
796 ubi
->vtbl_slots
= UBI_MAX_VOLUMES
;
798 ubi
->vtbl_size
= ubi
->vtbl_slots
* UBI_VTBL_RECORD_SIZE
;
799 ubi
->vtbl_size
= ALIGN(ubi
->vtbl_size
, ubi
->min_io_size
);
801 sv
= ubi_scan_find_sv(si
, UBI_LAYOUT_VOLUME_ID
);
804 * No logical eraseblocks belonging to the layout volume were
805 * found. This could mean that the flash is just empty. In
806 * this case we create empty layout volume.
808 * But if flash is not empty this must be a corruption or the
809 * MTD device just contains garbage.
812 ubi
->vtbl
= create_empty_lvol(ubi
, si
);
813 if (IS_ERR(ubi
->vtbl
))
814 return PTR_ERR(ubi
->vtbl
);
816 ubi_err("the layout volume was not found");
820 if (sv
->leb_count
> UBI_LAYOUT_VOLUME_EBS
) {
821 /* This must not happen with proper UBI images */
822 dbg_err("too many LEBs (%d) in layout volume",
827 ubi
->vtbl
= process_lvol(ubi
, si
, sv
);
828 if (IS_ERR(ubi
->vtbl
))
829 return PTR_ERR(ubi
->vtbl
);
832 ubi
->avail_pebs
= ubi
->good_peb_count
- ubi
->corr_peb_count
;
835 * The layout volume is OK, initialize the corresponding in-RAM data
838 err
= init_volumes(ubi
, si
, ubi
->vtbl
);
843 * Make sure that the scanning information is consistent to the
844 * information stored in the volume table.
846 err
= check_scanning_info(ubi
, si
);
854 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
855 kfree(ubi
->volumes
[i
]);
856 ubi
->volumes
[i
] = NULL
;
861 #ifdef CONFIG_MTD_UBI_DEBUG
864 * paranoid_vtbl_check - check volume table.
865 * @ubi: UBI device description object
867 static void paranoid_vtbl_check(const struct ubi_device
*ubi
)
869 if (!ubi
->dbg
->chk_gen
)
872 if (vtbl_check(ubi
, ubi
->vtbl
)) {
873 ubi_err("paranoid check failed");
878 #endif /* CONFIG_MTD_UBI_DEBUG */